Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / arch / powerpc / kernel / smp.c
blob5ac7084eebc0b8c5ab16d96c89cadde953003431
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SMP support for ppc.
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
14 #undef DEBUG
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 #include <linux/kexec.h>
40 #include <asm/ptrace.h>
41 #include <linux/atomic.h>
42 #include <asm/irq.h>
43 #include <asm/hw_irq.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/dbell.h>
46 #include <asm/page.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cputhreads.h>
52 #include <asm/cputable.h>
53 #include <asm/mpic.h>
54 #include <asm/vdso_datapage.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/paca.h>
57 #endif
58 #include <asm/vdso.h>
59 #include <asm/debug.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/ftrace.h>
62 #include <asm/kup.h>
63 #include <asm/fadump.h>
64 #include <asm/systemcfg.h>
66 #include <trace/events/ipi.h>
68 #ifdef DEBUG
69 #include <asm/udbg.h>
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
75 #ifdef CONFIG_HOTPLUG_CPU
76 /* State of each CPU during hotplug phases */
77 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
78 #endif
80 struct task_struct *secondary_current;
81 bool has_big_cores __ro_after_init;
82 bool coregroup_enabled __ro_after_init;
83 bool thread_group_shares_l2 __ro_after_init;
84 bool thread_group_shares_l3 __ro_after_init;
86 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
87 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
88 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
89 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
90 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
95 EXPORT_SYMBOL_GPL(has_big_cores);
97 #define MAX_THREAD_LIST_SIZE 8
98 #define THREAD_GROUP_SHARE_L1 1
99 #define THREAD_GROUP_SHARE_L2_L3 2
100 struct thread_groups {
101 unsigned int property;
102 unsigned int nr_groups;
103 unsigned int threads_per_group;
104 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
107 /* Maximum number of properties that groups of threads within a core can share */
108 #define MAX_THREAD_GROUP_PROPERTIES 2
110 struct thread_groups_list {
111 unsigned int nr_properties;
112 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
115 static struct thread_groups_list tgl[NR_CPUS] __initdata;
117 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
118 * the set its siblings that share the L1-cache.
120 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
123 * On some big-cores system, thread_group_l2_cache_map for each CPU
124 * corresponds to the set its siblings within the core that share the
125 * L2-cache.
127 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
130 * On P10, thread_group_l3_cache_map for each CPU is equal to the
131 * thread_group_l2_cache_map
133 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
135 /* SMP operations for this machine */
136 struct smp_ops_t *smp_ops;
138 /* Can't be static due to PowerMac hackery */
139 volatile unsigned int cpu_callin_map[NR_CPUS];
141 int smt_enabled_at_boot = 1;
144 * Returns 1 if the specified cpu should be brought up during boot.
145 * Used to inhibit booting threads if they've been disabled or
146 * limited on the command line
148 int smp_generic_cpu_bootable(unsigned int nr)
150 /* Special case - we inhibit secondary thread startup
151 * during boot if the user requests it.
153 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
154 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
155 return 0;
156 if (smt_enabled_at_boot
157 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
158 return 0;
161 return 1;
165 #ifdef CONFIG_PPC64
166 int smp_generic_kick_cpu(int nr)
168 if (nr < 0 || nr >= nr_cpu_ids)
169 return -EINVAL;
172 * The processor is currently spinning, waiting for the
173 * cpu_start field to become non-zero After we set cpu_start,
174 * the processor will continue on to secondary_start
176 if (!paca_ptrs[nr]->cpu_start) {
177 paca_ptrs[nr]->cpu_start = 1;
178 smp_mb();
179 return 0;
182 #ifdef CONFIG_HOTPLUG_CPU
184 * Ok it's not there, so it might be soft-unplugged, let's
185 * try to bring it back
187 generic_set_cpu_up(nr);
188 smp_wmb();
189 smp_send_reschedule(nr);
190 #endif /* CONFIG_HOTPLUG_CPU */
192 return 0;
194 #endif /* CONFIG_PPC64 */
196 static irqreturn_t call_function_action(int irq, void *data)
198 generic_smp_call_function_interrupt();
199 return IRQ_HANDLED;
202 static irqreturn_t reschedule_action(int irq, void *data)
204 scheduler_ipi();
205 return IRQ_HANDLED;
208 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
209 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
211 timer_broadcast_interrupt();
212 return IRQ_HANDLED;
214 #endif
216 #ifdef CONFIG_NMI_IPI
217 static irqreturn_t nmi_ipi_action(int irq, void *data)
219 smp_handle_nmi_ipi(get_irq_regs());
220 return IRQ_HANDLED;
222 #endif
224 static irq_handler_t smp_ipi_action[] = {
225 [PPC_MSG_CALL_FUNCTION] = call_function_action,
226 [PPC_MSG_RESCHEDULE] = reschedule_action,
227 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
228 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
229 #endif
230 #ifdef CONFIG_NMI_IPI
231 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
232 #endif
236 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
237 * than going through the call function infrastructure, and strongly
238 * serialized, so it is more appropriate for debugging.
240 const char *smp_ipi_name[] = {
241 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
242 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
243 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
244 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
245 #endif
246 #ifdef CONFIG_NMI_IPI
247 [PPC_MSG_NMI_IPI] = "nmi ipi",
248 #endif
251 /* optional function to request ipi, for controllers with >= 4 ipis */
252 int smp_request_message_ipi(int virq, int msg)
254 int err;
256 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
257 return -EINVAL;
258 #ifndef CONFIG_NMI_IPI
259 if (msg == PPC_MSG_NMI_IPI)
260 return 1;
261 #endif
263 err = request_irq(virq, smp_ipi_action[msg],
264 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
265 smp_ipi_name[msg], NULL);
266 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
267 virq, smp_ipi_name[msg], err);
269 return err;
272 #ifdef CONFIG_PPC_SMP_MUXED_IPI
273 struct cpu_messages {
274 long messages; /* current messages */
276 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
278 void smp_muxed_ipi_set_message(int cpu, int msg)
280 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
281 char *message = (char *)&info->messages;
284 * Order previous accesses before accesses in the IPI handler.
286 smp_mb();
287 WRITE_ONCE(message[msg], 1);
290 void smp_muxed_ipi_message_pass(int cpu, int msg)
292 smp_muxed_ipi_set_message(cpu, msg);
295 * cause_ipi functions are required to include a full barrier
296 * before doing whatever causes the IPI.
298 smp_ops->cause_ipi(cpu);
301 #ifdef __BIG_ENDIAN__
302 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
303 #else
304 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
305 #endif
307 irqreturn_t smp_ipi_demux(void)
309 mb(); /* order any irq clear */
311 return smp_ipi_demux_relaxed();
314 /* sync-free variant. Callers should ensure synchronization */
315 irqreturn_t smp_ipi_demux_relaxed(void)
317 struct cpu_messages *info;
318 unsigned long all;
320 info = this_cpu_ptr(&ipi_message);
321 do {
322 all = xchg(&info->messages, 0);
323 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
325 * Must check for PPC_MSG_RM_HOST_ACTION messages
326 * before PPC_MSG_CALL_FUNCTION messages because when
327 * a VM is destroyed, we call kick_all_cpus_sync()
328 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
329 * messages have completed before we free any VCPUs.
331 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
332 kvmppc_xics_ipi_action();
333 #endif
334 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
335 generic_smp_call_function_interrupt();
336 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
337 scheduler_ipi();
338 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
339 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
340 timer_broadcast_interrupt();
341 #endif
342 #ifdef CONFIG_NMI_IPI
343 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
344 nmi_ipi_action(0, NULL);
345 #endif
346 } while (READ_ONCE(info->messages));
348 return IRQ_HANDLED;
350 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
352 static inline void do_message_pass(int cpu, int msg)
354 if (smp_ops->message_pass)
355 smp_ops->message_pass(cpu, msg);
356 #ifdef CONFIG_PPC_SMP_MUXED_IPI
357 else
358 smp_muxed_ipi_message_pass(cpu, msg);
359 #endif
362 void arch_smp_send_reschedule(int cpu)
364 if (likely(smp_ops))
365 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
367 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
369 void arch_send_call_function_single_ipi(int cpu)
371 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
374 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
376 unsigned int cpu;
378 for_each_cpu(cpu, mask)
379 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
382 #ifdef CONFIG_NMI_IPI
385 * "NMI IPI" system.
387 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
388 * a running system. They can be used for crash, debug, halt/reboot, etc.
390 * The IPI call waits with interrupts disabled until all targets enter the
391 * NMI handler, then returns. Subsequent IPIs can be issued before targets
392 * have returned from their handlers, so there is no guarantee about
393 * concurrency or re-entrancy.
395 * A new NMI can be issued before all targets exit the handler.
397 * The IPI call may time out without all targets entering the NMI handler.
398 * In that case, there is some logic to recover (and ignore subsequent
399 * NMI interrupts that may eventually be raised), but the platform interrupt
400 * handler may not be able to distinguish this from other exception causes,
401 * which may cause a crash.
404 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
405 static struct cpumask nmi_ipi_pending_mask;
406 static bool nmi_ipi_busy = false;
407 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
409 noinstr static void nmi_ipi_lock_start(unsigned long *flags)
411 raw_local_irq_save(*flags);
412 hard_irq_disable();
413 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
414 raw_local_irq_restore(*flags);
415 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
416 raw_local_irq_save(*flags);
417 hard_irq_disable();
421 noinstr static void nmi_ipi_lock(void)
423 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
424 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
427 noinstr static void nmi_ipi_unlock(void)
429 smp_mb();
430 WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1);
431 raw_atomic_set(&__nmi_ipi_lock, 0);
434 noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
436 nmi_ipi_unlock();
437 raw_local_irq_restore(*flags);
441 * Platform NMI handler calls this to ack
443 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
445 void (*fn)(struct pt_regs *) = NULL;
446 unsigned long flags;
447 int me = raw_smp_processor_id();
448 int ret = 0;
451 * Unexpected NMIs are possible here because the interrupt may not
452 * be able to distinguish NMI IPIs from other types of NMIs, or
453 * because the caller may have timed out.
455 nmi_ipi_lock_start(&flags);
456 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
457 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
458 fn = READ_ONCE(nmi_ipi_function);
459 WARN_ON_ONCE(!fn);
460 ret = 1;
462 nmi_ipi_unlock_end(&flags);
464 if (fn)
465 fn(regs);
467 return ret;
470 static void do_smp_send_nmi_ipi(int cpu, bool safe)
472 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
473 return;
475 if (cpu >= 0) {
476 do_message_pass(cpu, PPC_MSG_NMI_IPI);
477 } else {
478 int c;
480 for_each_online_cpu(c) {
481 if (c == raw_smp_processor_id())
482 continue;
483 do_message_pass(c, PPC_MSG_NMI_IPI);
489 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
490 * - fn is the target callback function.
491 * - delay_us > 0 is the delay before giving up waiting for targets to
492 * begin executing the handler, == 0 specifies indefinite delay.
494 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
495 u64 delay_us, bool safe)
497 unsigned long flags;
498 int me = raw_smp_processor_id();
499 int ret = 1;
501 BUG_ON(cpu == me);
502 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
504 if (unlikely(!smp_ops))
505 return 0;
507 nmi_ipi_lock_start(&flags);
508 while (nmi_ipi_busy) {
509 nmi_ipi_unlock_end(&flags);
510 spin_until_cond(!nmi_ipi_busy);
511 nmi_ipi_lock_start(&flags);
513 nmi_ipi_busy = true;
514 nmi_ipi_function = fn;
516 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
518 if (cpu < 0) {
519 /* ALL_OTHERS */
520 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
521 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
522 } else {
523 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
526 nmi_ipi_unlock();
528 /* Interrupts remain hard disabled */
530 do_smp_send_nmi_ipi(cpu, safe);
532 nmi_ipi_lock();
533 /* nmi_ipi_busy is set here, so unlock/lock is okay */
534 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
535 nmi_ipi_unlock();
536 udelay(1);
537 nmi_ipi_lock();
538 if (delay_us) {
539 delay_us--;
540 if (!delay_us)
541 break;
545 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
546 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
547 ret = 0;
548 cpumask_clear(&nmi_ipi_pending_mask);
551 nmi_ipi_function = NULL;
552 nmi_ipi_busy = false;
554 nmi_ipi_unlock_end(&flags);
556 return ret;
559 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
561 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
564 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
566 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
568 #endif /* CONFIG_NMI_IPI */
570 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
571 void tick_broadcast(const struct cpumask *mask)
573 unsigned int cpu;
575 for_each_cpu(cpu, mask)
576 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
578 #endif
580 #ifdef CONFIG_DEBUGGER
581 static void debugger_ipi_callback(struct pt_regs *regs)
583 debugger_ipi(regs);
586 void smp_send_debugger_break(void)
588 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
590 #endif
592 #ifdef CONFIG_CRASH_DUMP
593 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
595 int cpu;
597 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
598 if (kdump_in_progress() && crash_wake_offline) {
599 for_each_present_cpu(cpu) {
600 if (cpu_online(cpu))
601 continue;
603 * crash_ipi_callback will wait for
604 * all cpus, including offline CPUs.
605 * We don't care about nmi_ipi_function.
606 * Offline cpus will jump straight into
607 * crash_ipi_callback, we can skip the
608 * entire NMI dance and waiting for
609 * cpus to clear pending mask, etc.
611 do_smp_send_nmi_ipi(cpu, false);
615 #endif
617 void crash_smp_send_stop(void)
619 static bool stopped = false;
622 * In case of fadump, register data for all CPUs is captured by f/w
623 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
624 * this rtas call to avoid tricky post processing of those CPUs'
625 * backtraces.
627 if (should_fadump_crash())
628 return;
630 if (stopped)
631 return;
633 stopped = true;
635 #ifdef CONFIG_CRASH_DUMP
636 if (kexec_crash_image) {
637 crash_kexec_prepare();
638 return;
640 #endif
642 smp_send_stop();
645 #ifdef CONFIG_NMI_IPI
646 static void nmi_stop_this_cpu(struct pt_regs *regs)
649 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
651 set_cpu_online(smp_processor_id(), false);
653 spin_begin();
654 while (1)
655 spin_cpu_relax();
658 void smp_send_stop(void)
660 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
663 #else /* CONFIG_NMI_IPI */
665 static void stop_this_cpu(void *dummy)
667 hard_irq_disable();
670 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
671 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
672 * to know other CPUs are offline before it breaks locks to flush
673 * printk buffers, in case we panic()ed while holding the lock.
675 set_cpu_online(smp_processor_id(), false);
677 spin_begin();
678 while (1)
679 spin_cpu_relax();
682 void smp_send_stop(void)
684 static bool stopped = false;
687 * Prevent waiting on csd lock from a previous smp_send_stop.
688 * This is racy, but in general callers try to do the right
689 * thing and only fire off one smp_send_stop (e.g., see
690 * kernel/panic.c)
692 if (stopped)
693 return;
695 stopped = true;
697 smp_call_function(stop_this_cpu, NULL, 0);
699 #endif /* CONFIG_NMI_IPI */
701 static struct task_struct *current_set[NR_CPUS];
703 static void smp_store_cpu_info(int id)
705 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
706 #ifdef CONFIG_PPC_E500
707 per_cpu(next_tlbcam_idx, id)
708 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
709 #endif
713 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
714 * rather than just passing around the cpumask we pass around a function that
715 * returns the that cpumask for the given CPU.
717 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
719 cpumask_set_cpu(i, get_cpumask(j));
720 cpumask_set_cpu(j, get_cpumask(i));
723 #ifdef CONFIG_HOTPLUG_CPU
724 static void set_cpus_unrelated(int i, int j,
725 struct cpumask *(*get_cpumask)(int))
727 cpumask_clear_cpu(i, get_cpumask(j));
728 cpumask_clear_cpu(j, get_cpumask(i));
730 #endif
733 * Extends set_cpus_related. Instead of setting one CPU at a time in
734 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
736 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
737 struct cpumask *(*dstmask)(int))
739 struct cpumask *mask;
740 int k;
742 mask = srcmask(j);
743 for_each_cpu(k, srcmask(i))
744 cpumask_or(dstmask(k), dstmask(k), mask);
746 if (i == j)
747 return;
749 mask = srcmask(i);
750 for_each_cpu(k, srcmask(j))
751 cpumask_or(dstmask(k), dstmask(k), mask);
755 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
756 * property for the CPU device node @dn and stores
757 * the parsed output in the thread_groups_list
758 * structure @tglp.
760 * @dn: The device node of the CPU device.
761 * @tglp: Pointer to a thread group list structure into which the parsed
762 * output of "ibm,thread-groups" is stored.
764 * ibm,thread-groups[0..N-1] array defines which group of threads in
765 * the CPU-device node can be grouped together based on the property.
767 * This array can represent thread groupings for multiple properties.
769 * ibm,thread-groups[i + 0] tells us the property based on which the
770 * threads are being grouped together. If this value is 1, it implies
771 * that the threads in the same group share L1, translation cache. If
772 * the value is 2, it implies that the threads in the same group share
773 * the same L2 cache.
775 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
776 * property ibm,thread-groups[i]
778 * ibm,thread-groups[i+2] tells us the number of threads in each such
779 * group.
780 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
782 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
783 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
784 * the grouping.
786 * Example:
787 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
788 * This can be decomposed up into two consecutive arrays:
789 * a) [1,2,4,8,10,12,14,9,11,13,15]
790 * b) [2,2,4,8,10,12,14,9,11,13,15]
792 * where in,
794 * a) provides information of Property "1" being shared by "2" groups,
795 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
796 * the first group is {8,10,12,14} and the
797 * "ibm,ppc-interrupt-server#s" of the second group is
798 * {9,11,13,15}. Property "1" is indicative of the thread in the
799 * group sharing L1 cache, translation cache and Instruction Data
800 * flow.
802 * b) provides information of Property "2" being shared by "2" groups,
803 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
804 * the first group is {8,10,12,14} and the
805 * "ibm,ppc-interrupt-server#s" of the second group is
806 * {9,11,13,15}. Property "2" indicates that the threads in each
807 * group share the L2-cache.
809 * Returns 0 on success, -EINVAL if the property does not exist,
810 * -ENODATA if property does not have a value, and -EOVERFLOW if the
811 * property data isn't large enough.
813 static int parse_thread_groups(struct device_node *dn,
814 struct thread_groups_list *tglp)
816 unsigned int property_idx = 0;
817 u32 *thread_group_array;
818 size_t total_threads;
819 int ret = 0, count;
820 u32 *thread_list;
821 int i = 0;
823 count = of_property_count_u32_elems(dn, "ibm,thread-groups");
824 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
825 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
826 thread_group_array, count);
827 if (ret)
828 goto out_free;
830 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
831 int j;
832 struct thread_groups *tg = &tglp->property_tgs[property_idx++];
834 tg->property = thread_group_array[i];
835 tg->nr_groups = thread_group_array[i + 1];
836 tg->threads_per_group = thread_group_array[i + 2];
837 total_threads = tg->nr_groups * tg->threads_per_group;
839 thread_list = &thread_group_array[i + 3];
841 for (j = 0; j < total_threads; j++)
842 tg->thread_list[j] = thread_list[j];
843 i = i + 3 + total_threads;
846 tglp->nr_properties = property_idx;
848 out_free:
849 kfree(thread_group_array);
850 return ret;
854 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
855 * that @cpu belongs to.
857 * @cpu : The logical CPU whose thread group is being searched.
858 * @tg : The thread-group structure of the CPU node which @cpu belongs
859 * to.
861 * Returns the index to tg->thread_list that points to the start
862 * of the thread_group that @cpu belongs to.
864 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
865 * tg->thread_list.
867 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
869 int hw_cpu_id = get_hard_smp_processor_id(cpu);
870 int i, j;
872 for (i = 0; i < tg->nr_groups; i++) {
873 int group_start = i * tg->threads_per_group;
875 for (j = 0; j < tg->threads_per_group; j++) {
876 int idx = group_start + j;
878 if (tg->thread_list[idx] == hw_cpu_id)
879 return group_start;
883 return -1;
886 static struct thread_groups *__init get_thread_groups(int cpu,
887 int group_property,
888 int *err)
890 struct device_node *dn = of_get_cpu_node(cpu, NULL);
891 struct thread_groups_list *cpu_tgl = &tgl[cpu];
892 struct thread_groups *tg = NULL;
893 int i;
894 *err = 0;
896 if (!dn) {
897 *err = -ENODATA;
898 return NULL;
901 if (!cpu_tgl->nr_properties) {
902 *err = parse_thread_groups(dn, cpu_tgl);
903 if (*err)
904 goto out;
907 for (i = 0; i < cpu_tgl->nr_properties; i++) {
908 if (cpu_tgl->property_tgs[i].property == group_property) {
909 tg = &cpu_tgl->property_tgs[i];
910 break;
914 if (!tg)
915 *err = -EINVAL;
916 out:
917 of_node_put(dn);
918 return tg;
921 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
922 int cpu, int cpu_group_start)
924 int first_thread = cpu_first_thread_sibling(cpu);
925 int i;
927 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
929 for (i = first_thread; i < first_thread + threads_per_core; i++) {
930 int i_group_start = get_cpu_thread_group_start(i, tg);
932 if (unlikely(i_group_start == -1)) {
933 WARN_ON_ONCE(1);
934 return -ENODATA;
937 if (i_group_start == cpu_group_start)
938 cpumask_set_cpu(i, *mask);
941 return 0;
944 static int __init init_thread_group_cache_map(int cpu, int cache_property)
947 int cpu_group_start = -1, err = 0;
948 struct thread_groups *tg = NULL;
949 cpumask_var_t *mask = NULL;
951 if (cache_property != THREAD_GROUP_SHARE_L1 &&
952 cache_property != THREAD_GROUP_SHARE_L2_L3)
953 return -EINVAL;
955 tg = get_thread_groups(cpu, cache_property, &err);
957 if (!tg)
958 return err;
960 cpu_group_start = get_cpu_thread_group_start(cpu, tg);
962 if (unlikely(cpu_group_start == -1)) {
963 WARN_ON_ONCE(1);
964 return -ENODATA;
967 if (cache_property == THREAD_GROUP_SHARE_L1) {
968 mask = &per_cpu(thread_group_l1_cache_map, cpu);
969 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
971 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
972 mask = &per_cpu(thread_group_l2_cache_map, cpu);
973 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
974 mask = &per_cpu(thread_group_l3_cache_map, cpu);
975 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
979 return 0;
982 static bool shared_caches __ro_after_init;
984 #ifdef CONFIG_SCHED_SMT
985 /* cpumask of CPUs with asymmetric SMT dependency */
986 static int powerpc_smt_flags(void)
988 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_LLC;
990 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
991 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
992 flags |= SD_ASYM_PACKING;
994 return flags;
996 #endif
999 * On shared processor LPARs scheduled on a big core (which has two or more
1000 * independent thread groups per core), prefer lower numbered CPUs, so
1001 * that workload consolidates to lesser number of cores.
1003 static __ro_after_init DEFINE_STATIC_KEY_FALSE(splpar_asym_pack);
1006 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1007 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1008 * since the migrated task remains cache hot. We want to take advantage of this
1009 * at the scheduler level so an extra topology level is required.
1011 static int powerpc_shared_cache_flags(void)
1013 if (static_branch_unlikely(&splpar_asym_pack))
1014 return SD_SHARE_LLC | SD_ASYM_PACKING;
1016 return SD_SHARE_LLC;
1019 static int powerpc_shared_proc_flags(void)
1021 if (static_branch_unlikely(&splpar_asym_pack))
1022 return SD_ASYM_PACKING;
1024 return 0;
1028 * We can't just pass cpu_l2_cache_mask() directly because
1029 * returns a non-const pointer and the compiler barfs on that.
1031 static const struct cpumask *shared_cache_mask(int cpu)
1033 return per_cpu(cpu_l2_cache_map, cpu);
1036 #ifdef CONFIG_SCHED_SMT
1037 static const struct cpumask *smallcore_smt_mask(int cpu)
1039 return cpu_smallcore_mask(cpu);
1041 #endif
1043 static struct cpumask *cpu_coregroup_mask(int cpu)
1045 return per_cpu(cpu_coregroup_map, cpu);
1048 static bool has_coregroup_support(void)
1050 /* Coregroup identification not available on shared systems */
1051 if (is_shared_processor())
1052 return 0;
1054 return coregroup_enabled;
1057 static const struct cpumask *cpu_mc_mask(int cpu)
1059 return cpu_coregroup_mask(cpu);
1062 static int __init init_big_cores(void)
1064 int cpu;
1066 for_each_possible_cpu(cpu) {
1067 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1069 if (err)
1070 return err;
1072 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1073 GFP_KERNEL,
1074 cpu_to_node(cpu));
1077 has_big_cores = true;
1079 for_each_possible_cpu(cpu) {
1080 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1082 if (err)
1083 return err;
1086 thread_group_shares_l2 = true;
1087 thread_group_shares_l3 = true;
1088 pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1090 return 0;
1093 void __init smp_prepare_cpus(unsigned int max_cpus)
1095 unsigned int cpu, num_threads;
1097 DBG("smp_prepare_cpus\n");
1100 * setup_cpu may need to be called on the boot cpu. We haven't
1101 * spun any cpus up but lets be paranoid.
1103 BUG_ON(boot_cpuid != smp_processor_id());
1105 /* Fixup boot cpu */
1106 smp_store_cpu_info(boot_cpuid);
1107 cpu_callin_map[boot_cpuid] = 1;
1109 for_each_possible_cpu(cpu) {
1110 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1111 GFP_KERNEL, cpu_to_node(cpu));
1112 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1113 GFP_KERNEL, cpu_to_node(cpu));
1114 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1115 GFP_KERNEL, cpu_to_node(cpu));
1116 if (has_coregroup_support())
1117 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1118 GFP_KERNEL, cpu_to_node(cpu));
1120 #ifdef CONFIG_NUMA
1122 * numa_node_id() works after this.
1124 if (cpu_present(cpu)) {
1125 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1126 set_cpu_numa_mem(cpu,
1127 local_memory_node(numa_cpu_lookup_table[cpu]));
1129 #endif
1132 /* Init the cpumasks so the boot CPU is related to itself */
1133 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1134 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1135 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1137 if (has_coregroup_support())
1138 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1140 init_big_cores();
1141 if (has_big_cores) {
1142 cpumask_set_cpu(boot_cpuid,
1143 cpu_smallcore_mask(boot_cpuid));
1146 if (cpu_to_chip_id(boot_cpuid) != -1) {
1147 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1150 * All threads of a core will all belong to the same core,
1151 * chip_id_lookup_table will have one entry per core.
1152 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1153 * other CPUs, will also not have chip-id.
1155 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1156 if (chip_id_lookup_table)
1157 memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1160 if (smp_ops && smp_ops->probe)
1161 smp_ops->probe();
1163 // Initalise the generic SMT topology support
1164 num_threads = 1;
1165 if (smt_enabled_at_boot)
1166 num_threads = smt_enabled_at_boot;
1167 cpu_smt_set_num_threads(num_threads, threads_per_core);
1170 void __init smp_prepare_boot_cpu(void)
1172 BUG_ON(smp_processor_id() != boot_cpuid);
1173 #ifdef CONFIG_PPC64
1174 paca_ptrs[boot_cpuid]->__current = current;
1175 #endif
1176 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1177 current_set[boot_cpuid] = current;
1180 #ifdef CONFIG_HOTPLUG_CPU
1182 int generic_cpu_disable(void)
1184 unsigned int cpu = smp_processor_id();
1186 if (cpu == boot_cpuid)
1187 return -EBUSY;
1189 set_cpu_online(cpu, false);
1190 #ifdef CONFIG_PPC64_PROC_SYSTEMCFG
1191 systemcfg->processorCount--;
1192 #endif
1193 /* Update affinity of all IRQs previously aimed at this CPU */
1194 irq_migrate_all_off_this_cpu();
1197 * Depending on the details of the interrupt controller, it's possible
1198 * that one of the interrupts we just migrated away from this CPU is
1199 * actually already pending on this CPU. If we leave it in that state
1200 * the interrupt will never be EOI'ed, and will never fire again. So
1201 * temporarily enable interrupts here, to allow any pending interrupt to
1202 * be received (and EOI'ed), before we take this CPU offline.
1204 local_irq_enable();
1205 mdelay(1);
1206 local_irq_disable();
1208 return 0;
1211 void generic_cpu_die(unsigned int cpu)
1213 int i;
1215 for (i = 0; i < 100; i++) {
1216 smp_rmb();
1217 if (is_cpu_dead(cpu))
1218 return;
1219 msleep(100);
1221 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1224 void generic_set_cpu_dead(unsigned int cpu)
1226 per_cpu(cpu_state, cpu) = CPU_DEAD;
1230 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1231 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1232 * which makes the delay in generic_cpu_die() not happen.
1234 void generic_set_cpu_up(unsigned int cpu)
1236 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1239 int generic_check_cpu_restart(unsigned int cpu)
1241 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1244 int is_cpu_dead(unsigned int cpu)
1246 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1249 static bool secondaries_inhibited(void)
1251 return kvm_hv_mode_active();
1254 #else /* HOTPLUG_CPU */
1256 #define secondaries_inhibited() 0
1258 #endif
1260 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1262 #ifdef CONFIG_PPC64
1263 paca_ptrs[cpu]->__current = idle;
1264 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1265 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
1266 #endif
1267 task_thread_info(idle)->cpu = cpu;
1268 secondary_current = current_set[cpu] = idle;
1271 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1273 const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1274 const bool booting = system_state < SYSTEM_RUNNING;
1275 const unsigned long hp_spin_ms = 1;
1276 unsigned long deadline;
1277 int rc;
1278 const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1281 * Don't allow secondary threads to come online if inhibited
1283 if (threads_per_core > 1 && secondaries_inhibited() &&
1284 cpu_thread_in_subcore(cpu))
1285 return -EBUSY;
1287 if (smp_ops == NULL ||
1288 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1289 return -EINVAL;
1291 cpu_idle_thread_init(cpu, tidle);
1294 * The platform might need to allocate resources prior to bringing
1295 * up the CPU
1297 if (smp_ops->prepare_cpu) {
1298 rc = smp_ops->prepare_cpu(cpu);
1299 if (rc)
1300 return rc;
1303 /* Make sure callin-map entry is 0 (can be leftover a CPU
1304 * hotplug
1306 cpu_callin_map[cpu] = 0;
1308 /* The information for processor bringup must
1309 * be written out to main store before we release
1310 * the processor.
1312 smp_mb();
1314 /* wake up cpus */
1315 DBG("smp: kicking cpu %d\n", cpu);
1316 rc = smp_ops->kick_cpu(cpu);
1317 if (rc) {
1318 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1319 return rc;
1323 * At boot time, simply spin on the callin word until the
1324 * deadline passes.
1326 * At run time, spin for an optimistic amount of time to avoid
1327 * sleeping in the common case.
1329 deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1330 spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1332 if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1333 const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1334 const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1336 deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1337 while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1338 fsleep(sleep_interval_us);
1341 if (!cpu_callin_map[cpu]) {
1342 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1343 return -ENOENT;
1346 DBG("Processor %u found.\n", cpu);
1348 if (smp_ops->give_timebase)
1349 smp_ops->give_timebase();
1351 /* Wait until cpu puts itself in the online & active maps */
1352 spin_until_cond(cpu_online(cpu));
1354 return 0;
1357 /* Return the value of the reg property corresponding to the given
1358 * logical cpu.
1360 int cpu_to_core_id(int cpu)
1362 struct device_node *np;
1363 int id = -1;
1365 np = of_get_cpu_node(cpu, NULL);
1366 if (!np)
1367 goto out;
1369 id = of_get_cpu_hwid(np, 0);
1370 out:
1371 of_node_put(np);
1372 return id;
1374 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1376 /* Helper routines for cpu to core mapping */
1377 int cpu_core_index_of_thread(int cpu)
1379 return cpu >> threads_shift;
1381 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1383 int cpu_first_thread_of_core(int core)
1385 return core << threads_shift;
1387 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1389 /* Must be called when no change can occur to cpu_present_mask,
1390 * i.e. during cpu online or offline.
1392 static struct device_node *cpu_to_l2cache(int cpu)
1394 struct device_node *np;
1395 struct device_node *cache;
1397 if (!cpu_present(cpu))
1398 return NULL;
1400 np = of_get_cpu_node(cpu, NULL);
1401 if (np == NULL)
1402 return NULL;
1404 cache = of_find_next_cache_node(np);
1406 of_node_put(np);
1408 return cache;
1411 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1413 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1414 struct device_node *l2_cache, *np;
1415 int i;
1417 if (has_big_cores)
1418 submask_fn = cpu_smallcore_mask;
1421 * If the threads in a thread-group share L2 cache, then the
1422 * L2-mask can be obtained from thread_group_l2_cache_map.
1424 if (thread_group_shares_l2) {
1425 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1427 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1428 if (cpu_online(i))
1429 set_cpus_related(i, cpu, cpu_l2_cache_mask);
1432 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1433 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1434 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1435 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1436 cpu);
1439 return true;
1442 l2_cache = cpu_to_l2cache(cpu);
1443 if (!l2_cache || !*mask) {
1444 /* Assume only core siblings share cache with this CPU */
1445 for_each_cpu(i, cpu_sibling_mask(cpu))
1446 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1448 return false;
1451 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1453 /* Update l2-cache mask with all the CPUs that are part of submask */
1454 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1456 /* Skip all CPUs already part of current CPU l2-cache mask */
1457 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1459 for_each_cpu(i, *mask) {
1461 * when updating the marks the current CPU has not been marked
1462 * online, but we need to update the cache masks
1464 np = cpu_to_l2cache(i);
1466 /* Skip all CPUs already part of current CPU l2-cache */
1467 if (np == l2_cache) {
1468 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1469 cpumask_andnot(*mask, *mask, submask_fn(i));
1470 } else {
1471 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1474 of_node_put(np);
1476 of_node_put(l2_cache);
1478 return true;
1481 #ifdef CONFIG_HOTPLUG_CPU
1482 static void remove_cpu_from_masks(int cpu)
1484 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1485 int i;
1487 unmap_cpu_from_node(cpu);
1489 if (shared_caches)
1490 mask_fn = cpu_l2_cache_mask;
1492 for_each_cpu(i, mask_fn(cpu)) {
1493 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1494 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1495 if (has_big_cores)
1496 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1499 for_each_cpu(i, cpu_core_mask(cpu))
1500 set_cpus_unrelated(cpu, i, cpu_core_mask);
1502 if (has_coregroup_support()) {
1503 for_each_cpu(i, cpu_coregroup_mask(cpu))
1504 set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1507 #endif
1509 static inline void add_cpu_to_smallcore_masks(int cpu)
1511 int i;
1513 if (!has_big_cores)
1514 return;
1516 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1518 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1519 if (cpu_online(i))
1520 set_cpus_related(i, cpu, cpu_smallcore_mask);
1524 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1526 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1527 int coregroup_id = cpu_to_coregroup_id(cpu);
1528 int i;
1530 if (shared_caches)
1531 submask_fn = cpu_l2_cache_mask;
1533 if (!*mask) {
1534 /* Assume only siblings are part of this CPU's coregroup */
1535 for_each_cpu(i, submask_fn(cpu))
1536 set_cpus_related(cpu, i, cpu_coregroup_mask);
1538 return;
1541 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1543 /* Update coregroup mask with all the CPUs that are part of submask */
1544 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1546 /* Skip all CPUs already part of coregroup mask */
1547 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1549 for_each_cpu(i, *mask) {
1550 /* Skip all CPUs not part of this coregroup */
1551 if (coregroup_id == cpu_to_coregroup_id(i)) {
1552 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1553 cpumask_andnot(*mask, *mask, submask_fn(i));
1554 } else {
1555 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1560 static void add_cpu_to_masks(int cpu)
1562 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1563 int first_thread = cpu_first_thread_sibling(cpu);
1564 cpumask_var_t mask;
1565 int chip_id = -1;
1566 bool ret;
1567 int i;
1570 * This CPU will not be in the online mask yet so we need to manually
1571 * add it to its own thread sibling mask.
1573 map_cpu_to_node(cpu, cpu_to_node(cpu));
1574 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1575 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1577 for (i = first_thread; i < first_thread + threads_per_core; i++)
1578 if (cpu_online(i))
1579 set_cpus_related(i, cpu, cpu_sibling_mask);
1581 add_cpu_to_smallcore_masks(cpu);
1583 /* In CPU-hotplug path, hence use GFP_ATOMIC */
1584 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1585 update_mask_by_l2(cpu, &mask);
1587 if (has_coregroup_support())
1588 update_coregroup_mask(cpu, &mask);
1590 if (chip_id_lookup_table && ret)
1591 chip_id = cpu_to_chip_id(cpu);
1593 if (shared_caches)
1594 submask_fn = cpu_l2_cache_mask;
1596 /* Update core_mask with all the CPUs that are part of submask */
1597 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1599 /* Skip all CPUs already part of current CPU core mask */
1600 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1602 /* If chip_id is -1; limit the cpu_core_mask to within PKG */
1603 if (chip_id == -1)
1604 cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1606 for_each_cpu(i, mask) {
1607 if (chip_id == cpu_to_chip_id(i)) {
1608 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1609 cpumask_andnot(mask, mask, submask_fn(i));
1610 } else {
1611 cpumask_andnot(mask, mask, cpu_core_mask(i));
1615 free_cpumask_var(mask);
1618 /* Activate a secondary processor. */
1619 __no_stack_protector
1620 void start_secondary(void *unused)
1622 unsigned int cpu = raw_smp_processor_id();
1624 /* PPC64 calls setup_kup() in early_setup_secondary() */
1625 if (IS_ENABLED(CONFIG_PPC32))
1626 setup_kup();
1628 mmgrab_lazy_tlb(&init_mm);
1629 current->active_mm = &init_mm;
1630 VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
1631 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
1632 inc_mm_active_cpus(&init_mm);
1634 smp_store_cpu_info(cpu);
1635 set_dec(tb_ticks_per_jiffy);
1636 rcutree_report_cpu_starting(cpu);
1637 cpu_callin_map[cpu] = 1;
1639 if (smp_ops->setup_cpu)
1640 smp_ops->setup_cpu(cpu);
1641 if (smp_ops->take_timebase)
1642 smp_ops->take_timebase();
1644 secondary_cpu_time_init();
1646 #ifdef CONFIG_PPC64_PROC_SYSTEMCFG
1647 if (system_state == SYSTEM_RUNNING)
1648 systemcfg->processorCount++;
1649 #endif
1651 #ifdef CONFIG_PPC64
1652 vdso_getcpu_init();
1653 #endif
1654 set_numa_node(numa_cpu_lookup_table[cpu]);
1655 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1657 /* Update topology CPU masks */
1658 add_cpu_to_masks(cpu);
1661 * Check for any shared caches. Note that this must be done on a
1662 * per-core basis because one core in the pair might be disabled.
1664 if (!shared_caches) {
1665 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1666 struct cpumask *mask = cpu_l2_cache_mask(cpu);
1668 if (has_big_cores)
1669 sibling_mask = cpu_smallcore_mask;
1671 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1672 shared_caches = true;
1675 smp_wmb();
1676 notify_cpu_starting(cpu);
1677 set_cpu_online(cpu, true);
1679 boot_init_stack_canary();
1681 local_irq_enable();
1683 /* We can enable ftrace for secondary cpus now */
1684 this_cpu_enable_ftrace();
1686 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1688 BUG();
1691 static struct sched_domain_topology_level powerpc_topology[6];
1693 static void __init build_sched_topology(void)
1695 int i = 0;
1697 if (is_shared_processor() && has_big_cores)
1698 static_branch_enable(&splpar_asym_pack);
1700 #ifdef CONFIG_SCHED_SMT
1701 if (has_big_cores) {
1702 pr_info("Big cores detected but using small core scheduling\n");
1703 powerpc_topology[i++] = (struct sched_domain_topology_level){
1704 smallcore_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
1706 } else {
1707 powerpc_topology[i++] = (struct sched_domain_topology_level){
1708 cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
1711 #endif
1712 if (shared_caches) {
1713 powerpc_topology[i++] = (struct sched_domain_topology_level){
1714 shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE)
1717 if (has_coregroup_support()) {
1718 powerpc_topology[i++] = (struct sched_domain_topology_level){
1719 cpu_mc_mask, powerpc_shared_proc_flags, SD_INIT_NAME(MC)
1722 powerpc_topology[i++] = (struct sched_domain_topology_level){
1723 cpu_cpu_mask, powerpc_shared_proc_flags, SD_INIT_NAME(PKG)
1726 /* There must be one trailing NULL entry left. */
1727 BUG_ON(i >= ARRAY_SIZE(powerpc_topology) - 1);
1729 set_sched_topology(powerpc_topology);
1732 void __init smp_cpus_done(unsigned int max_cpus)
1735 * We are running pinned to the boot CPU, see rest_init().
1737 if (smp_ops && smp_ops->setup_cpu)
1738 smp_ops->setup_cpu(boot_cpuid);
1740 if (smp_ops && smp_ops->bringup_done)
1741 smp_ops->bringup_done();
1743 dump_numa_cpu_topology();
1744 build_sched_topology();
1748 * For asym packing, by default lower numbered CPU has higher priority.
1749 * On shared processors, pack to lower numbered core. However avoid moving
1750 * between thread_groups within the same core.
1752 int arch_asym_cpu_priority(int cpu)
1754 if (static_branch_unlikely(&splpar_asym_pack))
1755 return -cpu / threads_per_core;
1757 return -cpu;
1760 #ifdef CONFIG_HOTPLUG_CPU
1761 int __cpu_disable(void)
1763 int cpu = smp_processor_id();
1764 int err;
1766 if (!smp_ops->cpu_disable)
1767 return -ENOSYS;
1769 this_cpu_disable_ftrace();
1771 err = smp_ops->cpu_disable();
1772 if (err)
1773 return err;
1775 /* Update sibling maps */
1776 remove_cpu_from_masks(cpu);
1778 return 0;
1781 void __cpu_die(unsigned int cpu)
1784 * This could perhaps be a generic call in idlea_task_dead(), but
1785 * that requires testing from all archs, so first put it here to
1787 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm)));
1788 dec_mm_active_cpus(&init_mm);
1789 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
1791 if (smp_ops->cpu_die)
1792 smp_ops->cpu_die(cpu);
1795 void __noreturn arch_cpu_idle_dead(void)
1798 * Disable on the down path. This will be re-enabled by
1799 * start_secondary() via start_secondary_resume() below
1801 this_cpu_disable_ftrace();
1803 if (smp_ops->cpu_offline_self)
1804 smp_ops->cpu_offline_self();
1806 /* If we return, we re-enter start_secondary */
1807 start_secondary_resume();
1810 #endif