1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __POWERNV_PCI_H
3 #define __POWERNV_PCI_H
5 #include <linux/compiler.h> /* for __printf */
6 #include <linux/iommu.h>
8 #include <asm/msi_bitmap.h>
17 /* Precise PHB model for error management */
19 PNV_PHB_MODEL_UNKNOWN
,
24 #define PNV_PCI_DIAG_BUF_SIZE 8192
25 #define PNV_IODA_PE_DEV (1 << 0) /* PE has single PCI device */
26 #define PNV_IODA_PE_BUS (1 << 1) /* PE has primary PCI bus */
27 #define PNV_IODA_PE_BUS_ALL (1 << 2) /* PE has subordinate buses */
28 #define PNV_IODA_PE_MASTER (1 << 3) /* Master PE in compound case */
29 #define PNV_IODA_PE_SLAVE (1 << 4) /* Slave PE in compound case */
30 #define PNV_IODA_PE_VF (1 << 5) /* PE for one VF */
33 * A brief note on PNV_IODA_PE_BUS_ALL
35 * This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
36 * the Requester ID field of the PCIe request header to determine the device
37 * (and PE) that initiated a DMA. In legacy PCI individual memory read/write
38 * requests aren't tagged with the RID. To work around this the PCIe-to-PCI
39 * bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
41 * PCIe-to-X bridges have a similar issue even though PCI-X requests also have
42 * a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
43 * ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
46 * To work around these problems we use the BUS_ALL flag since every subordinate
47 * bus of the bridge should go into the same PE.
50 /* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
51 #define PNV_IODA_STOPPED_STATE 0x8000000000000000
53 /* Data associated with a PE, including IOMMU tracking etc.. */
60 /* A PE can be associated with a single device or an
61 * entire bus (& children). In the former case, pdev
62 * is populated, in the later case, pbus is.
65 struct pci_dev
*parent_dev
;
70 /* Effective RID (device RID for a device PE and base bus
71 * RID with devfn 0 for a bus PE)
76 unsigned int pe_number
;
78 /* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
79 struct iommu_table_group table_group
;
81 /* 64-bit TCE bypass region */
82 bool tce_bypass_enabled
;
83 uint64_t tce_bypass_base
;
86 * Used to track whether we've done DMA setup for this PE or not. We
87 * want to defer allocating TCE tables, etc until we've added a
88 * non-bridge device to the PE.
92 /* MSIs. MVE index is identical for 32 and 64 bit MSI
93 * and -1 if not supported. (It's actually identical to the
98 /* PEs in compound case */
99 struct pnv_ioda_pe
*master
;
100 struct list_head slaves
;
102 /* Link in list of PE#s */
103 struct list_head list
;
106 #define PNV_PHB_FLAG_EEH (1 << 0)
109 struct pci_controller
*hose
;
110 enum pnv_phb_type type
;
111 enum pnv_phb_model model
;
119 #ifdef CONFIG_DEBUG_FS
121 struct dentry
*dbgfs
;
124 unsigned int msi_base
;
125 struct msi_bitmap msi_bmp
;
126 int (*init_m64
)(struct pnv_phb
*phb
);
127 int (*get_pe_state
)(struct pnv_phb
*phb
, int pe_no
);
128 void (*freeze_pe
)(struct pnv_phb
*phb
, int pe_no
);
129 int (*unfreeze_pe
)(struct pnv_phb
*phb
, int pe_no
, int opt
);
132 /* Global bridge info */
133 unsigned int total_pe_num
;
134 unsigned int reserved_pe_idx
;
135 unsigned int root_pe_idx
;
137 /* 32-bit MMIO window */
138 unsigned int m32_size
;
139 unsigned int m32_segsize
;
140 unsigned int m32_pci_base
;
142 /* 64-bit MMIO window */
143 unsigned int m64_bar_idx
;
144 unsigned long m64_size
;
145 unsigned long m64_segsize
;
146 unsigned long m64_base
;
147 #define MAX_M64_BARS 64
148 unsigned long m64_bar_alloc
;
151 unsigned int io_size
;
152 unsigned int io_segsize
;
153 unsigned int io_pci_base
;
156 struct mutex pe_alloc_mutex
;
157 unsigned long *pe_alloc
;
158 struct pnv_ioda_pe
*pe_array
;
160 /* M32 & IO segment maps */
161 unsigned int *m64_segmap
;
162 unsigned int *m32_segmap
;
163 unsigned int *io_segmap
;
167 struct irq_chip irq_chip
;
169 /* Sorted list of used PE's based
170 * on the sequence of creation
172 struct list_head pe_list
;
173 struct mutex pe_list_mutex
;
175 /* Reverse map of PEs, indexed by {bus, devfn} */
176 unsigned int pe_rmap
[0x10000];
179 /* PHB and hub diagnostics */
180 unsigned int diag_data_size
;
185 /* IODA PE management */
187 static inline bool pnv_pci_is_m64(struct pnv_phb
*phb
, struct resource
*r
)
190 * WARNING: We cannot rely on the resource flags. The Linux PCI
191 * allocation code sometimes decides to put a 64-bit prefetchable
192 * BAR in the 32-bit window, so we have to compare the addresses.
194 * For simplicity we only test resource start.
196 return (r
->start
>= phb
->ioda
.m64_base
&&
197 r
->start
< (phb
->ioda
.m64_base
+ phb
->ioda
.m64_size
));
200 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags
)
202 unsigned long flags
= (IORESOURCE_MEM_64
| IORESOURCE_PREFETCH
);
204 return (resource_flags
& flags
) == flags
;
207 int pnv_ioda_configure_pe(struct pnv_phb
*phb
, struct pnv_ioda_pe
*pe
);
208 int pnv_ioda_deconfigure_pe(struct pnv_phb
*phb
, struct pnv_ioda_pe
*pe
);
210 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb
*phb
, struct pnv_ioda_pe
*pe
);
211 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe
*pe
);
213 struct pnv_ioda_pe
*pnv_ioda_alloc_pe(struct pnv_phb
*phb
, int count
);
214 void pnv_ioda_free_pe(struct pnv_ioda_pe
*pe
);
216 #ifdef CONFIG_PCI_IOV
218 * For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
219 * This requires a bit of acrobatics with the MMIO -> PE configuration
220 * and this structure is used to keep track of it all.
222 struct pnv_iov_data
{
223 /* number of VFs enabled */
226 /* pointer to the array of VF PEs. num_vfs long*/
227 struct pnv_ioda_pe
*vf_pe_arr
;
229 /* Did we map the VF BAR with single-PE IODA BARs? */
230 bool m64_single_mode
[PCI_SRIOV_NUM_BARS
];
233 * True if we're using any segmented windows. In that case we need
234 * shift the start of the IOV resource the segment corresponding to
240 * Bit mask used to track which m64 windows are used to map the
241 * SR-IOV BARs for this device.
243 DECLARE_BITMAP(used_m64_bar_mask
, MAX_M64_BARS
);
246 * If we map the SR-IOV BARs with a segmented window then
247 * parts of that window will be "claimed" by other PEs.
249 * "holes" here is used to reserve the leading portion
250 * of the window that is used by other (non VF) PEs.
252 struct resource holes
[PCI_SRIOV_NUM_BARS
];
255 static inline struct pnv_iov_data
*pnv_iov_get(struct pci_dev
*pdev
)
257 return pdev
->dev
.archdata
.iov_data
;
260 void pnv_pci_ioda_fixup_iov(struct pci_dev
*pdev
);
261 resource_size_t
pnv_pci_iov_resource_alignment(struct pci_dev
*pdev
, int resno
);
263 int pnv_pcibios_sriov_enable(struct pci_dev
*pdev
, u16 num_vfs
);
264 int pnv_pcibios_sriov_disable(struct pci_dev
*pdev
);
265 #endif /* CONFIG_PCI_IOV */
267 extern struct pci_ops pnv_pci_ops
;
269 void pnv_pci_dump_phb_diag_data(struct pci_controller
*hose
,
270 unsigned char *log_buff
);
271 int pnv_pci_cfg_read(struct pci_dn
*pdn
,
272 int where
, int size
, u32
*val
);
273 int pnv_pci_cfg_write(struct pci_dn
*pdn
,
274 int where
, int size
, u32 val
);
275 extern struct iommu_table
*pnv_pci_table_alloc(int nid
);
277 extern void pnv_pci_init_ioda2_phb(struct device_node
*np
);
278 extern void pnv_pci_init_npu2_opencapi_phb(struct device_node
*np
);
279 extern void pnv_pci_reset_secondary_bus(struct pci_dev
*dev
);
280 extern int pnv_eeh_phb_reset(struct pci_controller
*hose
, int option
);
282 extern struct pnv_ioda_pe
*pnv_pci_bdfn_to_pe(struct pnv_phb
*phb
, u16 bdfn
);
283 extern struct pnv_ioda_pe
*pnv_ioda_get_pe(struct pci_dev
*dev
);
284 extern void pnv_set_msi_irq_chip(struct pnv_phb
*phb
, unsigned int virq
);
285 extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift
,
286 __u64 window_size
, __u32 levels
);
287 extern int pnv_eeh_post_init(void);
290 extern void pe_level_printk(const struct pnv_ioda_pe
*pe
, const char *level
,
291 const char *fmt
, ...);
292 #define pe_err(pe, fmt, ...) \
293 pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
294 #define pe_warn(pe, fmt, ...) \
295 pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
296 #define pe_info(pe, fmt, ...) \
297 pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
300 #define POWERNV_IOMMU_DEFAULT_LEVELS 2
301 #define POWERNV_IOMMU_MAX_LEVELS 5
303 extern int pnv_tce_build(struct iommu_table
*tbl
, long index
, long npages
,
304 unsigned long uaddr
, enum dma_data_direction direction
,
305 unsigned long attrs
);
306 extern void pnv_tce_free(struct iommu_table
*tbl
, long index
, long npages
);
307 extern int pnv_tce_xchg(struct iommu_table
*tbl
, long index
,
308 unsigned long *hpa
, enum dma_data_direction
*direction
);
309 extern __be64
*pnv_tce_useraddrptr(struct iommu_table
*tbl
, long index
,
311 extern unsigned long pnv_tce_get(struct iommu_table
*tbl
, long index
);
313 extern long pnv_pci_ioda2_table_alloc_pages(int nid
, __u64 bus_offset
,
314 __u32 page_shift
, __u64 window_size
, __u32 levels
,
315 bool alloc_userspace_copy
, struct iommu_table
*tbl
);
316 extern void pnv_pci_ioda2_table_free_pages(struct iommu_table
*tbl
);
318 extern long pnv_pci_link_table_and_group(int node
, int num
,
319 struct iommu_table
*tbl
,
320 struct iommu_table_group
*table_group
);
321 extern void pnv_pci_unlink_table_and_group(struct iommu_table
*tbl
,
322 struct iommu_table_group
*table_group
);
323 extern void pnv_pci_setup_iommu_table(struct iommu_table
*tbl
,
324 void *tce_mem
, u64 tce_size
,
325 u64 dma_offset
, unsigned int page_shift
);
327 extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb
*phb
);
329 static inline struct pnv_phb
*pci_bus_to_pnvhb(struct pci_bus
*bus
)
331 struct pci_controller
*hose
= bus
->sysdata
;
334 return hose
->private_data
;
339 #endif /* __POWERNV_PCI_H */