1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/uaccess.h>
39 #include <linux/pkeys.h>
40 #include <linux/seq_buf.h>
42 #include <asm/interrupt.h>
44 #include <asm/processor.h>
46 #include <asm/machdep.h>
48 #include <asm/runlatch.h>
49 #include <asm/syscalls.h>
50 #include <asm/switch_to.h>
52 #include <asm/debug.h>
54 #include <asm/firmware.h>
55 #include <asm/hw_irq.h>
57 #include <asm/text-patching.h>
59 #include <asm/livepatch.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/asm-prototypes.h>
62 #include <asm/stacktrace.h>
63 #include <asm/hw_breakpoint.h>
65 #include <linux/kprobes.h>
66 #include <linux/kdebug.h>
68 /* Transactional Memory debug */
70 #define TM_DEBUG(x...) printk(KERN_INFO x)
72 #define TM_DEBUG(x...) do { } while(0)
75 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 * Are we running in "Suspend disabled" mode? If so we have to block any
78 * sigreturn that would get us into suspended state, and we also warn in some
79 * other paths that we should never reach with suspend disabled.
81 bool tm_suspend_disabled __ro_after_init
= false;
83 static void check_if_tm_restore_required(struct task_struct
*tsk
)
86 * If we are saving the current thread's registers, and the
87 * thread is in a transactional state, set the TIF_RESTORE_TM
88 * bit so that we know to restore the registers before
89 * returning to userspace.
91 if (tsk
== current
&& tsk
->thread
.regs
&&
92 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
93 !test_thread_flag(TIF_RESTORE_TM
)) {
94 regs_set_return_msr(&tsk
->thread
.ckpt_regs
,
95 tsk
->thread
.regs
->msr
);
96 set_thread_flag(TIF_RESTORE_TM
);
101 static inline void check_if_tm_restore_required(struct task_struct
*tsk
) { }
102 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104 bool strict_msr_control
;
105 EXPORT_SYMBOL(strict_msr_control
);
107 static int __init
enable_strict_msr_control(char *str
)
109 strict_msr_control
= true;
110 pr_info("Enabling strict facility control\n");
114 early_param("ppc_strict_facility_enable", enable_strict_msr_control
);
116 /* notrace because it's called by restore_math */
117 unsigned long notrace
msr_check_and_set(unsigned long bits
)
119 unsigned long oldmsr
= mfmsr();
120 unsigned long newmsr
;
122 newmsr
= oldmsr
| bits
;
124 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
127 if (oldmsr
!= newmsr
)
128 newmsr
= mtmsr_isync_irqsafe(newmsr
);
132 EXPORT_SYMBOL_GPL(msr_check_and_set
);
134 /* notrace because it's called by restore_math */
135 void notrace
__msr_check_and_clear(unsigned long bits
)
137 unsigned long oldmsr
= mfmsr();
138 unsigned long newmsr
;
140 newmsr
= oldmsr
& ~bits
;
142 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
145 if (oldmsr
!= newmsr
)
146 mtmsr_isync_irqsafe(newmsr
);
148 EXPORT_SYMBOL(__msr_check_and_clear
);
150 #ifdef CONFIG_PPC_FPU
151 static void __giveup_fpu(struct task_struct
*tsk
)
156 msr
= tsk
->thread
.regs
->msr
;
157 msr
&= ~(MSR_FP
|MSR_FE0
|MSR_FE1
);
158 if (cpu_has_feature(CPU_FTR_VSX
))
160 regs_set_return_msr(tsk
->thread
.regs
, msr
);
163 void giveup_fpu(struct task_struct
*tsk
)
165 check_if_tm_restore_required(tsk
);
167 msr_check_and_set(MSR_FP
);
169 msr_check_and_clear(MSR_FP
);
171 EXPORT_SYMBOL(giveup_fpu
);
174 * Make sure the floating-point register state in the
175 * the thread_struct is up to date for task tsk.
177 void flush_fp_to_thread(struct task_struct
*tsk
)
179 if (tsk
->thread
.regs
) {
181 * We need to disable preemption here because if we didn't,
182 * another process could get scheduled after the regs->msr
183 * test but before we have finished saving the FP registers
184 * to the thread_struct. That process could take over the
185 * FPU, and then when we get scheduled again we would store
186 * bogus values for the remaining FP registers.
189 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
191 * This should only ever be called for current or
192 * for a stopped child process. Since we save away
193 * the FP register state on context switch,
194 * there is something wrong if a stopped child appears
195 * to still have its FP state in the CPU registers.
197 BUG_ON(tsk
!= current
);
203 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
205 void enable_kernel_fp(void)
207 unsigned long cpumsr
;
209 WARN_ON(preemptible());
211 cpumsr
= msr_check_and_set(MSR_FP
);
213 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
)) {
214 check_if_tm_restore_required(current
);
216 * If a thread has already been reclaimed then the
217 * checkpointed registers are on the CPU but have definitely
218 * been saved by the reclaim code. Don't need to and *cannot*
219 * giveup as this would save to the 'live' structure not the
220 * checkpointed structure.
222 if (!MSR_TM_ACTIVE(cpumsr
) &&
223 MSR_TM_ACTIVE(current
->thread
.regs
->msr
))
225 __giveup_fpu(current
);
228 EXPORT_SYMBOL(enable_kernel_fp
);
230 static inline void __giveup_fpu(struct task_struct
*tsk
) { }
231 #endif /* CONFIG_PPC_FPU */
233 #ifdef CONFIG_ALTIVEC
234 static void __giveup_altivec(struct task_struct
*tsk
)
239 msr
= tsk
->thread
.regs
->msr
;
241 if (cpu_has_feature(CPU_FTR_VSX
))
243 regs_set_return_msr(tsk
->thread
.regs
, msr
);
246 void giveup_altivec(struct task_struct
*tsk
)
248 check_if_tm_restore_required(tsk
);
250 msr_check_and_set(MSR_VEC
);
251 __giveup_altivec(tsk
);
252 msr_check_and_clear(MSR_VEC
);
254 EXPORT_SYMBOL(giveup_altivec
);
256 void enable_kernel_altivec(void)
258 unsigned long cpumsr
;
260 WARN_ON(preemptible());
262 cpumsr
= msr_check_and_set(MSR_VEC
);
264 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
)) {
265 check_if_tm_restore_required(current
);
267 * If a thread has already been reclaimed then the
268 * checkpointed registers are on the CPU but have definitely
269 * been saved by the reclaim code. Don't need to and *cannot*
270 * giveup as this would save to the 'live' structure not the
271 * checkpointed structure.
273 if (!MSR_TM_ACTIVE(cpumsr
) &&
274 MSR_TM_ACTIVE(current
->thread
.regs
->msr
))
276 __giveup_altivec(current
);
279 EXPORT_SYMBOL(enable_kernel_altivec
);
282 * Make sure the VMX/Altivec register state in the
283 * the thread_struct is up to date for task tsk.
285 void flush_altivec_to_thread(struct task_struct
*tsk
)
287 if (tsk
->thread
.regs
) {
289 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
290 BUG_ON(tsk
!= current
);
296 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
297 #endif /* CONFIG_ALTIVEC */
300 static void __giveup_vsx(struct task_struct
*tsk
)
302 unsigned long msr
= tsk
->thread
.regs
->msr
;
305 * We should never be setting MSR_VSX without also setting
308 WARN_ON((msr
& MSR_VSX
) && !((msr
& MSR_FP
) && (msr
& MSR_VEC
)));
310 /* __giveup_fpu will clear MSR_VSX */
314 __giveup_altivec(tsk
);
317 static void giveup_vsx(struct task_struct
*tsk
)
319 check_if_tm_restore_required(tsk
);
321 msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
323 msr_check_and_clear(MSR_FP
|MSR_VEC
|MSR_VSX
);
326 void enable_kernel_vsx(void)
328 unsigned long cpumsr
;
330 WARN_ON(preemptible());
332 cpumsr
= msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
334 if (current
->thread
.regs
&&
335 (current
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
))) {
336 check_if_tm_restore_required(current
);
338 * If a thread has already been reclaimed then the
339 * checkpointed registers are on the CPU but have definitely
340 * been saved by the reclaim code. Don't need to and *cannot*
341 * giveup as this would save to the 'live' structure not the
342 * checkpointed structure.
344 if (!MSR_TM_ACTIVE(cpumsr
) &&
345 MSR_TM_ACTIVE(current
->thread
.regs
->msr
))
347 __giveup_vsx(current
);
350 EXPORT_SYMBOL(enable_kernel_vsx
);
352 void flush_vsx_to_thread(struct task_struct
*tsk
)
354 if (tsk
->thread
.regs
) {
356 if (tsk
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
)) {
357 BUG_ON(tsk
!= current
);
363 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
364 #endif /* CONFIG_VSX */
367 void giveup_spe(struct task_struct
*tsk
)
369 check_if_tm_restore_required(tsk
);
371 msr_check_and_set(MSR_SPE
);
373 msr_check_and_clear(MSR_SPE
);
375 EXPORT_SYMBOL(giveup_spe
);
377 void enable_kernel_spe(void)
379 WARN_ON(preemptible());
381 msr_check_and_set(MSR_SPE
);
383 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
)) {
384 check_if_tm_restore_required(current
);
385 __giveup_spe(current
);
388 EXPORT_SYMBOL(enable_kernel_spe
);
390 void flush_spe_to_thread(struct task_struct
*tsk
)
392 if (tsk
->thread
.regs
) {
394 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
395 BUG_ON(tsk
!= current
);
396 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
402 #endif /* CONFIG_SPE */
404 static unsigned long msr_all_available
;
406 static int __init
init_msr_all_available(void)
408 if (IS_ENABLED(CONFIG_PPC_FPU
))
409 msr_all_available
|= MSR_FP
;
410 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
411 msr_all_available
|= MSR_VEC
;
412 if (cpu_has_feature(CPU_FTR_VSX
))
413 msr_all_available
|= MSR_VSX
;
414 if (cpu_has_feature(CPU_FTR_SPE
))
415 msr_all_available
|= MSR_SPE
;
419 early_initcall(init_msr_all_available
);
421 void giveup_all(struct task_struct
*tsk
)
423 unsigned long usermsr
;
425 if (!tsk
->thread
.regs
)
428 check_if_tm_restore_required(tsk
);
430 usermsr
= tsk
->thread
.regs
->msr
;
432 if ((usermsr
& msr_all_available
) == 0)
435 msr_check_and_set(msr_all_available
);
437 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
439 if (usermsr
& MSR_FP
)
441 if (usermsr
& MSR_VEC
)
442 __giveup_altivec(tsk
);
443 if (usermsr
& MSR_SPE
)
446 msr_check_and_clear(msr_all_available
);
448 EXPORT_SYMBOL(giveup_all
);
450 #ifdef CONFIG_PPC_BOOK3S_64
451 #ifdef CONFIG_PPC_FPU
452 static bool should_restore_fp(void)
454 if (current
->thread
.load_fp
) {
455 current
->thread
.load_fp
++;
461 static void do_restore_fp(void)
463 load_fp_state(¤t
->thread
.fp_state
);
466 static bool should_restore_fp(void) { return false; }
467 static void do_restore_fp(void) { }
468 #endif /* CONFIG_PPC_FPU */
470 #ifdef CONFIG_ALTIVEC
471 static bool should_restore_altivec(void)
473 if (cpu_has_feature(CPU_FTR_ALTIVEC
) && (current
->thread
.load_vec
)) {
474 current
->thread
.load_vec
++;
480 static void do_restore_altivec(void)
482 load_vr_state(¤t
->thread
.vr_state
);
483 current
->thread
.used_vr
= 1;
486 static bool should_restore_altivec(void) { return false; }
487 static void do_restore_altivec(void) { }
488 #endif /* CONFIG_ALTIVEC */
490 static bool should_restore_vsx(void)
492 if (cpu_has_feature(CPU_FTR_VSX
))
497 static void do_restore_vsx(void)
499 current
->thread
.used_vsr
= 1;
502 static void do_restore_vsx(void) { }
503 #endif /* CONFIG_VSX */
506 * The exception exit path calls restore_math() with interrupts hard disabled
507 * but the soft irq state not "reconciled". ftrace code that calls
508 * local_irq_save/restore causes warnings.
510 * Rather than complicate the exit path, just don't trace restore_math. This
511 * could be done by having ftrace entry code check for this un-reconciled
512 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
513 * temporarily fix it up for the duration of the ftrace call.
515 void notrace
restore_math(struct pt_regs
*regs
)
518 unsigned long new_msr
= 0;
523 * new_msr tracks the facilities that are to be restored. Only reload
524 * if the bit is not set in the user MSR (if it is set, the registers
525 * are live for the user thread).
527 if ((!(msr
& MSR_FP
)) && should_restore_fp())
530 if ((!(msr
& MSR_VEC
)) && should_restore_altivec())
533 if ((!(msr
& MSR_VSX
)) && should_restore_vsx()) {
534 if (((msr
| new_msr
) & (MSR_FP
| MSR_VEC
)) == (MSR_FP
| MSR_VEC
))
539 unsigned long fpexc_mode
= 0;
541 msr_check_and_set(new_msr
);
543 if (new_msr
& MSR_FP
) {
546 // This also covers VSX, because VSX implies FP
547 fpexc_mode
= current
->thread
.fpexc_mode
;
550 if (new_msr
& MSR_VEC
)
551 do_restore_altivec();
553 if (new_msr
& MSR_VSX
)
556 msr_check_and_clear(new_msr
);
558 regs_set_return_msr(regs
, regs
->msr
| new_msr
| fpexc_mode
);
561 #endif /* CONFIG_PPC_BOOK3S_64 */
563 static void save_all(struct task_struct
*tsk
)
565 unsigned long usermsr
;
567 if (!tsk
->thread
.regs
)
570 usermsr
= tsk
->thread
.regs
->msr
;
572 if ((usermsr
& msr_all_available
) == 0)
575 msr_check_and_set(msr_all_available
);
577 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
579 if (usermsr
& MSR_FP
)
582 if (usermsr
& MSR_VEC
)
585 if (usermsr
& MSR_SPE
)
588 msr_check_and_clear(msr_all_available
);
591 void flush_all_to_thread(struct task_struct
*tsk
)
593 if (tsk
->thread
.regs
) {
595 BUG_ON(tsk
!= current
);
597 if (tsk
->thread
.regs
->msr
& MSR_SPE
)
598 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
605 EXPORT_SYMBOL(flush_all_to_thread
);
607 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
608 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
609 unsigned long error_code
, int breakpt
)
611 current
->thread
.trap_nr
= TRAP_HWBKPT
;
612 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
613 11, SIGSEGV
) == NOTIFY_STOP
)
616 /* Deliver the signal to userspace */
617 force_sig_ptrace_errno_trap(breakpt
, /* breakpoint or watchpoint id */
618 (void __user
*)address
);
620 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
622 static void do_break_handler(struct pt_regs
*regs
)
624 struct arch_hw_breakpoint null_brk
= {0};
625 struct arch_hw_breakpoint
*info
;
626 ppc_inst_t instr
= ppc_inst(0);
633 * If underneath hw supports only one watchpoint, we know it
634 * caused exception. 8xx also falls into this category.
636 if (nr_wp_slots() == 1) {
637 __set_breakpoint(0, &null_brk
);
638 current
->thread
.hw_brk
[0] = null_brk
;
639 current
->thread
.hw_brk
[0].flags
|= HW_BRK_FLAG_DISABLED
;
643 /* Otherwise find out which DAWR caused exception and disable it. */
644 wp_get_instr_detail(regs
, &instr
, &type
, &size
, &ea
);
646 for (i
= 0; i
< nr_wp_slots(); i
++) {
647 info
= ¤t
->thread
.hw_brk
[i
];
651 if (wp_check_constraints(regs
, instr
, ea
, type
, size
, info
)) {
652 __set_breakpoint(i
, &null_brk
);
653 current
->thread
.hw_brk
[i
] = null_brk
;
654 current
->thread
.hw_brk
[i
].flags
|= HW_BRK_FLAG_DISABLED
;
659 DEFINE_INTERRUPT_HANDLER(do_break
)
661 current
->thread
.trap_nr
= TRAP_HWBKPT
;
662 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, regs
->dsisr
,
663 11, SIGSEGV
) == NOTIFY_STOP
)
666 if (debugger_break_match(regs
))
670 * We reach here only when watchpoint exception is generated by ptrace
671 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
672 * watchpoint is already handled by hw_breakpoint_handler() so we don't
673 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
674 * we need to manually handle the watchpoint here.
676 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT
))
677 do_break_handler(regs
);
679 /* Deliver the signal to userspace */
680 force_sig_fault(SIGTRAP
, TRAP_HWBKPT
, (void __user
*)regs
->dar
);
682 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
684 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
[HBP_NUM_MAX
]);
686 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
688 * Set the debug registers back to their default "safe" values.
690 static void set_debug_reg_defaults(struct thread_struct
*thread
)
692 thread
->debug
.iac1
= thread
->debug
.iac2
= 0;
693 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
694 thread
->debug
.iac3
= thread
->debug
.iac4
= 0;
696 thread
->debug
.dac1
= thread
->debug
.dac2
= 0;
697 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
698 thread
->debug
.dvc1
= thread
->debug
.dvc2
= 0;
700 thread
->debug
.dbcr0
= 0;
703 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
705 thread
->debug
.dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
|
706 DBCR1_IAC3US
| DBCR1_IAC4US
;
708 * Force Data Address Compare User/Supervisor bits to be User-only
709 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
711 thread
->debug
.dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
713 thread
->debug
.dbcr1
= 0;
717 static void prime_debug_regs(struct debug_reg
*debug
)
720 * We could have inherited MSR_DE from userspace, since
721 * it doesn't get cleared on exception entry. Make sure
722 * MSR_DE is clear before we enable any debug events.
724 mtmsr(mfmsr() & ~MSR_DE
);
726 mtspr(SPRN_IAC1
, debug
->iac1
);
727 mtspr(SPRN_IAC2
, debug
->iac2
);
728 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
729 mtspr(SPRN_IAC3
, debug
->iac3
);
730 mtspr(SPRN_IAC4
, debug
->iac4
);
732 mtspr(SPRN_DAC1
, debug
->dac1
);
733 mtspr(SPRN_DAC2
, debug
->dac2
);
734 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
735 mtspr(SPRN_DVC1
, debug
->dvc1
);
736 mtspr(SPRN_DVC2
, debug
->dvc2
);
738 mtspr(SPRN_DBCR0
, debug
->dbcr0
);
739 mtspr(SPRN_DBCR1
, debug
->dbcr1
);
741 mtspr(SPRN_DBCR2
, debug
->dbcr2
);
745 * Unless neither the old or new thread are making use of the
746 * debug registers, set the debug registers from the values
747 * stored in the new thread.
749 void switch_booke_debug_regs(struct debug_reg
*new_debug
)
751 if ((current
->thread
.debug
.dbcr0
& DBCR0_IDM
)
752 || (new_debug
->dbcr0
& DBCR0_IDM
))
753 prime_debug_regs(new_debug
);
755 EXPORT_SYMBOL_GPL(switch_booke_debug_regs
);
756 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
757 #ifndef CONFIG_HAVE_HW_BREAKPOINT
758 static void set_breakpoint(int i
, struct arch_hw_breakpoint
*brk
)
761 __set_breakpoint(i
, brk
);
765 static void set_debug_reg_defaults(struct thread_struct
*thread
)
768 struct arch_hw_breakpoint null_brk
= {0};
770 for (i
= 0; i
< nr_wp_slots(); i
++) {
771 thread
->hw_brk
[i
] = null_brk
;
772 if (ppc_breakpoint_available())
773 set_breakpoint(i
, &thread
->hw_brk
[i
]);
777 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
778 struct arch_hw_breakpoint
*b
)
780 if (a
->address
!= b
->address
)
782 if (a
->type
!= b
->type
)
784 if (a
->len
!= b
->len
)
786 /* no need to check hw_len. it's calculated from address and len */
790 static void switch_hw_breakpoint(struct task_struct
*new)
794 for (i
= 0; i
< nr_wp_slots(); i
++) {
795 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk
[i
]),
796 &new->thread
.hw_brk
[i
])))
799 __set_breakpoint(i
, &new->thread
.hw_brk
[i
]);
802 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
803 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
805 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
807 unsigned long dabr
, dabrx
;
809 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
810 dabrx
= ((brk
->type
>> 3) & 0x7);
813 return ppc_md
.set_dabr(dabr
, dabrx
);
815 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS
)) {
816 mtspr(SPRN_DAC1
, dabr
);
817 if (IS_ENABLED(CONFIG_PPC_47x
))
820 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S
)) {
821 mtspr(SPRN_DABR
, dabr
);
822 if (cpu_has_feature(CPU_FTR_DABRX
))
823 mtspr(SPRN_DABRX
, dabrx
);
830 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint
*brk
)
832 unsigned long lctrl1
= LCTRL1_CTE_GT
| LCTRL1_CTF_LT
| LCTRL1_CRWE_RW
|
834 unsigned long lctrl2
= LCTRL2_LW0EN
| LCTRL2_LW0LADC
| LCTRL2_SLW0EN
;
835 unsigned long start_addr
= ALIGN_DOWN(brk
->address
, HW_BREAKPOINT_SIZE
);
836 unsigned long end_addr
= ALIGN(brk
->address
+ brk
->len
, HW_BREAKPOINT_SIZE
);
839 lctrl2
|= LCTRL2_LW0LA_F
;
840 else if (end_addr
== 0)
841 lctrl2
|= LCTRL2_LW0LA_E
;
843 lctrl2
|= LCTRL2_LW0LA_EandF
;
845 mtspr(SPRN_LCTRL2
, 0);
847 if ((brk
->type
& HW_BRK_TYPE_RDWR
) == 0)
850 if ((brk
->type
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_READ
)
851 lctrl1
|= LCTRL1_CRWE_RO
| LCTRL1_CRWF_RO
;
852 if ((brk
->type
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_WRITE
)
853 lctrl1
|= LCTRL1_CRWE_WO
| LCTRL1_CRWF_WO
;
855 mtspr(SPRN_CMPE
, start_addr
- 1);
856 mtspr(SPRN_CMPF
, end_addr
);
857 mtspr(SPRN_LCTRL1
, lctrl1
);
858 mtspr(SPRN_LCTRL2
, lctrl2
);
863 static void set_hw_breakpoint(int nr
, struct arch_hw_breakpoint
*brk
)
868 else if (IS_ENABLED(CONFIG_PPC_8xx
))
869 set_breakpoint_8xx(brk
);
870 else if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
874 // Shouldn't happen due to higher level checks
878 void __set_breakpoint(int nr
, struct arch_hw_breakpoint
*brk
)
880 memcpy(this_cpu_ptr(¤t_brk
[nr
]), brk
, sizeof(*brk
));
881 set_hw_breakpoint(nr
, brk
);
884 /* Check if we have DAWR or DABR hardware */
885 bool ppc_breakpoint_available(void)
888 return true; /* POWER8 DAWR or POWER9 forced DAWR */
889 if (cpu_has_feature(CPU_FTR_ARCH_207S
))
890 return false; /* POWER9 with DAWR disabled */
891 /* DABR: Everything but POWER8 and POWER9 */
894 EXPORT_SYMBOL_GPL(ppc_breakpoint_available
);
896 /* Disable the breakpoint in hardware without touching current_brk[] */
897 void suspend_breakpoints(void)
899 struct arch_hw_breakpoint brk
= {0};
902 if (!ppc_breakpoint_available())
905 for (i
= 0; i
< nr_wp_slots(); i
++)
906 set_hw_breakpoint(i
, &brk
);
910 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
913 void restore_breakpoints(void)
917 if (!ppc_breakpoint_available())
920 for (i
= 0; i
< nr_wp_slots(); i
++)
921 set_hw_breakpoint(i
, this_cpu_ptr(¤t_brk
[i
]));
924 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
926 static inline bool tm_enabled(struct task_struct
*tsk
)
928 return tsk
&& tsk
->thread
.regs
&& (tsk
->thread
.regs
->msr
& MSR_TM
);
931 static void tm_reclaim_thread(struct thread_struct
*thr
, uint8_t cause
)
934 * Use the current MSR TM suspended bit to track if we have
935 * checkpointed state outstanding.
936 * On signal delivery, we'd normally reclaim the checkpointed
937 * state to obtain stack pointer (see:get_tm_stackpointer()).
938 * This will then directly return to userspace without going
939 * through __switch_to(). However, if the stack frame is bad,
940 * we need to exit this thread which calls __switch_to() which
941 * will again attempt to reclaim the already saved tm state.
942 * Hence we need to check that we've not already reclaimed
944 * We do this using the current MSR, rather tracking it in
945 * some specific thread_struct bit, as it has the additional
946 * benefit of checking for a potential TM bad thing exception.
948 if (!MSR_TM_SUSPENDED(mfmsr()))
951 giveup_all(container_of(thr
, struct task_struct
, thread
));
953 tm_reclaim(thr
, cause
);
956 * If we are in a transaction and FP is off then we can't have
957 * used FP inside that transaction. Hence the checkpointed
958 * state is the same as the live state. We need to copy the
959 * live state to the checkpointed state so that when the
960 * transaction is restored, the checkpointed state is correct
961 * and the aborted transaction sees the correct state. We use
962 * ckpt_regs.msr here as that's what tm_reclaim will use to
963 * determine if it's going to write the checkpointed state or
964 * not. So either this will write the checkpointed registers,
965 * or reclaim will. Similarly for VMX.
967 if ((thr
->ckpt_regs
.msr
& MSR_FP
) == 0)
968 memcpy(&thr
->ckfp_state
, &thr
->fp_state
,
969 sizeof(struct thread_fp_state
));
970 if ((thr
->ckpt_regs
.msr
& MSR_VEC
) == 0)
971 memcpy(&thr
->ckvr_state
, &thr
->vr_state
,
972 sizeof(struct thread_vr_state
));
975 void tm_reclaim_current(uint8_t cause
)
978 tm_reclaim_thread(¤t
->thread
, cause
);
981 static inline void tm_reclaim_task(struct task_struct
*tsk
)
983 /* We have to work out if we're switching from/to a task that's in the
984 * middle of a transaction.
986 * In switching we need to maintain a 2nd register state as
987 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
988 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
991 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
993 struct thread_struct
*thr
= &tsk
->thread
;
998 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
999 goto out_and_saveregs
;
1001 WARN_ON(tm_suspend_disabled
);
1003 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
1004 "ccr=%lx, msr=%lx, trap=%lx)\n",
1005 tsk
->pid
, thr
->regs
->nip
,
1006 thr
->regs
->ccr
, thr
->regs
->msr
,
1009 tm_reclaim_thread(thr
, TM_CAUSE_RESCHED
);
1011 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
1015 /* Always save the regs here, even if a transaction's not active.
1016 * This context-switches a thread's TM info SPRs. We do it here to
1017 * be consistent with the restore path (in recheckpoint) which
1018 * cannot happen later in _switch().
1023 extern void __tm_recheckpoint(struct thread_struct
*thread
);
1025 void tm_recheckpoint(struct thread_struct
*thread
)
1027 unsigned long flags
;
1029 if (!(thread
->regs
->msr
& MSR_TM
))
1032 /* We really can't be interrupted here as the TEXASR registers can't
1033 * change and later in the trecheckpoint code, we have a userspace R1.
1034 * So let's hard disable over this region.
1036 local_irq_save(flags
);
1039 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1040 * before the trecheckpoint and no explosion occurs.
1042 tm_restore_sprs(thread
);
1044 __tm_recheckpoint(thread
);
1046 local_irq_restore(flags
);
1049 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
1051 if (!cpu_has_feature(CPU_FTR_TM
))
1054 /* Recheckpoint the registers of the thread we're about to switch to.
1056 * If the task was using FP, we non-lazily reload both the original and
1057 * the speculative FP register states. This is because the kernel
1058 * doesn't see if/when a TM rollback occurs, so if we take an FP
1059 * unavailable later, we are unable to determine which set of FP regs
1060 * need to be restored.
1062 if (!tm_enabled(new))
1065 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
)){
1066 tm_restore_sprs(&new->thread
);
1069 /* Recheckpoint to restore original checkpointed register state. */
1070 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1071 new->pid
, new->thread
.regs
->msr
);
1073 tm_recheckpoint(&new->thread
);
1076 * The checkpointed state has been restored but the live state has
1077 * not, ensure all the math functionality is turned off to trigger
1078 * restore_math() to reload.
1080 new->thread
.regs
->msr
&= ~(MSR_FP
| MSR_VEC
| MSR_VSX
);
1082 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1083 "(kernel msr 0x%lx)\n",
1087 static inline void __switch_to_tm(struct task_struct
*prev
,
1088 struct task_struct
*new)
1090 if (cpu_has_feature(CPU_FTR_TM
)) {
1091 if (tm_enabled(prev
) || tm_enabled(new))
1094 if (tm_enabled(prev
)) {
1095 prev
->thread
.load_tm
++;
1096 tm_reclaim_task(prev
);
1097 if (!MSR_TM_ACTIVE(prev
->thread
.regs
->msr
) && prev
->thread
.load_tm
== 0)
1098 prev
->thread
.regs
->msr
&= ~MSR_TM
;
1101 tm_recheckpoint_new_task(new);
1106 * This is called if we are on the way out to userspace and the
1107 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1108 * FP and/or vector state and does so if necessary.
1109 * If userspace is inside a transaction (whether active or
1110 * suspended) and FP/VMX/VSX instructions have ever been enabled
1111 * inside that transaction, then we have to keep them enabled
1112 * and keep the FP/VMX/VSX state loaded while ever the transaction
1113 * continues. The reason is that if we didn't, and subsequently
1114 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1115 * we don't know whether it's the same transaction, and thus we
1116 * don't know which of the checkpointed state and the transactional
1119 void restore_tm_state(struct pt_regs
*regs
)
1121 unsigned long msr_diff
;
1124 * This is the only moment we should clear TIF_RESTORE_TM as
1125 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1126 * again, anything else could lead to an incorrect ckpt_msr being
1127 * saved and therefore incorrect signal contexts.
1129 clear_thread_flag(TIF_RESTORE_TM
);
1130 if (!MSR_TM_ACTIVE(regs
->msr
))
1133 msr_diff
= current
->thread
.ckpt_regs
.msr
& ~regs
->msr
;
1134 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
;
1136 /* Ensure that restore_math() will restore */
1137 if (msr_diff
& MSR_FP
)
1138 current
->thread
.load_fp
= 1;
1139 #ifdef CONFIG_ALTIVEC
1140 if (cpu_has_feature(CPU_FTR_ALTIVEC
) && msr_diff
& MSR_VEC
)
1141 current
->thread
.load_vec
= 1;
1145 regs_set_return_msr(regs
, regs
->msr
| msr_diff
);
1148 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1149 #define tm_recheckpoint_new_task(new)
1150 #define __switch_to_tm(prev, new)
1151 void tm_reclaim_current(uint8_t cause
) {}
1152 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1154 static inline void save_sprs(struct thread_struct
*t
)
1156 #ifdef CONFIG_ALTIVEC
1157 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1158 t
->vrsave
= mfspr(SPRN_VRSAVE
);
1161 if (cpu_has_feature(CPU_FTR_SPE
))
1162 t
->spefscr
= mfspr(SPRN_SPEFSCR
);
1164 #ifdef CONFIG_PPC_BOOK3S_64
1165 if (cpu_has_feature(CPU_FTR_DSCR
))
1166 t
->dscr
= mfspr(SPRN_DSCR
);
1168 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1169 t
->bescr
= mfspr(SPRN_BESCR
);
1170 t
->ebbhr
= mfspr(SPRN_EBBHR
);
1171 t
->ebbrr
= mfspr(SPRN_EBBRR
);
1173 t
->fscr
= mfspr(SPRN_FSCR
);
1176 * Note that the TAR is not available for use in the kernel.
1177 * (To provide this, the TAR should be backed up/restored on
1178 * exception entry/exit instead, and be in pt_regs. FIXME,
1179 * this should be in pt_regs anyway (for debug).)
1181 t
->tar
= mfspr(SPRN_TAR
);
1184 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE
))
1185 t
->hashkeyr
= mfspr(SPRN_HASHKEYR
);
1187 if (cpu_has_feature(CPU_FTR_ARCH_31
))
1188 t
->dexcr
= mfspr(SPRN_DEXCR
);
1192 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1193 void kvmppc_save_user_regs(void)
1195 unsigned long usermsr
;
1197 if (!current
->thread
.regs
)
1200 usermsr
= current
->thread
.regs
->msr
;
1202 /* Caller has enabled FP/VEC/VSX/TM in MSR */
1203 if (usermsr
& MSR_FP
)
1204 __giveup_fpu(current
);
1205 if (usermsr
& MSR_VEC
)
1206 __giveup_altivec(current
);
1208 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1209 if (usermsr
& MSR_TM
) {
1210 current
->thread
.tm_tfhar
= mfspr(SPRN_TFHAR
);
1211 current
->thread
.tm_tfiar
= mfspr(SPRN_TFIAR
);
1212 current
->thread
.tm_texasr
= mfspr(SPRN_TEXASR
);
1213 current
->thread
.regs
->msr
&= ~MSR_TM
;
1217 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs
);
1219 void kvmppc_save_current_sprs(void)
1221 save_sprs(¤t
->thread
);
1223 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs
);
1224 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1226 static inline void restore_sprs(struct thread_struct
*old_thread
,
1227 struct thread_struct
*new_thread
)
1229 #ifdef CONFIG_ALTIVEC
1230 if (cpu_has_feature(CPU_FTR_ALTIVEC
) &&
1231 old_thread
->vrsave
!= new_thread
->vrsave
)
1232 mtspr(SPRN_VRSAVE
, new_thread
->vrsave
);
1235 if (cpu_has_feature(CPU_FTR_SPE
) &&
1236 old_thread
->spefscr
!= new_thread
->spefscr
)
1237 mtspr(SPRN_SPEFSCR
, new_thread
->spefscr
);
1239 #ifdef CONFIG_PPC_BOOK3S_64
1240 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1241 u64 dscr
= get_paca()->dscr_default
;
1242 if (new_thread
->dscr_inherit
)
1243 dscr
= new_thread
->dscr
;
1245 if (old_thread
->dscr
!= dscr
)
1246 mtspr(SPRN_DSCR
, dscr
);
1249 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1250 if (old_thread
->bescr
!= new_thread
->bescr
)
1251 mtspr(SPRN_BESCR
, new_thread
->bescr
);
1252 if (old_thread
->ebbhr
!= new_thread
->ebbhr
)
1253 mtspr(SPRN_EBBHR
, new_thread
->ebbhr
);
1254 if (old_thread
->ebbrr
!= new_thread
->ebbrr
)
1255 mtspr(SPRN_EBBRR
, new_thread
->ebbrr
);
1257 if (old_thread
->fscr
!= new_thread
->fscr
)
1258 mtspr(SPRN_FSCR
, new_thread
->fscr
);
1260 if (old_thread
->tar
!= new_thread
->tar
)
1261 mtspr(SPRN_TAR
, new_thread
->tar
);
1264 if (cpu_has_feature(CPU_FTR_P9_TIDR
) &&
1265 old_thread
->tidr
!= new_thread
->tidr
)
1266 mtspr(SPRN_TIDR
, new_thread
->tidr
);
1268 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE
) &&
1269 old_thread
->hashkeyr
!= new_thread
->hashkeyr
)
1270 mtspr(SPRN_HASHKEYR
, new_thread
->hashkeyr
);
1272 if (cpu_has_feature(CPU_FTR_ARCH_31
) &&
1273 old_thread
->dexcr
!= new_thread
->dexcr
)
1274 mtspr(SPRN_DEXCR
, new_thread
->dexcr
);
1279 struct task_struct
*__switch_to(struct task_struct
*prev
,
1280 struct task_struct
*new)
1282 struct thread_struct
*new_thread
, *old_thread
;
1283 struct task_struct
*last
;
1284 #ifdef CONFIG_PPC_64S_HASH_MMU
1285 struct ppc64_tlb_batch
*batch
;
1288 new_thread
= &new->thread
;
1289 old_thread
= ¤t
->thread
;
1291 WARN_ON(!irqs_disabled());
1293 #ifdef CONFIG_PPC_64S_HASH_MMU
1294 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1295 if (batch
->active
) {
1296 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
1298 __flush_tlb_pending(batch
);
1303 * On POWER9 the copy-paste buffer can only paste into
1304 * foreign real addresses, so unprivileged processes can not
1305 * see the data or use it in any way unless they have
1306 * foreign real mappings. If the new process has the foreign
1307 * real address mappings, we must issue a cp_abort to clear
1308 * any state and prevent snooping, corruption or a covert
1309 * channel. ISA v3.1 supports paste into local memory.
1311 if (new->mm
&& (cpu_has_feature(CPU_FTR_ARCH_31
) ||
1312 atomic_read(&new->mm
->context
.vas_windows
)))
1313 asm volatile(PPC_CP_ABORT
);
1314 #endif /* CONFIG_PPC_BOOK3S_64 */
1316 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1317 switch_booke_debug_regs(&new->thread
.debug
);
1320 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1323 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1324 switch_hw_breakpoint(new);
1325 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1329 * We need to save SPRs before treclaim/trecheckpoint as these will
1330 * change a number of them.
1332 save_sprs(&prev
->thread
);
1334 /* Save FPU, Altivec, VSX and SPE state */
1337 __switch_to_tm(prev
, new);
1339 if (!radix_enabled()) {
1341 * We can't take a PMU exception inside _switch() since there
1342 * is a window where the kernel stack SLB and the kernel stack
1343 * are out of sync. Hard disable here.
1349 * Call restore_sprs() and set_return_regs_changed() before calling
1350 * _switch(). If we move it after _switch() then we miss out on calling
1351 * it for new tasks. The reason for this is we manually create a stack
1352 * frame for new tasks that directly returns through ret_from_fork() or
1353 * ret_from_kernel_thread(). See copy_thread() for details.
1355 restore_sprs(old_thread
, new_thread
);
1357 set_return_regs_changed(); /* _switch changes stack (and regs) */
1359 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64
))
1360 kuap_assert_locked();
1362 last
= _switch(old_thread
, new_thread
);
1365 * Nothing after _switch will be run for newly created tasks,
1366 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1367 * etc. Code added here should have a comment explaining why that is
1371 #ifdef CONFIG_PPC_BOOK3S_64
1372 #ifdef CONFIG_PPC_64S_HASH_MMU
1374 * This applies to a process that was context switched while inside
1375 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1376 * deactivated above, before _switch(). This will never be the case
1379 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
1380 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
1381 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1387 * Math facilities are masked out of the child MSR in copy_thread.
1388 * A new task does not need to restore_math because it will
1389 * demand fault them.
1391 if (current
->thread
.regs
)
1392 restore_math(current
->thread
.regs
);
1393 #endif /* CONFIG_PPC_BOOK3S_64 */
1398 #define NR_INSN_TO_PRINT 16
1400 static void show_instructions(struct pt_regs
*regs
)
1403 unsigned long nip
= regs
->nip
;
1404 unsigned long pc
= regs
->nip
- (NR_INSN_TO_PRINT
* 3 / 4 * sizeof(int));
1409 * If we were executing with the MMU off for instructions, adjust pc
1410 * rather than printing XXXXXXXX.
1412 if (!IS_ENABLED(CONFIG_BOOKE
) && !(regs
->msr
& MSR_IR
)) {
1413 pc
= (unsigned long)phys_to_virt(pc
);
1414 nip
= (unsigned long)phys_to_virt(regs
->nip
);
1417 for (i
= 0; i
< NR_INSN_TO_PRINT
; i
++) {
1420 if (get_kernel_nofault(instr
, (const void *)pc
)) {
1421 pr_cont("XXXXXXXX ");
1424 pr_cont("<%08x> ", instr
);
1426 pr_cont("%08x ", instr
);
1435 void show_user_instructions(struct pt_regs
*regs
)
1438 int n
= NR_INSN_TO_PRINT
;
1440 char buf
[96]; /* enough for 8 times 9 + 2 chars */
1442 pc
= regs
->nip
- (NR_INSN_TO_PRINT
* 3 / 4 * sizeof(int));
1444 seq_buf_init(&s
, buf
, sizeof(buf
));
1451 for (i
= 0; i
< 8 && n
; i
++, n
--, pc
+= sizeof(int)) {
1454 if (copy_from_user_nofault(&instr
, (void __user
*)pc
,
1456 seq_buf_printf(&s
, "XXXXXXXX ");
1459 seq_buf_printf(&s
, regs
->nip
== pc
? "<%08x> " : "%08x ", instr
);
1462 if (!seq_buf_has_overflowed(&s
))
1463 pr_info("%s[%d]: code: %s\n", current
->comm
,
1464 current
->pid
, s
.buffer
);
1473 static struct regbit msr_bits
[] = {
1474 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1496 #ifndef CONFIG_BOOKE
1503 static void print_bits(unsigned long val
, struct regbit
*bits
, const char *sep
)
1507 for (; bits
->bit
; ++bits
)
1508 if (val
& bits
->bit
) {
1509 pr_cont("%s%s", s
, bits
->name
);
1514 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515 static struct regbit msr_tm_bits
[] = {
1522 static void print_tm_bits(unsigned long val
)
1525 * This only prints something if at least one of the TM bit is set.
1526 * Inside the TM[], the output means:
1527 * E: Enabled (bit 32)
1528 * S: Suspended (bit 33)
1529 * T: Transactional (bit 34)
1531 if (val
& (MSR_TM
| MSR_TS_S
| MSR_TS_T
)) {
1533 print_bits(val
, msr_tm_bits
, "");
1538 static void print_tm_bits(unsigned long val
) {}
1541 static void print_msr_bits(unsigned long val
)
1544 print_bits(val
, msr_bits
, ",");
1550 #define REG "%016lx"
1551 #define REGS_PER_LINE 4
1554 #define REGS_PER_LINE 8
1557 static void __show_regs(struct pt_regs
*regs
)
1561 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
1562 regs
->nip
, regs
->link
, regs
->ctr
);
1563 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1564 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
1565 printk("MSR: "REG
" ", regs
->msr
);
1566 print_msr_bits(regs
->msr
);
1567 pr_cont(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
1569 if (!trap_is_syscall(regs
) && cpu_has_feature(CPU_FTR_CFAR
))
1570 pr_cont("CFAR: "REG
" ", regs
->orig_gpr3
);
1571 if (trap
== INTERRUPT_MACHINE_CHECK
||
1572 trap
== INTERRUPT_DATA_STORAGE
||
1573 trap
== INTERRUPT_ALIGNMENT
) {
1574 if (IS_ENABLED(CONFIG_BOOKE
))
1575 pr_cont("DEAR: "REG
" ESR: "REG
" ", regs
->dear
, regs
->esr
);
1577 pr_cont("DAR: "REG
" DSISR: %08lx ", regs
->dar
, regs
->dsisr
);
1581 pr_cont("IRQMASK: %lx ", regs
->softe
);
1583 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1584 if (MSR_TM_ACTIVE(regs
->msr
))
1585 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch
);
1588 for (i
= 0; i
< 32; i
++) {
1589 if ((i
% REGS_PER_LINE
) == 0)
1590 pr_cont("\nGPR%02d: ", i
);
1591 pr_cont(REG
" ", regs
->gpr
[i
]);
1595 * Lookup NIP late so we have the best change of getting the
1596 * above info out without failing
1598 if (IS_ENABLED(CONFIG_KALLSYMS
)) {
1599 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
1600 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
1604 void show_regs(struct pt_regs
*regs
)
1606 show_regs_print_info(KERN_DEFAULT
);
1608 show_stack(current
, (unsigned long *) regs
->gpr
[1], KERN_DEFAULT
);
1609 if (!user_mode(regs
))
1610 show_instructions(regs
);
1613 void flush_thread(void)
1615 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1616 flush_ptrace_hw_breakpoint(current
);
1617 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1618 set_debug_reg_defaults(¤t
->thread
);
1619 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1622 void arch_setup_new_exec(void)
1625 #ifdef CONFIG_PPC_BOOK3S_64
1626 if (!radix_enabled())
1627 hash__setup_new_exec();
1630 * If we exec out of a kernel thread then thread.regs will not be
1633 if (!current
->thread
.regs
) {
1634 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1635 current
->thread
.regs
= regs
- 1;
1638 #ifdef CONFIG_PPC_MEM_KEYS
1639 current
->thread
.regs
->amr
= default_amr
;
1640 current
->thread
.regs
->iamr
= default_iamr
;
1643 #ifdef CONFIG_PPC_BOOK3S_64
1644 if (cpu_has_feature(CPU_FTR_ARCH_31
)) {
1645 current
->thread
.dexcr
= current
->thread
.dexcr_onexec
;
1646 mtspr(SPRN_DEXCR
, current
->thread
.dexcr
);
1648 #endif /* CONFIG_PPC_BOOK3S_64 */
1653 * Assign a TIDR (thread ID) for task @t and set it in the thread
1654 * structure. For now, we only support setting TIDR for 'current' task.
1656 * Since the TID value is a truncated form of it PID, it is possible
1657 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1658 * that 2 threads share the same TID and are waiting, one of the following
1659 * cases will happen:
1661 * 1. The correct thread is running, the wrong thread is not
1662 * In this situation, the correct thread is woken and proceeds to pass its
1665 * 2. Neither threads are running
1666 * In this situation, neither thread will be woken. When scheduled, the waiting
1667 * threads will execute either a wait, which will return immediately, followed
1668 * by a condition check, which will pass for the correct thread and fail
1669 * for the wrong thread, or they will execute the condition check immediately.
1671 * 3. The wrong thread is running, the correct thread is not
1672 * The wrong thread will be woken, but will fail its condition check and
1673 * re-execute wait. The correct thread, when scheduled, will execute either
1674 * its condition check (which will pass), or wait, which returns immediately
1675 * when called the first time after the thread is scheduled, followed by its
1676 * condition check (which will pass).
1678 * 4. Both threads are running
1679 * Both threads will be woken. The wrong thread will fail its condition check
1680 * and execute another wait, while the correct thread will pass its condition
1683 * @t: the task to set the thread ID for
1685 int set_thread_tidr(struct task_struct
*t
)
1687 if (!cpu_has_feature(CPU_FTR_P9_TIDR
))
1696 t
->thread
.tidr
= (u16
)task_pid_nr(t
);
1697 mtspr(SPRN_TIDR
, t
->thread
.tidr
);
1701 EXPORT_SYMBOL_GPL(set_thread_tidr
);
1703 #endif /* CONFIG_PPC64 */
1706 * this gets called so that we can store coprocessor state into memory and
1707 * copy the current task into the new thread.
1709 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
1711 flush_all_to_thread(src
);
1713 * Flush TM state out so we can copy it. __switch_to_tm() does this
1714 * flush but it removes the checkpointed state from the current CPU and
1715 * transitions the CPU out of TM mode. Hence we need to call
1716 * tm_recheckpoint_new_task() (on the same task) to restore the
1717 * checkpointed state back and the TM mode.
1719 * Can't pass dst because it isn't ready. Doesn't matter, passing
1720 * dst is only important for __switch_to()
1722 __switch_to_tm(src
, src
);
1726 clear_task_ebb(dst
);
1731 static void setup_ksp_vsid(struct task_struct
*p
, unsigned long sp
)
1733 #ifdef CONFIG_PPC_64S_HASH_MMU
1734 unsigned long sp_vsid
;
1735 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
1737 if (radix_enabled())
1740 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
1741 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
1742 << SLB_VSID_SHIFT_1T
;
1744 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
1746 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
1747 p
->thread
.ksp_vsid
= sp_vsid
;
1756 * Copy architecture-specific thread state
1758 int copy_thread(struct task_struct
*p
, const struct kernel_clone_args
*args
)
1760 struct pt_regs
*kregs
; /* Switch frame regs */
1761 extern void ret_from_fork(void);
1762 extern void ret_from_fork_scv(void);
1763 extern void ret_from_kernel_user_thread(void);
1764 extern void start_kernel_thread(void);
1766 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
1767 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1771 klp_init_thread_info(p
);
1773 if (unlikely(p
->flags
& PF_KTHREAD
)) {
1776 /* Create initial minimum stack frame. */
1777 sp
-= STACK_FRAME_MIN_SIZE
;
1778 ((unsigned long *)sp
)[0] = 0;
1780 f
= start_kernel_thread
;
1781 p
->thread
.regs
= NULL
; /* no user register state */
1782 clear_tsk_compat_task(p
);
1785 struct pt_regs
*childregs
;
1787 /* Create initial user return stack frame. */
1788 sp
-= STACK_USER_INT_FRAME_SIZE
;
1789 *(unsigned long *)(sp
+ STACK_INT_FRAME_MARKER
) = STACK_FRAME_REGS_MARKER
;
1791 childregs
= (struct pt_regs
*)(sp
+ STACK_INT_FRAME_REGS
);
1793 if (unlikely(args
->fn
)) {
1795 * A user space thread, but it first runs a kernel
1796 * thread, and then returns as though it had called
1797 * execve rather than fork, so user regs will be
1798 * filled in (e.g., by kernel_execve()).
1800 ((unsigned long *)sp
)[0] = 0;
1801 memset(childregs
, 0, sizeof(struct pt_regs
));
1803 childregs
->softe
= IRQS_ENABLED
;
1805 f
= ret_from_kernel_user_thread
;
1807 struct pt_regs
*regs
= current_pt_regs();
1808 unsigned long clone_flags
= args
->flags
;
1809 unsigned long usp
= args
->stack
;
1811 /* Copy registers */
1814 childregs
->gpr
[1] = usp
;
1815 ((unsigned long *)sp
)[0] = childregs
->gpr
[1];
1816 #ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
1817 WARN_ON_ONCE(childregs
->softe
!= IRQS_ENABLED
);
1819 if (clone_flags
& CLONE_SETTLS
) {
1820 unsigned long tls
= args
->tls
;
1822 if (!is_32bit_task())
1823 childregs
->gpr
[13] = tls
;
1825 childregs
->gpr
[2] = tls
;
1828 if (trap_is_scv(regs
))
1829 f
= ret_from_fork_scv
;
1834 childregs
->msr
&= ~(MSR_FP
|MSR_VEC
|MSR_VSX
);
1835 p
->thread
.regs
= childregs
;
1839 * The way this works is that at some point in the future
1840 * some task will call _switch to switch to the new task.
1841 * That will pop off the stack frame created below and start
1842 * the new task running at ret_from_fork. The new task will
1843 * do some house keeping and then return from the fork or clone
1844 * system call, using the stack frame created above.
1846 ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
] = (unsigned long)f
;
1847 sp
-= STACK_SWITCH_FRAME_SIZE
;
1848 ((unsigned long *)sp
)[0] = sp
+ STACK_SWITCH_FRAME_SIZE
;
1849 kregs
= (struct pt_regs
*)(sp
+ STACK_SWITCH_FRAME_REGS
);
1850 kregs
->nip
= ppc_function_entry(f
);
1851 if (unlikely(args
->fn
)) {
1853 * Put kthread fn, arg parameters in non-volatile GPRs in the
1854 * switch frame so they are loaded by _switch before it returns
1855 * to ret_from_kernel_thread.
1857 kregs
->gpr
[14] = ppc_function_entry((void *)args
->fn
);
1858 kregs
->gpr
[15] = (unsigned long)args
->fn_arg
;
1862 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1863 for (i
= 0; i
< nr_wp_slots(); i
++)
1864 p
->thread
.ptrace_bps
[i
] = NULL
;
1867 #ifdef CONFIG_PPC_FPU_REGS
1868 p
->thread
.fp_save_area
= NULL
;
1870 #ifdef CONFIG_ALTIVEC
1871 p
->thread
.vr_save_area
= NULL
;
1873 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1874 p
->thread
.kuap
= KUAP_NONE
;
1876 #if defined(CONFIG_BOOKE) && defined(CONFIG_PPC_KUAP)
1877 p
->thread
.pid
= MMU_NO_CONTEXT
;
1880 setup_ksp_vsid(p
, sp
);
1883 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1884 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1885 p
->thread
.dscr
= mfspr(SPRN_DSCR
);
1890 #ifdef CONFIG_PPC_BOOK3S_64
1891 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE
))
1892 p
->thread
.hashkeyr
= current
->thread
.hashkeyr
;
1894 if (cpu_has_feature(CPU_FTR_ARCH_31
))
1895 p
->thread
.dexcr
= mfspr(SPRN_DEXCR
);
1900 void preload_new_slb_context(unsigned long start
, unsigned long sp
);
1903 * Set up a thread for executing a new program
1905 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1908 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1910 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64
) && !radix_enabled())
1911 preload_new_slb_context(start
, sp
);
1914 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1916 * Clear any transactional state, we're exec()ing. The cause is
1917 * not important as there will never be a recheckpoint so it's not
1920 if (MSR_TM_SUSPENDED(mfmsr()))
1921 tm_reclaim_current(0);
1924 memset(®s
->gpr
[1], 0, sizeof(regs
->gpr
) - sizeof(regs
->gpr
[0]));
1934 regs
->msr
= MSR_USER
;
1936 if (!is_32bit_task()) {
1937 unsigned long entry
;
1939 if (is_elf2_task()) {
1940 /* Look ma, no function descriptors! */
1945 * The latest iteration of the ABI requires that when
1946 * calling a function (at its global entry point),
1947 * the caller must ensure r12 holds the entry point
1948 * address (so that the function can quickly
1949 * establish addressability).
1951 regs
->gpr
[12] = start
;
1952 /* Make sure that's restored on entry to userspace. */
1953 set_thread_flag(TIF_RESTOREALL
);
1957 /* start is a relocated pointer to the function
1958 * descriptor for the elf _start routine. The first
1959 * entry in the function descriptor is the entry
1960 * address of _start and the second entry is the TOC
1961 * value we need to use.
1963 __get_user(entry
, (unsigned long __user
*)start
);
1964 __get_user(toc
, (unsigned long __user
*)start
+1);
1966 /* Check whether the e_entry function descriptor entries
1967 * need to be relocated before we can use them.
1969 if (load_addr
!= 0) {
1975 regs_set_return_ip(regs
, entry
);
1976 regs_set_return_msr(regs
, MSR_USER64
);
1979 regs_set_return_ip(regs
, start
);
1980 regs_set_return_msr(regs
, MSR_USER32
);
1985 current
->thread
.used_vsr
= 0;
1987 current
->thread
.load_slb
= 0;
1988 current
->thread
.load_fp
= 0;
1989 #ifdef CONFIG_PPC_FPU_REGS
1990 memset(¤t
->thread
.fp_state
, 0, sizeof(current
->thread
.fp_state
));
1991 current
->thread
.fp_save_area
= NULL
;
1993 #ifdef CONFIG_ALTIVEC
1994 memset(¤t
->thread
.vr_state
, 0, sizeof(current
->thread
.vr_state
));
1995 current
->thread
.vr_state
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1996 current
->thread
.vr_save_area
= NULL
;
1997 current
->thread
.vrsave
= 0;
1998 current
->thread
.used_vr
= 0;
1999 current
->thread
.load_vec
= 0;
2000 #endif /* CONFIG_ALTIVEC */
2002 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
2003 current
->thread
.acc
= 0;
2004 current
->thread
.spefscr
= 0;
2005 current
->thread
.used_spe
= 0;
2006 #endif /* CONFIG_SPE */
2007 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2008 current
->thread
.tm_tfhar
= 0;
2009 current
->thread
.tm_texasr
= 0;
2010 current
->thread
.tm_tfiar
= 0;
2011 current
->thread
.load_tm
= 0;
2012 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2013 #ifdef CONFIG_PPC_BOOK3S_64
2014 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE
)) {
2015 current
->thread
.hashkeyr
= get_random_long();
2016 mtspr(SPRN_HASHKEYR
, current
->thread
.hashkeyr
);
2018 #endif /* CONFIG_PPC_BOOK3S_64 */
2020 EXPORT_SYMBOL(start_thread
);
2022 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
2023 | PR_FP_EXC_RES | PR_FP_EXC_INV)
2025 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
2027 struct pt_regs
*regs
= tsk
->thread
.regs
;
2029 /* This is a bit hairy. If we are an SPE enabled processor
2030 * (have embedded fp) we store the IEEE exception enable flags in
2031 * fpexc_mode. fpexc_mode is also used for setting FP exception
2032 * mode (asyn, precise, disabled) for 'Classic' FP. */
2033 if (val
& PR_FP_EXC_SW_ENABLE
) {
2034 if (cpu_has_feature(CPU_FTR_SPE
)) {
2036 * When the sticky exception bits are set
2037 * directly by userspace, it must call prctl
2038 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2039 * in the existing prctl settings) or
2040 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2041 * the bits being set). <fenv.h> functions
2042 * saving and restoring the whole
2043 * floating-point environment need to do so
2044 * anyway to restore the prctl settings from
2045 * the saved environment.
2048 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
2049 tsk
->thread
.fpexc_mode
= val
&
2050 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
2058 /* on a CONFIG_SPE this does not hurt us. The bits that
2059 * __pack_fe01 use do not overlap with bits used for
2060 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
2061 * on CONFIG_SPE implementations are reserved so writing to
2062 * them does not change anything */
2063 if (val
> PR_FP_EXC_PRECISE
)
2065 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
2066 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0) {
2067 regs_set_return_msr(regs
, (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
2068 | tsk
->thread
.fpexc_mode
);
2073 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
2075 unsigned int val
= 0;
2077 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
) {
2078 if (cpu_has_feature(CPU_FTR_SPE
)) {
2080 * When the sticky exception bits are set
2081 * directly by userspace, it must call prctl
2082 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2083 * in the existing prctl settings) or
2084 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2085 * the bits being set). <fenv.h> functions
2086 * saving and restoring the whole
2087 * floating-point environment need to do so
2088 * anyway to restore the prctl settings from
2089 * the saved environment.
2092 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
2093 val
= tsk
->thread
.fpexc_mode
;
2098 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
2100 return put_user(val
, (unsigned int __user
*) adr
);
2103 int set_endian(struct task_struct
*tsk
, unsigned int val
)
2105 struct pt_regs
*regs
= tsk
->thread
.regs
;
2107 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
2108 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
2114 if (val
== PR_ENDIAN_BIG
)
2115 regs_set_return_msr(regs
, regs
->msr
& ~MSR_LE
);
2116 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
2117 regs_set_return_msr(regs
, regs
->msr
| MSR_LE
);
2124 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
2126 struct pt_regs
*regs
= tsk
->thread
.regs
;
2129 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
2130 !cpu_has_feature(CPU_FTR_REAL_LE
))
2136 if (regs
->msr
& MSR_LE
) {
2137 if (cpu_has_feature(CPU_FTR_REAL_LE
))
2138 val
= PR_ENDIAN_LITTLE
;
2140 val
= PR_ENDIAN_PPC_LITTLE
;
2142 val
= PR_ENDIAN_BIG
;
2144 return put_user(val
, (unsigned int __user
*)adr
);
2147 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
2149 tsk
->thread
.align_ctl
= val
;
2153 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
2155 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
2158 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
2159 unsigned long nbytes
)
2161 unsigned long stack_page
;
2162 unsigned long cpu
= task_cpu(p
);
2164 if (!hardirq_ctx
[cpu
] || !softirq_ctx
[cpu
])
2167 stack_page
= (unsigned long)hardirq_ctx
[cpu
];
2168 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2171 stack_page
= (unsigned long)softirq_ctx
[cpu
];
2172 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2179 static inline int valid_emergency_stack(unsigned long sp
, struct task_struct
*p
,
2180 unsigned long nbytes
)
2182 unsigned long stack_page
;
2183 unsigned long cpu
= task_cpu(p
);
2188 if (!paca_ptrs
[cpu
]->emergency_sp
)
2191 # ifdef CONFIG_PPC_BOOK3S_64
2192 if (!paca_ptrs
[cpu
]->nmi_emergency_sp
|| !paca_ptrs
[cpu
]->mc_emergency_sp
)
2196 stack_page
= (unsigned long)paca_ptrs
[cpu
]->emergency_sp
- THREAD_SIZE
;
2197 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2200 # ifdef CONFIG_PPC_BOOK3S_64
2201 stack_page
= (unsigned long)paca_ptrs
[cpu
]->nmi_emergency_sp
- THREAD_SIZE
;
2202 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2205 stack_page
= (unsigned long)paca_ptrs
[cpu
]->mc_emergency_sp
- THREAD_SIZE
;
2206 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2213 static inline int valid_emergency_stack(unsigned long sp
, struct task_struct
*p
,
2214 unsigned long nbytes
)
2216 unsigned long stack_page
;
2217 unsigned long cpu
= task_cpu(p
);
2219 if (!IS_ENABLED(CONFIG_VMAP_STACK
))
2222 stack_page
= (unsigned long)emergency_ctx
[cpu
] - THREAD_SIZE
;
2223 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2231 * validate the stack frame of a particular minimum size, used for when we are
2232 * looking at a certain object in the stack beyond the minimum.
2234 int validate_sp_size(unsigned long sp
, struct task_struct
*p
,
2235 unsigned long nbytes
)
2237 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
2239 if (sp
< THREAD_SIZE
)
2242 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2245 if (valid_irq_stack(sp
, p
, nbytes
))
2248 return valid_emergency_stack(sp
, p
, nbytes
);
2251 int validate_sp(unsigned long sp
, struct task_struct
*p
)
2253 return validate_sp_size(sp
, p
, STACK_FRAME_MIN_SIZE
);
2256 static unsigned long ___get_wchan(struct task_struct
*p
)
2258 unsigned long ip
, sp
;
2262 if (!validate_sp(sp
, p
))
2266 sp
= READ_ONCE_NOCHECK(*(unsigned long *)sp
);
2267 if (!validate_sp(sp
, p
) || task_is_running(p
))
2270 ip
= READ_ONCE_NOCHECK(((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
]);
2271 if (!in_sched_functions(ip
))
2274 } while (count
++ < 16);
2278 unsigned long __get_wchan(struct task_struct
*p
)
2282 if (!try_get_task_stack(p
))
2285 ret
= ___get_wchan(p
);
2292 static bool empty_user_regs(struct pt_regs
*regs
, struct task_struct
*tsk
)
2294 unsigned long stack_page
;
2296 // A non-empty pt_regs should never have a zero MSR or TRAP value.
2297 if (regs
->msr
|| regs
->trap
)
2300 // Check it sits at the very base of the stack
2301 stack_page
= (unsigned long)task_stack_page(tsk
);
2302 if ((unsigned long)(regs
+ 1) != stack_page
+ THREAD_SIZE
)
2308 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
2310 void __no_sanitize_address
show_stack(struct task_struct
*tsk
,
2311 unsigned long *stack
,
2314 unsigned long sp
, ip
, lr
, newsp
;
2317 unsigned long ret_addr
;
2323 if (!try_get_task_stack(tsk
))
2326 sp
= (unsigned long) stack
;
2329 sp
= current_stack_frame();
2331 sp
= tsk
->thread
.ksp
;
2335 printk("%sCall Trace:\n", loglvl
);
2337 if (!validate_sp(sp
, tsk
))
2340 stack
= (unsigned long *) sp
;
2342 ip
= stack
[STACK_FRAME_LR_SAVE
];
2343 if (!firstframe
|| ip
!= lr
) {
2344 printk("%s["REG
"] ["REG
"] %pS",
2345 loglvl
, sp
, ip
, (void *)ip
);
2346 ret_addr
= ftrace_graph_ret_addr(current
,
2347 &ftrace_idx
, ip
, stack
);
2349 pr_cont(" (%pS)", (void *)ret_addr
);
2351 pr_cont(" (unreliable)");
2357 * See if this is an exception frame.
2358 * We look for the "regs" marker in the current frame.
2360 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2361 * could hold a pt_regs, if that does not fit then it can't
2364 if (validate_sp_size(sp
, tsk
, STACK_SWITCH_FRAME_SIZE
)
2365 && stack
[STACK_INT_FRAME_MARKER_LONGS
] == STACK_FRAME_REGS_MARKER
) {
2366 struct pt_regs
*regs
= (struct pt_regs
*)
2367 (sp
+ STACK_INT_FRAME_REGS
);
2370 printk("%s--- interrupt: %lx at %pS\n",
2371 loglvl
, regs
->trap
, (void *)regs
->nip
);
2373 // Detect the case of an empty pt_regs at the very base
2374 // of the stack and suppress showing it in full.
2375 if (!empty_user_regs(regs
, tsk
)) {
2377 printk("%s--- interrupt: %lx\n", loglvl
, regs
->trap
);
2384 } while (count
++ < kstack_depth_to_print
);
2386 put_task_stack(tsk
);
2390 /* Called with hard IRQs off */
2391 void notrace
__ppc64_runlatch_on(void)
2393 struct thread_info
*ti
= current_thread_info();
2395 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
2397 * Least significant bit (RUN) is the only writable bit of
2398 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2399 * earliest ISA where this is the case, but it's convenient.
2401 mtspr(SPRN_CTRLT
, CTRL_RUNLATCH
);
2406 * Some architectures (e.g., Cell) have writable fields other
2407 * than RUN, so do the read-modify-write.
2409 ctrl
= mfspr(SPRN_CTRLF
);
2410 ctrl
|= CTRL_RUNLATCH
;
2411 mtspr(SPRN_CTRLT
, ctrl
);
2414 ti
->local_flags
|= _TLF_RUNLATCH
;
2417 /* Called with hard IRQs off */
2418 void notrace
__ppc64_runlatch_off(void)
2420 struct thread_info
*ti
= current_thread_info();
2422 ti
->local_flags
&= ~_TLF_RUNLATCH
;
2424 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
2425 mtspr(SPRN_CTRLT
, 0);
2429 ctrl
= mfspr(SPRN_CTRLF
);
2430 ctrl
&= ~CTRL_RUNLATCH
;
2431 mtspr(SPRN_CTRLT
, ctrl
);
2434 #endif /* CONFIG_PPC64 */
2436 unsigned long arch_align_stack(unsigned long sp
)
2438 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
2439 sp
-= get_random_u32_below(PAGE_SIZE
);