1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 * Copyright 2007-2010 Freescale Semiconductor, Inc.
6 * Modified by Cort Dougan (cort@cs.nmt.edu)
7 * and Paul Mackerras (paulus@samba.org)
11 * This file handles the architecture-dependent parts of hardware exceptions
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
19 #include <linux/pkeys.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/extable.h>
27 #include <linux/module.h> /* print_modules */
28 #include <linux/prctl.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/backlight.h>
33 #include <linux/bug.h>
34 #include <linux/kdebug.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/smp.h>
38 #include <linux/console.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/debugfs.h>
42 #include <asm/emulated_ops.h>
43 #include <linux/uaccess.h>
44 #include <asm/interrupt.h>
46 #include <asm/machdep.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
63 #include <asm/debug.h>
64 #include <asm/asm-prototypes.h>
66 #include <sysdev/fsl_pci.h>
67 #include <asm/kprobes.h>
68 #include <asm/stacktrace.h>
70 #include <asm/disassemble.h>
73 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
74 int (*__debugger
)(struct pt_regs
*regs
) __read_mostly
;
75 int (*__debugger_ipi
)(struct pt_regs
*regs
) __read_mostly
;
76 int (*__debugger_bpt
)(struct pt_regs
*regs
) __read_mostly
;
77 int (*__debugger_sstep
)(struct pt_regs
*regs
) __read_mostly
;
78 int (*__debugger_iabr_match
)(struct pt_regs
*regs
) __read_mostly
;
79 int (*__debugger_break_match
)(struct pt_regs
*regs
) __read_mostly
;
80 int (*__debugger_fault_handler
)(struct pt_regs
*regs
) __read_mostly
;
82 EXPORT_SYMBOL(__debugger
);
83 EXPORT_SYMBOL(__debugger_ipi
);
84 EXPORT_SYMBOL(__debugger_bpt
);
85 EXPORT_SYMBOL(__debugger_sstep
);
86 EXPORT_SYMBOL(__debugger_iabr_match
);
87 EXPORT_SYMBOL(__debugger_break_match
);
88 EXPORT_SYMBOL(__debugger_fault_handler
);
91 /* Transactional Memory trap debug */
93 #define TM_DEBUG(x...) printk(KERN_INFO x)
95 #define TM_DEBUG(x...) do { } while(0)
98 static const char *signame(int signr
)
101 case SIGBUS
: return "bus error";
102 case SIGFPE
: return "floating point exception";
103 case SIGILL
: return "illegal instruction";
104 case SIGSEGV
: return "segfault";
105 case SIGTRAP
: return "unhandled trap";
108 return "unknown signal";
112 * Trap & Exception support
115 #ifdef CONFIG_PMAC_BACKLIGHT
116 static void pmac_backlight_unblank(void)
118 mutex_lock(&pmac_backlight_mutex
);
119 if (pmac_backlight
) {
120 struct backlight_properties
*props
;
122 props
= &pmac_backlight
->props
;
123 props
->brightness
= props
->max_brightness
;
124 props
->power
= BACKLIGHT_POWER_ON
;
125 backlight_update_status(pmac_backlight
);
127 mutex_unlock(&pmac_backlight_mutex
);
130 static inline void pmac_backlight_unblank(void) { }
134 * If oops/die is expected to crash the machine, return true here.
136 * This should not be expected to be 100% accurate, there may be
137 * notifiers registered or other unexpected conditions that may bring
138 * down the kernel. Or if the current process in the kernel is holding
139 * locks or has other critical state, the kernel may become effectively
142 bool die_will_crash(void)
144 if (should_fadump_crash())
146 if (kexec_should_crash(current
))
148 if (in_interrupt() || panic_on_oops
||
149 !current
->pid
|| is_global_init(current
))
155 static arch_spinlock_t die_lock
= __ARCH_SPIN_LOCK_UNLOCKED
;
156 static int die_owner
= -1;
157 static unsigned int die_nest_count
;
158 static int die_counter
;
160 void panic_flush_kmsg_start(void)
163 * These are mostly taken from kernel/panic.c, but tries to do
164 * relatively minimal work. Don't use delay functions (TB may
165 * be broken), don't crash dump (need to set a firmware log),
166 * don't run notifiers. We do want to get some information to
173 void panic_flush_kmsg_end(void)
175 kmsg_dump(KMSG_DUMP_PANIC
);
178 console_flush_on_panic(CONSOLE_FLUSH_PENDING
);
181 static unsigned long oops_begin(struct pt_regs
*regs
)
188 /* racy, but better than risking deadlock. */
189 raw_local_irq_save(flags
);
190 cpu
= smp_processor_id();
191 if (!arch_spin_trylock(&die_lock
)) {
192 if (cpu
== die_owner
)
193 /* nested oops. should stop eventually */;
195 arch_spin_lock(&die_lock
);
201 if (machine_is(powermac
))
202 pmac_backlight_unblank();
205 NOKPROBE_SYMBOL(oops_begin
);
207 static void oops_end(unsigned long flags
, struct pt_regs
*regs
,
211 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
215 if (!die_nest_count
) {
216 /* Nest count reaches zero, release the lock. */
218 arch_spin_unlock(&die_lock
);
220 raw_local_irq_restore(flags
);
223 * system_reset_excption handles debugger, crash dump, panic, for 0x100
225 if (TRAP(regs
) == INTERRUPT_SYSTEM_RESET
)
228 crash_fadump(regs
, "die oops");
230 if (kexec_should_crash(current
))
237 * While our oops output is serialised by a spinlock, output
238 * from panic() called below can race and corrupt it. If we
239 * know we are going to panic, delay for 1 second so we have a
240 * chance to get clean backtraces from all CPUs that are oopsing.
242 if (in_interrupt() || panic_on_oops
|| !current
->pid
||
243 is_global_init(current
)) {
244 mdelay(MSEC_PER_SEC
);
248 panic("Fatal exception");
249 make_task_dead(signr
);
251 NOKPROBE_SYMBOL(oops_end
);
253 static char *get_mmu_str(void)
255 if (early_radix_enabled())
257 if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE
))
262 static int __die(const char *str
, struct pt_regs
*regs
, long err
)
264 printk("Oops: %s, sig: %ld [#%d]\n", str
, err
, ++die_counter
);
266 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
267 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN
) ? "LE" : "BE",
268 PAGE_SIZE
/ 1024, get_mmu_str(),
269 IS_ENABLED(CONFIG_PREEMPT
) ? " PREEMPT" : "",
270 IS_ENABLED(CONFIG_SMP
) ? " SMP" : "",
271 IS_ENABLED(CONFIG_SMP
) ? (" NR_CPUS=" __stringify(NR_CPUS
)) : "",
272 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
273 IS_ENABLED(CONFIG_NUMA
) ? " NUMA" : "",
274 ppc_md
.name
? ppc_md
.name
: "");
276 if (notify_die(DIE_OOPS
, str
, regs
, err
, 255, SIGSEGV
) == NOTIFY_STOP
)
284 NOKPROBE_SYMBOL(__die
);
286 void die(const char *str
, struct pt_regs
*regs
, long err
)
291 * system_reset_excption handles debugger, crash dump, panic, for 0x100
293 if (TRAP(regs
) != INTERRUPT_SYSTEM_RESET
) {
298 flags
= oops_begin(regs
);
299 if (__die(str
, regs
, err
))
301 oops_end(flags
, regs
, err
);
303 NOKPROBE_SYMBOL(die
);
305 void user_single_step_report(struct pt_regs
*regs
)
307 force_sig_fault(SIGTRAP
, TRAP_TRACE
, (void __user
*)regs
->nip
);
310 static void show_signal_msg(int signr
, struct pt_regs
*regs
, int code
,
313 static DEFINE_RATELIMIT_STATE(rs
, DEFAULT_RATELIMIT_INTERVAL
,
314 DEFAULT_RATELIMIT_BURST
);
316 if (!show_unhandled_signals
)
319 if (!unhandled_signal(current
, signr
))
322 if (!__ratelimit(&rs
))
325 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
326 current
->comm
, current
->pid
, signame(signr
), signr
,
327 addr
, regs
->nip
, regs
->link
, code
);
329 print_vma_addr(KERN_CONT
" in ", regs
->nip
);
333 show_user_instructions(regs
);
336 static bool exception_common(int signr
, struct pt_regs
*regs
, int code
,
339 if (!user_mode(regs
)) {
340 die("Exception in kernel mode", regs
, signr
);
345 * Must not enable interrupts even for user-mode exception, because
346 * this can be called from machine check, which may be a NMI or IRQ
347 * which don't like interrupts being enabled. Could check for
348 * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good
349 * reason why _exception() should enable irqs for an exception handler,
350 * the handlers themselves do that directly.
353 show_signal_msg(signr
, regs
, code
, addr
);
355 current
->thread
.trap_nr
= code
;
360 void _exception_pkey(struct pt_regs
*regs
, unsigned long addr
, int key
)
362 if (!exception_common(SIGSEGV
, regs
, SEGV_PKUERR
, addr
))
365 force_sig_pkuerr((void __user
*) addr
, key
);
368 void _exception(int signr
, struct pt_regs
*regs
, int code
, unsigned long addr
)
370 if (!exception_common(signr
, regs
, code
, addr
))
373 force_sig_fault(signr
, code
, (void __user
*)addr
);
377 * The interrupt architecture has a quirk in that the HV interrupts excluding
378 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
379 * that an interrupt handler must do is save off a GPR into a scratch register,
380 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
381 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
382 * that it is non-reentrant, which leads to random data corruption.
384 * The solution is for NMI interrupts in HV mode to check if they originated
385 * from these critical HV interrupt regions. If so, then mark them not
388 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
389 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
390 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
391 * that would work. However any other guest OS that may have the SPRG live
392 * and MSR[RI]=1 could encounter silent corruption.
394 * Builds that do not support KVM could take this second option to increase
395 * the recoverability of NMIs.
397 noinstr
void hv_nmi_check_nonrecoverable(struct pt_regs
*regs
)
399 #ifdef CONFIG_PPC_POWERNV
400 unsigned long kbase
= (unsigned long)_stext
;
401 unsigned long nip
= regs
->nip
;
403 if (!(regs
->msr
& MSR_RI
))
405 if (!(regs
->msr
& MSR_HV
))
411 * Now test if the interrupt has hit a range that may be using
412 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
413 * problem ranges all run un-relocated. Test real and virt modes
414 * at the same time by dropping the high bit of the nip (virt mode
415 * entry points still have the +0x4000 offset).
417 nip
&= ~0xc000000000000000ULL
;
418 if ((nip
>= 0x500 && nip
< 0x600) || (nip
>= 0x4500 && nip
< 0x4600))
420 if ((nip
>= 0x980 && nip
< 0xa00) || (nip
>= 0x4980 && nip
< 0x4a00))
422 if ((nip
>= 0xe00 && nip
< 0xec0) || (nip
>= 0x4e00 && nip
< 0x4ec0))
424 if ((nip
>= 0xf80 && nip
< 0xfa0) || (nip
>= 0x4f80 && nip
< 0x4fa0))
427 /* Trampoline code runs un-relocated so subtract kbase. */
428 if (nip
>= (unsigned long)(start_real_trampolines
- kbase
) &&
429 nip
< (unsigned long)(end_real_trampolines
- kbase
))
431 if (nip
>= (unsigned long)(start_virt_trampolines
- kbase
) &&
432 nip
< (unsigned long)(end_virt_trampolines
- kbase
))
437 regs
->msr
&= ~MSR_RI
;
438 local_paca
->hsrr_valid
= 0;
439 local_paca
->srr_valid
= 0;
442 DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception
)
444 unsigned long hsrr0
, hsrr1
;
445 bool saved_hsrrs
= false;
448 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
449 * The system reset interrupt itself may clobber HSRRs (e.g., to call
450 * OPAL), so save them here and restore them before returning.
452 * Machine checks don't need to save HSRRs, as the real mode handler
453 * is careful to avoid them, and the regular handler is not delivered
456 if (cpu_has_feature(CPU_FTR_HVMODE
)) {
457 hsrr0
= mfspr(SPRN_HSRR0
);
458 hsrr1
= mfspr(SPRN_HSRR1
);
462 hv_nmi_check_nonrecoverable(regs
);
464 __this_cpu_inc(irq_stat
.sreset_irqs
);
466 /* See if any machine dependent calls */
467 if (ppc_md
.system_reset_exception
) {
468 if (ppc_md
.system_reset_exception(regs
))
475 kmsg_dump(KMSG_DUMP_OOPS
);
477 * A system reset is a request to dump, so we always send
478 * it through the crashdump code (if fadump or kdump are
481 crash_fadump(regs
, "System Reset");
486 * We aren't the primary crash CPU. We need to send it
487 * to a holding pattern to avoid it ending up in the panic
490 crash_kexec_secondary(regs
);
493 * No debugger or crash dump registered, print logs then
496 die("System Reset", regs
, SIGABRT
);
498 mdelay(2*MSEC_PER_SEC
); /* Wait a little while for others to print */
499 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
500 nmi_panic(regs
, "System Reset");
503 #ifdef CONFIG_PPC_BOOK3S_64
504 BUG_ON(get_paca()->in_nmi
== 0);
505 if (get_paca()->in_nmi
> 1)
506 die("Unrecoverable nested System Reset", regs
, SIGABRT
);
508 /* Must die if the interrupt is not recoverable */
509 if (regs_is_unrecoverable(regs
)) {
510 /* For the reason explained in die_mce, nmi_exit before die */
512 die("Unrecoverable System Reset", regs
, SIGABRT
);
516 mtspr(SPRN_HSRR0
, hsrr0
);
517 mtspr(SPRN_HSRR1
, hsrr1
);
520 /* What should we do here? We could issue a shutdown or hard reset. */
526 * I/O accesses can cause machine checks on powermacs.
527 * Check if the NIP corresponds to the address of a sync
528 * instruction for which there is an entry in the exception
532 static inline int check_io_access(struct pt_regs
*regs
)
535 unsigned long msr
= regs
->msr
;
536 const struct exception_table_entry
*entry
;
537 unsigned int *nip
= (unsigned int *)regs
->nip
;
539 if (((msr
& 0xffff0000) == 0 || (msr
& (0x80000 | 0x40000)))
540 && (entry
= search_exception_tables(regs
->nip
)) != NULL
) {
542 * Check that it's a sync instruction, or somewhere
543 * in the twi; isync; nop sequence that inb/inw/inl uses.
544 * As the address is in the exception table
545 * we should be able to read the instr there.
546 * For the debug message, we look at the preceding
549 if (*nip
== PPC_RAW_NOP())
551 else if (*nip
== PPC_RAW_ISYNC())
553 if (*nip
== PPC_RAW_SYNC() || get_op(*nip
) == OP_TRAP
) {
557 rb
= (*nip
>> 11) & 0x1f;
558 printk(KERN_DEBUG
"%s bad port %lx at %p\n",
559 (*nip
& 0x100)? "OUT to": "IN from",
560 regs
->gpr
[rb
] - _IO_BASE
, nip
);
561 regs_set_recoverable(regs
);
562 regs_set_return_ip(regs
, extable_fixup(entry
));
566 #endif /* CONFIG_PPC32 */
570 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
571 /* On 4xx, the reason for the machine check or program exception
573 #define get_reason(regs) ((regs)->esr)
574 #define REASON_FP ESR_FP
575 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
576 #define REASON_PRIVILEGED ESR_PPR
577 #define REASON_TRAP ESR_PTR
578 #define REASON_PREFIXED 0
579 #define REASON_BOUNDARY 0
581 /* single-step stuff */
582 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
583 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
584 #define clear_br_trace(regs) do {} while(0)
586 /* On non-4xx, the reason for the machine check or program
587 exception is in the MSR. */
588 #define get_reason(regs) ((regs)->msr)
589 #define REASON_TM SRR1_PROGTM
590 #define REASON_FP SRR1_PROGFPE
591 #define REASON_ILLEGAL SRR1_PROGILL
592 #define REASON_PRIVILEGED SRR1_PROGPRIV
593 #define REASON_TRAP SRR1_PROGTRAP
594 #define REASON_PREFIXED SRR1_PREFIXED
595 #define REASON_BOUNDARY SRR1_BOUNDARY
597 #define single_stepping(regs) ((regs)->msr & MSR_SE)
598 #define clear_single_step(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_SE))
599 #define clear_br_trace(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_BE))
602 #define inst_length(reason) (((reason) & REASON_PREFIXED) ? 8 : 4)
604 #if defined(CONFIG_PPC_E500)
605 int machine_check_e500mc(struct pt_regs
*regs
)
607 unsigned long mcsr
= mfspr(SPRN_MCSR
);
608 unsigned long pvr
= mfspr(SPRN_PVR
);
609 unsigned long reason
= mcsr
;
612 if (reason
& MCSR_LD
) {
613 recoverable
= fsl_rio_mcheck_exception(regs
);
614 if (recoverable
== 1)
618 printk("Machine check in kernel mode.\n");
619 printk("Caused by (from MCSR=%lx): ", reason
);
621 if (reason
& MCSR_MCP
)
622 pr_cont("Machine Check Signal\n");
624 if (reason
& MCSR_ICPERR
) {
625 pr_cont("Instruction Cache Parity Error\n");
628 * This is recoverable by invalidating the i-cache.
630 mtspr(SPRN_L1CSR1
, mfspr(SPRN_L1CSR1
) | L1CSR1_ICFI
);
631 while (mfspr(SPRN_L1CSR1
) & L1CSR1_ICFI
)
635 * This will generally be accompanied by an instruction
636 * fetch error report -- only treat MCSR_IF as fatal
637 * if it wasn't due to an L1 parity error.
642 if (reason
& MCSR_DCPERR_MC
) {
643 pr_cont("Data Cache Parity Error\n");
646 * In write shadow mode we auto-recover from the error, but it
647 * may still get logged and cause a machine check. We should
648 * only treat the non-write shadow case as non-recoverable.
650 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
651 * is not implemented but L1 data cache always runs in write
652 * shadow mode. Hence on data cache parity errors HW will
653 * automatically invalidate the L1 Data Cache.
655 if (PVR_VER(pvr
) != PVR_VER_E6500
) {
656 if (!(mfspr(SPRN_L1CSR2
) & L1CSR2_DCWS
))
661 if (reason
& MCSR_L2MMU_MHIT
) {
662 pr_cont("Hit on multiple TLB entries\n");
666 if (reason
& MCSR_NMI
)
667 pr_cont("Non-maskable interrupt\n");
669 if (reason
& MCSR_IF
) {
670 pr_cont("Instruction Fetch Error Report\n");
674 if (reason
& MCSR_LD
) {
675 pr_cont("Load Error Report\n");
679 if (reason
& MCSR_ST
) {
680 pr_cont("Store Error Report\n");
684 if (reason
& MCSR_LDG
) {
685 pr_cont("Guarded Load Error Report\n");
689 if (reason
& MCSR_TLBSYNC
)
690 pr_cont("Simultaneous tlbsync operations\n");
692 if (reason
& MCSR_BSL2_ERR
) {
693 pr_cont("Level 2 Cache Error\n");
697 if (reason
& MCSR_MAV
) {
700 addr
= mfspr(SPRN_MCAR
);
701 addr
|= (u64
)mfspr(SPRN_MCARU
) << 32;
703 pr_cont("Machine Check %s Address: %#llx\n",
704 reason
& MCSR_MEA
? "Effective" : "Physical", addr
);
708 mtspr(SPRN_MCSR
, mcsr
);
709 return mfspr(SPRN_MCSR
) == 0 && recoverable
;
712 int machine_check_e500(struct pt_regs
*regs
)
714 unsigned long reason
= mfspr(SPRN_MCSR
);
716 if (reason
& MCSR_BUS_RBERR
) {
717 if (fsl_rio_mcheck_exception(regs
))
719 if (fsl_pci_mcheck_exception(regs
))
723 printk("Machine check in kernel mode.\n");
724 printk("Caused by (from MCSR=%lx): ", reason
);
726 if (reason
& MCSR_MCP
)
727 pr_cont("Machine Check Signal\n");
728 if (reason
& MCSR_ICPERR
)
729 pr_cont("Instruction Cache Parity Error\n");
730 if (reason
& MCSR_DCP_PERR
)
731 pr_cont("Data Cache Push Parity Error\n");
732 if (reason
& MCSR_DCPERR
)
733 pr_cont("Data Cache Parity Error\n");
734 if (reason
& MCSR_BUS_IAERR
)
735 pr_cont("Bus - Instruction Address Error\n");
736 if (reason
& MCSR_BUS_RAERR
)
737 pr_cont("Bus - Read Address Error\n");
738 if (reason
& MCSR_BUS_WAERR
)
739 pr_cont("Bus - Write Address Error\n");
740 if (reason
& MCSR_BUS_IBERR
)
741 pr_cont("Bus - Instruction Data Error\n");
742 if (reason
& MCSR_BUS_RBERR
)
743 pr_cont("Bus - Read Data Bus Error\n");
744 if (reason
& MCSR_BUS_WBERR
)
745 pr_cont("Bus - Write Data Bus Error\n");
746 if (reason
& MCSR_BUS_IPERR
)
747 pr_cont("Bus - Instruction Parity Error\n");
748 if (reason
& MCSR_BUS_RPERR
)
749 pr_cont("Bus - Read Parity Error\n");
754 int machine_check_generic(struct pt_regs
*regs
)
758 #elif defined(CONFIG_PPC32)
759 int machine_check_generic(struct pt_regs
*regs
)
761 unsigned long reason
= regs
->msr
;
763 printk("Machine check in kernel mode.\n");
764 printk("Caused by (from SRR1=%lx): ", reason
);
765 switch (reason
& 0x601F0000) {
767 pr_cont("Machine check signal\n");
770 case 0x140000: /* 7450 MSS error and TEA */
771 pr_cont("Transfer error ack signal\n");
774 pr_cont("Data parity error signal\n");
777 pr_cont("Address parity error signal\n");
780 pr_cont("L1 Data Cache error\n");
783 pr_cont("L1 Instruction Cache error\n");
786 pr_cont("L2 data cache parity error\n");
789 pr_cont("Unknown values in msr\n");
793 #endif /* everything else */
795 void die_mce(const char *str
, struct pt_regs
*regs
, long err
)
798 * The machine check wants to kill the interrupted context,
799 * but make_task_dead() checks for in_interrupt() and panics
800 * in that case, so exit the irq/nmi before calling die.
810 * BOOK3S_64 does not usually call this handler as a non-maskable interrupt
811 * (it uses its own early real-mode handler to handle the MCE proper
812 * and then raises irq_work to call this handler when interrupts are
813 * enabled). The only time when this is not true is if the early handler
814 * is unrecoverable, then it does call this directly to try to get a
817 static void __machine_check_exception(struct pt_regs
*regs
)
821 __this_cpu_inc(irq_stat
.mce_exceptions
);
823 add_taint(TAINT_MACHINE_CHECK
, LOCKDEP_NOW_UNRELIABLE
);
825 /* See if any machine dependent calls. In theory, we would want
826 * to call the CPU first, and call the ppc_md. one if the CPU
827 * one returns a positive number. However there is existing code
828 * that assumes the board gets a first chance, so let's keep it
829 * that way for now and fix things later. --BenH.
831 if (ppc_md
.machine_check_exception
)
832 recover
= ppc_md
.machine_check_exception(regs
);
833 else if (cur_cpu_spec
->machine_check
)
834 recover
= cur_cpu_spec
->machine_check(regs
);
839 if (debugger_fault_handler(regs
))
842 if (check_io_access(regs
))
845 die_mce("Machine check", regs
, SIGBUS
);
848 /* Must die if the interrupt is not recoverable */
849 if (regs_is_unrecoverable(regs
))
850 die_mce("Unrecoverable Machine check", regs
, SIGBUS
);
853 #ifdef CONFIG_PPC_BOOK3S_64
854 DEFINE_INTERRUPT_HANDLER_RAW(machine_check_early_boot
)
856 udbg_printf("Machine check (early boot)\n");
857 udbg_printf("SRR0=0x%016lx SRR1=0x%016lx\n", regs
->nip
, regs
->msr
);
858 udbg_printf(" DAR=0x%016lx DSISR=0x%08lx\n", regs
->dar
, regs
->dsisr
);
859 udbg_printf(" LR=0x%016lx R1=0x%08lx\n", regs
->link
, regs
->gpr
[1]);
860 udbg_printf("------\n");
861 die("Machine check (early boot)", regs
, SIGBUS
);
867 DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async
)
869 __machine_check_exception(regs
);
872 DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception
)
874 __machine_check_exception(regs
);
879 DEFINE_INTERRUPT_HANDLER(SMIException
) /* async? */
881 die("System Management Interrupt", regs
, SIGABRT
);
885 static void p9_hmi_special_emu(struct pt_regs
*regs
)
887 unsigned int ra
, rb
, t
, i
, sel
, instr
, rc
;
888 const void __user
*addr
;
889 u8 vbuf
[16] __aligned(16), *vdst
;
890 unsigned long ea
, msr
, msr_mask
;
893 if (__get_user(instr
, (unsigned int __user
*)regs
->nip
))
897 * lxvb16x opcode: 0x7c0006d8
898 * lxvd2x opcode: 0x7c000698
899 * lxvh8x opcode: 0x7c000658
900 * lxvw4x opcode: 0x7c000618
902 if ((instr
& 0xfc00073e) != 0x7c000618) {
903 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
905 smp_processor_id(), current
->comm
, current
->pid
,
910 /* Grab vector registers into the task struct */
911 msr
= regs
->msr
; /* Grab msr before we flush the bits */
912 flush_vsx_to_thread(current
);
913 enable_kernel_altivec();
916 * Is userspace running with a different endian (this is rare but
919 swap
= (msr
& MSR_LE
) != (MSR_KERNEL
& MSR_LE
);
921 /* Decode the instruction */
922 ra
= (instr
>> 16) & 0x1f;
923 rb
= (instr
>> 11) & 0x1f;
924 t
= (instr
>> 21) & 0x1f;
926 vdst
= (u8
*)¤t
->thread
.vr_state
.vr
[t
];
928 vdst
= (u8
*)¤t
->thread
.fp_state
.fpr
[t
][0];
930 /* Grab the vector address */
931 ea
= regs
->gpr
[rb
] + (ra
? regs
->gpr
[ra
] : 0);
934 addr
= (__force
const void __user
*)ea
;
937 if (!access_ok(addr
, 16)) {
938 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
939 " instr=%08x addr=%016lx\n",
940 smp_processor_id(), current
->comm
, current
->pid
,
941 regs
->nip
, instr
, (unsigned long)addr
);
945 /* Read the vector */
947 if ((unsigned long)addr
& 0xfUL
)
949 rc
= __copy_from_user_inatomic(vbuf
, addr
, 16);
951 __get_user_atomic_128_aligned(vbuf
, addr
, rc
);
953 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
954 " instr=%08x addr=%016lx\n",
955 smp_processor_id(), current
->comm
, current
->pid
,
956 regs
->nip
, instr
, (unsigned long)addr
);
960 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
961 " instr=%08x addr=%016lx\n",
962 smp_processor_id(), current
->comm
, current
->pid
, regs
->nip
,
963 instr
, (unsigned long) addr
);
965 /* Grab instruction "selector" */
966 sel
= (instr
>> 6) & 3;
969 * Check to make sure the facility is actually enabled. This
970 * could happen if we get a false positive hit.
972 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
973 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
976 if ((sel
& 1) && (instr
& 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
978 if (!(msr
& msr_mask
)) {
979 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
980 " instr=%08x msr:%016lx\n",
981 smp_processor_id(), current
->comm
, current
->pid
,
982 regs
->nip
, instr
, msr
);
986 /* Do logging here before we modify sel based on endian */
989 PPC_WARN_EMULATED(lxvw4x
, regs
);
992 PPC_WARN_EMULATED(lxvh8x
, regs
);
995 PPC_WARN_EMULATED(lxvd2x
, regs
);
997 case 3: /* lxvb16x */
998 PPC_WARN_EMULATED(lxvb16x
, regs
);
1002 #ifdef __LITTLE_ENDIAN__
1004 * An LE kernel stores the vector in the task struct as an LE
1005 * byte array (effectively swapping both the components and
1006 * the content of the components). Those instructions expect
1007 * the components to remain in ascending address order, so we
1010 * If we are running a BE user space, the expectation is that
1011 * of a simple memcpy, so forcing the emulation to look like
1012 * a lxvb16x should do the trick.
1018 case 0: /* lxvw4x */
1019 for (i
= 0; i
< 4; i
++)
1020 ((u32
*)vdst
)[i
] = ((u32
*)vbuf
)[3-i
];
1022 case 1: /* lxvh8x */
1023 for (i
= 0; i
< 8; i
++)
1024 ((u16
*)vdst
)[i
] = ((u16
*)vbuf
)[7-i
];
1026 case 2: /* lxvd2x */
1027 for (i
= 0; i
< 2; i
++)
1028 ((u64
*)vdst
)[i
] = ((u64
*)vbuf
)[1-i
];
1030 case 3: /* lxvb16x */
1031 for (i
= 0; i
< 16; i
++)
1032 vdst
[i
] = vbuf
[15-i
];
1035 #else /* __LITTLE_ENDIAN__ */
1036 /* On a big endian kernel, a BE userspace only needs a memcpy */
1040 /* Otherwise, we need to swap the content of the components */
1042 case 0: /* lxvw4x */
1043 for (i
= 0; i
< 4; i
++)
1044 ((u32
*)vdst
)[i
] = cpu_to_le32(((u32
*)vbuf
)[i
]);
1046 case 1: /* lxvh8x */
1047 for (i
= 0; i
< 8; i
++)
1048 ((u16
*)vdst
)[i
] = cpu_to_le16(((u16
*)vbuf
)[i
]);
1050 case 2: /* lxvd2x */
1051 for (i
= 0; i
< 2; i
++)
1052 ((u64
*)vdst
)[i
] = cpu_to_le64(((u64
*)vbuf
)[i
]);
1054 case 3: /* lxvb16x */
1055 memcpy(vdst
, vbuf
, 16);
1058 #endif /* !__LITTLE_ENDIAN__ */
1060 /* Go to next instruction */
1061 regs_add_return_ip(regs
, 4);
1063 #endif /* CONFIG_VSX */
1065 DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception
)
1067 struct pt_regs
*old_regs
;
1069 old_regs
= set_irq_regs(regs
);
1072 /* Real mode flagged P9 special emu is needed */
1073 if (local_paca
->hmi_p9_special_emu
) {
1074 local_paca
->hmi_p9_special_emu
= 0;
1077 * We don't want to take page faults while doing the
1078 * emulation, we just replay the instruction if necessary.
1080 pagefault_disable();
1081 p9_hmi_special_emu(regs
);
1084 #endif /* CONFIG_VSX */
1086 if (ppc_md
.handle_hmi_exception
)
1087 ppc_md
.handle_hmi_exception(regs
);
1089 set_irq_regs(old_regs
);
1092 DEFINE_INTERRUPT_HANDLER(unknown_exception
)
1094 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1095 regs
->nip
, regs
->msr
, regs
->trap
);
1097 _exception(SIGTRAP
, regs
, TRAP_UNK
, 0);
1100 DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception
)
1102 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1103 regs
->nip
, regs
->msr
, regs
->trap
);
1105 _exception(SIGTRAP
, regs
, TRAP_UNK
, 0);
1108 DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception
)
1110 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1111 regs
->nip
, regs
->msr
, regs
->trap
);
1113 _exception(SIGTRAP
, regs
, TRAP_UNK
, 0);
1118 DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception
)
1120 if (notify_die(DIE_IABR_MATCH
, "iabr_match", regs
, 5,
1121 5, SIGTRAP
) == NOTIFY_STOP
)
1123 if (debugger_iabr_match(regs
))
1125 _exception(SIGTRAP
, regs
, TRAP_BRKPT
, regs
->nip
);
1128 DEFINE_INTERRUPT_HANDLER(RunModeException
)
1130 _exception(SIGTRAP
, regs
, TRAP_UNK
, 0);
1133 static void __single_step_exception(struct pt_regs
*regs
)
1135 clear_single_step(regs
);
1136 clear_br_trace(regs
);
1138 if (kprobe_post_handler(regs
))
1141 if (notify_die(DIE_SSTEP
, "single_step", regs
, 5,
1142 5, SIGTRAP
) == NOTIFY_STOP
)
1144 if (debugger_sstep(regs
))
1147 _exception(SIGTRAP
, regs
, TRAP_TRACE
, regs
->nip
);
1150 DEFINE_INTERRUPT_HANDLER(single_step_exception
)
1152 __single_step_exception(regs
);
1156 * After we have successfully emulated an instruction, we have to
1157 * check if the instruction was being single-stepped, and if so,
1158 * pretend we got a single-step exception. This was pointed out
1159 * by Kumar Gala. -- paulus
1161 void emulate_single_step(struct pt_regs
*regs
)
1163 if (single_stepping(regs
))
1164 __single_step_exception(regs
);
1167 #ifdef CONFIG_PPC_FPU_REGS
1168 static inline int __parse_fpscr(unsigned long fpscr
)
1170 int ret
= FPE_FLTUNK
;
1172 /* Invalid operation */
1173 if ((fpscr
& FPSCR_VE
) && (fpscr
& FPSCR_VX
))
1177 else if ((fpscr
& FPSCR_OE
) && (fpscr
& FPSCR_OX
))
1181 else if ((fpscr
& FPSCR_UE
) && (fpscr
& FPSCR_UX
))
1184 /* Divide by zero */
1185 else if ((fpscr
& FPSCR_ZE
) && (fpscr
& FPSCR_ZX
))
1188 /* Inexact result */
1189 else if ((fpscr
& FPSCR_XE
) && (fpscr
& FPSCR_XX
))
1196 static void parse_fpe(struct pt_regs
*regs
)
1200 flush_fp_to_thread(current
);
1202 #ifdef CONFIG_PPC_FPU_REGS
1203 code
= __parse_fpscr(current
->thread
.fp_state
.fpscr
);
1206 _exception(SIGFPE
, regs
, code
, regs
->nip
);
1210 * Illegal instruction emulation support. Originally written to
1211 * provide the PVR to user applications using the mfspr rd, PVR.
1212 * Return non-zero if we can't emulate, or -EFAULT if the associated
1213 * memory access caused an access fault. Return zero on success.
1215 * There are a couple of ways to do this, either "decode" the instruction
1216 * or directly match lots of bits. In this case, matching lots of
1217 * bits is faster and easier.
1220 static int emulate_string_inst(struct pt_regs
*regs
, u32 instword
)
1222 u8 rT
= (instword
>> 21) & 0x1f;
1223 u8 rA
= (instword
>> 16) & 0x1f;
1224 u8 NB_RB
= (instword
>> 11) & 0x1f;
1229 /* Early out if we are an invalid form of lswx */
1230 if ((instword
& PPC_INST_STRING_MASK
) == PPC_INST_LSWX
)
1231 if ((rT
== rA
) || (rT
== NB_RB
))
1234 EA
= (rA
== 0) ? 0 : regs
->gpr
[rA
];
1236 switch (instword
& PPC_INST_STRING_MASK
) {
1238 case PPC_INST_STSWX
:
1240 num_bytes
= regs
->xer
& 0x7f;
1243 case PPC_INST_STSWI
:
1244 num_bytes
= (NB_RB
== 0) ? 32 : NB_RB
;
1250 while (num_bytes
!= 0)
1253 u32 shift
= 8 * (3 - (pos
& 0x3));
1255 /* if process is 32-bit, clear upper 32 bits of EA */
1256 if ((regs
->msr
& MSR_64BIT
) == 0)
1259 switch ((instword
& PPC_INST_STRING_MASK
)) {
1262 if (get_user(val
, (u8 __user
*)EA
))
1264 /* first time updating this reg,
1268 regs
->gpr
[rT
] |= val
<< shift
;
1270 case PPC_INST_STSWI
:
1271 case PPC_INST_STSWX
:
1272 val
= regs
->gpr
[rT
] >> shift
;
1273 if (put_user(val
, (u8 __user
*)EA
))
1277 /* move EA to next address */
1281 /* manage our position within the register */
1292 static int emulate_popcntb_inst(struct pt_regs
*regs
, u32 instword
)
1297 ra
= (instword
>> 16) & 0x1f;
1298 rs
= (instword
>> 21) & 0x1f;
1300 tmp
= regs
->gpr
[rs
];
1301 tmp
= tmp
- ((tmp
>> 1) & 0x5555555555555555ULL
);
1302 tmp
= (tmp
& 0x3333333333333333ULL
) + ((tmp
>> 2) & 0x3333333333333333ULL
);
1303 tmp
= (tmp
+ (tmp
>> 4)) & 0x0f0f0f0f0f0f0f0fULL
;
1304 regs
->gpr
[ra
] = tmp
;
1309 static int emulate_isel(struct pt_regs
*regs
, u32 instword
)
1311 u8 rT
= (instword
>> 21) & 0x1f;
1312 u8 rA
= (instword
>> 16) & 0x1f;
1313 u8 rB
= (instword
>> 11) & 0x1f;
1314 u8 BC
= (instword
>> 6) & 0x1f;
1318 tmp
= (rA
== 0) ? 0 : regs
->gpr
[rA
];
1319 bit
= (regs
->ccr
>> (31 - BC
)) & 0x1;
1321 regs
->gpr
[rT
] = bit
? tmp
: regs
->gpr
[rB
];
1326 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1327 static inline bool tm_abort_check(struct pt_regs
*regs
, int cause
)
1329 /* If we're emulating a load/store in an active transaction, we cannot
1330 * emulate it as the kernel operates in transaction suspended context.
1331 * We need to abort the transaction. This creates a persistent TM
1332 * abort so tell the user what caused it with a new code.
1334 if (MSR_TM_TRANSACTIONAL(regs
->msr
)) {
1342 static inline bool tm_abort_check(struct pt_regs
*regs
, int reason
)
1348 static int emulate_instruction(struct pt_regs
*regs
)
1353 if (!user_mode(regs
))
1356 if (get_user(instword
, (u32 __user
*)(regs
->nip
)))
1359 /* Emulate the mfspr rD, PVR. */
1360 if ((instword
& PPC_INST_MFSPR_PVR_MASK
) == PPC_INST_MFSPR_PVR
) {
1361 PPC_WARN_EMULATED(mfpvr
, regs
);
1362 rd
= (instword
>> 21) & 0x1f;
1363 regs
->gpr
[rd
] = mfspr(SPRN_PVR
);
1367 /* Emulating the dcba insn is just a no-op. */
1368 if ((instword
& PPC_INST_DCBA_MASK
) == PPC_INST_DCBA
) {
1369 PPC_WARN_EMULATED(dcba
, regs
);
1373 /* Emulate the mcrxr insn. */
1374 if ((instword
& PPC_INST_MCRXR_MASK
) == PPC_INST_MCRXR
) {
1375 int shift
= (instword
>> 21) & 0x1c;
1376 unsigned long msk
= 0xf0000000UL
>> shift
;
1378 PPC_WARN_EMULATED(mcrxr
, regs
);
1379 regs
->ccr
= (regs
->ccr
& ~msk
) | ((regs
->xer
>> shift
) & msk
);
1380 regs
->xer
&= ~0xf0000000UL
;
1384 /* Emulate load/store string insn. */
1385 if ((instword
& PPC_INST_STRING_GEN_MASK
) == PPC_INST_STRING
) {
1386 if (tm_abort_check(regs
,
1387 TM_CAUSE_EMULATE
| TM_CAUSE_PERSISTENT
))
1389 PPC_WARN_EMULATED(string
, regs
);
1390 return emulate_string_inst(regs
, instword
);
1393 /* Emulate the popcntb (Population Count Bytes) instruction. */
1394 if ((instword
& PPC_INST_POPCNTB_MASK
) == PPC_INST_POPCNTB
) {
1395 PPC_WARN_EMULATED(popcntb
, regs
);
1396 return emulate_popcntb_inst(regs
, instword
);
1399 /* Emulate isel (Integer Select) instruction */
1400 if ((instword
& PPC_INST_ISEL_MASK
) == PPC_INST_ISEL
) {
1401 PPC_WARN_EMULATED(isel
, regs
);
1402 return emulate_isel(regs
, instword
);
1405 /* Emulate sync instruction variants */
1406 if ((instword
& PPC_INST_SYNC_MASK
) == PPC_INST_SYNC
) {
1407 PPC_WARN_EMULATED(sync
, regs
);
1408 asm volatile("sync");
1413 /* Emulate the mfspr rD, DSCR. */
1414 if ((((instword
& PPC_INST_MFSPR_DSCR_USER_MASK
) ==
1415 PPC_INST_MFSPR_DSCR_USER
) ||
1416 ((instword
& PPC_INST_MFSPR_DSCR_MASK
) ==
1417 PPC_INST_MFSPR_DSCR
)) &&
1418 cpu_has_feature(CPU_FTR_DSCR
)) {
1419 PPC_WARN_EMULATED(mfdscr
, regs
);
1420 rd
= (instword
>> 21) & 0x1f;
1421 regs
->gpr
[rd
] = mfspr(SPRN_DSCR
);
1424 /* Emulate the mtspr DSCR, rD. */
1425 if ((((instword
& PPC_INST_MTSPR_DSCR_USER_MASK
) ==
1426 PPC_INST_MTSPR_DSCR_USER
) ||
1427 ((instword
& PPC_INST_MTSPR_DSCR_MASK
) ==
1428 PPC_INST_MTSPR_DSCR
)) &&
1429 cpu_has_feature(CPU_FTR_DSCR
)) {
1430 PPC_WARN_EMULATED(mtdscr
, regs
);
1431 rd
= (instword
>> 21) & 0x1f;
1432 current
->thread
.dscr
= regs
->gpr
[rd
];
1433 current
->thread
.dscr_inherit
= 1;
1434 mtspr(SPRN_DSCR
, current
->thread
.dscr
);
1442 #ifdef CONFIG_GENERIC_BUG
1443 int is_valid_bugaddr(unsigned long addr
)
1445 return is_kernel_addr(addr
);
1449 #ifdef CONFIG_MATH_EMULATION
1450 static int emulate_math(struct pt_regs
*regs
)
1454 ret
= do_mathemu(regs
);
1456 PPC_WARN_EMULATED(math
, regs
);
1460 emulate_single_step(regs
);
1464 code
= __parse_fpscr(current
->thread
.fp_state
.fpscr
);
1465 _exception(SIGFPE
, regs
, code
, regs
->nip
);
1469 _exception(SIGSEGV
, regs
, SEGV_MAPERR
, regs
->nip
);
1476 static inline int emulate_math(struct pt_regs
*regs
) { return -1; }
1479 static void do_program_check(struct pt_regs
*regs
)
1481 unsigned int reason
= get_reason(regs
);
1483 /* We can now get here via a FP Unavailable exception if the core
1484 * has no FPU, in that case the reason flags will be 0 */
1486 if (reason
& REASON_FP
) {
1487 /* IEEE FP exception */
1491 if (reason
& REASON_TRAP
) {
1492 unsigned long bugaddr
;
1493 /* Debugger is first in line to stop recursive faults in
1494 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1495 if (debugger_bpt(regs
))
1498 if (kprobe_handler(regs
))
1501 /* trap exception */
1502 if (notify_die(DIE_BPT
, "breakpoint", regs
, 5, 5, SIGTRAP
)
1506 bugaddr
= regs
->nip
;
1508 * Fixup bugaddr for BUG_ON() in real mode
1510 if (!is_kernel_addr(bugaddr
) && !(regs
->msr
& MSR_IR
))
1511 bugaddr
+= PAGE_OFFSET
;
1513 if (!user_mode(regs
) &&
1514 report_bug(bugaddr
, regs
) == BUG_TRAP_TYPE_WARN
) {
1515 regs_add_return_ip(regs
, 4);
1519 /* User mode considers other cases after enabling IRQs */
1520 if (!user_mode(regs
)) {
1521 _exception(SIGTRAP
, regs
, TRAP_BRKPT
, regs
->nip
);
1525 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1526 if (reason
& REASON_TM
) {
1527 /* This is a TM "Bad Thing Exception" program check.
1529 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1530 * transition in TM states.
1531 * - A trechkpt is attempted when transactional.
1532 * - A treclaim is attempted when non transactional.
1533 * - A tend is illegally attempted.
1534 * - writing a TM SPR when transactional.
1536 * If usermode caused this, it's done something illegal and
1537 * gets a SIGILL slap on the wrist. We call it an illegal
1538 * operand to distinguish from the instruction just being bad
1539 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1540 * illegal /placement/ of a valid instruction.
1542 if (user_mode(regs
)) {
1543 _exception(SIGILL
, regs
, ILL_ILLOPN
, regs
->nip
);
1546 printk(KERN_EMERG
"Unexpected TM Bad Thing exception "
1547 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1548 regs
->nip
, regs
->msr
, get_paca()->tm_scratch
);
1549 die("Unrecoverable exception", regs
, SIGABRT
);
1555 * If we took the program check in the kernel skip down to sending a
1556 * SIGILL. The subsequent cases all relate to user space, such as
1557 * emulating instructions which we should only do for user space. We
1558 * also do not want to enable interrupts for kernel faults because that
1559 * might lead to further faults, and loose the context of the original
1562 if (!user_mode(regs
))
1565 interrupt_cond_local_irq_enable(regs
);
1568 * (reason & REASON_TRAP) is mostly handled before enabling IRQs,
1569 * except get_user_instr() can sleep so we cannot reliably inspect the
1570 * current instruction in that context. Now that we know we are
1571 * handling a user space trap and can sleep, we can check if the trap
1572 * was a hashchk failure.
1574 if (reason
& REASON_TRAP
) {
1575 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE
)) {
1578 if (get_user_instr(insn
, (void __user
*)regs
->nip
)) {
1579 _exception(SIGSEGV
, regs
, SEGV_MAPERR
, regs
->nip
);
1583 if (ppc_inst_primary_opcode(insn
) == 31 &&
1584 get_xop(ppc_inst_val(insn
)) == OP_31_XOP_HASHCHK
) {
1585 _exception(SIGILL
, regs
, ILL_ILLOPN
, regs
->nip
);
1590 _exception(SIGTRAP
, regs
, TRAP_BRKPT
, regs
->nip
);
1594 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1595 * but there seems to be a hardware bug on the 405GP (RevD)
1596 * that means ESR is sometimes set incorrectly - either to
1597 * ESR_DST (!?) or 0. In the process of chasing this with the
1598 * hardware people - not sure if it can happen on any illegal
1599 * instruction or only on FP instructions, whether there is a
1600 * pattern to occurrences etc. -dgibson 31/Mar/2003
1602 if (!emulate_math(regs
))
1605 /* Try to emulate it if we should. */
1606 if (reason
& (REASON_ILLEGAL
| REASON_PRIVILEGED
)) {
1607 switch (emulate_instruction(regs
)) {
1609 regs_add_return_ip(regs
, 4);
1610 emulate_single_step(regs
);
1613 _exception(SIGSEGV
, regs
, SEGV_MAPERR
, regs
->nip
);
1619 if (reason
& REASON_PRIVILEGED
)
1620 _exception(SIGILL
, regs
, ILL_PRVOPC
, regs
->nip
);
1622 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1626 DEFINE_INTERRUPT_HANDLER(program_check_exception
)
1628 do_program_check(regs
);
1632 * This occurs when running in hypervisor mode on POWER6 or later
1633 * and an illegal instruction is encountered.
1635 DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt
)
1637 regs_set_return_msr(regs
, regs
->msr
| REASON_ILLEGAL
);
1638 do_program_check(regs
);
1641 DEFINE_INTERRUPT_HANDLER(alignment_exception
)
1643 int sig
, code
, fixed
= 0;
1644 unsigned long reason
;
1646 interrupt_cond_local_irq_enable(regs
);
1648 reason
= get_reason(regs
);
1649 if (reason
& REASON_BOUNDARY
) {
1655 if (tm_abort_check(regs
, TM_CAUSE_ALIGNMENT
| TM_CAUSE_PERSISTENT
))
1658 /* we don't implement logging of alignment exceptions */
1659 if (!(current
->thread
.align_ctl
& PR_UNALIGN_SIGBUS
))
1660 fixed
= fix_alignment(regs
);
1663 /* skip over emulated instruction */
1664 regs_add_return_ip(regs
, inst_length(reason
));
1665 emulate_single_step(regs
);
1669 /* Operand address was bad */
1670 if (fixed
== -EFAULT
) {
1678 if (user_mode(regs
))
1679 _exception(sig
, regs
, code
, regs
->dar
);
1681 bad_page_fault(regs
, sig
);
1684 DEFINE_INTERRUPT_HANDLER(stack_overflow_exception
)
1686 die("Kernel stack overflow", regs
, SIGSEGV
);
1689 DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception
)
1691 printk(KERN_EMERG
"Unrecoverable FP Unavailable Exception "
1692 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1693 die("Unrecoverable FP Unavailable Exception", regs
, SIGABRT
);
1696 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception
)
1698 if (user_mode(regs
)) {
1699 /* A user program has executed an altivec instruction,
1700 but this kernel doesn't support altivec. */
1701 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1705 printk(KERN_EMERG
"Unrecoverable VMX/Altivec Unavailable Exception "
1706 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1707 die("Unrecoverable VMX/Altivec Unavailable Exception", regs
, SIGABRT
);
1710 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception
)
1712 if (user_mode(regs
)) {
1713 /* A user program has executed an vsx instruction,
1714 but this kernel doesn't support vsx. */
1715 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1719 printk(KERN_EMERG
"Unrecoverable VSX Unavailable Exception "
1720 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1721 die("Unrecoverable VSX Unavailable Exception", regs
, SIGABRT
);
1724 #ifdef CONFIG_PPC_BOOK3S_64
1725 static void tm_unavailable(struct pt_regs
*regs
)
1727 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1728 if (user_mode(regs
)) {
1729 current
->thread
.load_tm
++;
1730 regs_set_return_msr(regs
, regs
->msr
| MSR_TM
);
1732 tm_restore_sprs(¤t
->thread
);
1736 pr_emerg("Unrecoverable TM Unavailable Exception "
1737 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1738 die("Unrecoverable TM Unavailable Exception", regs
, SIGABRT
);
1741 DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception
)
1743 static char *facility_strings
[] = {
1744 [FSCR_FP_LG
] = "FPU",
1745 [FSCR_VECVSX_LG
] = "VMX/VSX",
1746 [FSCR_DSCR_LG
] = "DSCR",
1747 [FSCR_PM_LG
] = "PMU SPRs",
1748 [FSCR_BHRB_LG
] = "BHRB",
1749 [FSCR_TM_LG
] = "TM",
1750 [FSCR_EBB_LG
] = "EBB",
1751 [FSCR_TAR_LG
] = "TAR",
1752 [FSCR_MSGP_LG
] = "MSGP",
1753 [FSCR_SCV_LG
] = "SCV",
1754 [FSCR_PREFIX_LG
] = "PREFIX",
1756 char *facility
= "unknown";
1762 hv
= (TRAP(regs
) == INTERRUPT_H_FAC_UNAVAIL
);
1764 value
= mfspr(SPRN_HFSCR
);
1766 value
= mfspr(SPRN_FSCR
);
1768 status
= value
>> 56;
1769 if ((hv
|| status
>= 2) &&
1770 (status
< ARRAY_SIZE(facility_strings
)) &&
1771 facility_strings
[status
])
1772 facility
= facility_strings
[status
];
1774 /* We should not have taken this interrupt in kernel */
1775 if (!user_mode(regs
)) {
1776 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1777 facility
, status
, regs
->nip
);
1778 die("Unexpected facility unavailable exception", regs
, SIGABRT
);
1781 interrupt_cond_local_irq_enable(regs
);
1783 if (status
== FSCR_DSCR_LG
) {
1785 * User is accessing the DSCR register using the problem
1786 * state only SPR number (0x03) either through a mfspr or
1787 * a mtspr instruction. If it is a write attempt through
1788 * a mtspr, then we set the inherit bit. This also allows
1789 * the user to write or read the register directly in the
1790 * future by setting via the FSCR DSCR bit. But in case it
1791 * is a read DSCR attempt through a mfspr instruction, we
1792 * just emulate the instruction instead. This code path will
1793 * always emulate all the mfspr instructions till the user
1794 * has attempted at least one mtspr instruction. This way it
1795 * preserves the same behaviour when the user is accessing
1796 * the DSCR through privilege level only SPR number (0x11)
1797 * which is emulated through illegal instruction exception.
1798 * We always leave HFSCR DSCR set.
1800 if (get_user(instword
, (u32 __user
*)(regs
->nip
))) {
1801 pr_err("Failed to fetch the user instruction\n");
1805 /* Write into DSCR (mtspr 0x03, RS) */
1806 if ((instword
& PPC_INST_MTSPR_DSCR_USER_MASK
)
1807 == PPC_INST_MTSPR_DSCR_USER
) {
1808 rd
= (instword
>> 21) & 0x1f;
1809 current
->thread
.dscr
= regs
->gpr
[rd
];
1810 current
->thread
.dscr_inherit
= 1;
1811 current
->thread
.fscr
|= FSCR_DSCR
;
1812 mtspr(SPRN_FSCR
, current
->thread
.fscr
);
1815 /* Read from DSCR (mfspr RT, 0x03) */
1816 if ((instword
& PPC_INST_MFSPR_DSCR_USER_MASK
)
1817 == PPC_INST_MFSPR_DSCR_USER
) {
1818 if (emulate_instruction(regs
)) {
1819 pr_err("DSCR based mfspr emulation failed\n");
1822 regs_add_return_ip(regs
, 4);
1823 emulate_single_step(regs
);
1828 if (status
== FSCR_TM_LG
) {
1830 * If we're here then the hardware is TM aware because it
1831 * generated an exception with FSRM_TM set.
1833 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1834 * told us not to do TM, or the kernel is not built with TM
1837 * If both of those things are true, then userspace can spam the
1838 * console by triggering the printk() below just by continually
1839 * doing tbegin (or any TM instruction). So in that case just
1840 * send the process a SIGILL immediately.
1842 if (!cpu_has_feature(CPU_FTR_TM
))
1845 tm_unavailable(regs
);
1849 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1850 hv
? "Hypervisor " : "", facility
, status
, regs
->nip
, regs
->msr
);
1853 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1857 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1859 DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm
)
1861 /* Note: This does not handle any kind of FP laziness. */
1863 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1864 regs
->nip
, regs
->msr
);
1866 /* We can only have got here if the task started using FP after
1867 * beginning the transaction. So, the transactional regs are just a
1868 * copy of the checkpointed ones. But, we still need to recheckpoint
1869 * as we're enabling FP for the process; it will return, abort the
1870 * transaction, and probably retry but now with FP enabled. So the
1871 * checkpointed FP registers need to be loaded.
1873 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1876 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1877 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1879 * At this point, ck{fp,vr}_state contains the exact values we want to
1883 /* Enable FP for the task: */
1884 current
->thread
.load_fp
= 1;
1887 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1889 tm_recheckpoint(¤t
->thread
);
1892 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm
)
1894 /* See the comments in fp_unavailable_tm(). This function operates
1898 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1900 regs
->nip
, regs
->msr
);
1901 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1902 current
->thread
.load_vec
= 1;
1903 tm_recheckpoint(¤t
->thread
);
1904 current
->thread
.used_vr
= 1;
1907 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm
)
1909 /* See the comments in fp_unavailable_tm(). This works similarly,
1910 * though we're loading both FP and VEC registers in here.
1912 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1913 * regs. Either way, set MSR_VSX.
1916 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1918 regs
->nip
, regs
->msr
);
1920 current
->thread
.used_vsr
= 1;
1922 /* This reclaims FP and/or VR regs if they're already enabled */
1923 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1925 current
->thread
.load_vec
= 1;
1926 current
->thread
.load_fp
= 1;
1928 tm_recheckpoint(¤t
->thread
);
1930 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1933 DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi
);
1934 DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi
)
1936 __this_cpu_inc(irq_stat
.pmu_irqs
);
1944 DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async
);
1945 DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async
)
1947 __this_cpu_inc(irq_stat
.pmu_irqs
);
1952 DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception
)
1955 * On 64-bit, if perf interrupts hit in a local_irq_disable
1956 * (soft-masked) region, we consider them as NMIs. This is required to
1957 * prevent hash faults on user addresses when reading callchains (and
1958 * looks better from an irq tracing perspective).
1960 if (IS_ENABLED(CONFIG_PPC64
) && unlikely(arch_irq_disabled_regs(regs
)))
1961 performance_monitor_exception_nmi(regs
);
1963 performance_monitor_exception_async(regs
);
1968 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1969 static void handle_debug(struct pt_regs
*regs
, unsigned long debug_status
)
1973 * Determine the cause of the debug event, clear the
1974 * event flags and send a trap to the handler. Torez
1976 if (debug_status
& (DBSR_DAC1R
| DBSR_DAC1W
)) {
1977 dbcr_dac(current
) &= ~(DBCR_DAC1R
| DBCR_DAC1W
);
1978 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1979 current
->thread
.debug
.dbcr2
&= ~DBCR2_DAC12MODE
;
1981 do_send_trap(regs
, mfspr(SPRN_DAC1
), debug_status
,
1984 } else if (debug_status
& (DBSR_DAC2R
| DBSR_DAC2W
)) {
1985 dbcr_dac(current
) &= ~(DBCR_DAC2R
| DBCR_DAC2W
);
1986 do_send_trap(regs
, mfspr(SPRN_DAC2
), debug_status
,
1989 } else if (debug_status
& DBSR_IAC1
) {
1990 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC1
;
1991 dbcr_iac_range(current
) &= ~DBCR_IAC12MODE
;
1992 do_send_trap(regs
, mfspr(SPRN_IAC1
), debug_status
,
1995 } else if (debug_status
& DBSR_IAC2
) {
1996 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC2
;
1997 do_send_trap(regs
, mfspr(SPRN_IAC2
), debug_status
,
2000 } else if (debug_status
& DBSR_IAC3
) {
2001 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC3
;
2002 dbcr_iac_range(current
) &= ~DBCR_IAC34MODE
;
2003 do_send_trap(regs
, mfspr(SPRN_IAC3
), debug_status
,
2006 } else if (debug_status
& DBSR_IAC4
) {
2007 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC4
;
2008 do_send_trap(regs
, mfspr(SPRN_IAC4
), debug_status
,
2013 * At the point this routine was called, the MSR(DE) was turned off.
2014 * Check all other debug flags and see if that bit needs to be turned
2017 if (DBCR_ACTIVE_EVENTS(current
->thread
.debug
.dbcr0
,
2018 current
->thread
.debug
.dbcr1
))
2019 regs_set_return_msr(regs
, regs
->msr
| MSR_DE
);
2021 /* Make sure the IDM flag is off */
2022 current
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
2025 mtspr(SPRN_DBCR0
, current
->thread
.debug
.dbcr0
);
2028 DEFINE_INTERRUPT_HANDLER(DebugException
)
2030 unsigned long debug_status
= regs
->dsisr
;
2032 current
->thread
.debug
.dbsr
= debug_status
;
2034 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
2035 * on server, it stops on the target of the branch. In order to simulate
2036 * the server behaviour, we thus restart right away with a single step
2037 * instead of stopping here when hitting a BT
2039 if (debug_status
& DBSR_BT
) {
2040 regs_set_return_msr(regs
, regs
->msr
& ~MSR_DE
);
2043 mtspr(SPRN_DBCR0
, mfspr(SPRN_DBCR0
) & ~DBCR0_BT
);
2044 /* Clear the BT event */
2045 mtspr(SPRN_DBSR
, DBSR_BT
);
2047 /* Do the single step trick only when coming from userspace */
2048 if (user_mode(regs
)) {
2049 current
->thread
.debug
.dbcr0
&= ~DBCR0_BT
;
2050 current
->thread
.debug
.dbcr0
|= DBCR0_IDM
| DBCR0_IC
;
2051 regs_set_return_msr(regs
, regs
->msr
| MSR_DE
);
2055 if (kprobe_post_handler(regs
))
2058 if (notify_die(DIE_SSTEP
, "block_step", regs
, 5,
2059 5, SIGTRAP
) == NOTIFY_STOP
) {
2062 if (debugger_sstep(regs
))
2064 } else if (debug_status
& DBSR_IC
) { /* Instruction complete */
2065 regs_set_return_msr(regs
, regs
->msr
& ~MSR_DE
);
2067 /* Disable instruction completion */
2068 mtspr(SPRN_DBCR0
, mfspr(SPRN_DBCR0
) & ~DBCR0_IC
);
2069 /* Clear the instruction completion event */
2070 mtspr(SPRN_DBSR
, DBSR_IC
);
2072 if (kprobe_post_handler(regs
))
2075 if (notify_die(DIE_SSTEP
, "single_step", regs
, 5,
2076 5, SIGTRAP
) == NOTIFY_STOP
) {
2080 if (debugger_sstep(regs
))
2083 if (user_mode(regs
)) {
2084 current
->thread
.debug
.dbcr0
&= ~DBCR0_IC
;
2085 if (DBCR_ACTIVE_EVENTS(current
->thread
.debug
.dbcr0
,
2086 current
->thread
.debug
.dbcr1
))
2087 regs_set_return_msr(regs
, regs
->msr
| MSR_DE
);
2089 /* Make sure the IDM bit is off */
2090 current
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
2093 _exception(SIGTRAP
, regs
, TRAP_TRACE
, regs
->nip
);
2095 handle_debug(regs
, debug_status
);
2097 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2099 #ifdef CONFIG_ALTIVEC
2100 DEFINE_INTERRUPT_HANDLER(altivec_assist_exception
)
2104 if (!user_mode(regs
)) {
2105 printk(KERN_EMERG
"VMX/Altivec assist exception in kernel mode"
2106 " at %lx\n", regs
->nip
);
2107 die("Kernel VMX/Altivec assist exception", regs
, SIGILL
);
2110 flush_altivec_to_thread(current
);
2112 PPC_WARN_EMULATED(altivec
, regs
);
2113 err
= emulate_altivec(regs
);
2115 regs_add_return_ip(regs
, 4); /* skip emulated instruction */
2116 emulate_single_step(regs
);
2120 if (err
== -EFAULT
) {
2121 /* got an error reading the instruction */
2122 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
2124 /* didn't recognize the instruction */
2125 /* XXX quick hack for now: set the non-Java bit in the VSCR */
2126 printk_ratelimited(KERN_ERR
"Unrecognized altivec instruction "
2127 "in %s at %lx\n", current
->comm
, regs
->nip
);
2128 current
->thread
.vr_state
.vscr
.u
[3] |= 0x10000;
2131 #endif /* CONFIG_ALTIVEC */
2133 #ifdef CONFIG_PPC_85xx
2134 DEFINE_INTERRUPT_HANDLER(CacheLockingException
)
2136 unsigned long error_code
= regs
->dsisr
;
2138 /* We treat cache locking instructions from the user
2139 * as priv ops, in the future we could try to do
2142 if (error_code
& (ESR_DLK
|ESR_ILK
))
2143 _exception(SIGILL
, regs
, ILL_PRVOPC
, regs
->nip
);
2146 #endif /* CONFIG_PPC_85xx */
2149 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException
)
2151 unsigned long spefscr
;
2153 int code
= FPE_FLTUNK
;
2156 interrupt_cond_local_irq_enable(regs
);
2158 flush_spe_to_thread(current
);
2160 spefscr
= current
->thread
.spefscr
;
2161 fpexc_mode
= current
->thread
.fpexc_mode
;
2163 if ((spefscr
& SPEFSCR_FOVF
) && (fpexc_mode
& PR_FP_EXC_OVF
)) {
2166 else if ((spefscr
& SPEFSCR_FUNF
) && (fpexc_mode
& PR_FP_EXC_UND
)) {
2169 else if ((spefscr
& SPEFSCR_FDBZ
) && (fpexc_mode
& PR_FP_EXC_DIV
))
2171 else if ((spefscr
& SPEFSCR_FINV
) && (fpexc_mode
& PR_FP_EXC_INV
)) {
2174 else if ((spefscr
& (SPEFSCR_FG
| SPEFSCR_FX
)) && (fpexc_mode
& PR_FP_EXC_RES
))
2177 err
= do_spe_mathemu(regs
);
2179 regs_add_return_ip(regs
, 4); /* skip emulated instruction */
2180 emulate_single_step(regs
);
2184 if (err
== -EFAULT
) {
2185 /* got an error reading the instruction */
2186 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
2187 } else if (err
== -EINVAL
) {
2188 /* didn't recognize the instruction */
2189 printk(KERN_ERR
"unrecognized spe instruction "
2190 "in %s at %lx\n", current
->comm
, regs
->nip
);
2192 _exception(SIGFPE
, regs
, code
, regs
->nip
);
2198 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException
)
2202 interrupt_cond_local_irq_enable(regs
);
2205 if (regs
->msr
& MSR_SPE
)
2206 giveup_spe(current
);
2209 regs_add_return_ip(regs
, -4);
2210 err
= speround_handler(regs
);
2212 regs_add_return_ip(regs
, 4); /* skip emulated instruction */
2213 emulate_single_step(regs
);
2217 if (err
== -EFAULT
) {
2218 /* got an error reading the instruction */
2219 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
2220 } else if (err
== -EINVAL
) {
2221 /* didn't recognize the instruction */
2222 printk(KERN_ERR
"unrecognized spe instruction "
2223 "in %s at %lx\n", current
->comm
, regs
->nip
);
2225 _exception(SIGFPE
, regs
, FPE_FLTUNK
, regs
->nip
);
2232 * We enter here if we get an unrecoverable exception, that is, one
2233 * that happened at a point where the RI (recoverable interrupt) bit
2234 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2235 * we therefore lost state by taking this exception.
2237 void __noreturn
unrecoverable_exception(struct pt_regs
*regs
)
2239 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2240 regs
->trap
, regs
->nip
, regs
->msr
);
2241 die("Unrecoverable exception", regs
, SIGABRT
);
2242 /* die() should not return */
2247 #ifdef CONFIG_BOOKE_WDT
2248 DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException
)
2250 printk (KERN_EMERG
"PowerPC Book-E Watchdog Exception\n");
2251 mtspr(SPRN_TCR
, mfspr(SPRN_TCR
) & ~TCR_WIE
);
2257 * We enter here if we discover during exception entry that we are
2258 * running in supervisor mode with a userspace value in the stack pointer.
2260 DEFINE_INTERRUPT_HANDLER(kernel_bad_stack
)
2262 printk(KERN_EMERG
"Bad kernel stack pointer %lx at %lx\n",
2263 regs
->gpr
[1], regs
->nip
);
2264 die("Bad kernel stack pointer", regs
, SIGABRT
);
2267 #ifdef CONFIG_PPC_EMULATED_STATS
2269 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2271 struct ppc_emulated ppc_emulated
= {
2272 #ifdef CONFIG_ALTIVEC
2273 WARN_EMULATED_SETUP(altivec
),
2275 WARN_EMULATED_SETUP(dcba
),
2276 WARN_EMULATED_SETUP(dcbz
),
2277 WARN_EMULATED_SETUP(fp_pair
),
2278 WARN_EMULATED_SETUP(isel
),
2279 WARN_EMULATED_SETUP(mcrxr
),
2280 WARN_EMULATED_SETUP(mfpvr
),
2281 WARN_EMULATED_SETUP(multiple
),
2282 WARN_EMULATED_SETUP(popcntb
),
2283 WARN_EMULATED_SETUP(spe
),
2284 WARN_EMULATED_SETUP(string
),
2285 WARN_EMULATED_SETUP(sync
),
2286 WARN_EMULATED_SETUP(unaligned
),
2287 #ifdef CONFIG_MATH_EMULATION
2288 WARN_EMULATED_SETUP(math
),
2291 WARN_EMULATED_SETUP(vsx
),
2294 WARN_EMULATED_SETUP(mfdscr
),
2295 WARN_EMULATED_SETUP(mtdscr
),
2296 WARN_EMULATED_SETUP(lq_stq
),
2297 WARN_EMULATED_SETUP(lxvw4x
),
2298 WARN_EMULATED_SETUP(lxvh8x
),
2299 WARN_EMULATED_SETUP(lxvd2x
),
2300 WARN_EMULATED_SETUP(lxvb16x
),
2304 u32 ppc_warn_emulated
;
2306 void ppc_warn_emulated_print(const char *type
)
2308 pr_warn_ratelimited("%s used emulated %s instruction\n", current
->comm
,
2312 static int __init
ppc_warn_emulated_init(void)
2316 struct ppc_emulated_entry
*entries
= (void *)&ppc_emulated
;
2318 dir
= debugfs_create_dir("emulated_instructions",
2321 debugfs_create_u32("do_warn", 0644, dir
, &ppc_warn_emulated
);
2323 for (i
= 0; i
< sizeof(ppc_emulated
)/sizeof(*entries
); i
++)
2324 debugfs_create_u32(entries
[i
].name
, 0644, dir
,
2325 (u32
*)&entries
[i
].val
.counter
);
2330 device_initcall(ppc_warn_emulated_init
);
2332 #endif /* CONFIG_PPC_EMULATED_STATS */