Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / arch / riscv / kvm / vcpu.c
blobe048dcc6e65e73c03232cb327ae9c85a16aede1f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5 * Authors:
6 * Anup Patel <anup.patel@wdc.com>
7 */
9 #include <linux/bitops.h>
10 #include <linux/entry-kvm.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/kdebug.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/cacheflush.h>
21 #include <asm/kvm_nacl.h>
22 #include <asm/kvm_vcpu_vector.h>
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
27 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
28 KVM_GENERIC_VCPU_STATS(),
29 STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
30 STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
31 STATS_DESC_COUNTER(VCPU, wrs_exit_stat),
32 STATS_DESC_COUNTER(VCPU, mmio_exit_user),
33 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
34 STATS_DESC_COUNTER(VCPU, csr_exit_user),
35 STATS_DESC_COUNTER(VCPU, csr_exit_kernel),
36 STATS_DESC_COUNTER(VCPU, signal_exits),
37 STATS_DESC_COUNTER(VCPU, exits)
40 const struct kvm_stats_header kvm_vcpu_stats_header = {
41 .name_size = KVM_STATS_NAME_SIZE,
42 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
43 .id_offset = sizeof(struct kvm_stats_header),
44 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
45 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
46 sizeof(kvm_vcpu_stats_desc),
49 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
51 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
52 struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
53 struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
54 struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
55 bool loaded;
57 /**
58 * The preemption should be disabled here because it races with
59 * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
60 * also calls vcpu_load/put.
62 get_cpu();
63 loaded = (vcpu->cpu != -1);
64 if (loaded)
65 kvm_arch_vcpu_put(vcpu);
67 vcpu->arch.last_exit_cpu = -1;
69 memcpy(csr, reset_csr, sizeof(*csr));
71 spin_lock(&vcpu->arch.reset_cntx_lock);
72 memcpy(cntx, reset_cntx, sizeof(*cntx));
73 spin_unlock(&vcpu->arch.reset_cntx_lock);
75 kvm_riscv_vcpu_fp_reset(vcpu);
77 kvm_riscv_vcpu_vector_reset(vcpu);
79 kvm_riscv_vcpu_timer_reset(vcpu);
81 kvm_riscv_vcpu_aia_reset(vcpu);
83 bitmap_zero(vcpu->arch.irqs_pending, KVM_RISCV_VCPU_NR_IRQS);
84 bitmap_zero(vcpu->arch.irqs_pending_mask, KVM_RISCV_VCPU_NR_IRQS);
86 kvm_riscv_vcpu_pmu_reset(vcpu);
88 vcpu->arch.hfence_head = 0;
89 vcpu->arch.hfence_tail = 0;
90 memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue));
92 kvm_riscv_vcpu_sbi_sta_reset(vcpu);
94 /* Reset the guest CSRs for hotplug usecase */
95 if (loaded)
96 kvm_arch_vcpu_load(vcpu, smp_processor_id());
97 put_cpu();
100 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
102 return 0;
105 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
107 int rc;
108 struct kvm_cpu_context *cntx;
109 struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
111 spin_lock_init(&vcpu->arch.mp_state_lock);
113 /* Mark this VCPU never ran */
114 vcpu->arch.ran_atleast_once = false;
115 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
116 bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX);
118 /* Setup ISA features available to VCPU */
119 kvm_riscv_vcpu_setup_isa(vcpu);
121 /* Setup vendor, arch, and implementation details */
122 vcpu->arch.mvendorid = sbi_get_mvendorid();
123 vcpu->arch.marchid = sbi_get_marchid();
124 vcpu->arch.mimpid = sbi_get_mimpid();
126 /* Setup VCPU hfence queue */
127 spin_lock_init(&vcpu->arch.hfence_lock);
129 /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
130 spin_lock_init(&vcpu->arch.reset_cntx_lock);
132 spin_lock(&vcpu->arch.reset_cntx_lock);
133 cntx = &vcpu->arch.guest_reset_context;
134 cntx->sstatus = SR_SPP | SR_SPIE;
135 cntx->hstatus = 0;
136 cntx->hstatus |= HSTATUS_VTW;
137 cntx->hstatus |= HSTATUS_SPVP;
138 cntx->hstatus |= HSTATUS_SPV;
139 spin_unlock(&vcpu->arch.reset_cntx_lock);
141 if (kvm_riscv_vcpu_alloc_vector_context(vcpu, cntx))
142 return -ENOMEM;
144 /* By default, make CY, TM, and IR counters accessible in VU mode */
145 reset_csr->scounteren = 0x7;
147 /* Setup VCPU timer */
148 kvm_riscv_vcpu_timer_init(vcpu);
150 /* setup performance monitoring */
151 kvm_riscv_vcpu_pmu_init(vcpu);
153 /* Setup VCPU AIA */
154 rc = kvm_riscv_vcpu_aia_init(vcpu);
155 if (rc)
156 return rc;
159 * Setup SBI extensions
160 * NOTE: This must be the last thing to be initialized.
162 kvm_riscv_vcpu_sbi_init(vcpu);
164 /* Reset VCPU */
165 kvm_riscv_reset_vcpu(vcpu);
167 return 0;
170 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
173 * vcpu with id 0 is the designated boot cpu.
174 * Keep all vcpus with non-zero id in power-off state so that
175 * they can be brought up using SBI HSM extension.
177 if (vcpu->vcpu_idx != 0)
178 kvm_riscv_vcpu_power_off(vcpu);
181 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
183 /* Cleanup VCPU AIA context */
184 kvm_riscv_vcpu_aia_deinit(vcpu);
186 /* Cleanup VCPU timer */
187 kvm_riscv_vcpu_timer_deinit(vcpu);
189 kvm_riscv_vcpu_pmu_deinit(vcpu);
191 /* Free unused pages pre-allocated for G-stage page table mappings */
192 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
194 /* Free vector context space for host and guest kernel */
195 kvm_riscv_vcpu_free_vector_context(vcpu);
198 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
200 return kvm_riscv_vcpu_timer_pending(vcpu);
203 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
205 kvm_riscv_aia_wakeon_hgei(vcpu, true);
208 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
210 kvm_riscv_aia_wakeon_hgei(vcpu, false);
213 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
215 return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
216 !kvm_riscv_vcpu_stopped(vcpu) && !vcpu->arch.pause);
219 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
221 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
224 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
226 return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
229 #ifdef CONFIG_GUEST_PERF_EVENTS
230 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
232 return vcpu->arch.guest_context.sepc;
234 #endif
236 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
238 return VM_FAULT_SIGBUS;
241 long kvm_arch_vcpu_async_ioctl(struct file *filp,
242 unsigned int ioctl, unsigned long arg)
244 struct kvm_vcpu *vcpu = filp->private_data;
245 void __user *argp = (void __user *)arg;
247 if (ioctl == KVM_INTERRUPT) {
248 struct kvm_interrupt irq;
250 if (copy_from_user(&irq, argp, sizeof(irq)))
251 return -EFAULT;
253 if (irq.irq == KVM_INTERRUPT_SET)
254 return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
255 else
256 return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
259 return -ENOIOCTLCMD;
262 long kvm_arch_vcpu_ioctl(struct file *filp,
263 unsigned int ioctl, unsigned long arg)
265 struct kvm_vcpu *vcpu = filp->private_data;
266 void __user *argp = (void __user *)arg;
267 long r = -EINVAL;
269 switch (ioctl) {
270 case KVM_SET_ONE_REG:
271 case KVM_GET_ONE_REG: {
272 struct kvm_one_reg reg;
274 r = -EFAULT;
275 if (copy_from_user(&reg, argp, sizeof(reg)))
276 break;
278 if (ioctl == KVM_SET_ONE_REG)
279 r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
280 else
281 r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
282 break;
284 case KVM_GET_REG_LIST: {
285 struct kvm_reg_list __user *user_list = argp;
286 struct kvm_reg_list reg_list;
287 unsigned int n;
289 r = -EFAULT;
290 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
291 break;
292 n = reg_list.n;
293 reg_list.n = kvm_riscv_vcpu_num_regs(vcpu);
294 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
295 break;
296 r = -E2BIG;
297 if (n < reg_list.n)
298 break;
299 r = kvm_riscv_vcpu_copy_reg_indices(vcpu, user_list->reg);
300 break;
302 default:
303 break;
306 return r;
309 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
310 struct kvm_sregs *sregs)
312 return -EINVAL;
315 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
316 struct kvm_sregs *sregs)
318 return -EINVAL;
321 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
323 return -EINVAL;
326 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
328 return -EINVAL;
331 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
332 struct kvm_translation *tr)
334 return -EINVAL;
337 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
339 return -EINVAL;
342 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
344 return -EINVAL;
347 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
349 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
350 unsigned long mask, val;
352 if (READ_ONCE(vcpu->arch.irqs_pending_mask[0])) {
353 mask = xchg_acquire(&vcpu->arch.irqs_pending_mask[0], 0);
354 val = READ_ONCE(vcpu->arch.irqs_pending[0]) & mask;
356 csr->hvip &= ~mask;
357 csr->hvip |= val;
360 /* Flush AIA high interrupts */
361 kvm_riscv_vcpu_aia_flush_interrupts(vcpu);
364 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
366 unsigned long hvip;
367 struct kvm_vcpu_arch *v = &vcpu->arch;
368 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
370 /* Read current HVIP and VSIE CSRs */
371 csr->vsie = ncsr_read(CSR_VSIE);
373 /* Sync-up HVIP.VSSIP bit changes does by Guest */
374 hvip = ncsr_read(CSR_HVIP);
375 if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
376 if (hvip & (1UL << IRQ_VS_SOFT)) {
377 if (!test_and_set_bit(IRQ_VS_SOFT,
378 v->irqs_pending_mask))
379 set_bit(IRQ_VS_SOFT, v->irqs_pending);
380 } else {
381 if (!test_and_set_bit(IRQ_VS_SOFT,
382 v->irqs_pending_mask))
383 clear_bit(IRQ_VS_SOFT, v->irqs_pending);
387 /* Sync up the HVIP.LCOFIP bit changes (only clear) by the guest */
388 if ((csr->hvip ^ hvip) & (1UL << IRQ_PMU_OVF)) {
389 if (!(hvip & (1UL << IRQ_PMU_OVF)) &&
390 !test_and_set_bit(IRQ_PMU_OVF, v->irqs_pending_mask))
391 clear_bit(IRQ_PMU_OVF, v->irqs_pending);
394 /* Sync-up AIA high interrupts */
395 kvm_riscv_vcpu_aia_sync_interrupts(vcpu);
397 /* Sync-up timer CSRs */
398 kvm_riscv_vcpu_timer_sync(vcpu);
401 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
404 * We only allow VS-mode software, timer, and external
405 * interrupts when irq is one of the local interrupts
406 * defined by RISC-V privilege specification.
408 if (irq < IRQ_LOCAL_MAX &&
409 irq != IRQ_VS_SOFT &&
410 irq != IRQ_VS_TIMER &&
411 irq != IRQ_VS_EXT &&
412 irq != IRQ_PMU_OVF)
413 return -EINVAL;
415 set_bit(irq, vcpu->arch.irqs_pending);
416 smp_mb__before_atomic();
417 set_bit(irq, vcpu->arch.irqs_pending_mask);
419 kvm_vcpu_kick(vcpu);
421 return 0;
424 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
427 * We only allow VS-mode software, timer, counter overflow and external
428 * interrupts when irq is one of the local interrupts
429 * defined by RISC-V privilege specification.
431 if (irq < IRQ_LOCAL_MAX &&
432 irq != IRQ_VS_SOFT &&
433 irq != IRQ_VS_TIMER &&
434 irq != IRQ_VS_EXT &&
435 irq != IRQ_PMU_OVF)
436 return -EINVAL;
438 clear_bit(irq, vcpu->arch.irqs_pending);
439 smp_mb__before_atomic();
440 set_bit(irq, vcpu->arch.irqs_pending_mask);
442 return 0;
445 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, u64 mask)
447 unsigned long ie;
449 ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
450 << VSIP_TO_HVIP_SHIFT) & (unsigned long)mask;
451 ie |= vcpu->arch.guest_csr.vsie & ~IRQ_LOCAL_MASK &
452 (unsigned long)mask;
453 if (READ_ONCE(vcpu->arch.irqs_pending[0]) & ie)
454 return true;
456 /* Check AIA high interrupts */
457 return kvm_riscv_vcpu_aia_has_interrupts(vcpu, mask);
460 void __kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
462 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
463 kvm_make_request(KVM_REQ_SLEEP, vcpu);
464 kvm_vcpu_kick(vcpu);
467 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
469 spin_lock(&vcpu->arch.mp_state_lock);
470 __kvm_riscv_vcpu_power_off(vcpu);
471 spin_unlock(&vcpu->arch.mp_state_lock);
474 void __kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
476 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
477 kvm_vcpu_wake_up(vcpu);
480 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
482 spin_lock(&vcpu->arch.mp_state_lock);
483 __kvm_riscv_vcpu_power_on(vcpu);
484 spin_unlock(&vcpu->arch.mp_state_lock);
487 bool kvm_riscv_vcpu_stopped(struct kvm_vcpu *vcpu)
489 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
492 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
493 struct kvm_mp_state *mp_state)
495 *mp_state = READ_ONCE(vcpu->arch.mp_state);
497 return 0;
500 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
501 struct kvm_mp_state *mp_state)
503 int ret = 0;
505 spin_lock(&vcpu->arch.mp_state_lock);
507 switch (mp_state->mp_state) {
508 case KVM_MP_STATE_RUNNABLE:
509 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
510 break;
511 case KVM_MP_STATE_STOPPED:
512 __kvm_riscv_vcpu_power_off(vcpu);
513 break;
514 default:
515 ret = -EINVAL;
518 spin_unlock(&vcpu->arch.mp_state_lock);
520 return ret;
523 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
524 struct kvm_guest_debug *dbg)
526 if (dbg->control & KVM_GUESTDBG_ENABLE) {
527 vcpu->guest_debug = dbg->control;
528 vcpu->arch.cfg.hedeleg &= ~BIT(EXC_BREAKPOINT);
529 } else {
530 vcpu->guest_debug = 0;
531 vcpu->arch.cfg.hedeleg |= BIT(EXC_BREAKPOINT);
534 return 0;
537 static void kvm_riscv_vcpu_setup_config(struct kvm_vcpu *vcpu)
539 const unsigned long *isa = vcpu->arch.isa;
540 struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
542 if (riscv_isa_extension_available(isa, SVPBMT))
543 cfg->henvcfg |= ENVCFG_PBMTE;
545 if (riscv_isa_extension_available(isa, SSTC))
546 cfg->henvcfg |= ENVCFG_STCE;
548 if (riscv_isa_extension_available(isa, ZICBOM))
549 cfg->henvcfg |= (ENVCFG_CBIE | ENVCFG_CBCFE);
551 if (riscv_isa_extension_available(isa, ZICBOZ))
552 cfg->henvcfg |= ENVCFG_CBZE;
554 if (riscv_isa_extension_available(isa, SVADU) &&
555 !riscv_isa_extension_available(isa, SVADE))
556 cfg->henvcfg |= ENVCFG_ADUE;
558 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
559 cfg->hstateen0 |= SMSTATEEN0_HSENVCFG;
560 if (riscv_isa_extension_available(isa, SSAIA))
561 cfg->hstateen0 |= SMSTATEEN0_AIA_IMSIC |
562 SMSTATEEN0_AIA |
563 SMSTATEEN0_AIA_ISEL;
564 if (riscv_isa_extension_available(isa, SMSTATEEN))
565 cfg->hstateen0 |= SMSTATEEN0_SSTATEEN0;
568 cfg->hedeleg = KVM_HEDELEG_DEFAULT;
569 if (vcpu->guest_debug)
570 cfg->hedeleg &= ~BIT(EXC_BREAKPOINT);
573 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
575 void *nsh;
576 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
577 struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
579 if (kvm_riscv_nacl_sync_csr_available()) {
580 nsh = nacl_shmem();
581 nacl_csr_write(nsh, CSR_VSSTATUS, csr->vsstatus);
582 nacl_csr_write(nsh, CSR_VSIE, csr->vsie);
583 nacl_csr_write(nsh, CSR_VSTVEC, csr->vstvec);
584 nacl_csr_write(nsh, CSR_VSSCRATCH, csr->vsscratch);
585 nacl_csr_write(nsh, CSR_VSEPC, csr->vsepc);
586 nacl_csr_write(nsh, CSR_VSCAUSE, csr->vscause);
587 nacl_csr_write(nsh, CSR_VSTVAL, csr->vstval);
588 nacl_csr_write(nsh, CSR_HEDELEG, cfg->hedeleg);
589 nacl_csr_write(nsh, CSR_HVIP, csr->hvip);
590 nacl_csr_write(nsh, CSR_VSATP, csr->vsatp);
591 nacl_csr_write(nsh, CSR_HENVCFG, cfg->henvcfg);
592 if (IS_ENABLED(CONFIG_32BIT))
593 nacl_csr_write(nsh, CSR_HENVCFGH, cfg->henvcfg >> 32);
594 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
595 nacl_csr_write(nsh, CSR_HSTATEEN0, cfg->hstateen0);
596 if (IS_ENABLED(CONFIG_32BIT))
597 nacl_csr_write(nsh, CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
599 } else {
600 csr_write(CSR_VSSTATUS, csr->vsstatus);
601 csr_write(CSR_VSIE, csr->vsie);
602 csr_write(CSR_VSTVEC, csr->vstvec);
603 csr_write(CSR_VSSCRATCH, csr->vsscratch);
604 csr_write(CSR_VSEPC, csr->vsepc);
605 csr_write(CSR_VSCAUSE, csr->vscause);
606 csr_write(CSR_VSTVAL, csr->vstval);
607 csr_write(CSR_HEDELEG, cfg->hedeleg);
608 csr_write(CSR_HVIP, csr->hvip);
609 csr_write(CSR_VSATP, csr->vsatp);
610 csr_write(CSR_HENVCFG, cfg->henvcfg);
611 if (IS_ENABLED(CONFIG_32BIT))
612 csr_write(CSR_HENVCFGH, cfg->henvcfg >> 32);
613 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
614 csr_write(CSR_HSTATEEN0, cfg->hstateen0);
615 if (IS_ENABLED(CONFIG_32BIT))
616 csr_write(CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
620 kvm_riscv_gstage_update_hgatp(vcpu);
622 kvm_riscv_vcpu_timer_restore(vcpu);
624 kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
625 kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
626 vcpu->arch.isa);
627 kvm_riscv_vcpu_host_vector_save(&vcpu->arch.host_context);
628 kvm_riscv_vcpu_guest_vector_restore(&vcpu->arch.guest_context,
629 vcpu->arch.isa);
631 kvm_riscv_vcpu_aia_load(vcpu, cpu);
633 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
635 vcpu->cpu = cpu;
638 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
640 void *nsh;
641 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
643 vcpu->cpu = -1;
645 kvm_riscv_vcpu_aia_put(vcpu);
647 kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
648 vcpu->arch.isa);
649 kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
651 kvm_riscv_vcpu_timer_save(vcpu);
652 kvm_riscv_vcpu_guest_vector_save(&vcpu->arch.guest_context,
653 vcpu->arch.isa);
654 kvm_riscv_vcpu_host_vector_restore(&vcpu->arch.host_context);
656 if (kvm_riscv_nacl_available()) {
657 nsh = nacl_shmem();
658 csr->vsstatus = nacl_csr_read(nsh, CSR_VSSTATUS);
659 csr->vsie = nacl_csr_read(nsh, CSR_VSIE);
660 csr->vstvec = nacl_csr_read(nsh, CSR_VSTVEC);
661 csr->vsscratch = nacl_csr_read(nsh, CSR_VSSCRATCH);
662 csr->vsepc = nacl_csr_read(nsh, CSR_VSEPC);
663 csr->vscause = nacl_csr_read(nsh, CSR_VSCAUSE);
664 csr->vstval = nacl_csr_read(nsh, CSR_VSTVAL);
665 csr->hvip = nacl_csr_read(nsh, CSR_HVIP);
666 csr->vsatp = nacl_csr_read(nsh, CSR_VSATP);
667 } else {
668 csr->vsstatus = csr_read(CSR_VSSTATUS);
669 csr->vsie = csr_read(CSR_VSIE);
670 csr->vstvec = csr_read(CSR_VSTVEC);
671 csr->vsscratch = csr_read(CSR_VSSCRATCH);
672 csr->vsepc = csr_read(CSR_VSEPC);
673 csr->vscause = csr_read(CSR_VSCAUSE);
674 csr->vstval = csr_read(CSR_VSTVAL);
675 csr->hvip = csr_read(CSR_HVIP);
676 csr->vsatp = csr_read(CSR_VSATP);
680 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
682 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
684 if (kvm_request_pending(vcpu)) {
685 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
686 kvm_vcpu_srcu_read_unlock(vcpu);
687 rcuwait_wait_event(wait,
688 (!kvm_riscv_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
689 TASK_INTERRUPTIBLE);
690 kvm_vcpu_srcu_read_lock(vcpu);
692 if (kvm_riscv_vcpu_stopped(vcpu) || vcpu->arch.pause) {
694 * Awaken to handle a signal, request to
695 * sleep again later.
697 kvm_make_request(KVM_REQ_SLEEP, vcpu);
701 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
702 kvm_riscv_reset_vcpu(vcpu);
704 if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
705 kvm_riscv_gstage_update_hgatp(vcpu);
707 if (kvm_check_request(KVM_REQ_FENCE_I, vcpu))
708 kvm_riscv_fence_i_process(vcpu);
711 * The generic KVM_REQ_TLB_FLUSH is same as
712 * KVM_REQ_HFENCE_GVMA_VMID_ALL
714 if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu))
715 kvm_riscv_hfence_gvma_vmid_all_process(vcpu);
717 if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu))
718 kvm_riscv_hfence_vvma_all_process(vcpu);
720 if (kvm_check_request(KVM_REQ_HFENCE, vcpu))
721 kvm_riscv_hfence_process(vcpu);
723 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
724 kvm_riscv_vcpu_record_steal_time(vcpu);
728 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
730 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
732 ncsr_write(CSR_HVIP, csr->hvip);
733 kvm_riscv_vcpu_aia_update_hvip(vcpu);
736 static __always_inline void kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu *vcpu)
738 struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
739 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
740 struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
742 vcpu->arch.host_scounteren = csr_swap(CSR_SCOUNTEREN, csr->scounteren);
743 vcpu->arch.host_senvcfg = csr_swap(CSR_SENVCFG, csr->senvcfg);
744 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
745 (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
746 vcpu->arch.host_sstateen0 = csr_swap(CSR_SSTATEEN0,
747 smcsr->sstateen0);
750 static __always_inline void kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu *vcpu)
752 struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
753 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
754 struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
756 csr->scounteren = csr_swap(CSR_SCOUNTEREN, vcpu->arch.host_scounteren);
757 csr->senvcfg = csr_swap(CSR_SENVCFG, vcpu->arch.host_senvcfg);
758 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
759 (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
760 smcsr->sstateen0 = csr_swap(CSR_SSTATEEN0,
761 vcpu->arch.host_sstateen0);
765 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
766 * the vCPU is running.
768 * This must be noinstr as instrumentation may make use of RCU, and this is not
769 * safe during the EQS.
771 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu,
772 struct kvm_cpu_trap *trap)
774 void *nsh;
775 struct kvm_cpu_context *gcntx = &vcpu->arch.guest_context;
776 struct kvm_cpu_context *hcntx = &vcpu->arch.host_context;
779 * We save trap CSRs (such as SEPC, SCAUSE, STVAL, HTVAL, and
780 * HTINST) here because we do local_irq_enable() after this
781 * function in kvm_arch_vcpu_ioctl_run() which can result in
782 * an interrupt immediately after local_irq_enable() and can
783 * potentially change trap CSRs.
786 kvm_riscv_vcpu_swap_in_guest_state(vcpu);
787 guest_state_enter_irqoff();
789 if (kvm_riscv_nacl_sync_sret_available()) {
790 nsh = nacl_shmem();
792 if (kvm_riscv_nacl_autoswap_csr_available()) {
793 hcntx->hstatus =
794 nacl_csr_read(nsh, CSR_HSTATUS);
795 nacl_scratch_write_long(nsh,
796 SBI_NACL_SHMEM_AUTOSWAP_OFFSET +
797 SBI_NACL_SHMEM_AUTOSWAP_HSTATUS,
798 gcntx->hstatus);
799 nacl_scratch_write_long(nsh,
800 SBI_NACL_SHMEM_AUTOSWAP_OFFSET,
801 SBI_NACL_SHMEM_AUTOSWAP_FLAG_HSTATUS);
802 } else if (kvm_riscv_nacl_sync_csr_available()) {
803 hcntx->hstatus = nacl_csr_swap(nsh,
804 CSR_HSTATUS, gcntx->hstatus);
805 } else {
806 hcntx->hstatus = csr_swap(CSR_HSTATUS, gcntx->hstatus);
809 nacl_scratch_write_longs(nsh,
810 SBI_NACL_SHMEM_SRET_OFFSET +
811 SBI_NACL_SHMEM_SRET_X(1),
812 &gcntx->ra,
813 SBI_NACL_SHMEM_SRET_X_LAST);
815 __kvm_riscv_nacl_switch_to(&vcpu->arch, SBI_EXT_NACL,
816 SBI_EXT_NACL_SYNC_SRET);
818 if (kvm_riscv_nacl_autoswap_csr_available()) {
819 nacl_scratch_write_long(nsh,
820 SBI_NACL_SHMEM_AUTOSWAP_OFFSET,
822 gcntx->hstatus = nacl_scratch_read_long(nsh,
823 SBI_NACL_SHMEM_AUTOSWAP_OFFSET +
824 SBI_NACL_SHMEM_AUTOSWAP_HSTATUS);
825 } else {
826 gcntx->hstatus = csr_swap(CSR_HSTATUS, hcntx->hstatus);
829 trap->htval = nacl_csr_read(nsh, CSR_HTVAL);
830 trap->htinst = nacl_csr_read(nsh, CSR_HTINST);
831 } else {
832 hcntx->hstatus = csr_swap(CSR_HSTATUS, gcntx->hstatus);
834 __kvm_riscv_switch_to(&vcpu->arch);
836 gcntx->hstatus = csr_swap(CSR_HSTATUS, hcntx->hstatus);
838 trap->htval = csr_read(CSR_HTVAL);
839 trap->htinst = csr_read(CSR_HTINST);
842 trap->sepc = gcntx->sepc;
843 trap->scause = csr_read(CSR_SCAUSE);
844 trap->stval = csr_read(CSR_STVAL);
846 vcpu->arch.last_exit_cpu = vcpu->cpu;
847 guest_state_exit_irqoff();
848 kvm_riscv_vcpu_swap_in_host_state(vcpu);
851 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
853 int ret;
854 struct kvm_cpu_trap trap;
855 struct kvm_run *run = vcpu->run;
857 if (!vcpu->arch.ran_atleast_once)
858 kvm_riscv_vcpu_setup_config(vcpu);
860 /* Mark this VCPU ran at least once */
861 vcpu->arch.ran_atleast_once = true;
863 kvm_vcpu_srcu_read_lock(vcpu);
865 switch (run->exit_reason) {
866 case KVM_EXIT_MMIO:
867 /* Process MMIO value returned from user-space */
868 ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
869 break;
870 case KVM_EXIT_RISCV_SBI:
871 /* Process SBI value returned from user-space */
872 ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
873 break;
874 case KVM_EXIT_RISCV_CSR:
875 /* Process CSR value returned from user-space */
876 ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run);
877 break;
878 default:
879 ret = 0;
880 break;
882 if (ret) {
883 kvm_vcpu_srcu_read_unlock(vcpu);
884 return ret;
887 if (!vcpu->wants_to_run) {
888 kvm_vcpu_srcu_read_unlock(vcpu);
889 return -EINTR;
892 vcpu_load(vcpu);
894 kvm_sigset_activate(vcpu);
896 ret = 1;
897 run->exit_reason = KVM_EXIT_UNKNOWN;
898 while (ret > 0) {
899 /* Check conditions before entering the guest */
900 ret = xfer_to_guest_mode_handle_work(vcpu);
901 if (ret)
902 continue;
903 ret = 1;
905 kvm_riscv_gstage_vmid_update(vcpu);
907 kvm_riscv_check_vcpu_requests(vcpu);
909 preempt_disable();
911 /* Update AIA HW state before entering guest */
912 ret = kvm_riscv_vcpu_aia_update(vcpu);
913 if (ret <= 0) {
914 preempt_enable();
915 continue;
918 local_irq_disable();
921 * Ensure we set mode to IN_GUEST_MODE after we disable
922 * interrupts and before the final VCPU requests check.
923 * See the comment in kvm_vcpu_exiting_guest_mode() and
924 * Documentation/virt/kvm/vcpu-requests.rst
926 vcpu->mode = IN_GUEST_MODE;
928 kvm_vcpu_srcu_read_unlock(vcpu);
929 smp_mb__after_srcu_read_unlock();
932 * We might have got VCPU interrupts updated asynchronously
933 * so update it in HW.
935 kvm_riscv_vcpu_flush_interrupts(vcpu);
937 /* Update HVIP CSR for current CPU */
938 kvm_riscv_update_hvip(vcpu);
940 if (kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
941 kvm_request_pending(vcpu) ||
942 xfer_to_guest_mode_work_pending()) {
943 vcpu->mode = OUTSIDE_GUEST_MODE;
944 local_irq_enable();
945 preempt_enable();
946 kvm_vcpu_srcu_read_lock(vcpu);
947 continue;
951 * Cleanup stale TLB enteries
953 * Note: This should be done after G-stage VMID has been
954 * updated using kvm_riscv_gstage_vmid_ver_changed()
956 kvm_riscv_local_tlb_sanitize(vcpu);
958 trace_kvm_entry(vcpu);
960 guest_timing_enter_irqoff();
962 kvm_riscv_vcpu_enter_exit(vcpu, &trap);
964 vcpu->mode = OUTSIDE_GUEST_MODE;
965 vcpu->stat.exits++;
967 /* Syncup interrupts state with HW */
968 kvm_riscv_vcpu_sync_interrupts(vcpu);
971 * We must ensure that any pending interrupts are taken before
972 * we exit guest timing so that timer ticks are accounted as
973 * guest time. Transiently unmask interrupts so that any
974 * pending interrupts are taken.
976 * There's no barrier which ensures that pending interrupts are
977 * recognised, so we just hope that the CPU takes any pending
978 * interrupts between the enable and disable.
980 local_irq_enable();
981 local_irq_disable();
983 guest_timing_exit_irqoff();
985 local_irq_enable();
987 trace_kvm_exit(&trap);
989 preempt_enable();
991 kvm_vcpu_srcu_read_lock(vcpu);
993 ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
996 kvm_sigset_deactivate(vcpu);
998 vcpu_put(vcpu);
1000 kvm_vcpu_srcu_read_unlock(vcpu);
1002 return ret;