1 // SPDX-License-Identifier: GPL-2.0
3 * Common Block IO controller cgroup interface
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
37 static void __blkcg_rstat_flush(struct blkcg
*blkcg
, int cpu
);
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
46 static DEFINE_MUTEX(blkcg_pol_register_mutex
);
47 static DEFINE_MUTEX(blkcg_pol_mutex
);
49 struct blkcg blkcg_root
;
50 EXPORT_SYMBOL_GPL(blkcg_root
);
52 struct cgroup_subsys_state
* const blkcg_root_css
= &blkcg_root
.css
;
53 EXPORT_SYMBOL_GPL(blkcg_root_css
);
55 static struct blkcg_policy
*blkcg_policy
[BLKCG_MAX_POLS
];
57 static LIST_HEAD(all_blkcgs
); /* protected by blkcg_pol_mutex */
59 bool blkcg_debug_stats
= false;
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock
);
63 #define BLKG_DESTROY_BATCH_SIZE 64
66 * Lockless lists for tracking IO stats update
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
81 * Return: 0 if successful or -ENOMEM if allocation fails.
83 static int init_blkcg_llists(struct blkcg
*blkcg
)
87 blkcg
->lhead
= alloc_percpu_gfp(struct llist_head
, GFP_KERNEL
);
91 for_each_possible_cpu(cpu
)
92 init_llist_head(per_cpu_ptr(blkcg
->lhead
, cpu
));
97 * blkcg_css - find the current css
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
103 static struct cgroup_subsys_state
*blkcg_css(void)
105 struct cgroup_subsys_state
*css
;
107 css
= kthread_blkcg();
110 return task_css(current
, io_cgrp_id
);
113 static bool blkcg_policy_enabled(struct request_queue
*q
,
114 const struct blkcg_policy
*pol
)
116 return pol
&& test_bit(pol
->plid
, q
->blkcg_pols
);
119 static void blkg_free_workfn(struct work_struct
*work
)
121 struct blkcg_gq
*blkg
= container_of(work
, struct blkcg_gq
,
123 struct request_queue
*q
= blkg
->q
;
127 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 * in order to make sure pd_free_fn() is called in order, the deletion
129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 * blkcg_deactivate_policy().
133 mutex_lock(&q
->blkcg_mutex
);
134 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++)
136 blkcg_policy
[i
]->pd_free_fn(blkg
->pd
[i
]);
138 blkg_put(blkg
->parent
);
139 spin_lock_irq(&q
->queue_lock
);
140 list_del_init(&blkg
->q_node
);
141 spin_unlock_irq(&q
->queue_lock
);
142 mutex_unlock(&q
->blkcg_mutex
);
145 free_percpu(blkg
->iostat_cpu
);
146 percpu_ref_exit(&blkg
->refcnt
);
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
154 * Free @blkg which may be partially allocated.
156 static void blkg_free(struct blkcg_gq
*blkg
)
162 * Both ->pd_free_fn() and request queue's release handler may
163 * sleep, so free us by scheduling one work func
165 INIT_WORK(&blkg
->free_work
, blkg_free_workfn
);
166 schedule_work(&blkg
->free_work
);
169 static void __blkg_release(struct rcu_head
*rcu
)
171 struct blkcg_gq
*blkg
= container_of(rcu
, struct blkcg_gq
, rcu_head
);
172 struct blkcg
*blkcg
= blkg
->blkcg
;
175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 WARN_ON(!bio_list_empty(&blkg
->async_bios
));
179 * Flush all the non-empty percpu lockless lists before releasing
180 * us, given these stat belongs to us.
182 * blkg_stat_lock is for serializing blkg stat update
184 for_each_possible_cpu(cpu
)
185 __blkcg_rstat_flush(blkcg
, cpu
);
187 /* release the blkcg and parent blkg refs this blkg has been holding */
188 css_put(&blkg
->blkcg
->css
);
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid. For
195 * example, don't try to follow throtl_data and request queue links.
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
200 static void blkg_release(struct percpu_ref
*ref
)
202 struct blkcg_gq
*blkg
= container_of(ref
, struct blkcg_gq
, refcnt
);
204 call_rcu(&blkg
->rcu_head
, __blkg_release
);
207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208 static struct workqueue_struct
*blkcg_punt_bio_wq
;
210 static void blkg_async_bio_workfn(struct work_struct
*work
)
212 struct blkcg_gq
*blkg
= container_of(work
, struct blkcg_gq
,
214 struct bio_list bios
= BIO_EMPTY_LIST
;
216 struct blk_plug plug
;
217 bool need_plug
= false;
219 /* as long as there are pending bios, @blkg can't go away */
220 spin_lock(&blkg
->async_bio_lock
);
221 bio_list_merge_init(&bios
, &blkg
->async_bios
);
222 spin_unlock(&blkg
->async_bio_lock
);
224 /* start plug only when bio_list contains at least 2 bios */
225 if (bios
.head
&& bios
.head
->bi_next
) {
227 blk_start_plug(&plug
);
229 while ((bio
= bio_list_pop(&bios
)))
232 blk_finish_plug(&plug
);
236 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
237 * lead to priority inversions as the kthread can be trapped waiting for that
238 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
239 * a dedicated per-blkcg work item to avoid such priority inversions.
241 void blkcg_punt_bio_submit(struct bio
*bio
)
243 struct blkcg_gq
*blkg
= bio
->bi_blkg
;
246 spin_lock(&blkg
->async_bio_lock
);
247 bio_list_add(&blkg
->async_bios
, bio
);
248 spin_unlock(&blkg
->async_bio_lock
);
249 queue_work(blkcg_punt_bio_wq
, &blkg
->async_bio_work
);
251 /* never bounce for the root cgroup */
255 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit
);
257 static int __init
blkcg_punt_bio_init(void)
259 blkcg_punt_bio_wq
= alloc_workqueue("blkcg_punt_bio",
260 WQ_MEM_RECLAIM
| WQ_FREEZABLE
|
261 WQ_UNBOUND
| WQ_SYSFS
, 0);
262 if (!blkcg_punt_bio_wq
)
266 subsys_initcall(blkcg_punt_bio_init
);
267 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
270 * bio_blkcg_css - return the blkcg CSS associated with a bio
273 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
274 * associated. Callers are expected to either handle %NULL or know association
275 * has been done prior to calling this.
277 struct cgroup_subsys_state
*bio_blkcg_css(struct bio
*bio
)
279 if (!bio
|| !bio
->bi_blkg
)
281 return &bio
->bi_blkg
->blkcg
->css
;
283 EXPORT_SYMBOL_GPL(bio_blkcg_css
);
286 * blkcg_parent - get the parent of a blkcg
287 * @blkcg: blkcg of interest
289 * Return the parent blkcg of @blkcg. Can be called anytime.
291 static inline struct blkcg
*blkcg_parent(struct blkcg
*blkcg
)
293 return css_to_blkcg(blkcg
->css
.parent
);
297 * blkg_alloc - allocate a blkg
298 * @blkcg: block cgroup the new blkg is associated with
299 * @disk: gendisk the new blkg is associated with
300 * @gfp_mask: allocation mask to use
302 * Allocate a new blkg associating @blkcg and @disk.
304 static struct blkcg_gq
*blkg_alloc(struct blkcg
*blkcg
, struct gendisk
*disk
,
307 struct blkcg_gq
*blkg
;
310 /* alloc and init base part */
311 blkg
= kzalloc_node(sizeof(*blkg
), gfp_mask
, disk
->queue
->node
);
314 if (percpu_ref_init(&blkg
->refcnt
, blkg_release
, 0, gfp_mask
))
316 blkg
->iostat_cpu
= alloc_percpu_gfp(struct blkg_iostat_set
, gfp_mask
);
317 if (!blkg
->iostat_cpu
)
318 goto out_exit_refcnt
;
319 if (!blk_get_queue(disk
->queue
))
320 goto out_free_iostat
;
322 blkg
->q
= disk
->queue
;
323 INIT_LIST_HEAD(&blkg
->q_node
);
325 blkg
->iostat
.blkg
= blkg
;
326 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327 spin_lock_init(&blkg
->async_bio_lock
);
328 bio_list_init(&blkg
->async_bios
);
329 INIT_WORK(&blkg
->async_bio_work
, blkg_async_bio_workfn
);
332 u64_stats_init(&blkg
->iostat
.sync
);
333 for_each_possible_cpu(cpu
) {
334 u64_stats_init(&per_cpu_ptr(blkg
->iostat_cpu
, cpu
)->sync
);
335 per_cpu_ptr(blkg
->iostat_cpu
, cpu
)->blkg
= blkg
;
338 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++) {
339 struct blkcg_policy
*pol
= blkcg_policy
[i
];
340 struct blkg_policy_data
*pd
;
342 if (!blkcg_policy_enabled(disk
->queue
, pol
))
345 /* alloc per-policy data and attach it to blkg */
346 pd
= pol
->pd_alloc_fn(disk
, blkcg
, gfp_mask
);
360 blkcg_policy
[i
]->pd_free_fn(blkg
->pd
[i
]);
361 blk_put_queue(disk
->queue
);
363 free_percpu(blkg
->iostat_cpu
);
365 percpu_ref_exit(&blkg
->refcnt
);
372 * If @new_blkg is %NULL, this function tries to allocate a new one as
373 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
375 static struct blkcg_gq
*blkg_create(struct blkcg
*blkcg
, struct gendisk
*disk
,
376 struct blkcg_gq
*new_blkg
)
378 struct blkcg_gq
*blkg
;
381 lockdep_assert_held(&disk
->queue
->queue_lock
);
383 /* request_queue is dying, do not create/recreate a blkg */
384 if (blk_queue_dying(disk
->queue
)) {
389 /* blkg holds a reference to blkcg */
390 if (!css_tryget_online(&blkcg
->css
)) {
397 new_blkg
= blkg_alloc(blkcg
, disk
, GFP_NOWAIT
| __GFP_NOWARN
);
398 if (unlikely(!new_blkg
)) {
406 if (blkcg_parent(blkcg
)) {
407 blkg
->parent
= blkg_lookup(blkcg_parent(blkcg
), disk
->queue
);
408 if (WARN_ON_ONCE(!blkg
->parent
)) {
412 blkg_get(blkg
->parent
);
415 /* invoke per-policy init */
416 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++) {
417 struct blkcg_policy
*pol
= blkcg_policy
[i
];
419 if (blkg
->pd
[i
] && pol
->pd_init_fn
)
420 pol
->pd_init_fn(blkg
->pd
[i
]);
424 spin_lock(&blkcg
->lock
);
425 ret
= radix_tree_insert(&blkcg
->blkg_tree
, disk
->queue
->id
, blkg
);
427 hlist_add_head_rcu(&blkg
->blkcg_node
, &blkcg
->blkg_list
);
428 list_add(&blkg
->q_node
, &disk
->queue
->blkg_list
);
430 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++) {
431 struct blkcg_policy
*pol
= blkcg_policy
[i
];
434 if (pol
->pd_online_fn
)
435 pol
->pd_online_fn(blkg
->pd
[i
]);
436 blkg
->pd
[i
]->online
= true;
441 spin_unlock(&blkcg
->lock
);
446 /* @blkg failed fully initialized, use the usual release path */
451 css_put(&blkcg
->css
);
459 * blkg_lookup_create - lookup blkg, try to create one if not there
460 * @blkcg: blkcg of interest
461 * @disk: gendisk of interest
463 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
464 * create one. blkg creation is performed recursively from blkcg_root such
465 * that all non-root blkg's have access to the parent blkg. This function
466 * should be called under RCU read lock and takes @disk->queue->queue_lock.
468 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
471 static struct blkcg_gq
*blkg_lookup_create(struct blkcg
*blkcg
,
472 struct gendisk
*disk
)
474 struct request_queue
*q
= disk
->queue
;
475 struct blkcg_gq
*blkg
;
478 WARN_ON_ONCE(!rcu_read_lock_held());
480 blkg
= blkg_lookup(blkcg
, q
);
484 spin_lock_irqsave(&q
->queue_lock
, flags
);
485 blkg
= blkg_lookup(blkcg
, q
);
487 if (blkcg
!= &blkcg_root
&&
488 blkg
!= rcu_dereference(blkcg
->blkg_hint
))
489 rcu_assign_pointer(blkcg
->blkg_hint
, blkg
);
494 * Create blkgs walking down from blkcg_root to @blkcg, so that all
495 * non-root blkgs have access to their parents. Returns the closest
496 * blkg to the intended blkg should blkg_create() fail.
499 struct blkcg
*pos
= blkcg
;
500 struct blkcg
*parent
= blkcg_parent(blkcg
);
501 struct blkcg_gq
*ret_blkg
= q
->root_blkg
;
504 blkg
= blkg_lookup(parent
, q
);
506 /* remember closest blkg */
511 parent
= blkcg_parent(parent
);
514 blkg
= blkg_create(pos
, disk
, NULL
);
524 spin_unlock_irqrestore(&q
->queue_lock
, flags
);
528 static void blkg_destroy(struct blkcg_gq
*blkg
)
530 struct blkcg
*blkcg
= blkg
->blkcg
;
533 lockdep_assert_held(&blkg
->q
->queue_lock
);
534 lockdep_assert_held(&blkcg
->lock
);
537 * blkg stays on the queue list until blkg_free_workfn(), see details in
538 * blkg_free_workfn(), hence this function can be called from
539 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540 * blkg_free_workfn().
542 if (hlist_unhashed(&blkg
->blkcg_node
))
545 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++) {
546 struct blkcg_policy
*pol
= blkcg_policy
[i
];
548 if (blkg
->pd
[i
] && blkg
->pd
[i
]->online
) {
549 blkg
->pd
[i
]->online
= false;
550 if (pol
->pd_offline_fn
)
551 pol
->pd_offline_fn(blkg
->pd
[i
]);
555 blkg
->online
= false;
557 radix_tree_delete(&blkcg
->blkg_tree
, blkg
->q
->id
);
558 hlist_del_init_rcu(&blkg
->blkcg_node
);
561 * Both setting lookup hint to and clearing it from @blkg are done
562 * under queue_lock. If it's not pointing to @blkg now, it never
563 * will. Hint assignment itself can race safely.
565 if (rcu_access_pointer(blkcg
->blkg_hint
) == blkg
)
566 rcu_assign_pointer(blkcg
->blkg_hint
, NULL
);
569 * Put the reference taken at the time of creation so that when all
570 * queues are gone, group can be destroyed.
572 percpu_ref_kill(&blkg
->refcnt
);
575 static void blkg_destroy_all(struct gendisk
*disk
)
577 struct request_queue
*q
= disk
->queue
;
578 struct blkcg_gq
*blkg
;
579 int count
= BLKG_DESTROY_BATCH_SIZE
;
583 spin_lock_irq(&q
->queue_lock
);
584 list_for_each_entry(blkg
, &q
->blkg_list
, q_node
) {
585 struct blkcg
*blkcg
= blkg
->blkcg
;
587 if (hlist_unhashed(&blkg
->blkcg_node
))
590 spin_lock(&blkcg
->lock
);
592 spin_unlock(&blkcg
->lock
);
595 * in order to avoid holding the spin lock for too long, release
596 * it when a batch of blkgs are destroyed.
599 count
= BLKG_DESTROY_BATCH_SIZE
;
600 spin_unlock_irq(&q
->queue_lock
);
607 * Mark policy deactivated since policy offline has been done, and
608 * the free is scheduled, so future blkcg_deactivate_policy() can
611 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++) {
612 struct blkcg_policy
*pol
= blkcg_policy
[i
];
615 __clear_bit(pol
->plid
, q
->blkcg_pols
);
619 spin_unlock_irq(&q
->queue_lock
);
622 static void blkg_iostat_set(struct blkg_iostat
*dst
, struct blkg_iostat
*src
)
626 for (i
= 0; i
< BLKG_IOSTAT_NR
; i
++) {
627 dst
->bytes
[i
] = src
->bytes
[i
];
628 dst
->ios
[i
] = src
->ios
[i
];
632 static void __blkg_clear_stat(struct blkg_iostat_set
*bis
)
634 struct blkg_iostat cur
= {0};
637 flags
= u64_stats_update_begin_irqsave(&bis
->sync
);
638 blkg_iostat_set(&bis
->cur
, &cur
);
639 blkg_iostat_set(&bis
->last
, &cur
);
640 u64_stats_update_end_irqrestore(&bis
->sync
, flags
);
643 static void blkg_clear_stat(struct blkcg_gq
*blkg
)
647 for_each_possible_cpu(cpu
) {
648 struct blkg_iostat_set
*s
= per_cpu_ptr(blkg
->iostat_cpu
, cpu
);
650 __blkg_clear_stat(s
);
652 __blkg_clear_stat(&blkg
->iostat
);
655 static int blkcg_reset_stats(struct cgroup_subsys_state
*css
,
656 struct cftype
*cftype
, u64 val
)
658 struct blkcg
*blkcg
= css_to_blkcg(css
);
659 struct blkcg_gq
*blkg
;
662 mutex_lock(&blkcg_pol_mutex
);
663 spin_lock_irq(&blkcg
->lock
);
666 * Note that stat reset is racy - it doesn't synchronize against
667 * stat updates. This is a debug feature which shouldn't exist
668 * anyway. If you get hit by a race, retry.
670 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
671 blkg_clear_stat(blkg
);
672 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++) {
673 struct blkcg_policy
*pol
= blkcg_policy
[i
];
675 if (blkg
->pd
[i
] && pol
->pd_reset_stats_fn
)
676 pol
->pd_reset_stats_fn(blkg
->pd
[i
]);
680 spin_unlock_irq(&blkcg
->lock
);
681 mutex_unlock(&blkcg_pol_mutex
);
685 const char *blkg_dev_name(struct blkcg_gq
*blkg
)
689 return bdi_dev_name(blkg
->q
->disk
->bdi
);
693 * blkcg_print_blkgs - helper for printing per-blkg data
694 * @sf: seq_file to print to
695 * @blkcg: blkcg of interest
696 * @prfill: fill function to print out a blkg
697 * @pol: policy in question
698 * @data: data to be passed to @prfill
699 * @show_total: to print out sum of prfill return values or not
701 * This function invokes @prfill on each blkg of @blkcg if pd for the
702 * policy specified by @pol exists. @prfill is invoked with @sf, the
703 * policy data and @data and the matching queue lock held. If @show_total
704 * is %true, the sum of the return values from @prfill is printed with
705 * "Total" label at the end.
707 * This is to be used to construct print functions for
708 * cftype->read_seq_string method.
710 void blkcg_print_blkgs(struct seq_file
*sf
, struct blkcg
*blkcg
,
711 u64 (*prfill
)(struct seq_file
*,
712 struct blkg_policy_data
*, int),
713 const struct blkcg_policy
*pol
, int data
,
716 struct blkcg_gq
*blkg
;
720 hlist_for_each_entry_rcu(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
721 spin_lock_irq(&blkg
->q
->queue_lock
);
722 if (blkcg_policy_enabled(blkg
->q
, pol
))
723 total
+= prfill(sf
, blkg
->pd
[pol
->plid
], data
);
724 spin_unlock_irq(&blkg
->q
->queue_lock
);
729 seq_printf(sf
, "Total %llu\n", (unsigned long long)total
);
731 EXPORT_SYMBOL_GPL(blkcg_print_blkgs
);
734 * __blkg_prfill_u64 - prfill helper for a single u64 value
735 * @sf: seq_file to print to
736 * @pd: policy private data of interest
739 * Print @v to @sf for the device associated with @pd.
741 u64
__blkg_prfill_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
, u64 v
)
743 const char *dname
= blkg_dev_name(pd
->blkg
);
748 seq_printf(sf
, "%s %llu\n", dname
, (unsigned long long)v
);
751 EXPORT_SYMBOL_GPL(__blkg_prfill_u64
);
754 * blkg_conf_init - initialize a blkg_conf_ctx
755 * @ctx: blkg_conf_ctx to initialize
756 * @input: input string
758 * Initialize @ctx which can be used to parse blkg config input string @input.
759 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
760 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
762 void blkg_conf_init(struct blkg_conf_ctx
*ctx
, char *input
)
764 *ctx
= (struct blkg_conf_ctx
){ .input
= input
};
766 EXPORT_SYMBOL_GPL(blkg_conf_init
);
769 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
770 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
772 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
773 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
774 * set to point past the device node prefix.
776 * This function may be called multiple times on @ctx and the extra calls become
777 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
778 * explicitly if bdev access is needed without resolving the blkcg / policy part
779 * of @ctx->input. Returns -errno on error.
781 int blkg_conf_open_bdev(struct blkg_conf_ctx
*ctx
)
783 char *input
= ctx
->input
;
784 unsigned int major
, minor
;
785 struct block_device
*bdev
;
791 if (sscanf(input
, "%u:%u%n", &major
, &minor
, &key_len
) != 2)
795 if (!isspace(*input
))
797 input
= skip_spaces(input
);
799 bdev
= blkdev_get_no_open(MKDEV(major
, minor
));
802 if (bdev_is_partition(bdev
)) {
803 blkdev_put_no_open(bdev
);
807 mutex_lock(&bdev
->bd_queue
->rq_qos_mutex
);
808 if (!disk_live(bdev
->bd_disk
)) {
809 blkdev_put_no_open(bdev
);
810 mutex_unlock(&bdev
->bd_queue
->rq_qos_mutex
);
820 * blkg_conf_prep - parse and prepare for per-blkg config update
821 * @blkcg: target block cgroup
822 * @pol: target policy
823 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
825 * Parse per-blkg config update from @ctx->input and initialize @ctx
826 * accordingly. On success, @ctx->body points to the part of @ctx->input
827 * following MAJ:MIN, @ctx->bdev points to the target block device and
828 * @ctx->blkg to the blkg being configured.
830 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
831 * function returns with queue lock held and must be followed by
834 int blkg_conf_prep(struct blkcg
*blkcg
, const struct blkcg_policy
*pol
,
835 struct blkg_conf_ctx
*ctx
)
836 __acquires(&bdev
->bd_queue
->queue_lock
)
838 struct gendisk
*disk
;
839 struct request_queue
*q
;
840 struct blkcg_gq
*blkg
;
843 ret
= blkg_conf_open_bdev(ctx
);
847 disk
= ctx
->bdev
->bd_disk
;
851 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
852 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
854 ret
= blk_queue_enter(q
, 0);
858 spin_lock_irq(&q
->queue_lock
);
860 if (!blkcg_policy_enabled(q
, pol
)) {
865 blkg
= blkg_lookup(blkcg
, q
);
870 * Create blkgs walking down from blkcg_root to @blkcg, so that all
871 * non-root blkgs have access to their parents.
874 struct blkcg
*pos
= blkcg
;
875 struct blkcg
*parent
;
876 struct blkcg_gq
*new_blkg
;
878 parent
= blkcg_parent(blkcg
);
879 while (parent
&& !blkg_lookup(parent
, q
)) {
881 parent
= blkcg_parent(parent
);
884 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
885 spin_unlock_irq(&q
->queue_lock
);
887 new_blkg
= blkg_alloc(pos
, disk
, GFP_KERNEL
);
888 if (unlikely(!new_blkg
)) {
890 goto fail_exit_queue
;
893 if (radix_tree_preload(GFP_KERNEL
)) {
896 goto fail_exit_queue
;
899 spin_lock_irq(&q
->queue_lock
);
901 if (!blkcg_policy_enabled(q
, pol
)) {
907 blkg
= blkg_lookup(pos
, q
);
911 blkg
= blkg_create(pos
, disk
, new_blkg
);
918 radix_tree_preload_end();
929 radix_tree_preload_end();
931 spin_unlock_irq(&q
->queue_lock
);
936 * If queue was bypassing, we should retry. Do so after a
937 * short msleep(). It isn't strictly necessary but queue
938 * can be bypassing for some time and it's always nice to
939 * avoid busy looping.
943 ret
= restart_syscall();
947 EXPORT_SYMBOL_GPL(blkg_conf_prep
);
950 * blkg_conf_exit - clean up per-blkg config update
951 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
953 * Clean up after per-blkg config update. This function must be called on all
954 * blkg_conf_ctx's initialized with blkg_conf_init().
956 void blkg_conf_exit(struct blkg_conf_ctx
*ctx
)
957 __releases(&ctx
->bdev
->bd_queue
->queue_lock
)
958 __releases(&ctx
->bdev
->bd_queue
->rq_qos_mutex
)
961 spin_unlock_irq(&bdev_get_queue(ctx
->bdev
)->queue_lock
);
966 mutex_unlock(&ctx
->bdev
->bd_queue
->rq_qos_mutex
);
967 blkdev_put_no_open(ctx
->bdev
);
972 EXPORT_SYMBOL_GPL(blkg_conf_exit
);
974 static void blkg_iostat_add(struct blkg_iostat
*dst
, struct blkg_iostat
*src
)
978 for (i
= 0; i
< BLKG_IOSTAT_NR
; i
++) {
979 dst
->bytes
[i
] += src
->bytes
[i
];
980 dst
->ios
[i
] += src
->ios
[i
];
984 static void blkg_iostat_sub(struct blkg_iostat
*dst
, struct blkg_iostat
*src
)
988 for (i
= 0; i
< BLKG_IOSTAT_NR
; i
++) {
989 dst
->bytes
[i
] -= src
->bytes
[i
];
990 dst
->ios
[i
] -= src
->ios
[i
];
994 static void blkcg_iostat_update(struct blkcg_gq
*blkg
, struct blkg_iostat
*cur
,
995 struct blkg_iostat
*last
)
997 struct blkg_iostat delta
;
1000 /* propagate percpu delta to global */
1001 flags
= u64_stats_update_begin_irqsave(&blkg
->iostat
.sync
);
1002 blkg_iostat_set(&delta
, cur
);
1003 blkg_iostat_sub(&delta
, last
);
1004 blkg_iostat_add(&blkg
->iostat
.cur
, &delta
);
1005 blkg_iostat_add(last
, &delta
);
1006 u64_stats_update_end_irqrestore(&blkg
->iostat
.sync
, flags
);
1009 static void __blkcg_rstat_flush(struct blkcg
*blkcg
, int cpu
)
1011 struct llist_head
*lhead
= per_cpu_ptr(blkcg
->lhead
, cpu
);
1012 struct llist_node
*lnode
;
1013 struct blkg_iostat_set
*bisc
, *next_bisc
;
1014 unsigned long flags
;
1018 lnode
= llist_del_all(lhead
);
1023 * For covering concurrent parent blkg update from blkg_release().
1025 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1026 * this lock won't cause contention most of time.
1028 raw_spin_lock_irqsave(&blkg_stat_lock
, flags
);
1031 * Iterate only the iostat_cpu's queued in the lockless list.
1033 llist_for_each_entry_safe(bisc
, next_bisc
, lnode
, lnode
) {
1034 struct blkcg_gq
*blkg
= bisc
->blkg
;
1035 struct blkcg_gq
*parent
= blkg
->parent
;
1036 struct blkg_iostat cur
;
1040 * Order assignment of `next_bisc` from `bisc->lnode.next` in
1041 * llist_for_each_entry_safe and clearing `bisc->lqueued` for
1042 * avoiding to assign `next_bisc` with new next pointer added
1043 * in blk_cgroup_bio_start() in case of re-ordering.
1045 * The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1049 WRITE_ONCE(bisc
->lqueued
, false);
1050 if (bisc
== &blkg
->iostat
)
1051 goto propagate_up
; /* propagate up to parent only */
1053 /* fetch the current per-cpu values */
1055 seq
= u64_stats_fetch_begin(&bisc
->sync
);
1056 blkg_iostat_set(&cur
, &bisc
->cur
);
1057 } while (u64_stats_fetch_retry(&bisc
->sync
, seq
));
1059 blkcg_iostat_update(blkg
, &cur
, &bisc
->last
);
1062 /* propagate global delta to parent (unless that's root) */
1063 if (parent
&& parent
->parent
) {
1064 blkcg_iostat_update(parent
, &blkg
->iostat
.cur
,
1065 &blkg
->iostat
.last
);
1067 * Queue parent->iostat to its blkcg's lockless
1068 * list to propagate up to the grandparent if the
1069 * iostat hasn't been queued yet.
1071 if (!parent
->iostat
.lqueued
) {
1072 struct llist_head
*plhead
;
1074 plhead
= per_cpu_ptr(parent
->blkcg
->lhead
, cpu
);
1075 llist_add(&parent
->iostat
.lnode
, plhead
);
1076 parent
->iostat
.lqueued
= true;
1080 raw_spin_unlock_irqrestore(&blkg_stat_lock
, flags
);
1085 static void blkcg_rstat_flush(struct cgroup_subsys_state
*css
, int cpu
)
1087 /* Root-level stats are sourced from system-wide IO stats */
1088 if (cgroup_parent(css
->cgroup
))
1089 __blkcg_rstat_flush(css_to_blkcg(css
), cpu
);
1093 * We source root cgroup stats from the system-wide stats to avoid
1094 * tracking the same information twice and incurring overhead when no
1095 * cgroups are defined. For that reason, cgroup_rstat_flush in
1096 * blkcg_print_stat does not actually fill out the iostat in the root
1097 * cgroup's blkcg_gq.
1099 * However, we would like to re-use the printing code between the root and
1100 * non-root cgroups to the extent possible. For that reason, we simulate
1101 * flushing the root cgroup's stats by explicitly filling in the iostat
1102 * with disk level statistics.
1104 static void blkcg_fill_root_iostats(void)
1106 struct class_dev_iter iter
;
1109 class_dev_iter_init(&iter
, &block_class
, NULL
, &disk_type
);
1110 while ((dev
= class_dev_iter_next(&iter
))) {
1111 struct block_device
*bdev
= dev_to_bdev(dev
);
1112 struct blkcg_gq
*blkg
= bdev
->bd_disk
->queue
->root_blkg
;
1113 struct blkg_iostat tmp
;
1115 unsigned long flags
;
1117 memset(&tmp
, 0, sizeof(tmp
));
1118 for_each_possible_cpu(cpu
) {
1119 struct disk_stats
*cpu_dkstats
;
1121 cpu_dkstats
= per_cpu_ptr(bdev
->bd_stats
, cpu
);
1122 tmp
.ios
[BLKG_IOSTAT_READ
] +=
1123 cpu_dkstats
->ios
[STAT_READ
];
1124 tmp
.ios
[BLKG_IOSTAT_WRITE
] +=
1125 cpu_dkstats
->ios
[STAT_WRITE
];
1126 tmp
.ios
[BLKG_IOSTAT_DISCARD
] +=
1127 cpu_dkstats
->ios
[STAT_DISCARD
];
1128 // convert sectors to bytes
1129 tmp
.bytes
[BLKG_IOSTAT_READ
] +=
1130 cpu_dkstats
->sectors
[STAT_READ
] << 9;
1131 tmp
.bytes
[BLKG_IOSTAT_WRITE
] +=
1132 cpu_dkstats
->sectors
[STAT_WRITE
] << 9;
1133 tmp
.bytes
[BLKG_IOSTAT_DISCARD
] +=
1134 cpu_dkstats
->sectors
[STAT_DISCARD
] << 9;
1137 flags
= u64_stats_update_begin_irqsave(&blkg
->iostat
.sync
);
1138 blkg_iostat_set(&blkg
->iostat
.cur
, &tmp
);
1139 u64_stats_update_end_irqrestore(&blkg
->iostat
.sync
, flags
);
1143 static void blkcg_print_one_stat(struct blkcg_gq
*blkg
, struct seq_file
*s
)
1145 struct blkg_iostat_set
*bis
= &blkg
->iostat
;
1146 u64 rbytes
, wbytes
, rios
, wios
, dbytes
, dios
;
1154 dname
= blkg_dev_name(blkg
);
1158 seq_printf(s
, "%s ", dname
);
1161 seq
= u64_stats_fetch_begin(&bis
->sync
);
1163 rbytes
= bis
->cur
.bytes
[BLKG_IOSTAT_READ
];
1164 wbytes
= bis
->cur
.bytes
[BLKG_IOSTAT_WRITE
];
1165 dbytes
= bis
->cur
.bytes
[BLKG_IOSTAT_DISCARD
];
1166 rios
= bis
->cur
.ios
[BLKG_IOSTAT_READ
];
1167 wios
= bis
->cur
.ios
[BLKG_IOSTAT_WRITE
];
1168 dios
= bis
->cur
.ios
[BLKG_IOSTAT_DISCARD
];
1169 } while (u64_stats_fetch_retry(&bis
->sync
, seq
));
1171 if (rbytes
|| wbytes
|| rios
|| wios
) {
1172 seq_printf(s
, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1173 rbytes
, wbytes
, rios
, wios
,
1177 if (blkcg_debug_stats
&& atomic_read(&blkg
->use_delay
)) {
1178 seq_printf(s
, " use_delay=%d delay_nsec=%llu",
1179 atomic_read(&blkg
->use_delay
),
1180 atomic64_read(&blkg
->delay_nsec
));
1183 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++) {
1184 struct blkcg_policy
*pol
= blkcg_policy
[i
];
1186 if (!blkg
->pd
[i
] || !pol
->pd_stat_fn
)
1189 pol
->pd_stat_fn(blkg
->pd
[i
], s
);
1195 static int blkcg_print_stat(struct seq_file
*sf
, void *v
)
1197 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1198 struct blkcg_gq
*blkg
;
1200 if (!seq_css(sf
)->parent
)
1201 blkcg_fill_root_iostats();
1203 cgroup_rstat_flush(blkcg
->css
.cgroup
);
1206 hlist_for_each_entry_rcu(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1207 spin_lock_irq(&blkg
->q
->queue_lock
);
1208 blkcg_print_one_stat(blkg
, sf
);
1209 spin_unlock_irq(&blkg
->q
->queue_lock
);
1215 static struct cftype blkcg_files
[] = {
1218 .seq_show
= blkcg_print_stat
,
1223 static struct cftype blkcg_legacy_files
[] = {
1225 .name
= "reset_stats",
1226 .write_u64
= blkcg_reset_stats
,
1231 #ifdef CONFIG_CGROUP_WRITEBACK
1232 struct list_head
*blkcg_get_cgwb_list(struct cgroup_subsys_state
*css
)
1234 return &css_to_blkcg(css
)->cgwb_list
;
1239 * blkcg destruction is a three-stage process.
1241 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1242 * which offlines writeback. Here we tie the next stage of blkg destruction
1243 * to the completion of writeback associated with the blkcg. This lets us
1244 * avoid punting potentially large amounts of outstanding writeback to root
1245 * while maintaining any ongoing policies. The next stage is triggered when
1246 * the nr_cgwbs count goes to zero.
1248 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1249 * and handles the destruction of blkgs. Here the css reference held by
1250 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1251 * This work may occur in cgwb_release_workfn() on the cgwb_release
1252 * workqueue. Any submitted ios that fail to get the blkg ref will be
1253 * punted to the root_blkg.
1255 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1256 * This finally frees the blkcg.
1260 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1261 * @blkcg: blkcg of interest
1263 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1264 * is nested inside q lock, this function performs reverse double lock dancing.
1265 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1266 * blkcg_css_free to eventually be called.
1268 * This is the blkcg counterpart of ioc_release_fn().
1270 static void blkcg_destroy_blkgs(struct blkcg
*blkcg
)
1274 spin_lock_irq(&blkcg
->lock
);
1276 while (!hlist_empty(&blkcg
->blkg_list
)) {
1277 struct blkcg_gq
*blkg
= hlist_entry(blkcg
->blkg_list
.first
,
1278 struct blkcg_gq
, blkcg_node
);
1279 struct request_queue
*q
= blkg
->q
;
1281 if (need_resched() || !spin_trylock(&q
->queue_lock
)) {
1283 * Given that the system can accumulate a huge number
1284 * of blkgs in pathological cases, check to see if we
1285 * need to rescheduling to avoid softlockup.
1287 spin_unlock_irq(&blkcg
->lock
);
1289 spin_lock_irq(&blkcg
->lock
);
1294 spin_unlock(&q
->queue_lock
);
1297 spin_unlock_irq(&blkcg
->lock
);
1301 * blkcg_pin_online - pin online state
1302 * @blkcg_css: blkcg of interest
1304 * While pinned, a blkcg is kept online. This is primarily used to
1305 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1306 * while an associated cgwb is still active.
1308 void blkcg_pin_online(struct cgroup_subsys_state
*blkcg_css
)
1310 refcount_inc(&css_to_blkcg(blkcg_css
)->online_pin
);
1314 * blkcg_unpin_online - unpin online state
1315 * @blkcg_css: blkcg of interest
1317 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1318 * that blkg doesn't go offline while an associated cgwb is still active.
1319 * When this count goes to zero, all active cgwbs have finished so the
1320 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1322 void blkcg_unpin_online(struct cgroup_subsys_state
*blkcg_css
)
1324 struct blkcg
*blkcg
= css_to_blkcg(blkcg_css
);
1327 if (!refcount_dec_and_test(&blkcg
->online_pin
))
1329 blkcg_destroy_blkgs(blkcg
);
1330 blkcg
= blkcg_parent(blkcg
);
1335 * blkcg_css_offline - cgroup css_offline callback
1336 * @css: css of interest
1338 * This function is called when @css is about to go away. Here the cgwbs are
1339 * offlined first and only once writeback associated with the blkcg has
1340 * finished do we start step 2 (see above).
1342 static void blkcg_css_offline(struct cgroup_subsys_state
*css
)
1344 /* this prevents anyone from attaching or migrating to this blkcg */
1345 wb_blkcg_offline(css
);
1347 /* put the base online pin allowing step 2 to be triggered */
1348 blkcg_unpin_online(css
);
1351 static void blkcg_css_free(struct cgroup_subsys_state
*css
)
1353 struct blkcg
*blkcg
= css_to_blkcg(css
);
1356 mutex_lock(&blkcg_pol_mutex
);
1358 list_del(&blkcg
->all_blkcgs_node
);
1360 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++)
1362 blkcg_policy
[i
]->cpd_free_fn(blkcg
->cpd
[i
]);
1364 mutex_unlock(&blkcg_pol_mutex
);
1366 free_percpu(blkcg
->lhead
);
1370 static struct cgroup_subsys_state
*
1371 blkcg_css_alloc(struct cgroup_subsys_state
*parent_css
)
1373 struct blkcg
*blkcg
;
1376 mutex_lock(&blkcg_pol_mutex
);
1379 blkcg
= &blkcg_root
;
1381 blkcg
= kzalloc(sizeof(*blkcg
), GFP_KERNEL
);
1386 if (init_blkcg_llists(blkcg
))
1389 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++) {
1390 struct blkcg_policy
*pol
= blkcg_policy
[i
];
1391 struct blkcg_policy_data
*cpd
;
1394 * If the policy hasn't been attached yet, wait for it
1395 * to be attached before doing anything else. Otherwise,
1396 * check if the policy requires any specific per-cgroup
1397 * data: if it does, allocate and initialize it.
1399 if (!pol
|| !pol
->cpd_alloc_fn
)
1402 cpd
= pol
->cpd_alloc_fn(GFP_KERNEL
);
1406 blkcg
->cpd
[i
] = cpd
;
1411 spin_lock_init(&blkcg
->lock
);
1412 refcount_set(&blkcg
->online_pin
, 1);
1413 INIT_RADIX_TREE(&blkcg
->blkg_tree
, GFP_NOWAIT
| __GFP_NOWARN
);
1414 INIT_HLIST_HEAD(&blkcg
->blkg_list
);
1415 #ifdef CONFIG_CGROUP_WRITEBACK
1416 INIT_LIST_HEAD(&blkcg
->cgwb_list
);
1418 list_add_tail(&blkcg
->all_blkcgs_node
, &all_blkcgs
);
1420 mutex_unlock(&blkcg_pol_mutex
);
1424 for (i
--; i
>= 0; i
--)
1426 blkcg_policy
[i
]->cpd_free_fn(blkcg
->cpd
[i
]);
1427 free_percpu(blkcg
->lhead
);
1429 if (blkcg
!= &blkcg_root
)
1432 mutex_unlock(&blkcg_pol_mutex
);
1433 return ERR_PTR(-ENOMEM
);
1436 static int blkcg_css_online(struct cgroup_subsys_state
*css
)
1438 struct blkcg
*parent
= blkcg_parent(css_to_blkcg(css
));
1441 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1442 * don't go offline while cgwbs are still active on them. Pin the
1443 * parent so that offline always happens towards the root.
1446 blkcg_pin_online(&parent
->css
);
1450 void blkg_init_queue(struct request_queue
*q
)
1452 INIT_LIST_HEAD(&q
->blkg_list
);
1453 mutex_init(&q
->blkcg_mutex
);
1456 int blkcg_init_disk(struct gendisk
*disk
)
1458 struct request_queue
*q
= disk
->queue
;
1459 struct blkcg_gq
*new_blkg
, *blkg
;
1462 new_blkg
= blkg_alloc(&blkcg_root
, disk
, GFP_KERNEL
);
1466 preloaded
= !radix_tree_preload(GFP_KERNEL
);
1468 /* Make sure the root blkg exists. */
1469 /* spin_lock_irq can serve as RCU read-side critical section. */
1470 spin_lock_irq(&q
->queue_lock
);
1471 blkg
= blkg_create(&blkcg_root
, disk
, new_blkg
);
1474 q
->root_blkg
= blkg
;
1475 spin_unlock_irq(&q
->queue_lock
);
1478 radix_tree_preload_end();
1483 spin_unlock_irq(&q
->queue_lock
);
1485 radix_tree_preload_end();
1486 return PTR_ERR(blkg
);
1489 void blkcg_exit_disk(struct gendisk
*disk
)
1491 blkg_destroy_all(disk
);
1492 blk_throtl_exit(disk
);
1495 static void blkcg_exit(struct task_struct
*tsk
)
1497 if (tsk
->throttle_disk
)
1498 put_disk(tsk
->throttle_disk
);
1499 tsk
->throttle_disk
= NULL
;
1502 struct cgroup_subsys io_cgrp_subsys
= {
1503 .css_alloc
= blkcg_css_alloc
,
1504 .css_online
= blkcg_css_online
,
1505 .css_offline
= blkcg_css_offline
,
1506 .css_free
= blkcg_css_free
,
1507 .css_rstat_flush
= blkcg_rstat_flush
,
1508 .dfl_cftypes
= blkcg_files
,
1509 .legacy_cftypes
= blkcg_legacy_files
,
1510 .legacy_name
= "blkio",
1514 * This ensures that, if available, memcg is automatically enabled
1515 * together on the default hierarchy so that the owner cgroup can
1516 * be retrieved from writeback pages.
1518 .depends_on
= 1 << memory_cgrp_id
,
1521 EXPORT_SYMBOL_GPL(io_cgrp_subsys
);
1524 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1525 * @disk: gendisk of interest
1526 * @pol: blkcg policy to activate
1528 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1529 * bypass mode to populate its blkgs with policy_data for @pol.
1531 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1532 * from IO path. Update of each blkg is protected by both queue and blkcg
1533 * locks so that holding either lock and testing blkcg_policy_enabled() is
1534 * always enough for dereferencing policy data.
1536 * The caller is responsible for synchronizing [de]activations and policy
1537 * [un]registerations. Returns 0 on success, -errno on failure.
1539 int blkcg_activate_policy(struct gendisk
*disk
, const struct blkcg_policy
*pol
)
1541 struct request_queue
*q
= disk
->queue
;
1542 struct blkg_policy_data
*pd_prealloc
= NULL
;
1543 struct blkcg_gq
*blkg
, *pinned_blkg
= NULL
;
1546 if (blkcg_policy_enabled(q
, pol
))
1550 * Policy is allowed to be registered without pd_alloc_fn/pd_free_fn,
1551 * for example, ioprio. Such policy will work on blkcg level, not disk
1552 * level, and don't need to be activated.
1554 if (WARN_ON_ONCE(!pol
->pd_alloc_fn
|| !pol
->pd_free_fn
))
1558 blk_mq_freeze_queue(q
);
1560 spin_lock_irq(&q
->queue_lock
);
1562 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1563 list_for_each_entry_reverse(blkg
, &q
->blkg_list
, q_node
) {
1564 struct blkg_policy_data
*pd
;
1566 if (blkg
->pd
[pol
->plid
])
1569 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1570 if (blkg
== pinned_blkg
) {
1574 pd
= pol
->pd_alloc_fn(disk
, blkg
->blkcg
,
1575 GFP_NOWAIT
| __GFP_NOWARN
);
1580 * GFP_NOWAIT failed. Free the existing one and
1581 * prealloc for @blkg w/ GFP_KERNEL.
1584 blkg_put(pinned_blkg
);
1588 spin_unlock_irq(&q
->queue_lock
);
1591 pol
->pd_free_fn(pd_prealloc
);
1592 pd_prealloc
= pol
->pd_alloc_fn(disk
, blkg
->blkcg
,
1600 spin_lock(&blkg
->blkcg
->lock
);
1603 pd
->plid
= pol
->plid
;
1604 blkg
->pd
[pol
->plid
] = pd
;
1606 if (pol
->pd_init_fn
)
1607 pol
->pd_init_fn(pd
);
1609 if (pol
->pd_online_fn
)
1610 pol
->pd_online_fn(pd
);
1613 spin_unlock(&blkg
->blkcg
->lock
);
1616 __set_bit(pol
->plid
, q
->blkcg_pols
);
1619 spin_unlock_irq(&q
->queue_lock
);
1622 blk_mq_unfreeze_queue(q
);
1624 blkg_put(pinned_blkg
);
1626 pol
->pd_free_fn(pd_prealloc
);
1630 /* alloc failed, take down everything */
1631 spin_lock_irq(&q
->queue_lock
);
1632 list_for_each_entry(blkg
, &q
->blkg_list
, q_node
) {
1633 struct blkcg
*blkcg
= blkg
->blkcg
;
1634 struct blkg_policy_data
*pd
;
1636 spin_lock(&blkcg
->lock
);
1637 pd
= blkg
->pd
[pol
->plid
];
1639 if (pd
->online
&& pol
->pd_offline_fn
)
1640 pol
->pd_offline_fn(pd
);
1642 pol
->pd_free_fn(pd
);
1643 blkg
->pd
[pol
->plid
] = NULL
;
1645 spin_unlock(&blkcg
->lock
);
1647 spin_unlock_irq(&q
->queue_lock
);
1651 EXPORT_SYMBOL_GPL(blkcg_activate_policy
);
1654 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1655 * @disk: gendisk of interest
1656 * @pol: blkcg policy to deactivate
1658 * Deactivate @pol on @disk. Follows the same synchronization rules as
1659 * blkcg_activate_policy().
1661 void blkcg_deactivate_policy(struct gendisk
*disk
,
1662 const struct blkcg_policy
*pol
)
1664 struct request_queue
*q
= disk
->queue
;
1665 struct blkcg_gq
*blkg
;
1667 if (!blkcg_policy_enabled(q
, pol
))
1671 blk_mq_freeze_queue(q
);
1673 mutex_lock(&q
->blkcg_mutex
);
1674 spin_lock_irq(&q
->queue_lock
);
1676 __clear_bit(pol
->plid
, q
->blkcg_pols
);
1678 list_for_each_entry(blkg
, &q
->blkg_list
, q_node
) {
1679 struct blkcg
*blkcg
= blkg
->blkcg
;
1681 spin_lock(&blkcg
->lock
);
1682 if (blkg
->pd
[pol
->plid
]) {
1683 if (blkg
->pd
[pol
->plid
]->online
&& pol
->pd_offline_fn
)
1684 pol
->pd_offline_fn(blkg
->pd
[pol
->plid
]);
1685 pol
->pd_free_fn(blkg
->pd
[pol
->plid
]);
1686 blkg
->pd
[pol
->plid
] = NULL
;
1688 spin_unlock(&blkcg
->lock
);
1691 spin_unlock_irq(&q
->queue_lock
);
1692 mutex_unlock(&q
->blkcg_mutex
);
1695 blk_mq_unfreeze_queue(q
);
1697 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy
);
1699 static void blkcg_free_all_cpd(struct blkcg_policy
*pol
)
1701 struct blkcg
*blkcg
;
1703 list_for_each_entry(blkcg
, &all_blkcgs
, all_blkcgs_node
) {
1704 if (blkcg
->cpd
[pol
->plid
]) {
1705 pol
->cpd_free_fn(blkcg
->cpd
[pol
->plid
]);
1706 blkcg
->cpd
[pol
->plid
] = NULL
;
1712 * blkcg_policy_register - register a blkcg policy
1713 * @pol: blkcg policy to register
1715 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1716 * successful registration. Returns 0 on success and -errno on failure.
1718 int blkcg_policy_register(struct blkcg_policy
*pol
)
1720 struct blkcg
*blkcg
;
1723 mutex_lock(&blkcg_pol_register_mutex
);
1724 mutex_lock(&blkcg_pol_mutex
);
1726 /* find an empty slot */
1728 for (i
= 0; i
< BLKCG_MAX_POLS
; i
++)
1729 if (!blkcg_policy
[i
])
1731 if (i
>= BLKCG_MAX_POLS
) {
1732 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1737 * Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs, and policy
1738 * without pd_alloc_fn/pd_free_fn can't be activated.
1740 if ((!pol
->cpd_alloc_fn
^ !pol
->cpd_free_fn
) ||
1741 (!pol
->pd_alloc_fn
^ !pol
->pd_free_fn
))
1746 blkcg_policy
[pol
->plid
] = pol
;
1748 /* allocate and install cpd's */
1749 if (pol
->cpd_alloc_fn
) {
1750 list_for_each_entry(blkcg
, &all_blkcgs
, all_blkcgs_node
) {
1751 struct blkcg_policy_data
*cpd
;
1753 cpd
= pol
->cpd_alloc_fn(GFP_KERNEL
);
1757 blkcg
->cpd
[pol
->plid
] = cpd
;
1759 cpd
->plid
= pol
->plid
;
1763 mutex_unlock(&blkcg_pol_mutex
);
1765 /* everything is in place, add intf files for the new policy */
1766 if (pol
->dfl_cftypes
)
1767 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys
,
1769 if (pol
->legacy_cftypes
)
1770 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys
,
1771 pol
->legacy_cftypes
));
1772 mutex_unlock(&blkcg_pol_register_mutex
);
1776 if (pol
->cpd_free_fn
)
1777 blkcg_free_all_cpd(pol
);
1779 blkcg_policy
[pol
->plid
] = NULL
;
1781 mutex_unlock(&blkcg_pol_mutex
);
1782 mutex_unlock(&blkcg_pol_register_mutex
);
1785 EXPORT_SYMBOL_GPL(blkcg_policy_register
);
1788 * blkcg_policy_unregister - unregister a blkcg policy
1789 * @pol: blkcg policy to unregister
1791 * Undo blkcg_policy_register(@pol). Might sleep.
1793 void blkcg_policy_unregister(struct blkcg_policy
*pol
)
1795 mutex_lock(&blkcg_pol_register_mutex
);
1797 if (WARN_ON(blkcg_policy
[pol
->plid
] != pol
))
1800 /* kill the intf files first */
1801 if (pol
->dfl_cftypes
)
1802 cgroup_rm_cftypes(pol
->dfl_cftypes
);
1803 if (pol
->legacy_cftypes
)
1804 cgroup_rm_cftypes(pol
->legacy_cftypes
);
1806 /* remove cpds and unregister */
1807 mutex_lock(&blkcg_pol_mutex
);
1809 if (pol
->cpd_free_fn
)
1810 blkcg_free_all_cpd(pol
);
1812 blkcg_policy
[pol
->plid
] = NULL
;
1814 mutex_unlock(&blkcg_pol_mutex
);
1816 mutex_unlock(&blkcg_pol_register_mutex
);
1818 EXPORT_SYMBOL_GPL(blkcg_policy_unregister
);
1821 * Scale the accumulated delay based on how long it has been since we updated
1822 * the delay. We only call this when we are adding delay, in case it's been a
1823 * while since we added delay, and when we are checking to see if we need to
1824 * delay a task, to account for any delays that may have occurred.
1826 static void blkcg_scale_delay(struct blkcg_gq
*blkg
, u64 now
)
1828 u64 old
= atomic64_read(&blkg
->delay_start
);
1830 /* negative use_delay means no scaling, see blkcg_set_delay() */
1831 if (atomic_read(&blkg
->use_delay
) < 0)
1835 * We only want to scale down every second. The idea here is that we
1836 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1837 * time window. We only want to throttle tasks for recent delay that
1838 * has occurred, in 1 second time windows since that's the maximum
1839 * things can be throttled. We save the current delay window in
1840 * blkg->last_delay so we know what amount is still left to be charged
1841 * to the blkg from this point onward. blkg->last_use keeps track of
1842 * the use_delay counter. The idea is if we're unthrottling the blkg we
1843 * are ok with whatever is happening now, and we can take away more of
1844 * the accumulated delay as we've already throttled enough that
1845 * everybody is happy with their IO latencies.
1847 if (time_before64(old
+ NSEC_PER_SEC
, now
) &&
1848 atomic64_try_cmpxchg(&blkg
->delay_start
, &old
, now
)) {
1849 u64 cur
= atomic64_read(&blkg
->delay_nsec
);
1850 u64 sub
= min_t(u64
, blkg
->last_delay
, now
- old
);
1851 int cur_use
= atomic_read(&blkg
->use_delay
);
1854 * We've been unthrottled, subtract a larger chunk of our
1855 * accumulated delay.
1857 if (cur_use
< blkg
->last_use
)
1858 sub
= max_t(u64
, sub
, blkg
->last_delay
>> 1);
1861 * This shouldn't happen, but handle it anyway. Our delay_nsec
1862 * should only ever be growing except here where we subtract out
1863 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1864 * rather not end up with negative numbers.
1866 if (unlikely(cur
< sub
)) {
1867 atomic64_set(&blkg
->delay_nsec
, 0);
1868 blkg
->last_delay
= 0;
1870 atomic64_sub(sub
, &blkg
->delay_nsec
);
1871 blkg
->last_delay
= cur
- sub
;
1873 blkg
->last_use
= cur_use
;
1878 * This is called when we want to actually walk up the hierarchy and check to
1879 * see if we need to throttle, and then actually throttle if there is some
1880 * accumulated delay. This should only be called upon return to user space so
1881 * we're not holding some lock that would induce a priority inversion.
1883 static void blkcg_maybe_throttle_blkg(struct blkcg_gq
*blkg
, bool use_memdelay
)
1885 unsigned long pflags
;
1887 u64 now
= blk_time_get_ns();
1892 while (blkg
->parent
) {
1893 int use_delay
= atomic_read(&blkg
->use_delay
);
1898 blkcg_scale_delay(blkg
, now
);
1899 this_delay
= atomic64_read(&blkg
->delay_nsec
);
1900 if (this_delay
> delay_nsec
) {
1901 delay_nsec
= this_delay
;
1902 clamp
= use_delay
> 0;
1905 blkg
= blkg
->parent
;
1912 * Let's not sleep for all eternity if we've amassed a huge delay.
1913 * Swapping or metadata IO can accumulate 10's of seconds worth of
1914 * delay, and we want userspace to be able to do _something_ so cap the
1915 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1916 * tasks will be delayed for 0.25 second for every syscall. If
1917 * blkcg_set_delay() was used as indicated by negative use_delay, the
1918 * caller is responsible for regulating the range.
1921 delay_nsec
= min_t(u64
, delay_nsec
, 250 * NSEC_PER_MSEC
);
1924 psi_memstall_enter(&pflags
);
1926 exp
= ktime_add_ns(now
, delay_nsec
);
1927 tok
= io_schedule_prepare();
1929 __set_current_state(TASK_KILLABLE
);
1930 if (!schedule_hrtimeout(&exp
, HRTIMER_MODE_ABS
))
1932 } while (!fatal_signal_pending(current
));
1933 io_schedule_finish(tok
);
1936 psi_memstall_leave(&pflags
);
1940 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1942 * This is only called if we've been marked with set_notify_resume(). Obviously
1943 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1944 * check to see if current->throttle_disk is set and if not this doesn't do
1945 * anything. This should only ever be called by the resume code, it's not meant
1946 * to be called by people willy-nilly as it will actually do the work to
1947 * throttle the task if it is setup for throttling.
1949 void blkcg_maybe_throttle_current(void)
1951 struct gendisk
*disk
= current
->throttle_disk
;
1952 struct blkcg
*blkcg
;
1953 struct blkcg_gq
*blkg
;
1954 bool use_memdelay
= current
->use_memdelay
;
1959 current
->throttle_disk
= NULL
;
1960 current
->use_memdelay
= false;
1963 blkcg
= css_to_blkcg(blkcg_css());
1966 blkg
= blkg_lookup(blkcg
, disk
->queue
);
1969 if (!blkg_tryget(blkg
))
1973 blkcg_maybe_throttle_blkg(blkg
, use_memdelay
);
1982 * blkcg_schedule_throttle - this task needs to check for throttling
1983 * @disk: disk to throttle
1984 * @use_memdelay: do we charge this to memory delay for PSI
1986 * This is called by the IO controller when we know there's delay accumulated
1987 * for the blkg for this task. We do not pass the blkg because there are places
1988 * we call this that may not have that information, the swapping code for
1989 * instance will only have a block_device at that point. This set's the
1990 * notify_resume for the task to check and see if it requires throttling before
1991 * returning to user space.
1993 * We will only schedule once per syscall. You can call this over and over
1994 * again and it will only do the check once upon return to user space, and only
1995 * throttle once. If the task needs to be throttled again it'll need to be
1996 * re-set at the next time we see the task.
1998 void blkcg_schedule_throttle(struct gendisk
*disk
, bool use_memdelay
)
2000 if (unlikely(current
->flags
& PF_KTHREAD
))
2003 if (current
->throttle_disk
!= disk
) {
2004 if (test_bit(GD_DEAD
, &disk
->state
))
2006 get_device(disk_to_dev(disk
));
2008 if (current
->throttle_disk
)
2009 put_disk(current
->throttle_disk
);
2010 current
->throttle_disk
= disk
;
2014 current
->use_memdelay
= use_memdelay
;
2015 set_notify_resume(current
);
2019 * blkcg_add_delay - add delay to this blkg
2020 * @blkg: blkg of interest
2021 * @now: the current time in nanoseconds
2022 * @delta: how many nanoseconds of delay to add
2024 * Charge @delta to the blkg's current delay accumulation. This is used to
2025 * throttle tasks if an IO controller thinks we need more throttling.
2027 void blkcg_add_delay(struct blkcg_gq
*blkg
, u64 now
, u64 delta
)
2029 if (WARN_ON_ONCE(atomic_read(&blkg
->use_delay
) < 0))
2031 blkcg_scale_delay(blkg
, now
);
2032 atomic64_add(delta
, &blkg
->delay_nsec
);
2036 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
2040 * As the failure mode here is to walk up the blkg tree, this ensure that the
2041 * blkg->parent pointers are always valid. This returns the blkg that it ended
2042 * up taking a reference on or %NULL if no reference was taken.
2044 static inline struct blkcg_gq
*blkg_tryget_closest(struct bio
*bio
,
2045 struct cgroup_subsys_state
*css
)
2047 struct blkcg_gq
*blkg
, *ret_blkg
= NULL
;
2050 blkg
= blkg_lookup_create(css_to_blkcg(css
), bio
->bi_bdev
->bd_disk
);
2052 if (blkg_tryget(blkg
)) {
2056 blkg
= blkg
->parent
;
2064 * bio_associate_blkg_from_css - associate a bio with a specified css
2068 * Associate @bio with the blkg found by combining the css's blkg and the
2069 * request_queue of the @bio. An association failure is handled by walking up
2070 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2071 * and q->root_blkg. This situation only happens when a cgroup is dying and
2072 * then the remaining bios will spill to the closest alive blkg.
2074 * A reference will be taken on the blkg and will be released when @bio is
2077 void bio_associate_blkg_from_css(struct bio
*bio
,
2078 struct cgroup_subsys_state
*css
)
2081 blkg_put(bio
->bi_blkg
);
2083 if (css
&& css
->parent
) {
2084 bio
->bi_blkg
= blkg_tryget_closest(bio
, css
);
2086 blkg_get(bdev_get_queue(bio
->bi_bdev
)->root_blkg
);
2087 bio
->bi_blkg
= bdev_get_queue(bio
->bi_bdev
)->root_blkg
;
2090 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css
);
2093 * bio_associate_blkg - associate a bio with a blkg
2096 * Associate @bio with the blkg found from the bio's css and request_queue.
2097 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2098 * already associated, the css is reused and association redone as the
2099 * request_queue may have changed.
2101 void bio_associate_blkg(struct bio
*bio
)
2103 struct cgroup_subsys_state
*css
;
2105 if (blk_op_is_passthrough(bio
->bi_opf
))
2111 css
= bio_blkcg_css(bio
);
2115 bio_associate_blkg_from_css(bio
, css
);
2119 EXPORT_SYMBOL_GPL(bio_associate_blkg
);
2122 * bio_clone_blkg_association - clone blkg association from src to dst bio
2123 * @dst: destination bio
2126 void bio_clone_blkg_association(struct bio
*dst
, struct bio
*src
)
2129 bio_associate_blkg_from_css(dst
, bio_blkcg_css(src
));
2131 EXPORT_SYMBOL_GPL(bio_clone_blkg_association
);
2133 static int blk_cgroup_io_type(struct bio
*bio
)
2135 if (op_is_discard(bio
->bi_opf
))
2136 return BLKG_IOSTAT_DISCARD
;
2137 if (op_is_write(bio
->bi_opf
))
2138 return BLKG_IOSTAT_WRITE
;
2139 return BLKG_IOSTAT_READ
;
2142 void blk_cgroup_bio_start(struct bio
*bio
)
2144 struct blkcg
*blkcg
= bio
->bi_blkg
->blkcg
;
2145 int rwd
= blk_cgroup_io_type(bio
), cpu
;
2146 struct blkg_iostat_set
*bis
;
2147 unsigned long flags
;
2149 if (!cgroup_subsys_on_dfl(io_cgrp_subsys
))
2152 /* Root-level stats are sourced from system-wide IO stats */
2153 if (!cgroup_parent(blkcg
->css
.cgroup
))
2157 bis
= per_cpu_ptr(bio
->bi_blkg
->iostat_cpu
, cpu
);
2158 flags
= u64_stats_update_begin_irqsave(&bis
->sync
);
2161 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2162 * bio and we would have already accounted for the size of the bio.
2164 if (!bio_flagged(bio
, BIO_CGROUP_ACCT
)) {
2165 bio_set_flag(bio
, BIO_CGROUP_ACCT
);
2166 bis
->cur
.bytes
[rwd
] += bio
->bi_iter
.bi_size
;
2168 bis
->cur
.ios
[rwd
]++;
2171 * If the iostat_cpu isn't in a lockless list, put it into the
2172 * list to indicate that a stat update is pending.
2174 if (!READ_ONCE(bis
->lqueued
)) {
2175 struct llist_head
*lhead
= this_cpu_ptr(blkcg
->lhead
);
2177 llist_add(&bis
->lnode
, lhead
);
2178 WRITE_ONCE(bis
->lqueued
, true);
2181 u64_stats_update_end_irqrestore(&bis
->sync
, flags
);
2182 cgroup_rstat_updated(blkcg
->css
.cgroup
, cpu
);
2186 bool blk_cgroup_congested(void)
2188 struct blkcg
*blkcg
;
2192 for (blkcg
= css_to_blkcg(blkcg_css()); blkcg
;
2193 blkcg
= blkcg_parent(blkcg
)) {
2194 if (atomic_read(&blkcg
->congestion_count
)) {
2203 module_param(blkcg_debug_stats
, bool, 0644);
2204 MODULE_PARM_DESC(blkcg_debug_stats
, "True if you want debug stats, false if not");