Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / arch / powerpc / kernel / fadump.c
blob4b371c738213c9399dbb5d2f809a0374bba9ca85
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4 * dump with assistance from firmware. This approach does not use kexec,
5 * instead firmware assists in booting the kdump kernel while preserving
6 * memory contents. The most of the code implementation has been adapted
7 * from phyp assisted dump implementation written by Linas Vepstas and
8 * Manish Ahuja
10 * Copyright 2011 IBM Corporation
11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
38 * The CPU who acquired the lock to trigger the fadump crash should
39 * wait for other CPUs to enter.
41 * The timeout is in milliseconds.
43 #define CRASH_TIMEOUT 500
45 static struct fw_dump fw_dump;
47 static void __init fadump_reserve_crash_area(u64 base);
49 #ifndef CONFIG_PRESERVE_FA_DUMP
51 static struct kobject *fadump_kobj;
53 static atomic_t cpus_in_fadump;
54 static DEFINE_MUTEX(fadump_mutex);
56 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */
57 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \
58 sizeof(struct fadump_memory_range))
59 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
60 static struct fadump_mrange_info
61 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
63 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
65 #ifdef CONFIG_CMA
66 static struct cma *fadump_cma;
69 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
71 * This function initializes CMA area from fadump reserved memory.
72 * The total size of fadump reserved memory covers for boot memory size
73 * + cpu data size + hpte size and metadata.
74 * Initialize only the area equivalent to boot memory size for CMA use.
75 * The remaining portion of fadump reserved memory will be not given
76 * to CMA and pages for those will stay reserved. boot memory size is
77 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
78 * But for some reason even if it fails we still have the memory reservation
79 * with us and we can still continue doing fadump.
81 void __init fadump_cma_init(void)
83 unsigned long long base, size, end;
84 int rc;
86 if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
87 fw_dump.dump_active)
88 return;
90 * Do not use CMA if user has provided fadump=nocma kernel parameter.
92 if (fw_dump.nocma || !fw_dump.boot_memory_size)
93 return;
96 * [base, end) should be reserved during early init in
97 * fadump_reserve_mem(). No need to check this here as
98 * cma_init_reserved_mem() already checks for overlap.
99 * Here we give the aligned chunk of this reserved memory to CMA.
101 base = fw_dump.reserve_dump_area_start;
102 size = fw_dump.boot_memory_size;
103 end = base + size;
105 base = ALIGN(base, CMA_MIN_ALIGNMENT_BYTES);
106 end = ALIGN_DOWN(end, CMA_MIN_ALIGNMENT_BYTES);
107 size = end - base;
109 if (end <= base) {
110 pr_warn("%s: Too less memory to give to CMA\n", __func__);
111 return;
114 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
115 if (rc) {
116 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
118 * Though the CMA init has failed we still have memory
119 * reservation with us. The reserved memory will be
120 * blocked from production system usage. Hence return 1,
121 * so that we can continue with fadump.
123 return;
127 * If CMA activation fails, keep the pages reserved, instead of
128 * exposing them to buddy allocator. Same as 'fadump=nocma' case.
130 cma_reserve_pages_on_error(fadump_cma);
133 * So we now have successfully initialized cma area for fadump.
135 pr_info("Initialized [0x%llx, %luMB] cma area from [0x%lx, %luMB] "
136 "bytes of memory reserved for firmware-assisted dump\n",
137 cma_get_base(fadump_cma), cma_get_size(fadump_cma) >> 20,
138 fw_dump.reserve_dump_area_start,
139 fw_dump.boot_memory_size >> 20);
140 return;
142 #endif /* CONFIG_CMA */
145 * Additional parameters meant for capture kernel are placed in a dedicated area.
146 * If this is capture kernel boot, append these parameters to bootargs.
148 void __init fadump_append_bootargs(void)
150 char *append_args;
151 size_t len;
153 if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
154 return;
156 if (fw_dump.param_area < fw_dump.boot_mem_top) {
157 if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
158 pr_warn("WARNING: Can't use additional parameters area!\n");
159 fw_dump.param_area = 0;
160 return;
164 append_args = (char *)fw_dump.param_area;
165 len = strlen(boot_command_line);
168 * Too late to fail even if cmdline size exceeds. Truncate additional parameters
169 * to cmdline size and proceed anyway.
171 if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
172 pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
174 pr_debug("Cmdline: %s\n", boot_command_line);
175 snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
176 pr_info("Updated cmdline: %s\n", boot_command_line);
179 /* Scan the Firmware Assisted dump configuration details. */
180 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
181 int depth, void *data)
183 if (depth == 0) {
184 early_init_dt_scan_reserved_ranges(node);
185 return 0;
188 if (depth != 1)
189 return 0;
191 if (strcmp(uname, "rtas") == 0) {
192 rtas_fadump_dt_scan(&fw_dump, node);
193 return 1;
196 if (strcmp(uname, "ibm,opal") == 0) {
197 opal_fadump_dt_scan(&fw_dump, node);
198 return 1;
201 return 0;
205 * If fadump is registered, check if the memory provided
206 * falls within boot memory area and reserved memory area.
208 int is_fadump_memory_area(u64 addr, unsigned long size)
210 u64 d_start, d_end;
212 if (!fw_dump.dump_registered)
213 return 0;
215 if (!size)
216 return 0;
218 d_start = fw_dump.reserve_dump_area_start;
219 d_end = d_start + fw_dump.reserve_dump_area_size;
220 if (((addr + size) > d_start) && (addr <= d_end))
221 return 1;
223 return (addr <= fw_dump.boot_mem_top);
226 int should_fadump_crash(void)
228 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
229 return 0;
230 return 1;
233 int is_fadump_active(void)
235 return fw_dump.dump_active;
239 * Returns true, if there are no holes in memory area between d_start to d_end,
240 * false otherwise.
242 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
244 phys_addr_t reg_start, reg_end;
245 bool ret = false;
246 u64 i, start, end;
248 for_each_mem_range(i, &reg_start, &reg_end) {
249 start = max_t(u64, d_start, reg_start);
250 end = min_t(u64, d_end, reg_end);
251 if (d_start < end) {
252 /* Memory hole from d_start to start */
253 if (start > d_start)
254 break;
256 if (end == d_end) {
257 ret = true;
258 break;
261 d_start = end + 1;
265 return ret;
269 * Returns true, if there are no holes in reserved memory area,
270 * false otherwise.
272 bool is_fadump_reserved_mem_contiguous(void)
274 u64 d_start, d_end;
276 d_start = fw_dump.reserve_dump_area_start;
277 d_end = d_start + fw_dump.reserve_dump_area_size;
278 return is_fadump_mem_area_contiguous(d_start, d_end);
281 /* Print firmware assisted dump configurations for debugging purpose. */
282 static void __init fadump_show_config(void)
284 int i;
286 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
287 (fw_dump.fadump_supported ? "present" : "no support"));
289 if (!fw_dump.fadump_supported)
290 return;
292 pr_debug("Fadump enabled : %s\n",
293 (fw_dump.fadump_enabled ? "yes" : "no"));
294 pr_debug("Dump Active : %s\n",
295 (fw_dump.dump_active ? "yes" : "no"));
296 pr_debug("Dump section sizes:\n");
297 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
298 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
299 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
300 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
301 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
302 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
303 pr_debug("[%03d] base = %llx, size = %llx\n", i,
304 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
309 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
311 * Function to find the largest memory size we need to reserve during early
312 * boot process. This will be the size of the memory that is required for a
313 * kernel to boot successfully.
315 * This function has been taken from phyp-assisted dump feature implementation.
317 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
319 * TODO: Come up with better approach to find out more accurate memory size
320 * that is required for a kernel to boot successfully.
323 static __init u64 fadump_calculate_reserve_size(void)
325 u64 base, size, bootmem_min;
326 int ret;
328 if (fw_dump.reserve_bootvar)
329 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
332 * Check if the size is specified through crashkernel= cmdline
333 * option. If yes, then use that but ignore base as fadump reserves
334 * memory at a predefined offset.
336 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
337 &size, &base, NULL, NULL);
338 if (ret == 0 && size > 0) {
339 unsigned long max_size;
341 if (fw_dump.reserve_bootvar)
342 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
344 fw_dump.reserve_bootvar = (unsigned long)size;
347 * Adjust if the boot memory size specified is above
348 * the upper limit.
350 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
351 if (fw_dump.reserve_bootvar > max_size) {
352 fw_dump.reserve_bootvar = max_size;
353 pr_info("Adjusted boot memory size to %luMB\n",
354 (fw_dump.reserve_bootvar >> 20));
357 return fw_dump.reserve_bootvar;
358 } else if (fw_dump.reserve_bootvar) {
360 * 'fadump_reserve_mem=' is being used to reserve memory
361 * for firmware-assisted dump.
363 return fw_dump.reserve_bootvar;
366 /* divide by 20 to get 5% of value */
367 size = memblock_phys_mem_size() / 20;
369 /* round it down in multiples of 256 */
370 size = size & ~0x0FFFFFFFUL;
372 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
373 if (memory_limit && size > memory_limit)
374 size = memory_limit;
376 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
377 return (size > bootmem_min ? size : bootmem_min);
381 * Calculate the total memory size required to be reserved for
382 * firmware-assisted dump registration.
384 static unsigned long __init get_fadump_area_size(void)
386 unsigned long size = 0;
388 size += fw_dump.cpu_state_data_size;
389 size += fw_dump.hpte_region_size;
391 * Account for pagesize alignment of boot memory area destination address.
392 * This faciliates in mmap reading of first kernel's memory.
394 size = PAGE_ALIGN(size);
395 size += fw_dump.boot_memory_size;
396 size += sizeof(struct fadump_crash_info_header);
398 /* This is to hold kernel metadata on platforms that support it */
399 size += (fw_dump.ops->fadump_get_metadata_size ?
400 fw_dump.ops->fadump_get_metadata_size() : 0);
401 return size;
404 static int __init add_boot_mem_region(unsigned long rstart,
405 unsigned long rsize)
407 int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
408 int i = fw_dump.boot_mem_regs_cnt++;
410 if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
411 fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
412 return 0;
415 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
416 i, rstart, (rstart + rsize));
417 fw_dump.boot_mem_addr[i] = rstart;
418 fw_dump.boot_mem_sz[i] = rsize;
419 return 1;
423 * Firmware usually has a hard limit on the data it can copy per region.
424 * Honour that by splitting a memory range into multiple regions.
426 static int __init add_boot_mem_regions(unsigned long mstart,
427 unsigned long msize)
429 unsigned long rstart, rsize, max_size;
430 int ret = 1;
432 rstart = mstart;
433 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
434 while (msize) {
435 if (msize > max_size)
436 rsize = max_size;
437 else
438 rsize = msize;
440 ret = add_boot_mem_region(rstart, rsize);
441 if (!ret)
442 break;
444 msize -= rsize;
445 rstart += rsize;
448 return ret;
451 static int __init fadump_get_boot_mem_regions(void)
453 unsigned long size, cur_size, hole_size, last_end;
454 unsigned long mem_size = fw_dump.boot_memory_size;
455 phys_addr_t reg_start, reg_end;
456 int ret = 1;
457 u64 i;
459 fw_dump.boot_mem_regs_cnt = 0;
461 last_end = 0;
462 hole_size = 0;
463 cur_size = 0;
464 for_each_mem_range(i, &reg_start, &reg_end) {
465 size = reg_end - reg_start;
466 hole_size += (reg_start - last_end);
468 if ((cur_size + size) >= mem_size) {
469 size = (mem_size - cur_size);
470 ret = add_boot_mem_regions(reg_start, size);
471 break;
474 mem_size -= size;
475 cur_size += size;
476 ret = add_boot_mem_regions(reg_start, size);
477 if (!ret)
478 break;
480 last_end = reg_end;
482 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
484 return ret;
488 * Returns true, if the given range overlaps with reserved memory ranges
489 * starting at idx. Also, updates idx to index of overlapping memory range
490 * with the given memory range.
491 * False, otherwise.
493 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
495 bool ret = false;
496 int i;
498 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
499 u64 rbase = reserved_mrange_info.mem_ranges[i].base;
500 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
502 if (end <= rbase)
503 break;
505 if ((end > rbase) && (base < rend)) {
506 *idx = i;
507 ret = true;
508 break;
512 return ret;
516 * Locate a suitable memory area to reserve memory for FADump. While at it,
517 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
519 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
521 struct fadump_memory_range *mrngs;
522 phys_addr_t mstart, mend;
523 int idx = 0;
524 u64 i, ret = 0;
526 mrngs = reserved_mrange_info.mem_ranges;
527 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
528 &mstart, &mend, NULL) {
529 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
530 i, mstart, mend, base);
532 if (mstart > base)
533 base = PAGE_ALIGN(mstart);
535 while ((mend > base) && ((mend - base) >= size)) {
536 if (!overlaps_reserved_ranges(base, base+size, &idx)) {
537 ret = base;
538 goto out;
541 base = mrngs[idx].base + mrngs[idx].size;
542 base = PAGE_ALIGN(base);
546 out:
547 return ret;
550 int __init fadump_reserve_mem(void)
552 u64 base, size, mem_boundary, bootmem_min;
553 int ret = 1;
555 if (!fw_dump.fadump_enabled)
556 return 0;
558 if (!fw_dump.fadump_supported) {
559 pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
560 goto error_out;
564 * Initialize boot memory size
565 * If dump is active then we have already calculated the size during
566 * first kernel.
568 if (!fw_dump.dump_active) {
569 fw_dump.boot_memory_size =
570 PAGE_ALIGN(fadump_calculate_reserve_size());
572 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
573 if (fw_dump.boot_memory_size < bootmem_min) {
574 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
575 fw_dump.boot_memory_size, bootmem_min);
576 goto error_out;
579 if (!fadump_get_boot_mem_regions()) {
580 pr_err("Too many holes in boot memory area to enable fadump\n");
581 goto error_out;
585 if (memory_limit)
586 mem_boundary = memory_limit;
587 else
588 mem_boundary = memblock_end_of_DRAM();
590 base = fw_dump.boot_mem_top;
591 size = get_fadump_area_size();
592 fw_dump.reserve_dump_area_size = size;
593 if (fw_dump.dump_active) {
594 pr_info("Firmware-assisted dump is active.\n");
596 #ifdef CONFIG_HUGETLB_PAGE
598 * FADump capture kernel doesn't care much about hugepages.
599 * In fact, handling hugepages in capture kernel is asking for
600 * trouble. So, disable HugeTLB support when fadump is active.
602 hugetlb_disabled = true;
603 #endif
605 * If last boot has crashed then reserve all the memory
606 * above boot memory size so that we don't touch it until
607 * dump is written to disk by userspace tool. This memory
608 * can be released for general use by invalidating fadump.
610 fadump_reserve_crash_area(base);
612 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
613 pr_debug("Reserve dump area start address: 0x%lx\n",
614 fw_dump.reserve_dump_area_start);
615 } else {
617 * Reserve memory at an offset closer to bottom of the RAM to
618 * minimize the impact of memory hot-remove operation.
620 base = fadump_locate_reserve_mem(base, size);
622 if (!base || (base + size > mem_boundary)) {
623 pr_err("Failed to find memory chunk for reservation!\n");
624 goto error_out;
626 fw_dump.reserve_dump_area_start = base;
629 * Calculate the kernel metadata address and register it with
630 * f/w if the platform supports.
632 if (fw_dump.ops->fadump_setup_metadata &&
633 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
634 goto error_out;
636 if (memblock_reserve(base, size)) {
637 pr_err("Failed to reserve memory!\n");
638 goto error_out;
641 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
642 (size >> 20), base, (memblock_phys_mem_size() >> 20));
645 return ret;
646 error_out:
647 fw_dump.fadump_enabled = 0;
648 fw_dump.reserve_dump_area_size = 0;
649 return 0;
652 /* Look for fadump= cmdline option. */
653 static int __init early_fadump_param(char *p)
655 if (!p)
656 return 1;
658 if (strncmp(p, "on", 2) == 0)
659 fw_dump.fadump_enabled = 1;
660 else if (strncmp(p, "off", 3) == 0)
661 fw_dump.fadump_enabled = 0;
662 else if (strncmp(p, "nocma", 5) == 0) {
663 fw_dump.fadump_enabled = 1;
664 fw_dump.nocma = 1;
667 return 0;
669 early_param("fadump", early_fadump_param);
672 * Look for fadump_reserve_mem= cmdline option
673 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
674 * the sooner 'crashkernel=' parameter is accustomed to.
676 static int __init early_fadump_reserve_mem(char *p)
678 if (p)
679 fw_dump.reserve_bootvar = memparse(p, &p);
680 return 0;
682 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
684 void crash_fadump(struct pt_regs *regs, const char *str)
686 unsigned int msecs;
687 struct fadump_crash_info_header *fdh = NULL;
688 int old_cpu, this_cpu;
689 /* Do not include first CPU */
690 unsigned int ncpus = num_online_cpus() - 1;
692 if (!should_fadump_crash())
693 return;
696 * old_cpu == -1 means this is the first CPU which has come here,
697 * go ahead and trigger fadump.
699 * old_cpu != -1 means some other CPU has already on its way
700 * to trigger fadump, just keep looping here.
702 this_cpu = smp_processor_id();
703 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
705 if (old_cpu != -1) {
706 atomic_inc(&cpus_in_fadump);
709 * We can't loop here indefinitely. Wait as long as fadump
710 * is in force. If we race with fadump un-registration this
711 * loop will break and then we go down to normal panic path
712 * and reboot. If fadump is in force the first crashing
713 * cpu will definitely trigger fadump.
715 while (fw_dump.dump_registered)
716 cpu_relax();
717 return;
720 fdh = __va(fw_dump.fadumphdr_addr);
721 fdh->crashing_cpu = crashing_cpu;
722 crash_save_vmcoreinfo();
724 if (regs)
725 fdh->regs = *regs;
726 else
727 ppc_save_regs(&fdh->regs);
729 fdh->cpu_mask = *cpu_online_mask;
732 * If we came in via system reset, wait a while for the secondary
733 * CPUs to enter.
735 if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
736 msecs = CRASH_TIMEOUT;
737 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
738 mdelay(1);
741 fw_dump.ops->fadump_trigger(fdh, str);
744 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
746 struct elf_prstatus prstatus;
748 memset(&prstatus, 0, sizeof(prstatus));
750 * FIXME: How do i get PID? Do I really need it?
751 * prstatus.pr_pid = ????
753 elf_core_copy_regs(&prstatus.pr_reg, regs);
754 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
755 &prstatus, sizeof(prstatus));
756 return buf;
759 void __init fadump_update_elfcore_header(char *bufp)
761 struct elf_phdr *phdr;
763 bufp += sizeof(struct elfhdr);
765 /* First note is a place holder for cpu notes info. */
766 phdr = (struct elf_phdr *)bufp;
768 if (phdr->p_type == PT_NOTE) {
769 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
770 phdr->p_offset = phdr->p_paddr;
771 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
772 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
774 return;
777 static void *__init fadump_alloc_buffer(unsigned long size)
779 unsigned long count, i;
780 struct page *page;
781 void *vaddr;
783 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
784 if (!vaddr)
785 return NULL;
787 count = PAGE_ALIGN(size) / PAGE_SIZE;
788 page = virt_to_page(vaddr);
789 for (i = 0; i < count; i++)
790 mark_page_reserved(page + i);
791 return vaddr;
794 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
796 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
799 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
801 /* Allocate buffer to hold cpu crash notes. */
802 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
803 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
804 fw_dump.cpu_notes_buf_vaddr =
805 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
806 if (!fw_dump.cpu_notes_buf_vaddr) {
807 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
808 fw_dump.cpu_notes_buf_size);
809 return -ENOMEM;
812 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
813 fw_dump.cpu_notes_buf_size,
814 fw_dump.cpu_notes_buf_vaddr);
815 return 0;
818 void fadump_free_cpu_notes_buf(void)
820 if (!fw_dump.cpu_notes_buf_vaddr)
821 return;
823 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
824 fw_dump.cpu_notes_buf_size);
825 fw_dump.cpu_notes_buf_vaddr = 0;
826 fw_dump.cpu_notes_buf_size = 0;
829 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
831 if (mrange_info->is_static) {
832 mrange_info->mem_range_cnt = 0;
833 return;
836 kfree(mrange_info->mem_ranges);
837 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
838 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
842 * Allocate or reallocate mem_ranges array in incremental units
843 * of PAGE_SIZE.
845 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
847 struct fadump_memory_range *new_array;
848 u64 new_size;
850 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
851 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
852 new_size, mrange_info->name);
854 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
855 if (new_array == NULL) {
856 pr_err("Insufficient memory for setting up %s memory ranges\n",
857 mrange_info->name);
858 fadump_free_mem_ranges(mrange_info);
859 return -ENOMEM;
862 mrange_info->mem_ranges = new_array;
863 mrange_info->mem_ranges_sz = new_size;
864 mrange_info->max_mem_ranges = (new_size /
865 sizeof(struct fadump_memory_range));
866 return 0;
868 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
869 u64 base, u64 end)
871 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
872 bool is_adjacent = false;
873 u64 start, size;
875 if (base == end)
876 return 0;
879 * Fold adjacent memory ranges to bring down the memory ranges/
880 * PT_LOAD segments count.
882 if (mrange_info->mem_range_cnt) {
883 start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
884 size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
887 * Boot memory area needs separate PT_LOAD segment(s) as it
888 * is moved to a different location at the time of crash.
889 * So, fold only if the region is not boot memory area.
891 if ((start + size) == base && start >= fw_dump.boot_mem_top)
892 is_adjacent = true;
894 if (!is_adjacent) {
895 /* resize the array on reaching the limit */
896 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
897 int ret;
899 if (mrange_info->is_static) {
900 pr_err("Reached array size limit for %s memory ranges\n",
901 mrange_info->name);
902 return -ENOSPC;
905 ret = fadump_alloc_mem_ranges(mrange_info);
906 if (ret)
907 return ret;
909 /* Update to the new resized array */
910 mem_ranges = mrange_info->mem_ranges;
913 start = base;
914 mem_ranges[mrange_info->mem_range_cnt].base = start;
915 mrange_info->mem_range_cnt++;
918 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
919 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
920 mrange_info->name, (mrange_info->mem_range_cnt - 1),
921 start, end - 1, (end - start));
922 return 0;
925 static int fadump_init_elfcore_header(char *bufp)
927 struct elfhdr *elf;
929 elf = (struct elfhdr *) bufp;
930 bufp += sizeof(struct elfhdr);
931 memcpy(elf->e_ident, ELFMAG, SELFMAG);
932 elf->e_ident[EI_CLASS] = ELF_CLASS;
933 elf->e_ident[EI_DATA] = ELF_DATA;
934 elf->e_ident[EI_VERSION] = EV_CURRENT;
935 elf->e_ident[EI_OSABI] = ELF_OSABI;
936 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
937 elf->e_type = ET_CORE;
938 elf->e_machine = ELF_ARCH;
939 elf->e_version = EV_CURRENT;
940 elf->e_entry = 0;
941 elf->e_phoff = sizeof(struct elfhdr);
942 elf->e_shoff = 0;
944 if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
945 elf->e_flags = 2;
946 else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
947 elf->e_flags = 1;
948 else
949 elf->e_flags = 0;
951 elf->e_ehsize = sizeof(struct elfhdr);
952 elf->e_phentsize = sizeof(struct elf_phdr);
953 elf->e_phnum = 0;
954 elf->e_shentsize = 0;
955 elf->e_shnum = 0;
956 elf->e_shstrndx = 0;
958 return 0;
962 * If the given physical address falls within the boot memory region then
963 * return the relocated address that points to the dump region reserved
964 * for saving initial boot memory contents.
966 static inline unsigned long fadump_relocate(unsigned long paddr)
968 unsigned long raddr, rstart, rend, rlast, hole_size;
969 int i;
971 hole_size = 0;
972 rlast = 0;
973 raddr = paddr;
974 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
975 rstart = fw_dump.boot_mem_addr[i];
976 rend = rstart + fw_dump.boot_mem_sz[i];
977 hole_size += (rstart - rlast);
979 if (paddr >= rstart && paddr < rend) {
980 raddr += fw_dump.boot_mem_dest_addr - hole_size;
981 break;
984 rlast = rend;
987 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
988 return raddr;
991 static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
992 u64 size, unsigned long long offset)
994 phdr->p_align = 0;
995 phdr->p_memsz = size;
996 phdr->p_filesz = size;
997 phdr->p_paddr = start;
998 phdr->p_offset = offset;
999 phdr->p_type = PT_LOAD;
1000 phdr->p_flags = PF_R|PF_W|PF_X;
1001 phdr->p_vaddr = (unsigned long)__va(start);
1004 static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
1006 char *bufp;
1007 struct elfhdr *elf;
1008 struct elf_phdr *phdr;
1009 u64 boot_mem_dest_offset;
1010 unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
1012 bufp = (char *) fw_dump.elfcorehdr_addr;
1013 fadump_init_elfcore_header(bufp);
1014 elf = (struct elfhdr *)bufp;
1015 bufp += sizeof(struct elfhdr);
1018 * Set up ELF PT_NOTE, a placeholder for CPU notes information.
1019 * The notes info will be populated later by platform-specific code.
1020 * Hence, this PT_NOTE will always be the first ELF note.
1022 * NOTE: Any new ELF note addition should be placed after this note.
1024 phdr = (struct elf_phdr *)bufp;
1025 bufp += sizeof(struct elf_phdr);
1026 phdr->p_type = PT_NOTE;
1027 phdr->p_flags = 0;
1028 phdr->p_vaddr = 0;
1029 phdr->p_align = 0;
1030 phdr->p_offset = 0;
1031 phdr->p_paddr = 0;
1032 phdr->p_filesz = 0;
1033 phdr->p_memsz = 0;
1034 /* Increment number of program headers. */
1035 (elf->e_phnum)++;
1037 /* setup ELF PT_NOTE for vmcoreinfo */
1038 phdr = (struct elf_phdr *)bufp;
1039 bufp += sizeof(struct elf_phdr);
1040 phdr->p_type = PT_NOTE;
1041 phdr->p_flags = 0;
1042 phdr->p_vaddr = 0;
1043 phdr->p_align = 0;
1044 phdr->p_paddr = phdr->p_offset = fdh->vmcoreinfo_raddr;
1045 phdr->p_memsz = phdr->p_filesz = fdh->vmcoreinfo_size;
1046 /* Increment number of program headers. */
1047 (elf->e_phnum)++;
1050 * Setup PT_LOAD sections. first include boot memory regions
1051 * and then add rest of the memory regions.
1053 boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
1054 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1055 phdr = (struct elf_phdr *)bufp;
1056 bufp += sizeof(struct elf_phdr);
1057 populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
1058 fw_dump.boot_mem_sz[i],
1059 boot_mem_dest_offset);
1060 /* Increment number of program headers. */
1061 (elf->e_phnum)++;
1062 boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
1065 /* Memory reserved for fadump in first kernel */
1066 ra_start = fw_dump.reserve_dump_area_start;
1067 ra_size = get_fadump_area_size();
1068 ra_end = ra_start + ra_size;
1070 phdr = (struct elf_phdr *)bufp;
1071 for_each_mem_range(i, &mstart, &mend) {
1072 /* Boot memory regions already added, skip them now */
1073 if (mstart < fw_dump.boot_mem_top) {
1074 if (mend > fw_dump.boot_mem_top)
1075 mstart = fw_dump.boot_mem_top;
1076 else
1077 continue;
1080 /* Handle memblock regions overlaps with fadump reserved area */
1081 if ((ra_start < mend) && (ra_end > mstart)) {
1082 if ((mstart < ra_start) && (mend > ra_end)) {
1083 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1084 /* Increment number of program headers. */
1085 (elf->e_phnum)++;
1086 bufp += sizeof(struct elf_phdr);
1087 phdr = (struct elf_phdr *)bufp;
1088 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1089 } else if (mstart < ra_start) {
1090 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1091 } else if (ra_end < mend) {
1092 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1094 } else {
1095 /* No overlap with fadump reserved memory region */
1096 populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
1099 /* Increment number of program headers. */
1100 (elf->e_phnum)++;
1101 bufp += sizeof(struct elf_phdr);
1102 phdr = (struct elf_phdr *) bufp;
1106 static unsigned long init_fadump_header(unsigned long addr)
1108 struct fadump_crash_info_header *fdh;
1110 if (!addr)
1111 return 0;
1113 fdh = __va(addr);
1114 addr += sizeof(struct fadump_crash_info_header);
1116 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1117 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1118 fdh->version = FADUMP_HEADER_VERSION;
1119 /* We will set the crashing cpu id in crash_fadump() during crash. */
1120 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1123 * The physical address and size of vmcoreinfo are required in the
1124 * second kernel to prepare elfcorehdr.
1126 fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
1127 fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
1130 fdh->pt_regs_sz = sizeof(struct pt_regs);
1132 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1133 * register data is processed while exporting the vmcore.
1135 fdh->cpu_mask = *cpu_possible_mask;
1136 fdh->cpu_mask_sz = sizeof(struct cpumask);
1138 return addr;
1141 static int register_fadump(void)
1143 unsigned long addr;
1146 * If no memory is reserved then we can not register for firmware-
1147 * assisted dump.
1149 if (!fw_dump.reserve_dump_area_size)
1150 return -ENODEV;
1152 addr = fw_dump.fadumphdr_addr;
1154 /* Initialize fadump crash info header. */
1155 addr = init_fadump_header(addr);
1157 /* register the future kernel dump with firmware. */
1158 pr_debug("Registering for firmware-assisted kernel dump...\n");
1159 return fw_dump.ops->fadump_register(&fw_dump);
1162 void fadump_cleanup(void)
1164 if (!fw_dump.fadump_supported)
1165 return;
1167 /* Invalidate the registration only if dump is active. */
1168 if (fw_dump.dump_active) {
1169 pr_debug("Invalidating firmware-assisted dump registration\n");
1170 fw_dump.ops->fadump_invalidate(&fw_dump);
1171 } else if (fw_dump.dump_registered) {
1172 /* Un-register Firmware-assisted dump if it was registered. */
1173 fw_dump.ops->fadump_unregister(&fw_dump);
1176 if (fw_dump.ops->fadump_cleanup)
1177 fw_dump.ops->fadump_cleanup(&fw_dump);
1180 static void fadump_free_reserved_memory(unsigned long start_pfn,
1181 unsigned long end_pfn)
1183 unsigned long pfn;
1184 unsigned long time_limit = jiffies + HZ;
1186 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1187 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1189 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1190 free_reserved_page(pfn_to_page(pfn));
1192 if (time_after(jiffies, time_limit)) {
1193 cond_resched();
1194 time_limit = jiffies + HZ;
1200 * Skip memory holes and free memory that was actually reserved.
1202 static void fadump_release_reserved_area(u64 start, u64 end)
1204 unsigned long reg_spfn, reg_epfn;
1205 u64 tstart, tend, spfn, epfn;
1206 int i;
1208 spfn = PHYS_PFN(start);
1209 epfn = PHYS_PFN(end);
1211 for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1212 tstart = max_t(u64, spfn, reg_spfn);
1213 tend = min_t(u64, epfn, reg_epfn);
1215 if (tstart < tend) {
1216 fadump_free_reserved_memory(tstart, tend);
1218 if (tend == epfn)
1219 break;
1221 spfn = tend;
1227 * Sort the mem ranges in-place and merge adjacent ranges
1228 * to minimize the memory ranges count.
1230 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1232 struct fadump_memory_range *mem_ranges;
1233 u64 base, size;
1234 int i, j, idx;
1236 if (!reserved_mrange_info.mem_range_cnt)
1237 return;
1239 /* Sort the memory ranges */
1240 mem_ranges = mrange_info->mem_ranges;
1241 for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1242 idx = i;
1243 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1244 if (mem_ranges[idx].base > mem_ranges[j].base)
1245 idx = j;
1247 if (idx != i)
1248 swap(mem_ranges[idx], mem_ranges[i]);
1251 /* Merge adjacent reserved ranges */
1252 idx = 0;
1253 for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1254 base = mem_ranges[i-1].base;
1255 size = mem_ranges[i-1].size;
1256 if (mem_ranges[i].base == (base + size))
1257 mem_ranges[idx].size += mem_ranges[i].size;
1258 else {
1259 idx++;
1260 if (i == idx)
1261 continue;
1263 mem_ranges[idx] = mem_ranges[i];
1266 mrange_info->mem_range_cnt = idx + 1;
1270 * Scan reserved-ranges to consider them while reserving/releasing
1271 * memory for FADump.
1273 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1275 const __be32 *prop;
1276 int len, ret = -1;
1277 unsigned long i;
1279 /* reserved-ranges already scanned */
1280 if (reserved_mrange_info.mem_range_cnt != 0)
1281 return;
1283 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1284 if (!prop)
1285 return;
1288 * Each reserved range is an (address,size) pair, 2 cells each,
1289 * totalling 4 cells per range.
1291 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1292 u64 base, size;
1294 base = of_read_number(prop + (i * 4) + 0, 2);
1295 size = of_read_number(prop + (i * 4) + 2, 2);
1297 if (size) {
1298 ret = fadump_add_mem_range(&reserved_mrange_info,
1299 base, base + size);
1300 if (ret < 0) {
1301 pr_warn("some reserved ranges are ignored!\n");
1302 break;
1307 /* Compact reserved ranges */
1308 sort_and_merge_mem_ranges(&reserved_mrange_info);
1312 * Release the memory that was reserved during early boot to preserve the
1313 * crash'ed kernel's memory contents except reserved dump area (permanent
1314 * reservation) and reserved ranges used by F/W. The released memory will
1315 * be available for general use.
1317 static void fadump_release_memory(u64 begin, u64 end)
1319 u64 ra_start, ra_end, tstart;
1320 int i, ret;
1322 ra_start = fw_dump.reserve_dump_area_start;
1323 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1326 * If reserved ranges array limit is hit, overwrite the last reserved
1327 * memory range with reserved dump area to ensure it is excluded from
1328 * the memory being released (reused for next FADump registration).
1330 if (reserved_mrange_info.mem_range_cnt ==
1331 reserved_mrange_info.max_mem_ranges)
1332 reserved_mrange_info.mem_range_cnt--;
1334 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1335 if (ret != 0)
1336 return;
1338 /* Get the reserved ranges list in order first. */
1339 sort_and_merge_mem_ranges(&reserved_mrange_info);
1341 /* Exclude reserved ranges and release remaining memory */
1342 tstart = begin;
1343 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1344 ra_start = reserved_mrange_info.mem_ranges[i].base;
1345 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1347 if (tstart >= ra_end)
1348 continue;
1350 if (tstart < ra_start)
1351 fadump_release_reserved_area(tstart, ra_start);
1352 tstart = ra_end;
1355 if (tstart < end)
1356 fadump_release_reserved_area(tstart, end);
1359 static void fadump_free_elfcorehdr_buf(void)
1361 if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
1362 return;
1365 * Before freeing the memory of `elfcorehdr`, reset the global
1366 * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
1367 * invalid memory.
1369 elfcorehdr_addr = ELFCORE_ADDR_ERR;
1370 fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
1371 fw_dump.elfcorehdr_addr = 0;
1372 fw_dump.elfcorehdr_size = 0;
1375 static void fadump_invalidate_release_mem(void)
1377 mutex_lock(&fadump_mutex);
1378 if (!fw_dump.dump_active) {
1379 mutex_unlock(&fadump_mutex);
1380 return;
1383 fadump_cleanup();
1384 mutex_unlock(&fadump_mutex);
1386 fadump_free_elfcorehdr_buf();
1387 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1388 fadump_free_cpu_notes_buf();
1391 * Setup kernel metadata and initialize the kernel dump
1392 * memory structure for FADump re-registration.
1394 if (fw_dump.ops->fadump_setup_metadata &&
1395 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1396 pr_warn("Failed to setup kernel metadata!\n");
1397 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1400 static ssize_t release_mem_store(struct kobject *kobj,
1401 struct kobj_attribute *attr,
1402 const char *buf, size_t count)
1404 int input = -1;
1406 if (!fw_dump.dump_active)
1407 return -EPERM;
1409 if (kstrtoint(buf, 0, &input))
1410 return -EINVAL;
1412 if (input == 1) {
1414 * Take away the '/proc/vmcore'. We are releasing the dump
1415 * memory, hence it will not be valid anymore.
1417 #ifdef CONFIG_PROC_VMCORE
1418 vmcore_cleanup();
1419 #endif
1420 fadump_invalidate_release_mem();
1422 } else
1423 return -EINVAL;
1424 return count;
1427 /* Release the reserved memory and disable the FADump */
1428 static void __init unregister_fadump(void)
1430 fadump_cleanup();
1431 fadump_release_memory(fw_dump.reserve_dump_area_start,
1432 fw_dump.reserve_dump_area_size);
1433 fw_dump.fadump_enabled = 0;
1434 kobject_put(fadump_kobj);
1437 static ssize_t enabled_show(struct kobject *kobj,
1438 struct kobj_attribute *attr,
1439 char *buf)
1441 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1445 * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
1446 * to usersapce that fadump re-registration is not required on memory
1447 * hotplug events.
1449 static ssize_t hotplug_ready_show(struct kobject *kobj,
1450 struct kobj_attribute *attr,
1451 char *buf)
1453 return sprintf(buf, "%d\n", 1);
1456 static ssize_t mem_reserved_show(struct kobject *kobj,
1457 struct kobj_attribute *attr,
1458 char *buf)
1460 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1463 static ssize_t registered_show(struct kobject *kobj,
1464 struct kobj_attribute *attr,
1465 char *buf)
1467 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1470 static ssize_t bootargs_append_show(struct kobject *kobj,
1471 struct kobj_attribute *attr,
1472 char *buf)
1474 return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
1477 static ssize_t bootargs_append_store(struct kobject *kobj,
1478 struct kobj_attribute *attr,
1479 const char *buf, size_t count)
1481 char *params;
1483 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1484 return -EPERM;
1486 if (count >= COMMAND_LINE_SIZE)
1487 return -EINVAL;
1490 * Fail here instead of handling this scenario with
1491 * some silly workaround in capture kernel.
1493 if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
1494 pr_err("Appending parameters exceeds cmdline size!\n");
1495 return -ENOSPC;
1498 params = __va(fw_dump.param_area);
1499 strscpy_pad(params, buf, COMMAND_LINE_SIZE);
1500 /* Remove newline character at the end. */
1501 if (params[count-1] == '\n')
1502 params[count-1] = '\0';
1504 return count;
1507 static ssize_t registered_store(struct kobject *kobj,
1508 struct kobj_attribute *attr,
1509 const char *buf, size_t count)
1511 int ret = 0;
1512 int input = -1;
1514 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1515 return -EPERM;
1517 if (kstrtoint(buf, 0, &input))
1518 return -EINVAL;
1520 mutex_lock(&fadump_mutex);
1522 switch (input) {
1523 case 0:
1524 if (fw_dump.dump_registered == 0) {
1525 goto unlock_out;
1528 /* Un-register Firmware-assisted dump */
1529 pr_debug("Un-register firmware-assisted dump\n");
1530 fw_dump.ops->fadump_unregister(&fw_dump);
1531 break;
1532 case 1:
1533 if (fw_dump.dump_registered == 1) {
1534 /* Un-register Firmware-assisted dump */
1535 fw_dump.ops->fadump_unregister(&fw_dump);
1537 /* Register Firmware-assisted dump */
1538 ret = register_fadump();
1539 break;
1540 default:
1541 ret = -EINVAL;
1542 break;
1545 unlock_out:
1546 mutex_unlock(&fadump_mutex);
1547 return ret < 0 ? ret : count;
1550 static int fadump_region_show(struct seq_file *m, void *private)
1552 if (!fw_dump.fadump_enabled)
1553 return 0;
1555 mutex_lock(&fadump_mutex);
1556 fw_dump.ops->fadump_region_show(&fw_dump, m);
1557 mutex_unlock(&fadump_mutex);
1558 return 0;
1561 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1562 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1563 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1564 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1565 static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
1566 static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
1568 static struct attribute *fadump_attrs[] = {
1569 &enable_attr.attr,
1570 &register_attr.attr,
1571 &mem_reserved_attr.attr,
1572 &hotplug_ready_attr.attr,
1573 NULL,
1576 ATTRIBUTE_GROUPS(fadump);
1578 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1580 static void __init fadump_init_files(void)
1582 int rc = 0;
1584 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1585 if (!fadump_kobj) {
1586 pr_err("failed to create fadump kobject\n");
1587 return;
1590 if (fw_dump.param_area) {
1591 rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr);
1592 if (rc)
1593 pr_err("unable to create bootargs_append sysfs file (%d)\n", rc);
1596 debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1597 &fadump_region_fops);
1599 if (fw_dump.dump_active) {
1600 rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1601 if (rc)
1602 pr_err("unable to create release_mem sysfs file (%d)\n",
1603 rc);
1606 rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1607 if (rc) {
1608 pr_err("sysfs group creation failed (%d), unregistering FADump",
1609 rc);
1610 unregister_fadump();
1611 return;
1615 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1616 * create symlink at old location to maintain backward compatibility.
1618 * - fadump_enabled -> fadump/enabled
1619 * - fadump_registered -> fadump/registered
1620 * - fadump_release_mem -> fadump/release_mem
1622 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1623 "enabled", "fadump_enabled");
1624 if (rc) {
1625 pr_err("unable to create fadump_enabled symlink (%d)", rc);
1626 return;
1629 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1630 "registered",
1631 "fadump_registered");
1632 if (rc) {
1633 pr_err("unable to create fadump_registered symlink (%d)", rc);
1634 sysfs_remove_link(kernel_kobj, "fadump_enabled");
1635 return;
1638 if (fw_dump.dump_active) {
1639 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1640 fadump_kobj,
1641 "release_mem",
1642 "fadump_release_mem");
1643 if (rc)
1644 pr_err("unable to create fadump_release_mem symlink (%d)",
1645 rc);
1647 return;
1650 static int __init fadump_setup_elfcorehdr_buf(void)
1652 int elf_phdr_cnt;
1653 unsigned long elfcorehdr_size;
1656 * Program header for CPU notes comes first, followed by one for
1657 * vmcoreinfo, and the remaining program headers correspond to
1658 * memory regions.
1660 elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
1661 elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
1662 elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
1664 fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
1665 if (!fw_dump.elfcorehdr_addr) {
1666 pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
1667 elfcorehdr_size);
1668 return -ENOMEM;
1670 fw_dump.elfcorehdr_size = elfcorehdr_size;
1671 return 0;
1675 * Check if the fadump header of crashed kernel is compatible with fadump kernel.
1677 * It checks the magic number, endianness, and size of non-primitive type
1678 * members of fadump header to ensure safe dump collection.
1680 static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
1682 if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
1683 pr_err("Old magic number, can't process the dump.\n");
1684 return false;
1687 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
1688 if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
1689 pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
1690 else
1691 pr_err("Fadump header is corrupted.\n");
1693 return false;
1697 * Dump collection is not safe if the size of non-primitive type members
1698 * of the fadump header do not match between crashed and fadump kernel.
1700 if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
1701 fdh->cpu_mask_sz != sizeof(struct cpumask)) {
1702 pr_err("Fadump header size mismatch.\n");
1703 return false;
1706 return true;
1709 static void __init fadump_process(void)
1711 struct fadump_crash_info_header *fdh;
1713 fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
1714 if (!fdh) {
1715 pr_err("Crash info header is empty.\n");
1716 goto err_out;
1719 /* Avoid processing the dump if fadump header isn't compatible */
1720 if (!is_fadump_header_compatible(fdh))
1721 goto err_out;
1723 /* Allocate buffer for elfcorehdr */
1724 if (fadump_setup_elfcorehdr_buf())
1725 goto err_out;
1727 fadump_populate_elfcorehdr(fdh);
1729 /* Let platform update the CPU notes in elfcorehdr */
1730 if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1731 goto err_out;
1734 * elfcorehdr is now ready to be exported.
1736 * set elfcorehdr_addr so that vmcore module will export the
1737 * elfcorehdr through '/proc/vmcore'.
1739 elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
1740 return;
1742 err_out:
1743 fadump_invalidate_release_mem();
1747 * Reserve memory to store additional parameters to be passed
1748 * for fadump/capture kernel.
1750 void __init fadump_setup_param_area(void)
1752 phys_addr_t range_start, range_end;
1754 if (!fw_dump.param_area_supported || fw_dump.dump_active)
1755 return;
1757 /* This memory can't be used by PFW or bootloader as it is shared across kernels */
1758 if (early_radix_enabled()) {
1760 * Anywhere in the upper half should be good enough as all memory
1761 * is accessible in real mode.
1763 range_start = memblock_end_of_DRAM() / 2;
1764 range_end = memblock_end_of_DRAM();
1765 } else {
1767 * Passing additional parameters is supported for hash MMU only
1768 * if the first memory block size is 768MB or higher.
1770 if (ppc64_rma_size < 0x30000000)
1771 return;
1774 * 640 MB to 768 MB is not used by PFW/bootloader. So, try reserving
1775 * memory for passing additional parameters in this range to avoid
1776 * being stomped on by PFW/bootloader.
1778 range_start = 0x2A000000;
1779 range_end = range_start + 0x4000000;
1782 fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
1783 COMMAND_LINE_SIZE,
1784 range_start,
1785 range_end);
1786 if (!fw_dump.param_area) {
1787 pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
1788 return;
1791 memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE);
1795 * Prepare for firmware-assisted dump.
1797 int __init setup_fadump(void)
1799 if (!fw_dump.fadump_supported)
1800 return 0;
1802 fadump_init_files();
1803 fadump_show_config();
1805 if (!fw_dump.fadump_enabled)
1806 return 1;
1809 * If dump data is available then see if it is valid and prepare for
1810 * saving it to the disk.
1812 if (fw_dump.dump_active) {
1813 fadump_process();
1815 /* Initialize the kernel dump memory structure and register with f/w */
1816 else if (fw_dump.reserve_dump_area_size) {
1817 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1818 register_fadump();
1822 * In case of panic, fadump is triggered via ppc_panic_event()
1823 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1824 * lets panic() function take crash friendly path before panic
1825 * notifiers are invoked.
1827 crash_kexec_post_notifiers = true;
1829 return 1;
1832 * Use subsys_initcall_sync() here because there is dependency with
1833 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1834 * is done before registering with f/w.
1836 subsys_initcall_sync(setup_fadump);
1837 #else /* !CONFIG_PRESERVE_FA_DUMP */
1839 /* Scan the Firmware Assisted dump configuration details. */
1840 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1841 int depth, void *data)
1843 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1844 return 0;
1846 opal_fadump_dt_scan(&fw_dump, node);
1847 return 1;
1851 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1852 * preserve crash data. The subsequent memory preserving kernel boot
1853 * is likely to process this crash data.
1855 int __init fadump_reserve_mem(void)
1857 if (fw_dump.dump_active) {
1859 * If last boot has crashed then reserve all the memory
1860 * above boot memory to preserve crash data.
1862 pr_info("Preserving crash data for processing in next boot.\n");
1863 fadump_reserve_crash_area(fw_dump.boot_mem_top);
1864 } else
1865 pr_debug("FADump-aware kernel..\n");
1867 return 1;
1869 #endif /* CONFIG_PRESERVE_FA_DUMP */
1871 /* Preserve everything above the base address */
1872 static void __init fadump_reserve_crash_area(u64 base)
1874 u64 i, mstart, mend, msize;
1876 for_each_mem_range(i, &mstart, &mend) {
1877 msize = mend - mstart;
1879 if ((mstart + msize) < base)
1880 continue;
1882 if (mstart < base) {
1883 msize -= (base - mstart);
1884 mstart = base;
1887 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1888 (msize >> 20), mstart);
1889 memblock_reserve(mstart, msize);