Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / arch / powerpc / kernel / rtas.c
blobd31c9799cab283e248ee349c5e14c018028d56eb
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
4 * Procedures for interfacing to the RTAS on CHRP machines.
6 * Peter Bergner, IBM March 2001.
7 * Copyright (C) 2001 IBM.
8 */
10 #define pr_fmt(fmt) "rtas: " fmt
12 #include <linux/bsearch.h>
13 #include <linux/capability.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/kconfig.h>
18 #include <linux/kernel.h>
19 #include <linux/lockdep.h>
20 #include <linux/memblock.h>
21 #include <linux/mutex.h>
22 #include <linux/nospec.h>
23 #include <linux/of.h>
24 #include <linux/of_fdt.h>
25 #include <linux/reboot.h>
26 #include <linux/sched.h>
27 #include <linux/security.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/stdarg.h>
31 #include <linux/syscalls.h>
32 #include <linux/types.h>
33 #include <linux/uaccess.h>
34 #include <linux/xarray.h>
36 #include <asm/delay.h>
37 #include <asm/firmware.h>
38 #include <asm/interrupt.h>
39 #include <asm/machdep.h>
40 #include <asm/mmu.h>
41 #include <asm/page.h>
42 #include <asm/rtas-work-area.h>
43 #include <asm/rtas.h>
44 #include <asm/time.h>
45 #include <asm/trace.h>
46 #include <asm/udbg.h>
48 struct rtas_filter {
49 /* Indexes into the args buffer, -1 if not used */
50 const int buf_idx1;
51 const int size_idx1;
52 const int buf_idx2;
53 const int size_idx2;
55 * Assumed buffer size per the spec if the function does not
56 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
58 const int fixed_size;
61 /**
62 * struct rtas_function - Descriptor for RTAS functions.
64 * @token: Value of @name if it exists under the /rtas node.
65 * @name: Function name.
66 * @filter: If non-NULL, invoking this function via the rtas syscall is
67 * generally allowed, and @filter describes constraints on the
68 * arguments. See also @banned_for_syscall_on_le.
69 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
70 * but specifically restricted on ppc64le. Such
71 * functions are believed to have no users on
72 * ppc64le, and we want to keep it that way. It does
73 * not make sense for this to be set when @filter
74 * is NULL.
75 * @lock: Pointer to an optional dedicated per-function mutex. This
76 * should be set for functions that require multiple calls in
77 * sequence to complete a single operation, and such sequences
78 * will disrupt each other if allowed to interleave. Users of
79 * this function are required to hold the associated lock for
80 * the duration of the call sequence. Add an explanatory
81 * comment to the function table entry if setting this member.
83 struct rtas_function {
84 s32 token;
85 const bool banned_for_syscall_on_le:1;
86 const char * const name;
87 const struct rtas_filter *filter;
88 struct mutex *lock;
92 * Per-function locks for sequence-based RTAS functions.
94 static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
95 static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
96 static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
97 static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
98 static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
99 static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
100 DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
102 static struct rtas_function rtas_function_table[] __ro_after_init = {
103 [RTAS_FNIDX__CHECK_EXCEPTION] = {
104 .name = "check-exception",
106 [RTAS_FNIDX__DISPLAY_CHARACTER] = {
107 .name = "display-character",
108 .filter = &(const struct rtas_filter) {
109 .buf_idx1 = -1, .size_idx1 = -1,
110 .buf_idx2 = -1, .size_idx2 = -1,
113 [RTAS_FNIDX__EVENT_SCAN] = {
114 .name = "event-scan",
116 [RTAS_FNIDX__FREEZE_TIME_BASE] = {
117 .name = "freeze-time-base",
119 [RTAS_FNIDX__GET_POWER_LEVEL] = {
120 .name = "get-power-level",
121 .filter = &(const struct rtas_filter) {
122 .buf_idx1 = -1, .size_idx1 = -1,
123 .buf_idx2 = -1, .size_idx2 = -1,
126 [RTAS_FNIDX__GET_SENSOR_STATE] = {
127 .name = "get-sensor-state",
128 .filter = &(const struct rtas_filter) {
129 .buf_idx1 = -1, .size_idx1 = -1,
130 .buf_idx2 = -1, .size_idx2 = -1,
133 [RTAS_FNIDX__GET_TERM_CHAR] = {
134 .name = "get-term-char",
136 [RTAS_FNIDX__GET_TIME_OF_DAY] = {
137 .name = "get-time-of-day",
138 .filter = &(const struct rtas_filter) {
139 .buf_idx1 = -1, .size_idx1 = -1,
140 .buf_idx2 = -1, .size_idx2 = -1,
143 [RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
144 .name = "ibm,activate-firmware",
145 .filter = &(const struct rtas_filter) {
146 .buf_idx1 = -1, .size_idx1 = -1,
147 .buf_idx2 = -1, .size_idx2 = -1,
150 * PAPR+ as of v2.13 doesn't explicitly impose any
151 * restriction, but this typically requires multiple
152 * calls before success, and there's no reason to
153 * allow sequences to interleave.
155 .lock = &rtas_ibm_activate_firmware_lock,
157 [RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
158 .name = "ibm,cbe-start-ptcal",
160 [RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
161 .name = "ibm,cbe-stop-ptcal",
163 [RTAS_FNIDX__IBM_CHANGE_MSI] = {
164 .name = "ibm,change-msi",
166 [RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
167 .name = "ibm,close-errinjct",
168 .filter = &(const struct rtas_filter) {
169 .buf_idx1 = -1, .size_idx1 = -1,
170 .buf_idx2 = -1, .size_idx2 = -1,
173 [RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
174 .name = "ibm,configure-bridge",
176 [RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
177 .name = "ibm,configure-connector",
178 .filter = &(const struct rtas_filter) {
179 .buf_idx1 = 0, .size_idx1 = -1,
180 .buf_idx2 = 1, .size_idx2 = -1,
181 .fixed_size = 4096,
184 [RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
185 .name = "ibm,configure-kernel-dump",
187 [RTAS_FNIDX__IBM_CONFIGURE_PE] = {
188 .name = "ibm,configure-pe",
190 [RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
191 .name = "ibm,create-pe-dma-window",
193 [RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
194 .name = "ibm,display-message",
195 .filter = &(const struct rtas_filter) {
196 .buf_idx1 = 0, .size_idx1 = -1,
197 .buf_idx2 = -1, .size_idx2 = -1,
200 [RTAS_FNIDX__IBM_ERRINJCT] = {
201 .name = "ibm,errinjct",
202 .filter = &(const struct rtas_filter) {
203 .buf_idx1 = 2, .size_idx1 = -1,
204 .buf_idx2 = -1, .size_idx2 = -1,
205 .fixed_size = 1024,
208 [RTAS_FNIDX__IBM_EXTI2C] = {
209 .name = "ibm,exti2c",
211 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
212 .name = "ibm,get-config-addr-info",
214 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
215 .name = "ibm,get-config-addr-info2",
216 .filter = &(const struct rtas_filter) {
217 .buf_idx1 = -1, .size_idx1 = -1,
218 .buf_idx2 = -1, .size_idx2 = -1,
221 [RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
222 .name = "ibm,get-dynamic-sensor-state",
223 .filter = &(const struct rtas_filter) {
224 .buf_idx1 = 1, .size_idx1 = -1,
225 .buf_idx2 = -1, .size_idx2 = -1,
228 * PAPR+ v2.13 R1–7.3.19–3 is explicit that the OS
229 * must not call ibm,get-dynamic-sensor-state with
230 * different inputs until a non-retry status has been
231 * returned.
233 .lock = &rtas_ibm_get_dynamic_sensor_state_lock,
235 [RTAS_FNIDX__IBM_GET_INDICES] = {
236 .name = "ibm,get-indices",
237 .filter = &(const struct rtas_filter) {
238 .buf_idx1 = 2, .size_idx1 = 3,
239 .buf_idx2 = -1, .size_idx2 = -1,
242 * PAPR+ v2.13 R1–7.3.17–2 says that the OS must not
243 * interleave ibm,get-indices call sequences with
244 * different inputs.
246 .lock = &rtas_ibm_get_indices_lock,
248 [RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
249 .name = "ibm,get-rio-topology",
251 [RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
252 .name = "ibm,get-system-parameter",
253 .filter = &(const struct rtas_filter) {
254 .buf_idx1 = 1, .size_idx1 = 2,
255 .buf_idx2 = -1, .size_idx2 = -1,
258 [RTAS_FNIDX__IBM_GET_VPD] = {
259 .name = "ibm,get-vpd",
260 .filter = &(const struct rtas_filter) {
261 .buf_idx1 = 0, .size_idx1 = -1,
262 .buf_idx2 = 1, .size_idx2 = 2,
265 * PAPR+ v2.13 R1–7.3.20–4 indicates that sequences
266 * should not be allowed to interleave.
268 .lock = &rtas_ibm_get_vpd_lock,
270 [RTAS_FNIDX__IBM_GET_XIVE] = {
271 .name = "ibm,get-xive",
273 [RTAS_FNIDX__IBM_INT_OFF] = {
274 .name = "ibm,int-off",
276 [RTAS_FNIDX__IBM_INT_ON] = {
277 .name = "ibm,int-on",
279 [RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
280 .name = "ibm,io-quiesce-ack",
282 [RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
283 .name = "ibm,lpar-perftools",
284 .filter = &(const struct rtas_filter) {
285 .buf_idx1 = 2, .size_idx1 = 3,
286 .buf_idx2 = -1, .size_idx2 = -1,
289 * PAPR+ v2.13 R1–7.3.26–6 says the OS should allow
290 * only one call sequence in progress at a time.
292 .lock = &rtas_ibm_lpar_perftools_lock,
294 [RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
295 .name = "ibm,manage-flash-image",
297 [RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
298 .name = "ibm,manage-storage-preservation",
300 [RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
301 .name = "ibm,nmi-interlock",
303 [RTAS_FNIDX__IBM_NMI_REGISTER] = {
304 .name = "ibm,nmi-register",
306 [RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
307 .name = "ibm,open-errinjct",
308 .filter = &(const struct rtas_filter) {
309 .buf_idx1 = -1, .size_idx1 = -1,
310 .buf_idx2 = -1, .size_idx2 = -1,
313 [RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
314 .name = "ibm,open-sriov-allow-unfreeze",
316 [RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
317 .name = "ibm,open-sriov-map-pe-number",
319 [RTAS_FNIDX__IBM_OS_TERM] = {
320 .name = "ibm,os-term",
322 [RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
323 .name = "ibm,partner-control",
325 [RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
326 .name = "ibm,physical-attestation",
327 .filter = &(const struct rtas_filter) {
328 .buf_idx1 = 0, .size_idx1 = 1,
329 .buf_idx2 = -1, .size_idx2 = -1,
332 * This follows a sequence-based pattern similar to
333 * ibm,get-vpd et al. Since PAPR+ restricts
334 * interleaving call sequences for other functions of
335 * this style, assume the restriction applies here,
336 * even though it's not explicit in the spec.
338 .lock = &rtas_ibm_physical_attestation_lock,
340 [RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
341 .name = "ibm,platform-dump",
342 .filter = &(const struct rtas_filter) {
343 .buf_idx1 = 4, .size_idx1 = 5,
344 .buf_idx2 = -1, .size_idx2 = -1,
347 * PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
348 * sequences of ibm,platform-dump are allowed if they
349 * are operating on different dump tags. So leave the
350 * lock pointer unset for now. This may need
351 * reconsideration if kernel-internal users appear.
354 [RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
355 .name = "ibm,power-off-ups",
357 [RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
358 .name = "ibm,query-interrupt-source-number",
360 [RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
361 .name = "ibm,query-pe-dma-window",
363 [RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
364 .name = "ibm,read-pci-config",
366 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
367 .name = "ibm,read-slot-reset-state",
368 .filter = &(const struct rtas_filter) {
369 .buf_idx1 = -1, .size_idx1 = -1,
370 .buf_idx2 = -1, .size_idx2 = -1,
373 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
374 .name = "ibm,read-slot-reset-state2",
376 [RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
377 .name = "ibm,remove-pe-dma-window",
379 [RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
381 * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
382 * "ibm,reset-pe-dma-windows" (plural), but RTAS
383 * implementations use the singular form in practice.
385 .name = "ibm,reset-pe-dma-window",
387 [RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
388 .name = "ibm,scan-log-dump",
389 .filter = &(const struct rtas_filter) {
390 .buf_idx1 = 0, .size_idx1 = 1,
391 .buf_idx2 = -1, .size_idx2 = -1,
394 [RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
395 .name = "ibm,set-dynamic-indicator",
396 .filter = &(const struct rtas_filter) {
397 .buf_idx1 = 2, .size_idx1 = -1,
398 .buf_idx2 = -1, .size_idx2 = -1,
401 * PAPR+ v2.13 R1–7.3.18–3 says the OS must not call
402 * this function with different inputs until a
403 * non-retry status has been returned.
405 .lock = &rtas_ibm_set_dynamic_indicator_lock,
407 [RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
408 .name = "ibm,set-eeh-option",
409 .filter = &(const struct rtas_filter) {
410 .buf_idx1 = -1, .size_idx1 = -1,
411 .buf_idx2 = -1, .size_idx2 = -1,
414 [RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
415 .name = "ibm,set-slot-reset",
417 [RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
418 .name = "ibm,set-system-parameter",
419 .filter = &(const struct rtas_filter) {
420 .buf_idx1 = 1, .size_idx1 = -1,
421 .buf_idx2 = -1, .size_idx2 = -1,
424 [RTAS_FNIDX__IBM_SET_XIVE] = {
425 .name = "ibm,set-xive",
427 [RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
428 .name = "ibm,slot-error-detail",
430 [RTAS_FNIDX__IBM_SUSPEND_ME] = {
431 .name = "ibm,suspend-me",
432 .banned_for_syscall_on_le = true,
433 .filter = &(const struct rtas_filter) {
434 .buf_idx1 = -1, .size_idx1 = -1,
435 .buf_idx2 = -1, .size_idx2 = -1,
438 [RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
439 .name = "ibm,tune-dma-parms",
441 [RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
442 .name = "ibm,update-flash-64-and-reboot",
444 [RTAS_FNIDX__IBM_UPDATE_NODES] = {
445 .name = "ibm,update-nodes",
446 .banned_for_syscall_on_le = true,
447 .filter = &(const struct rtas_filter) {
448 .buf_idx1 = 0, .size_idx1 = -1,
449 .buf_idx2 = -1, .size_idx2 = -1,
450 .fixed_size = 4096,
453 [RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
454 .name = "ibm,update-properties",
455 .banned_for_syscall_on_le = true,
456 .filter = &(const struct rtas_filter) {
457 .buf_idx1 = 0, .size_idx1 = -1,
458 .buf_idx2 = -1, .size_idx2 = -1,
459 .fixed_size = 4096,
462 [RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
463 .name = "ibm,validate-flash-image",
465 [RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
466 .name = "ibm,write-pci-config",
468 [RTAS_FNIDX__NVRAM_FETCH] = {
469 .name = "nvram-fetch",
471 [RTAS_FNIDX__NVRAM_STORE] = {
472 .name = "nvram-store",
474 [RTAS_FNIDX__POWER_OFF] = {
475 .name = "power-off",
477 [RTAS_FNIDX__PUT_TERM_CHAR] = {
478 .name = "put-term-char",
480 [RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
481 .name = "query-cpu-stopped-state",
483 [RTAS_FNIDX__READ_PCI_CONFIG] = {
484 .name = "read-pci-config",
486 [RTAS_FNIDX__RTAS_LAST_ERROR] = {
487 .name = "rtas-last-error",
489 [RTAS_FNIDX__SET_INDICATOR] = {
490 .name = "set-indicator",
491 .filter = &(const struct rtas_filter) {
492 .buf_idx1 = -1, .size_idx1 = -1,
493 .buf_idx2 = -1, .size_idx2 = -1,
496 [RTAS_FNIDX__SET_POWER_LEVEL] = {
497 .name = "set-power-level",
498 .filter = &(const struct rtas_filter) {
499 .buf_idx1 = -1, .size_idx1 = -1,
500 .buf_idx2 = -1, .size_idx2 = -1,
503 [RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
504 .name = "set-time-for-power-on",
505 .filter = &(const struct rtas_filter) {
506 .buf_idx1 = -1, .size_idx1 = -1,
507 .buf_idx2 = -1, .size_idx2 = -1,
510 [RTAS_FNIDX__SET_TIME_OF_DAY] = {
511 .name = "set-time-of-day",
512 .filter = &(const struct rtas_filter) {
513 .buf_idx1 = -1, .size_idx1 = -1,
514 .buf_idx2 = -1, .size_idx2 = -1,
517 [RTAS_FNIDX__START_CPU] = {
518 .name = "start-cpu",
520 [RTAS_FNIDX__STOP_SELF] = {
521 .name = "stop-self",
523 [RTAS_FNIDX__SYSTEM_REBOOT] = {
524 .name = "system-reboot",
526 [RTAS_FNIDX__THAW_TIME_BASE] = {
527 .name = "thaw-time-base",
529 [RTAS_FNIDX__WRITE_PCI_CONFIG] = {
530 .name = "write-pci-config",
534 #define for_each_rtas_function(funcp) \
535 for (funcp = &rtas_function_table[0]; \
536 funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
537 ++funcp)
540 * Nearly all RTAS calls need to be serialized. All uses of the
541 * default rtas_args block must hold rtas_lock.
543 * Exceptions to the RTAS serialization requirement (e.g. stop-self)
544 * must use a separate rtas_args structure.
546 static DEFINE_RAW_SPINLOCK(rtas_lock);
547 static struct rtas_args rtas_args;
550 * rtas_function_token() - RTAS function token lookup.
551 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
553 * Context: Any context.
554 * Return: the token value for the function if implemented by this platform,
555 * otherwise RTAS_UNKNOWN_SERVICE.
557 s32 rtas_function_token(const rtas_fn_handle_t handle)
559 const size_t index = handle.index;
560 const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
562 if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
563 return RTAS_UNKNOWN_SERVICE;
565 * Various drivers attempt token lookups on non-RTAS
566 * platforms.
568 if (!rtas.dev)
569 return RTAS_UNKNOWN_SERVICE;
571 return rtas_function_table[index].token;
573 EXPORT_SYMBOL_GPL(rtas_function_token);
575 static int rtas_function_cmp(const void *a, const void *b)
577 const struct rtas_function *f1 = a;
578 const struct rtas_function *f2 = b;
580 return strcmp(f1->name, f2->name);
584 * Boot-time initialization of the function table needs the lookup to
585 * return a non-const-qualified object. Use rtas_name_to_function()
586 * in all other contexts.
588 static struct rtas_function *__rtas_name_to_function(const char *name)
590 const struct rtas_function key = {
591 .name = name,
593 struct rtas_function *found;
595 found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
596 sizeof(rtas_function_table[0]), rtas_function_cmp);
598 return found;
601 static const struct rtas_function *rtas_name_to_function(const char *name)
603 return __rtas_name_to_function(name);
606 static DEFINE_XARRAY(rtas_token_to_function_xarray);
608 static int __init rtas_token_to_function_xarray_init(void)
610 const struct rtas_function *func;
611 int err = 0;
613 for_each_rtas_function(func) {
614 const s32 token = func->token;
616 if (token == RTAS_UNKNOWN_SERVICE)
617 continue;
619 err = xa_err(xa_store(&rtas_token_to_function_xarray,
620 token, (void *)func, GFP_KERNEL));
621 if (err)
622 break;
625 return err;
627 arch_initcall(rtas_token_to_function_xarray_init);
630 * For use by sys_rtas(), where the token value is provided by user
631 * space and we don't want to warn on failed lookups.
633 static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
635 return xa_load(&rtas_token_to_function_xarray, token);
639 * Reverse lookup for deriving the function descriptor from a
640 * known-good token value in contexts where the former is not already
641 * available. @token must be valid, e.g. derived from the result of a
642 * prior lookup against the function table.
644 static const struct rtas_function *rtas_token_to_function(s32 token)
646 const struct rtas_function *func;
648 if (WARN_ONCE(token < 0, "invalid token %d", token))
649 return NULL;
651 func = rtas_token_to_function_untrusted(token);
652 if (func)
653 return func;
655 * Fall back to linear scan in case the reverse mapping hasn't
656 * been initialized yet.
658 if (xa_empty(&rtas_token_to_function_xarray)) {
659 for_each_rtas_function(func) {
660 if (func->token == token)
661 return func;
665 WARN_ONCE(true, "unexpected failed lookup for token %d", token);
666 return NULL;
669 /* This is here deliberately so it's only used in this file */
670 void enter_rtas(unsigned long);
672 static void __do_enter_rtas(struct rtas_args *args)
674 enter_rtas(__pa(args));
675 srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
678 static void __do_enter_rtas_trace(struct rtas_args *args)
680 const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
683 * If there is a per-function lock, it must be held by the
684 * caller.
686 if (func->lock)
687 lockdep_assert_held(func->lock);
689 if (args == &rtas_args)
690 lockdep_assert_held(&rtas_lock);
692 trace_rtas_input(args, func->name);
693 trace_rtas_ll_entry(args);
695 __do_enter_rtas(args);
697 trace_rtas_ll_exit(args);
698 trace_rtas_output(args, func->name);
701 static void do_enter_rtas(struct rtas_args *args)
703 const unsigned long msr = mfmsr();
705 * Situations where we want to skip any active tracepoints for
706 * safety reasons:
708 * 1. The last code executed on an offline CPU as it stops,
709 * i.e. we're about to call stop-self. The tracepoints'
710 * function name lookup uses xarray, which uses RCU, which
711 * isn't valid to call on an offline CPU. Any events
712 * emitted on an offline CPU will be discarded anyway.
714 * 2. In real mode, as when invoking ibm,nmi-interlock from
715 * the pseries MCE handler. We cannot count on trace
716 * buffers or the entries in rtas_token_to_function_xarray
717 * to be contained in the RMO.
719 const unsigned long mask = MSR_IR | MSR_DR;
720 const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
721 (msr & mask) == mask);
723 * Make sure MSR[RI] is currently enabled as it will be forced later
724 * in enter_rtas.
726 BUG_ON(!(msr & MSR_RI));
728 BUG_ON(!irqs_disabled());
730 hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
732 if (can_trace)
733 __do_enter_rtas_trace(args);
734 else
735 __do_enter_rtas(args);
738 struct rtas_t rtas;
740 DEFINE_SPINLOCK(rtas_data_buf_lock);
741 EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
743 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
744 EXPORT_SYMBOL_GPL(rtas_data_buf);
746 unsigned long rtas_rmo_buf;
749 * If non-NULL, this gets called when the kernel terminates.
750 * This is done like this so rtas_flash can be a module.
752 void (*rtas_flash_term_hook)(int);
753 EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
756 * call_rtas_display_status and call_rtas_display_status_delay
757 * are designed only for very early low-level debugging, which
758 * is why the token is hard-coded to 10.
760 static void call_rtas_display_status(unsigned char c)
762 unsigned long flags;
764 if (!rtas.base)
765 return;
767 raw_spin_lock_irqsave(&rtas_lock, flags);
768 rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
769 raw_spin_unlock_irqrestore(&rtas_lock, flags);
772 static void call_rtas_display_status_delay(char c)
774 static int pending_newline = 0; /* did last write end with unprinted newline? */
775 static int width = 16;
777 if (c == '\n') {
778 while (width-- > 0)
779 call_rtas_display_status(' ');
780 width = 16;
781 mdelay(500);
782 pending_newline = 1;
783 } else {
784 if (pending_newline) {
785 call_rtas_display_status('\r');
786 call_rtas_display_status('\n');
788 pending_newline = 0;
789 if (width--) {
790 call_rtas_display_status(c);
791 udelay(10000);
796 void __init udbg_init_rtas_panel(void)
798 udbg_putc = call_rtas_display_status_delay;
801 #ifdef CONFIG_UDBG_RTAS_CONSOLE
803 /* If you think you're dying before early_init_dt_scan_rtas() does its
804 * work, you can hard code the token values for your firmware here and
805 * hardcode rtas.base/entry etc.
807 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
808 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
810 static void udbg_rtascon_putc(char c)
812 int tries;
814 if (!rtas.base)
815 return;
817 /* Add CRs before LFs */
818 if (c == '\n')
819 udbg_rtascon_putc('\r');
821 /* if there is more than one character to be displayed, wait a bit */
822 for (tries = 0; tries < 16; tries++) {
823 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
824 break;
825 udelay(1000);
829 static int udbg_rtascon_getc_poll(void)
831 int c;
833 if (!rtas.base)
834 return -1;
836 if (rtas_call(rtas_getchar_token, 0, 2, &c))
837 return -1;
839 return c;
842 static int udbg_rtascon_getc(void)
844 int c;
846 while ((c = udbg_rtascon_getc_poll()) == -1)
849 return c;
853 void __init udbg_init_rtas_console(void)
855 udbg_putc = udbg_rtascon_putc;
856 udbg_getc = udbg_rtascon_getc;
857 udbg_getc_poll = udbg_rtascon_getc_poll;
859 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
861 void rtas_progress(char *s, unsigned short hex)
863 struct device_node *root;
864 int width;
865 const __be32 *p;
866 char *os;
867 static int display_character, set_indicator;
868 static int display_width, display_lines, form_feed;
869 static const int *row_width;
870 static DEFINE_SPINLOCK(progress_lock);
871 static int current_line;
872 static int pending_newline = 0; /* did last write end with unprinted newline? */
874 if (!rtas.base)
875 return;
877 if (display_width == 0) {
878 display_width = 0x10;
879 if ((root = of_find_node_by_path("/rtas"))) {
880 if ((p = of_get_property(root,
881 "ibm,display-line-length", NULL)))
882 display_width = be32_to_cpu(*p);
883 if ((p = of_get_property(root,
884 "ibm,form-feed", NULL)))
885 form_feed = be32_to_cpu(*p);
886 if ((p = of_get_property(root,
887 "ibm,display-number-of-lines", NULL)))
888 display_lines = be32_to_cpu(*p);
889 row_width = of_get_property(root,
890 "ibm,display-truncation-length", NULL);
891 of_node_put(root);
893 display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
894 set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
897 if (display_character == RTAS_UNKNOWN_SERVICE) {
898 /* use hex display if available */
899 if (set_indicator != RTAS_UNKNOWN_SERVICE)
900 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
901 return;
904 spin_lock(&progress_lock);
907 * Last write ended with newline, but we didn't print it since
908 * it would just clear the bottom line of output. Print it now
909 * instead.
911 * If no newline is pending and form feed is supported, clear the
912 * display with a form feed; otherwise, print a CR to start output
913 * at the beginning of the line.
915 if (pending_newline) {
916 rtas_call(display_character, 1, 1, NULL, '\r');
917 rtas_call(display_character, 1, 1, NULL, '\n');
918 pending_newline = 0;
919 } else {
920 current_line = 0;
921 if (form_feed)
922 rtas_call(display_character, 1, 1, NULL,
923 (char)form_feed);
924 else
925 rtas_call(display_character, 1, 1, NULL, '\r');
928 if (row_width)
929 width = row_width[current_line];
930 else
931 width = display_width;
932 os = s;
933 while (*os) {
934 if (*os == '\n' || *os == '\r') {
935 /* If newline is the last character, save it
936 * until next call to avoid bumping up the
937 * display output.
939 if (*os == '\n' && !os[1]) {
940 pending_newline = 1;
941 current_line++;
942 if (current_line > display_lines-1)
943 current_line = display_lines-1;
944 spin_unlock(&progress_lock);
945 return;
948 /* RTAS wants CR-LF, not just LF */
950 if (*os == '\n') {
951 rtas_call(display_character, 1, 1, NULL, '\r');
952 rtas_call(display_character, 1, 1, NULL, '\n');
953 } else {
954 /* CR might be used to re-draw a line, so we'll
955 * leave it alone and not add LF.
957 rtas_call(display_character, 1, 1, NULL, *os);
960 if (row_width)
961 width = row_width[current_line];
962 else
963 width = display_width;
964 } else {
965 width--;
966 rtas_call(display_character, 1, 1, NULL, *os);
969 os++;
971 /* if we overwrite the screen length */
972 if (width <= 0)
973 while ((*os != 0) && (*os != '\n') && (*os != '\r'))
974 os++;
977 spin_unlock(&progress_lock);
979 EXPORT_SYMBOL_GPL(rtas_progress); /* needed by rtas_flash module */
981 int rtas_token(const char *service)
983 const struct rtas_function *func;
984 const __be32 *tokp;
986 if (rtas.dev == NULL)
987 return RTAS_UNKNOWN_SERVICE;
989 func = rtas_name_to_function(service);
990 if (func)
991 return func->token;
993 * The caller is looking up a name that is not known to be an
994 * RTAS function. Either it's a function that needs to be
995 * added to the table, or they're misusing rtas_token() to
996 * access non-function properties of the /rtas node. Warn and
997 * fall back to the legacy behavior.
999 WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
1000 service);
1002 tokp = of_get_property(rtas.dev, service, NULL);
1003 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
1005 EXPORT_SYMBOL_GPL(rtas_token);
1007 #ifdef CONFIG_RTAS_ERROR_LOGGING
1009 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
1012 * Return the firmware-specified size of the error log buffer
1013 * for all rtas calls that require an error buffer argument.
1014 * This includes 'check-exception' and 'rtas-last-error'.
1016 int rtas_get_error_log_max(void)
1018 return rtas_error_log_max;
1021 static void __init init_error_log_max(void)
1023 static const char propname[] __initconst = "rtas-error-log-max";
1024 u32 max;
1026 if (of_property_read_u32(rtas.dev, propname, &max)) {
1027 pr_warn("%s not found, using default of %u\n",
1028 propname, RTAS_ERROR_LOG_MAX);
1029 max = RTAS_ERROR_LOG_MAX;
1032 if (max > RTAS_ERROR_LOG_MAX) {
1033 pr_warn("%s = %u, clamping max error log size to %u\n",
1034 propname, max, RTAS_ERROR_LOG_MAX);
1035 max = RTAS_ERROR_LOG_MAX;
1038 rtas_error_log_max = max;
1042 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
1044 /** Return a copy of the detailed error text associated with the
1045 * most recent failed call to rtas. Because the error text
1046 * might go stale if there are any other intervening rtas calls,
1047 * this routine must be called atomically with whatever produced
1048 * the error (i.e. with rtas_lock still held from the previous call).
1050 static char *__fetch_rtas_last_error(char *altbuf)
1052 const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
1053 struct rtas_args err_args, save_args;
1054 u32 bufsz;
1055 char *buf = NULL;
1057 lockdep_assert_held(&rtas_lock);
1059 if (token == -1)
1060 return NULL;
1062 bufsz = rtas_get_error_log_max();
1064 err_args.token = cpu_to_be32(token);
1065 err_args.nargs = cpu_to_be32(2);
1066 err_args.nret = cpu_to_be32(1);
1067 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
1068 err_args.args[1] = cpu_to_be32(bufsz);
1069 err_args.args[2] = 0;
1071 save_args = rtas_args;
1072 rtas_args = err_args;
1074 do_enter_rtas(&rtas_args);
1076 err_args = rtas_args;
1077 rtas_args = save_args;
1079 /* Log the error in the unlikely case that there was one. */
1080 if (unlikely(err_args.args[2] == 0)) {
1081 if (altbuf) {
1082 buf = altbuf;
1083 } else {
1084 buf = rtas_err_buf;
1085 if (slab_is_available())
1086 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1088 if (buf)
1089 memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1092 return buf;
1095 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1097 #else /* CONFIG_RTAS_ERROR_LOGGING */
1098 #define __fetch_rtas_last_error(x) NULL
1099 #define get_errorlog_buffer() NULL
1100 static void __init init_error_log_max(void) {}
1101 #endif
1104 static void
1105 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1106 va_list list)
1108 int i;
1110 args->token = cpu_to_be32(token);
1111 args->nargs = cpu_to_be32(nargs);
1112 args->nret = cpu_to_be32(nret);
1113 args->rets = &(args->args[nargs]);
1115 for (i = 0; i < nargs; ++i)
1116 args->args[i] = cpu_to_be32(va_arg(list, __u32));
1118 for (i = 0; i < nret; ++i)
1119 args->rets[i] = 0;
1121 do_enter_rtas(args);
1125 * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1126 * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1127 * constraints.
1128 * @token: Identifies the function being invoked.
1129 * @nargs: Number of input parameters. Does not include token.
1130 * @nret: Number of output parameters, including the call status.
1131 * @....: List of @nargs input parameters.
1133 * Invokes the RTAS function indicated by @token, which the caller
1134 * should obtain via rtas_function_token().
1136 * This function is similar to rtas_call(), but must be used with a
1137 * limited set of RTAS calls specifically exempted from the general
1138 * requirement that only one RTAS call may be in progress at any
1139 * time. Examples include stop-self and ibm,nmi-interlock.
1141 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1143 va_list list;
1145 va_start(list, nret);
1146 va_rtas_call_unlocked(args, token, nargs, nret, list);
1147 va_end(list);
1150 static bool token_is_restricted_errinjct(s32 token)
1152 return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1153 token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1157 * rtas_call() - Invoke an RTAS firmware function.
1158 * @token: Identifies the function being invoked.
1159 * @nargs: Number of input parameters. Does not include token.
1160 * @nret: Number of output parameters, including the call status.
1161 * @outputs: Array of @nret output words.
1162 * @....: List of @nargs input parameters.
1164 * Invokes the RTAS function indicated by @token, which the caller
1165 * should obtain via rtas_function_token().
1167 * The @nargs and @nret arguments must match the number of input and
1168 * output parameters specified for the RTAS function.
1170 * rtas_call() returns RTAS status codes, not conventional Linux errno
1171 * values. Callers must translate any failure to an appropriate errno
1172 * in syscall context. Most callers of RTAS functions that can return
1173 * -2 or 990x should use rtas_busy_delay() to correctly handle those
1174 * statuses before calling again.
1176 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1177 * Codes of the PAPR and CHRP specifications.
1179 * Context: Process context preferably, interrupt context if
1180 * necessary. Acquires an internal spinlock and may perform
1181 * GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1182 * context.
1183 * Return:
1184 * * 0 - RTAS function call succeeded.
1185 * * -1 - RTAS function encountered a hardware or
1186 * platform error, or the token is invalid,
1187 * or the function is restricted by kernel policy.
1188 * * -2 - Specs say "A necessary hardware device was busy,
1189 * and the requested function could not be
1190 * performed. The operation should be retried at
1191 * a later time." This is misleading, at least with
1192 * respect to current RTAS implementations. What it
1193 * usually means in practice is that the function
1194 * could not be completed while meeting RTAS's
1195 * deadline for returning control to the OS (250us
1196 * for PAPR/PowerVM, typically), but the call may be
1197 * immediately reattempted to resume work on it.
1198 * * -3 - Parameter error.
1199 * * -7 - Unexpected state change.
1200 * * 9000...9899 - Vendor-specific success codes.
1201 * * 9900...9905 - Advisory extended delay. Caller should try
1202 * again after ~10^x ms has elapsed, where x is
1203 * the last digit of the status [0-5]. Again going
1204 * beyond the PAPR text, 990x on PowerVM indicates
1205 * contention for RTAS-internal resources. Other
1206 * RTAS call sequences in progress should be
1207 * allowed to complete before reattempting the
1208 * call.
1209 * * -9000 - Multi-level isolation error.
1210 * * -9999...-9004 - Vendor-specific error codes.
1211 * * Additional negative values - Function-specific error.
1212 * * Additional positive values - Function-specific success.
1214 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1216 struct pin_cookie cookie;
1217 va_list list;
1218 int i;
1219 unsigned long flags;
1220 struct rtas_args *args;
1221 char *buff_copy = NULL;
1222 int ret;
1224 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1225 return -1;
1227 if (token_is_restricted_errinjct(token)) {
1229 * It would be nicer to not discard the error value
1230 * from security_locked_down(), but callers expect an
1231 * RTAS status, not an errno.
1233 if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1234 return -1;
1237 if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1238 WARN_ON_ONCE(1);
1239 return -1;
1242 raw_spin_lock_irqsave(&rtas_lock, flags);
1243 cookie = lockdep_pin_lock(&rtas_lock);
1245 /* We use the global rtas args buffer */
1246 args = &rtas_args;
1248 va_start(list, outputs);
1249 va_rtas_call_unlocked(args, token, nargs, nret, list);
1250 va_end(list);
1252 /* A -1 return code indicates that the last command couldn't
1253 be completed due to a hardware error. */
1254 if (be32_to_cpu(args->rets[0]) == -1)
1255 buff_copy = __fetch_rtas_last_error(NULL);
1257 if (nret > 1 && outputs != NULL)
1258 for (i = 0; i < nret-1; ++i)
1259 outputs[i] = be32_to_cpu(args->rets[i + 1]);
1260 ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1262 lockdep_unpin_lock(&rtas_lock, cookie);
1263 raw_spin_unlock_irqrestore(&rtas_lock, flags);
1265 if (buff_copy) {
1266 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1267 if (slab_is_available())
1268 kfree(buff_copy);
1270 return ret;
1272 EXPORT_SYMBOL_GPL(rtas_call);
1275 * rtas_busy_delay_time() - From an RTAS status value, calculate the
1276 * suggested delay time in milliseconds.
1278 * @status: a value returned from rtas_call() or similar APIs which return
1279 * the status of a RTAS function call.
1281 * Context: Any context.
1283 * Return:
1284 * * 100000 - If @status is 9905.
1285 * * 10000 - If @status is 9904.
1286 * * 1000 - If @status is 9903.
1287 * * 100 - If @status is 9902.
1288 * * 10 - If @status is 9901.
1289 * * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but
1290 * some callers depend on this behavior, and the worst outcome
1291 * is that they will delay for longer than necessary.
1292 * * 0 - If @status is not a busy or extended delay value.
1294 unsigned int rtas_busy_delay_time(int status)
1296 int order;
1297 unsigned int ms = 0;
1299 if (status == RTAS_BUSY) {
1300 ms = 1;
1301 } else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1302 status <= RTAS_EXTENDED_DELAY_MAX) {
1303 order = status - RTAS_EXTENDED_DELAY_MIN;
1304 for (ms = 1; order > 0; order--)
1305 ms *= 10;
1308 return ms;
1312 * Early boot fallback for rtas_busy_delay().
1314 static bool __init rtas_busy_delay_early(int status)
1316 static size_t successive_ext_delays __initdata;
1317 bool retry;
1319 switch (status) {
1320 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1322 * In the unlikely case that we receive an extended
1323 * delay status in early boot, the OS is probably not
1324 * the cause, and there's nothing we can do to clear
1325 * the condition. Best we can do is delay for a bit
1326 * and hope it's transient. Lie to the caller if it
1327 * seems like we're stuck in a retry loop.
1329 mdelay(1);
1330 retry = true;
1331 successive_ext_delays += 1;
1332 if (successive_ext_delays > 1000) {
1333 pr_err("too many extended delays, giving up\n");
1334 dump_stack();
1335 retry = false;
1336 successive_ext_delays = 0;
1338 break;
1339 case RTAS_BUSY:
1340 retry = true;
1341 successive_ext_delays = 0;
1342 break;
1343 default:
1344 retry = false;
1345 successive_ext_delays = 0;
1346 break;
1349 return retry;
1353 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1355 * @status: a value returned from rtas_call() or similar APIs which return
1356 * the status of a RTAS function call.
1358 * Context: Process context. May sleep or schedule.
1360 * Return:
1361 * * true - @status is RTAS_BUSY or an extended delay hint. The
1362 * caller may assume that the CPU has been yielded if necessary,
1363 * and that an appropriate delay for @status has elapsed.
1364 * Generally the caller should reattempt the RTAS call which
1365 * yielded @status.
1367 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1368 * caller is responsible for handling @status.
1370 bool __ref rtas_busy_delay(int status)
1372 unsigned int ms;
1373 bool ret;
1376 * Can't do timed sleeps before timekeeping is up.
1378 if (system_state < SYSTEM_SCHEDULING)
1379 return rtas_busy_delay_early(status);
1381 switch (status) {
1382 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1383 ret = true;
1384 ms = rtas_busy_delay_time(status);
1386 * The extended delay hint can be as high as 100 seconds.
1387 * Surely any function returning such a status is either
1388 * buggy or isn't going to be significantly slowed by us
1389 * polling at 1HZ. Clamp the sleep time to one second.
1391 ms = clamp(ms, 1U, 1000U);
1393 * The delay hint is an order-of-magnitude suggestion, not a
1394 * minimum. It is fine, possibly even advantageous, for us to
1395 * pause for less time than hinted. To make sure pause time will
1396 * not be way longer than requested independent of HZ
1397 * configuration, use fsleep(). See fsleep() for details of
1398 * used sleeping functions.
1400 fsleep(ms * 1000);
1401 break;
1402 case RTAS_BUSY:
1403 ret = true;
1405 * We should call again immediately if there's no other
1406 * work to do.
1408 cond_resched();
1409 break;
1410 default:
1411 ret = false;
1413 * Not a busy or extended delay status; the caller should
1414 * handle @status itself. Ensure we warn on misuses in
1415 * atomic context regardless.
1417 might_sleep();
1418 break;
1421 return ret;
1423 EXPORT_SYMBOL_GPL(rtas_busy_delay);
1425 int rtas_error_rc(int rtas_rc)
1427 int rc;
1429 switch (rtas_rc) {
1430 case RTAS_HARDWARE_ERROR: /* Hardware Error */
1431 rc = -EIO;
1432 break;
1433 case RTAS_INVALID_PARAMETER: /* Bad indicator/domain/etc */
1434 rc = -EINVAL;
1435 break;
1436 case -9000: /* Isolation error */
1437 rc = -EFAULT;
1438 break;
1439 case -9001: /* Outstanding TCE/PTE */
1440 rc = -EEXIST;
1441 break;
1442 case -9002: /* No usable slot */
1443 rc = -ENODEV;
1444 break;
1445 default:
1446 pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1447 rc = -ERANGE;
1448 break;
1450 return rc;
1452 EXPORT_SYMBOL_GPL(rtas_error_rc);
1454 int rtas_get_power_level(int powerdomain, int *level)
1456 int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1457 int rc;
1459 if (token == RTAS_UNKNOWN_SERVICE)
1460 return -ENOENT;
1462 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1463 udelay(1);
1465 if (rc < 0)
1466 return rtas_error_rc(rc);
1467 return rc;
1469 EXPORT_SYMBOL_GPL(rtas_get_power_level);
1471 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1473 int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1474 int rc;
1476 if (token == RTAS_UNKNOWN_SERVICE)
1477 return -ENOENT;
1479 do {
1480 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1481 } while (rtas_busy_delay(rc));
1483 if (rc < 0)
1484 return rtas_error_rc(rc);
1485 return rc;
1487 EXPORT_SYMBOL_GPL(rtas_set_power_level);
1489 int rtas_get_sensor(int sensor, int index, int *state)
1491 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1492 int rc;
1494 if (token == RTAS_UNKNOWN_SERVICE)
1495 return -ENOENT;
1497 do {
1498 rc = rtas_call(token, 2, 2, state, sensor, index);
1499 } while (rtas_busy_delay(rc));
1501 if (rc < 0)
1502 return rtas_error_rc(rc);
1503 return rc;
1505 EXPORT_SYMBOL_GPL(rtas_get_sensor);
1507 int rtas_get_sensor_fast(int sensor, int index, int *state)
1509 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1510 int rc;
1512 if (token == RTAS_UNKNOWN_SERVICE)
1513 return -ENOENT;
1515 rc = rtas_call(token, 2, 2, state, sensor, index);
1516 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1517 rc <= RTAS_EXTENDED_DELAY_MAX));
1519 if (rc < 0)
1520 return rtas_error_rc(rc);
1521 return rc;
1524 bool rtas_indicator_present(int token, int *maxindex)
1526 int proplen, count, i;
1527 const struct indicator_elem {
1528 __be32 token;
1529 __be32 maxindex;
1530 } *indicators;
1532 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1533 if (!indicators)
1534 return false;
1536 count = proplen / sizeof(struct indicator_elem);
1538 for (i = 0; i < count; i++) {
1539 if (__be32_to_cpu(indicators[i].token) != token)
1540 continue;
1541 if (maxindex)
1542 *maxindex = __be32_to_cpu(indicators[i].maxindex);
1543 return true;
1546 return false;
1549 int rtas_set_indicator(int indicator, int index, int new_value)
1551 int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1552 int rc;
1554 if (token == RTAS_UNKNOWN_SERVICE)
1555 return -ENOENT;
1557 do {
1558 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1559 } while (rtas_busy_delay(rc));
1561 if (rc < 0)
1562 return rtas_error_rc(rc);
1563 return rc;
1565 EXPORT_SYMBOL_GPL(rtas_set_indicator);
1568 * Ignoring RTAS extended delay
1570 int rtas_set_indicator_fast(int indicator, int index, int new_value)
1572 int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1573 int rc;
1575 if (token == RTAS_UNKNOWN_SERVICE)
1576 return -ENOENT;
1578 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1580 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1581 rc <= RTAS_EXTENDED_DELAY_MAX));
1583 if (rc < 0)
1584 return rtas_error_rc(rc);
1586 return rc;
1590 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1592 * @fw_status: RTAS call status will be placed here if not NULL.
1594 * rtas_ibm_suspend_me() should be called only on a CPU which has
1595 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1596 * should be waiting to return from H_JOIN.
1598 * rtas_ibm_suspend_me() may suspend execution of the OS
1599 * indefinitely. Callers should take appropriate measures upon return, such as
1600 * resetting watchdog facilities.
1602 * Callers may choose to retry this call if @fw_status is
1603 * %RTAS_THREADS_ACTIVE.
1605 * Return:
1606 * 0 - The partition has resumed from suspend, possibly after
1607 * migration to a different host.
1608 * -ECANCELED - The operation was aborted.
1609 * -EAGAIN - There were other CPUs not in H_JOIN at the time of the call.
1610 * -EBUSY - Some other condition prevented the suspend from succeeding.
1611 * -EIO - Hardware/platform error.
1613 int rtas_ibm_suspend_me(int *fw_status)
1615 int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1616 int fwrc;
1617 int ret;
1619 fwrc = rtas_call(token, 0, 1, NULL);
1621 switch (fwrc) {
1622 case 0:
1623 ret = 0;
1624 break;
1625 case RTAS_SUSPEND_ABORTED:
1626 ret = -ECANCELED;
1627 break;
1628 case RTAS_THREADS_ACTIVE:
1629 ret = -EAGAIN;
1630 break;
1631 case RTAS_NOT_SUSPENDABLE:
1632 case RTAS_OUTSTANDING_COPROC:
1633 ret = -EBUSY;
1634 break;
1635 case -1:
1636 default:
1637 ret = -EIO;
1638 break;
1641 if (fw_status)
1642 *fw_status = fwrc;
1644 return ret;
1647 void __noreturn rtas_restart(char *cmd)
1649 if (rtas_flash_term_hook)
1650 rtas_flash_term_hook(SYS_RESTART);
1651 pr_emerg("system-reboot returned %d\n",
1652 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1653 for (;;);
1656 void rtas_power_off(void)
1658 if (rtas_flash_term_hook)
1659 rtas_flash_term_hook(SYS_POWER_OFF);
1660 /* allow power on only with power button press */
1661 pr_emerg("power-off returned %d\n",
1662 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1663 for (;;);
1666 void __noreturn rtas_halt(void)
1668 if (rtas_flash_term_hook)
1669 rtas_flash_term_hook(SYS_HALT);
1670 /* allow power on only with power button press */
1671 pr_emerg("power-off returned %d\n",
1672 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1673 for (;;);
1676 /* Must be in the RMO region, so we place it here */
1677 static char rtas_os_term_buf[2048];
1678 static bool ibm_extended_os_term;
1680 void rtas_os_term(char *str)
1682 s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1683 static struct rtas_args args;
1684 int status;
1687 * Firmware with the ibm,extended-os-term property is guaranteed
1688 * to always return from an ibm,os-term call. Earlier versions without
1689 * this property may terminate the partition which we want to avoid
1690 * since it interferes with panic_timeout.
1693 if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1694 return;
1696 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1699 * Keep calling as long as RTAS returns a "try again" status,
1700 * but don't use rtas_busy_delay(), which potentially
1701 * schedules.
1703 do {
1704 rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1705 status = be32_to_cpu(args.rets[0]);
1706 } while (rtas_busy_delay_time(status));
1708 if (status != 0)
1709 pr_emerg("ibm,os-term call failed %d\n", status);
1713 * rtas_activate_firmware() - Activate a new version of firmware.
1715 * Context: This function may sleep.
1717 * Activate a new version of partition firmware. The OS must call this
1718 * after resuming from a partition hibernation or migration in order
1719 * to maintain the ability to perform live firmware updates. It's not
1720 * catastrophic for this method to be absent or to fail; just log the
1721 * condition in that case.
1723 void rtas_activate_firmware(void)
1725 int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1726 int fwrc;
1728 if (token == RTAS_UNKNOWN_SERVICE) {
1729 pr_notice("ibm,activate-firmware method unavailable\n");
1730 return;
1733 mutex_lock(&rtas_ibm_activate_firmware_lock);
1735 do {
1736 fwrc = rtas_call(token, 0, 1, NULL);
1737 } while (rtas_busy_delay(fwrc));
1739 mutex_unlock(&rtas_ibm_activate_firmware_lock);
1741 if (fwrc)
1742 pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1746 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1747 * extended event log.
1748 * @log: RTAS error/event log
1749 * @section_id: two character section identifier
1751 * Return: A pointer to the specified errorlog or NULL if not found.
1753 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1754 uint16_t section_id)
1756 struct rtas_ext_event_log_v6 *ext_log =
1757 (struct rtas_ext_event_log_v6 *)log->buffer;
1758 struct pseries_errorlog *sect;
1759 unsigned char *p, *log_end;
1760 uint32_t ext_log_length = rtas_error_extended_log_length(log);
1761 uint8_t log_format = rtas_ext_event_log_format(ext_log);
1762 uint32_t company_id = rtas_ext_event_company_id(ext_log);
1764 /* Check that we understand the format */
1765 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1766 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1767 company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1768 return NULL;
1770 log_end = log->buffer + ext_log_length;
1771 p = ext_log->vendor_log;
1773 while (p < log_end) {
1774 sect = (struct pseries_errorlog *)p;
1775 if (pseries_errorlog_id(sect) == section_id)
1776 return sect;
1777 p += pseries_errorlog_length(sect);
1780 return NULL;
1784 * The sys_rtas syscall, as originally designed, allows root to pass
1785 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1786 * can be abused to write to arbitrary memory and do other things that
1787 * are potentially harmful to system integrity, and thus should only
1788 * be used inside the kernel and not exposed to userspace.
1790 * All known legitimate users of the sys_rtas syscall will only ever
1791 * pass addresses that fall within the RMO buffer, and use a known
1792 * subset of RTAS calls.
1794 * Accordingly, we filter RTAS requests to check that the call is
1795 * permitted, and that provided pointers fall within the RMO buffer.
1796 * If a function is allowed to be invoked via the syscall, then its
1797 * entry in the rtas_functions table points to a rtas_filter that
1798 * describes its constraints, with the indexes of the parameters which
1799 * are expected to contain addresses and sizes of buffers allocated
1800 * inside the RMO buffer.
1803 static bool in_rmo_buf(u32 base, u32 end)
1805 return base >= rtas_rmo_buf &&
1806 base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1807 base <= end &&
1808 end >= rtas_rmo_buf &&
1809 end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1812 static bool block_rtas_call(const struct rtas_function *func, int nargs,
1813 struct rtas_args *args)
1815 const struct rtas_filter *f;
1816 const bool is_platform_dump =
1817 func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
1818 const bool is_config_conn =
1819 func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
1820 u32 base, size, end;
1823 * Only functions with filters attached are allowed.
1825 f = func->filter;
1826 if (!f)
1827 goto err;
1829 * And some functions aren't allowed on LE.
1831 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1832 goto err;
1834 if (f->buf_idx1 != -1) {
1835 base = be32_to_cpu(args->args[f->buf_idx1]);
1836 if (f->size_idx1 != -1)
1837 size = be32_to_cpu(args->args[f->size_idx1]);
1838 else if (f->fixed_size)
1839 size = f->fixed_size;
1840 else
1841 size = 1;
1843 end = base + size - 1;
1846 * Special case for ibm,platform-dump - NULL buffer
1847 * address is used to indicate end of dump processing
1849 if (is_platform_dump && base == 0)
1850 return false;
1852 if (!in_rmo_buf(base, end))
1853 goto err;
1856 if (f->buf_idx2 != -1) {
1857 base = be32_to_cpu(args->args[f->buf_idx2]);
1858 if (f->size_idx2 != -1)
1859 size = be32_to_cpu(args->args[f->size_idx2]);
1860 else if (f->fixed_size)
1861 size = f->fixed_size;
1862 else
1863 size = 1;
1864 end = base + size - 1;
1867 * Special case for ibm,configure-connector where the
1868 * address can be 0
1870 if (is_config_conn && base == 0)
1871 return false;
1873 if (!in_rmo_buf(base, end))
1874 goto err;
1877 return false;
1878 err:
1879 pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1880 pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
1881 func->name, nargs, current->comm);
1882 return true;
1885 /* We assume to be passed big endian arguments */
1886 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1888 const struct rtas_function *func;
1889 struct pin_cookie cookie;
1890 struct rtas_args args;
1891 unsigned long flags;
1892 char *buff_copy, *errbuf = NULL;
1893 int nargs, nret, token;
1895 if (!capable(CAP_SYS_ADMIN))
1896 return -EPERM;
1898 if (!rtas.entry)
1899 return -EINVAL;
1901 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1902 return -EFAULT;
1904 nargs = be32_to_cpu(args.nargs);
1905 nret = be32_to_cpu(args.nret);
1906 token = be32_to_cpu(args.token);
1908 if (nargs >= ARRAY_SIZE(args.args)
1909 || nret > ARRAY_SIZE(args.args)
1910 || nargs + nret > ARRAY_SIZE(args.args))
1911 return -EINVAL;
1913 nargs = array_index_nospec(nargs, ARRAY_SIZE(args.args));
1914 nret = array_index_nospec(nret, ARRAY_SIZE(args.args) - nargs);
1916 /* Copy in args. */
1917 if (copy_from_user(args.args, uargs->args,
1918 nargs * sizeof(rtas_arg_t)) != 0)
1919 return -EFAULT;
1922 * If this token doesn't correspond to a function the kernel
1923 * understands, you're not allowed to call it.
1925 func = rtas_token_to_function_untrusted(token);
1926 if (!func)
1927 return -EINVAL;
1929 args.rets = &args.args[nargs];
1930 memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1932 if (block_rtas_call(func, nargs, &args))
1933 return -EINVAL;
1935 if (token_is_restricted_errinjct(token)) {
1936 int err;
1938 err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1939 if (err)
1940 return err;
1943 /* Need to handle ibm,suspend_me call specially */
1944 if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1947 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1948 * endian, or at least the hcall within it requires it.
1950 int rc = 0;
1951 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1952 | be32_to_cpu(args.args[1]);
1953 rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1954 if (rc == -EAGAIN)
1955 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1956 else if (rc == -EIO)
1957 args.rets[0] = cpu_to_be32(-1);
1958 else if (rc)
1959 return rc;
1960 goto copy_return;
1963 buff_copy = get_errorlog_buffer();
1966 * If this function has a mutex assigned to it, we must
1967 * acquire it to avoid interleaving with any kernel-based uses
1968 * of the same function. Kernel-based sequences acquire the
1969 * appropriate mutex explicitly.
1971 if (func->lock)
1972 mutex_lock(func->lock);
1974 raw_spin_lock_irqsave(&rtas_lock, flags);
1975 cookie = lockdep_pin_lock(&rtas_lock);
1977 rtas_args = args;
1978 do_enter_rtas(&rtas_args);
1979 args = rtas_args;
1981 /* A -1 return code indicates that the last command couldn't
1982 be completed due to a hardware error. */
1983 if (be32_to_cpu(args.rets[0]) == -1)
1984 errbuf = __fetch_rtas_last_error(buff_copy);
1986 lockdep_unpin_lock(&rtas_lock, cookie);
1987 raw_spin_unlock_irqrestore(&rtas_lock, flags);
1989 if (func->lock)
1990 mutex_unlock(func->lock);
1992 if (buff_copy) {
1993 if (errbuf)
1994 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1995 kfree(buff_copy);
1998 copy_return:
1999 /* Copy out args. */
2000 if (copy_to_user(uargs->args + nargs,
2001 args.args + nargs,
2002 nret * sizeof(rtas_arg_t)) != 0)
2003 return -EFAULT;
2005 return 0;
2008 static void __init rtas_function_table_init(void)
2010 struct property *prop;
2012 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
2013 struct rtas_function *curr = &rtas_function_table[i];
2014 struct rtas_function *prior;
2015 int cmp;
2017 curr->token = RTAS_UNKNOWN_SERVICE;
2019 if (i == 0)
2020 continue;
2022 * Ensure table is sorted correctly for binary search
2023 * on function names.
2025 prior = &rtas_function_table[i - 1];
2027 cmp = strcmp(prior->name, curr->name);
2028 if (cmp < 0)
2029 continue;
2031 if (cmp == 0) {
2032 pr_err("'%s' has duplicate function table entries\n",
2033 curr->name);
2034 } else {
2035 pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
2036 prior->name, curr->name);
2040 for_each_property_of_node(rtas.dev, prop) {
2041 struct rtas_function *func;
2043 if (prop->length != sizeof(u32))
2044 continue;
2046 func = __rtas_name_to_function(prop->name);
2047 if (!func)
2048 continue;
2050 func->token = be32_to_cpup((__be32 *)prop->value);
2052 pr_debug("function %s has token %u\n", func->name, func->token);
2057 * Call early during boot, before mem init, to retrieve the RTAS
2058 * information from the device-tree and allocate the RMO buffer for userland
2059 * accesses.
2061 void __init rtas_initialize(void)
2063 unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
2064 u32 base, size, entry;
2065 int no_base, no_size, no_entry;
2067 /* Get RTAS dev node and fill up our "rtas" structure with infos
2068 * about it.
2070 rtas.dev = of_find_node_by_name(NULL, "rtas");
2071 if (!rtas.dev)
2072 return;
2074 no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
2075 no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
2076 if (no_base || no_size) {
2077 of_node_put(rtas.dev);
2078 rtas.dev = NULL;
2079 return;
2082 rtas.base = base;
2083 rtas.size = size;
2084 no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
2085 rtas.entry = no_entry ? rtas.base : entry;
2087 init_error_log_max();
2089 /* Must be called before any function token lookups */
2090 rtas_function_table_init();
2093 * Discover this now to avoid a device tree lookup in the
2094 * panic path.
2096 ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2098 /* If RTAS was found, allocate the RMO buffer for it and look for
2099 * the stop-self token if any
2101 #ifdef CONFIG_PPC64
2102 if (firmware_has_feature(FW_FEATURE_LPAR))
2103 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2104 #endif
2105 rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2106 0, rtas_region);
2107 if (!rtas_rmo_buf)
2108 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2109 PAGE_SIZE, &rtas_region);
2111 rtas_work_area_reserve_arena(rtas_region);
2114 int __init early_init_dt_scan_rtas(unsigned long node,
2115 const char *uname, int depth, void *data)
2117 const u32 *basep, *entryp, *sizep;
2119 if (depth != 1 || strcmp(uname, "rtas") != 0)
2120 return 0;
2122 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2123 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2124 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL);
2126 #ifdef CONFIG_PPC64
2127 /* need this feature to decide the crashkernel offset */
2128 if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2129 powerpc_firmware_features |= FW_FEATURE_LPAR;
2130 #endif
2132 if (basep && entryp && sizep) {
2133 rtas.base = *basep;
2134 rtas.entry = *entryp;
2135 rtas.size = *sizep;
2138 #ifdef CONFIG_UDBG_RTAS_CONSOLE
2139 basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2140 if (basep)
2141 rtas_putchar_token = *basep;
2143 basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2144 if (basep)
2145 rtas_getchar_token = *basep;
2147 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2148 rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2149 udbg_init_rtas_console();
2151 #endif
2153 /* break now */
2154 return 1;
2157 static DEFINE_RAW_SPINLOCK(timebase_lock);
2158 static u64 timebase = 0;
2160 void rtas_give_timebase(void)
2162 unsigned long flags;
2164 raw_spin_lock_irqsave(&timebase_lock, flags);
2165 hard_irq_disable();
2166 rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2167 timebase = get_tb();
2168 raw_spin_unlock(&timebase_lock);
2170 while (timebase)
2171 barrier();
2172 rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2173 local_irq_restore(flags);
2176 void rtas_take_timebase(void)
2178 while (!timebase)
2179 barrier();
2180 raw_spin_lock(&timebase_lock);
2181 set_tb(timebase >> 32, timebase & 0xffffffff);
2182 timebase = 0;
2183 raw_spin_unlock(&timebase_lock);