1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
48 #include "blk-mq-sched.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 #include "blk-ioprio.h"
54 struct dentry
*blk_debugfs_root
;
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert
);
63 static DEFINE_IDA(blk_queue_ida
);
66 * For queue allocation
68 static struct kmem_cache
*blk_requestq_cachep
;
71 * Controlling structure to kblockd
73 static struct workqueue_struct
*kblockd_workqueue
;
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
80 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
82 set_bit(flag
, &q
->queue_flags
);
84 EXPORT_SYMBOL(blk_queue_flag_set
);
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
91 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
93 clear_bit(flag
, &q
->queue_flags
);
95 EXPORT_SYMBOL(blk_queue_flag_clear
);
97 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
98 static const char *const blk_op_name
[] = {
102 REQ_OP_NAME(DISCARD
),
103 REQ_OP_NAME(SECURE_ERASE
),
104 REQ_OP_NAME(ZONE_RESET
),
105 REQ_OP_NAME(ZONE_RESET_ALL
),
106 REQ_OP_NAME(ZONE_OPEN
),
107 REQ_OP_NAME(ZONE_CLOSE
),
108 REQ_OP_NAME(ZONE_FINISH
),
109 REQ_OP_NAME(ZONE_APPEND
),
110 REQ_OP_NAME(WRITE_ZEROES
),
112 REQ_OP_NAME(DRV_OUT
),
117 * blk_op_str - Return string XXX in the REQ_OP_XXX.
120 * Description: Centralize block layer function to convert REQ_OP_XXX into
121 * string format. Useful in the debugging and tracing bio or request. For
122 * invalid REQ_OP_XXX it returns string "UNKNOWN".
124 inline const char *blk_op_str(enum req_op op
)
126 const char *op_str
= "UNKNOWN";
128 if (op
< ARRAY_SIZE(blk_op_name
) && blk_op_name
[op
])
129 op_str
= blk_op_name
[op
];
133 EXPORT_SYMBOL_GPL(blk_op_str
);
135 static const struct {
139 [BLK_STS_OK
] = { 0, "" },
140 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
141 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
142 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
143 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
144 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
145 [BLK_STS_RESV_CONFLICT
] = { -EBADE
, "reservation conflict" },
146 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
147 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
148 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
149 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
150 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
151 [BLK_STS_OFFLINE
] = { -ENODEV
, "device offline" },
153 /* device mapper special case, should not leak out: */
154 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
156 /* zone device specific errors */
157 [BLK_STS_ZONE_OPEN_RESOURCE
] = { -ETOOMANYREFS
, "open zones exceeded" },
158 [BLK_STS_ZONE_ACTIVE_RESOURCE
] = { -EOVERFLOW
, "active zones exceeded" },
160 /* Command duration limit device-side timeout */
161 [BLK_STS_DURATION_LIMIT
] = { -ETIME
, "duration limit exceeded" },
163 [BLK_STS_INVAL
] = { -EINVAL
, "invalid" },
165 /* everything else not covered above: */
166 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
169 blk_status_t
errno_to_blk_status(int errno
)
173 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
174 if (blk_errors
[i
].errno
== errno
)
175 return (__force blk_status_t
)i
;
178 return BLK_STS_IOERR
;
180 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
182 int blk_status_to_errno(blk_status_t status
)
184 int idx
= (__force
int)status
;
186 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
188 return blk_errors
[idx
].errno
;
190 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
192 const char *blk_status_to_str(blk_status_t status
)
194 int idx
= (__force
int)status
;
196 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
198 return blk_errors
[idx
].name
;
200 EXPORT_SYMBOL_GPL(blk_status_to_str
);
203 * blk_sync_queue - cancel any pending callbacks on a queue
207 * The block layer may perform asynchronous callback activity
208 * on a queue, such as calling the unplug function after a timeout.
209 * A block device may call blk_sync_queue to ensure that any
210 * such activity is cancelled, thus allowing it to release resources
211 * that the callbacks might use. The caller must already have made sure
212 * that its ->submit_bio will not re-add plugging prior to calling
215 * This function does not cancel any asynchronous activity arising
216 * out of elevator or throttling code. That would require elevator_exit()
217 * and blkcg_exit_queue() to be called with queue lock initialized.
220 void blk_sync_queue(struct request_queue
*q
)
222 del_timer_sync(&q
->timeout
);
223 cancel_work_sync(&q
->timeout_work
);
225 EXPORT_SYMBOL(blk_sync_queue
);
228 * blk_set_pm_only - increment pm_only counter
229 * @q: request queue pointer
231 void blk_set_pm_only(struct request_queue
*q
)
233 atomic_inc(&q
->pm_only
);
235 EXPORT_SYMBOL_GPL(blk_set_pm_only
);
237 void blk_clear_pm_only(struct request_queue
*q
)
241 pm_only
= atomic_dec_return(&q
->pm_only
);
242 WARN_ON_ONCE(pm_only
< 0);
244 wake_up_all(&q
->mq_freeze_wq
);
246 EXPORT_SYMBOL_GPL(blk_clear_pm_only
);
248 static void blk_free_queue_rcu(struct rcu_head
*rcu_head
)
250 struct request_queue
*q
= container_of(rcu_head
,
251 struct request_queue
, rcu_head
);
253 percpu_ref_exit(&q
->q_usage_counter
);
254 kmem_cache_free(blk_requestq_cachep
, q
);
257 static void blk_free_queue(struct request_queue
*q
)
259 blk_free_queue_stats(q
->stats
);
263 ida_free(&blk_queue_ida
, q
->id
);
264 lockdep_unregister_key(&q
->io_lock_cls_key
);
265 lockdep_unregister_key(&q
->q_lock_cls_key
);
266 call_rcu(&q
->rcu_head
, blk_free_queue_rcu
);
270 * blk_put_queue - decrement the request_queue refcount
271 * @q: the request_queue structure to decrement the refcount for
273 * Decrements the refcount of the request_queue and free it when the refcount
276 void blk_put_queue(struct request_queue
*q
)
278 if (refcount_dec_and_test(&q
->refs
))
281 EXPORT_SYMBOL(blk_put_queue
);
283 bool blk_queue_start_drain(struct request_queue
*q
)
286 * When queue DYING flag is set, we need to block new req
287 * entering queue, so we call blk_freeze_queue_start() to
288 * prevent I/O from crossing blk_queue_enter().
290 bool freeze
= __blk_freeze_queue_start(q
, current
);
292 blk_mq_wake_waiters(q
);
293 /* Make blk_queue_enter() reexamine the DYING flag. */
294 wake_up_all(&q
->mq_freeze_wq
);
300 * blk_queue_enter() - try to increase q->q_usage_counter
301 * @q: request queue pointer
302 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
304 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
306 const bool pm
= flags
& BLK_MQ_REQ_PM
;
308 while (!blk_try_enter_queue(q
, pm
)) {
309 if (flags
& BLK_MQ_REQ_NOWAIT
)
313 * read pair of barrier in blk_freeze_queue_start(), we need to
314 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
315 * reading .mq_freeze_depth or queue dying flag, otherwise the
316 * following wait may never return if the two reads are
320 wait_event(q
->mq_freeze_wq
,
321 (!q
->mq_freeze_depth
&&
322 blk_pm_resume_queue(pm
, q
)) ||
324 if (blk_queue_dying(q
))
328 rwsem_acquire_read(&q
->q_lockdep_map
, 0, 0, _RET_IP_
);
329 rwsem_release(&q
->q_lockdep_map
, _RET_IP_
);
333 int __bio_queue_enter(struct request_queue
*q
, struct bio
*bio
)
335 while (!blk_try_enter_queue(q
, false)) {
336 struct gendisk
*disk
= bio
->bi_bdev
->bd_disk
;
338 if (bio
->bi_opf
& REQ_NOWAIT
) {
339 if (test_bit(GD_DEAD
, &disk
->state
))
341 bio_wouldblock_error(bio
);
346 * read pair of barrier in blk_freeze_queue_start(), we need to
347 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
348 * reading .mq_freeze_depth or queue dying flag, otherwise the
349 * following wait may never return if the two reads are
353 wait_event(q
->mq_freeze_wq
,
354 (!q
->mq_freeze_depth
&&
355 blk_pm_resume_queue(false, q
)) ||
356 test_bit(GD_DEAD
, &disk
->state
));
357 if (test_bit(GD_DEAD
, &disk
->state
))
361 rwsem_acquire_read(&q
->io_lockdep_map
, 0, 0, _RET_IP_
);
362 rwsem_release(&q
->io_lockdep_map
, _RET_IP_
);
369 void blk_queue_exit(struct request_queue
*q
)
371 percpu_ref_put(&q
->q_usage_counter
);
374 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
376 struct request_queue
*q
=
377 container_of(ref
, struct request_queue
, q_usage_counter
);
379 wake_up_all(&q
->mq_freeze_wq
);
382 static void blk_rq_timed_out_timer(struct timer_list
*t
)
384 struct request_queue
*q
= from_timer(q
, t
, timeout
);
386 kblockd_schedule_work(&q
->timeout_work
);
389 static void blk_timeout_work(struct work_struct
*work
)
393 struct request_queue
*blk_alloc_queue(struct queue_limits
*lim
, int node_id
)
395 struct request_queue
*q
;
398 q
= kmem_cache_alloc_node(blk_requestq_cachep
, GFP_KERNEL
| __GFP_ZERO
,
401 return ERR_PTR(-ENOMEM
);
403 q
->last_merge
= NULL
;
405 q
->id
= ida_alloc(&blk_queue_ida
, GFP_KERNEL
);
411 q
->stats
= blk_alloc_queue_stats();
417 error
= blk_set_default_limits(lim
);
424 atomic_set(&q
->nr_active_requests_shared_tags
, 0);
426 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
427 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
428 INIT_LIST_HEAD(&q
->icq_list
);
430 refcount_set(&q
->refs
, 1);
431 mutex_init(&q
->debugfs_mutex
);
432 mutex_init(&q
->sysfs_lock
);
433 mutex_init(&q
->sysfs_dir_lock
);
434 mutex_init(&q
->limits_lock
);
435 mutex_init(&q
->rq_qos_mutex
);
436 spin_lock_init(&q
->queue_lock
);
438 init_waitqueue_head(&q
->mq_freeze_wq
);
439 mutex_init(&q
->mq_freeze_lock
);
444 * Init percpu_ref in atomic mode so that it's faster to shutdown.
445 * See blk_register_queue() for details.
447 error
= percpu_ref_init(&q
->q_usage_counter
,
448 blk_queue_usage_counter_release
,
449 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
);
452 lockdep_register_key(&q
->io_lock_cls_key
);
453 lockdep_register_key(&q
->q_lock_cls_key
);
454 lockdep_init_map(&q
->io_lockdep_map
, "&q->q_usage_counter(io)",
455 &q
->io_lock_cls_key
, 0);
456 lockdep_init_map(&q
->q_lockdep_map
, "&q->q_usage_counter(queue)",
457 &q
->q_lock_cls_key
, 0);
459 q
->nr_requests
= BLKDEV_DEFAULT_RQ
;
464 blk_free_queue_stats(q
->stats
);
466 ida_free(&blk_queue_ida
, q
->id
);
468 kmem_cache_free(blk_requestq_cachep
, q
);
469 return ERR_PTR(error
);
473 * blk_get_queue - increment the request_queue refcount
474 * @q: the request_queue structure to increment the refcount for
476 * Increment the refcount of the request_queue kobject.
478 * Context: Any context.
480 bool blk_get_queue(struct request_queue
*q
)
482 if (unlikely(blk_queue_dying(q
)))
484 refcount_inc(&q
->refs
);
487 EXPORT_SYMBOL(blk_get_queue
);
489 #ifdef CONFIG_FAIL_MAKE_REQUEST
491 static DECLARE_FAULT_ATTR(fail_make_request
);
493 static int __init
setup_fail_make_request(char *str
)
495 return setup_fault_attr(&fail_make_request
, str
);
497 __setup("fail_make_request=", setup_fail_make_request
);
499 bool should_fail_request(struct block_device
*part
, unsigned int bytes
)
501 return bdev_test_flag(part
, BD_MAKE_IT_FAIL
) &&
502 should_fail(&fail_make_request
, bytes
);
505 static int __init
fail_make_request_debugfs(void)
507 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
508 NULL
, &fail_make_request
);
510 return PTR_ERR_OR_ZERO(dir
);
513 late_initcall(fail_make_request_debugfs
);
514 #endif /* CONFIG_FAIL_MAKE_REQUEST */
516 static inline void bio_check_ro(struct bio
*bio
)
518 if (op_is_write(bio_op(bio
)) && bdev_read_only(bio
->bi_bdev
)) {
519 if (op_is_flush(bio
->bi_opf
) && !bio_sectors(bio
))
522 if (bdev_test_flag(bio
->bi_bdev
, BD_RO_WARNED
))
525 bdev_set_flag(bio
->bi_bdev
, BD_RO_WARNED
);
528 * Use ioctl to set underlying disk of raid/dm to read-only
531 pr_warn("Trying to write to read-only block-device %pg\n",
536 static noinline
int should_fail_bio(struct bio
*bio
)
538 if (should_fail_request(bdev_whole(bio
->bi_bdev
), bio
->bi_iter
.bi_size
))
542 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
545 * Check whether this bio extends beyond the end of the device or partition.
546 * This may well happen - the kernel calls bread() without checking the size of
547 * the device, e.g., when mounting a file system.
549 static inline int bio_check_eod(struct bio
*bio
)
551 sector_t maxsector
= bdev_nr_sectors(bio
->bi_bdev
);
552 unsigned int nr_sectors
= bio_sectors(bio
);
555 (nr_sectors
> maxsector
||
556 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
557 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
558 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
559 current
->comm
, bio
->bi_bdev
, bio
->bi_opf
,
560 bio
->bi_iter
.bi_sector
, nr_sectors
, maxsector
);
567 * Remap block n of partition p to block n+start(p) of the disk.
569 static int blk_partition_remap(struct bio
*bio
)
571 struct block_device
*p
= bio
->bi_bdev
;
573 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
575 if (bio_sectors(bio
)) {
576 bio
->bi_iter
.bi_sector
+= p
->bd_start_sect
;
577 trace_block_bio_remap(bio
, p
->bd_dev
,
578 bio
->bi_iter
.bi_sector
-
581 bio_set_flag(bio
, BIO_REMAPPED
);
586 * Check write append to a zoned block device.
588 static inline blk_status_t
blk_check_zone_append(struct request_queue
*q
,
591 int nr_sectors
= bio_sectors(bio
);
593 /* Only applicable to zoned block devices */
594 if (!bdev_is_zoned(bio
->bi_bdev
))
595 return BLK_STS_NOTSUPP
;
597 /* The bio sector must point to the start of a sequential zone */
598 if (!bdev_is_zone_start(bio
->bi_bdev
, bio
->bi_iter
.bi_sector
))
599 return BLK_STS_IOERR
;
602 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
603 * split and could result in non-contiguous sectors being written in
606 if (nr_sectors
> q
->limits
.chunk_sectors
)
607 return BLK_STS_IOERR
;
609 /* Make sure the BIO is small enough and will not get split */
610 if (nr_sectors
> q
->limits
.max_zone_append_sectors
)
611 return BLK_STS_IOERR
;
613 bio
->bi_opf
|= REQ_NOMERGE
;
618 static void __submit_bio(struct bio
*bio
)
620 /* If plug is not used, add new plug here to cache nsecs time. */
621 struct blk_plug plug
;
623 if (unlikely(!blk_crypto_bio_prep(&bio
)))
626 blk_start_plug(&plug
);
628 if (!bdev_test_flag(bio
->bi_bdev
, BD_HAS_SUBMIT_BIO
)) {
629 blk_mq_submit_bio(bio
);
630 } else if (likely(bio_queue_enter(bio
) == 0)) {
631 struct gendisk
*disk
= bio
->bi_bdev
->bd_disk
;
633 disk
->fops
->submit_bio(bio
);
634 blk_queue_exit(disk
->queue
);
637 blk_finish_plug(&plug
);
641 * The loop in this function may be a bit non-obvious, and so deserves some
644 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
645 * that), so we have a list with a single bio.
646 * - We pretend that we have just taken it off a longer list, so we assign
647 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
648 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
649 * bios through a recursive call to submit_bio_noacct. If it did, we find a
650 * non-NULL value in bio_list and re-enter the loop from the top.
651 * - In this case we really did just take the bio of the top of the list (no
652 * pretending) and so remove it from bio_list, and call into ->submit_bio()
655 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
656 * bio_list_on_stack[1] contains bios that were submitted before the current
657 * ->submit_bio, but that haven't been processed yet.
659 static void __submit_bio_noacct(struct bio
*bio
)
661 struct bio_list bio_list_on_stack
[2];
663 BUG_ON(bio
->bi_next
);
665 bio_list_init(&bio_list_on_stack
[0]);
666 current
->bio_list
= bio_list_on_stack
;
669 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
670 struct bio_list lower
, same
;
673 * Create a fresh bio_list for all subordinate requests.
675 bio_list_on_stack
[1] = bio_list_on_stack
[0];
676 bio_list_init(&bio_list_on_stack
[0]);
681 * Sort new bios into those for a lower level and those for the
684 bio_list_init(&lower
);
685 bio_list_init(&same
);
686 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
687 if (q
== bdev_get_queue(bio
->bi_bdev
))
688 bio_list_add(&same
, bio
);
690 bio_list_add(&lower
, bio
);
693 * Now assemble so we handle the lowest level first.
695 bio_list_merge(&bio_list_on_stack
[0], &lower
);
696 bio_list_merge(&bio_list_on_stack
[0], &same
);
697 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
698 } while ((bio
= bio_list_pop(&bio_list_on_stack
[0])));
700 current
->bio_list
= NULL
;
703 static void __submit_bio_noacct_mq(struct bio
*bio
)
705 struct bio_list bio_list
[2] = { };
707 current
->bio_list
= bio_list
;
711 } while ((bio
= bio_list_pop(&bio_list
[0])));
713 current
->bio_list
= NULL
;
716 void submit_bio_noacct_nocheck(struct bio
*bio
)
718 blk_cgroup_bio_start(bio
);
719 blkcg_bio_issue_init(bio
);
721 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
722 trace_block_bio_queue(bio
);
724 * Now that enqueuing has been traced, we need to trace
725 * completion as well.
727 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
731 * We only want one ->submit_bio to be active at a time, else stack
732 * usage with stacked devices could be a problem. Use current->bio_list
733 * to collect a list of requests submited by a ->submit_bio method while
734 * it is active, and then process them after it returned.
736 if (current
->bio_list
)
737 bio_list_add(¤t
->bio_list
[0], bio
);
738 else if (!bdev_test_flag(bio
->bi_bdev
, BD_HAS_SUBMIT_BIO
))
739 __submit_bio_noacct_mq(bio
);
741 __submit_bio_noacct(bio
);
744 static blk_status_t
blk_validate_atomic_write_op_size(struct request_queue
*q
,
747 if (bio
->bi_iter
.bi_size
> queue_atomic_write_unit_max_bytes(q
))
748 return BLK_STS_INVAL
;
750 if (bio
->bi_iter
.bi_size
% queue_atomic_write_unit_min_bytes(q
))
751 return BLK_STS_INVAL
;
757 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
758 * @bio: The bio describing the location in memory and on the device.
760 * This is a version of submit_bio() that shall only be used for I/O that is
761 * resubmitted to lower level drivers by stacking block drivers. All file
762 * systems and other upper level users of the block layer should use
763 * submit_bio() instead.
765 void submit_bio_noacct(struct bio
*bio
)
767 struct block_device
*bdev
= bio
->bi_bdev
;
768 struct request_queue
*q
= bdev_get_queue(bdev
);
769 blk_status_t status
= BLK_STS_IOERR
;
774 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
775 * if queue does not support NOWAIT.
777 if ((bio
->bi_opf
& REQ_NOWAIT
) && !bdev_nowait(bdev
))
780 if (should_fail_bio(bio
))
783 if (!bio_flagged(bio
, BIO_REMAPPED
)) {
784 if (unlikely(bio_check_eod(bio
)))
786 if (bdev_is_partition(bdev
) &&
787 unlikely(blk_partition_remap(bio
)))
792 * Filter flush bio's early so that bio based drivers without flush
793 * support don't have to worry about them.
795 if (op_is_flush(bio
->bi_opf
)) {
796 if (WARN_ON_ONCE(bio_op(bio
) != REQ_OP_WRITE
&&
797 bio_op(bio
) != REQ_OP_ZONE_APPEND
))
799 if (!bdev_write_cache(bdev
)) {
800 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
801 if (!bio_sectors(bio
)) {
808 if (!(q
->limits
.features
& BLK_FEAT_POLL
) &&
809 (bio
->bi_opf
& REQ_POLLED
)) {
810 bio_clear_polled(bio
);
814 switch (bio_op(bio
)) {
818 if (bio
->bi_opf
& REQ_ATOMIC
) {
819 status
= blk_validate_atomic_write_op_size(q
, bio
);
820 if (status
!= BLK_STS_OK
)
826 * REQ_OP_FLUSH can't be submitted through bios, it is only
827 * synthetized in struct request by the flush state machine.
831 if (!bdev_max_discard_sectors(bdev
))
834 case REQ_OP_SECURE_ERASE
:
835 if (!bdev_max_secure_erase_sectors(bdev
))
838 case REQ_OP_ZONE_APPEND
:
839 status
= blk_check_zone_append(q
, bio
);
840 if (status
!= BLK_STS_OK
)
843 case REQ_OP_WRITE_ZEROES
:
844 if (!q
->limits
.max_write_zeroes_sectors
)
847 case REQ_OP_ZONE_RESET
:
848 case REQ_OP_ZONE_OPEN
:
849 case REQ_OP_ZONE_CLOSE
:
850 case REQ_OP_ZONE_FINISH
:
851 case REQ_OP_ZONE_RESET_ALL
:
852 if (!bdev_is_zoned(bio
->bi_bdev
))
858 * Driver private operations are only used with passthrough
866 if (blk_throtl_bio(bio
))
868 submit_bio_noacct_nocheck(bio
);
872 status
= BLK_STS_NOTSUPP
;
874 bio
->bi_status
= status
;
877 EXPORT_SYMBOL(submit_bio_noacct
);
879 static void bio_set_ioprio(struct bio
*bio
)
881 /* Nobody set ioprio so far? Initialize it based on task's nice value */
882 if (IOPRIO_PRIO_CLASS(bio
->bi_ioprio
) == IOPRIO_CLASS_NONE
)
883 bio
->bi_ioprio
= get_current_ioprio();
884 blkcg_set_ioprio(bio
);
888 * submit_bio - submit a bio to the block device layer for I/O
889 * @bio: The &struct bio which describes the I/O
891 * submit_bio() is used to submit I/O requests to block devices. It is passed a
892 * fully set up &struct bio that describes the I/O that needs to be done. The
893 * bio will be send to the device described by the bi_bdev field.
895 * The success/failure status of the request, along with notification of
896 * completion, is delivered asynchronously through the ->bi_end_io() callback
897 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
900 void submit_bio(struct bio
*bio
)
902 if (bio_op(bio
) == REQ_OP_READ
) {
903 task_io_account_read(bio
->bi_iter
.bi_size
);
904 count_vm_events(PGPGIN
, bio_sectors(bio
));
905 } else if (bio_op(bio
) == REQ_OP_WRITE
) {
906 count_vm_events(PGPGOUT
, bio_sectors(bio
));
910 submit_bio_noacct(bio
);
912 EXPORT_SYMBOL(submit_bio
);
915 * bio_poll - poll for BIO completions
916 * @bio: bio to poll for
917 * @iob: batches of IO
918 * @flags: BLK_POLL_* flags that control the behavior
920 * Poll for completions on queue associated with the bio. Returns number of
921 * completed entries found.
923 * Note: the caller must either be the context that submitted @bio, or
924 * be in a RCU critical section to prevent freeing of @bio.
926 int bio_poll(struct bio
*bio
, struct io_comp_batch
*iob
, unsigned int flags
)
928 blk_qc_t cookie
= READ_ONCE(bio
->bi_cookie
);
929 struct block_device
*bdev
;
930 struct request_queue
*q
;
933 bdev
= READ_ONCE(bio
->bi_bdev
);
937 q
= bdev_get_queue(bdev
);
938 if (cookie
== BLK_QC_T_NONE
|| !(q
->limits
.features
& BLK_FEAT_POLL
))
941 blk_flush_plug(current
->plug
, false);
944 * We need to be able to enter a frozen queue, similar to how
945 * timeouts also need to do that. If that is blocked, then we can
946 * have pending IO when a queue freeze is started, and then the
947 * wait for the freeze to finish will wait for polled requests to
948 * timeout as the poller is preventer from entering the queue and
949 * completing them. As long as we prevent new IO from being queued,
950 * that should be all that matters.
952 if (!percpu_ref_tryget(&q
->q_usage_counter
))
954 if (queue_is_mq(q
)) {
955 ret
= blk_mq_poll(q
, cookie
, iob
, flags
);
957 struct gendisk
*disk
= q
->disk
;
959 if (disk
&& disk
->fops
->poll_bio
)
960 ret
= disk
->fops
->poll_bio(bio
, iob
, flags
);
965 EXPORT_SYMBOL_GPL(bio_poll
);
968 * Helper to implement file_operations.iopoll. Requires the bio to be stored
969 * in iocb->private, and cleared before freeing the bio.
971 int iocb_bio_iopoll(struct kiocb
*kiocb
, struct io_comp_batch
*iob
,
978 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
979 * point to a freshly allocated bio at this point. If that happens
980 * we have a few cases to consider:
982 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
983 * simply nothing in this case
984 * 2) the bio points to a not poll enabled device. bio_poll will catch
986 * 3) the bio points to a poll capable device, including but not
987 * limited to the one that the original bio pointed to. In this
988 * case we will call into the actual poll method and poll for I/O,
989 * even if we don't need to, but it won't cause harm either.
991 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
992 * is still allocated. Because partitions hold a reference to the whole
993 * device bdev and thus disk, the disk is also still valid. Grabbing
994 * a reference to the queue in bio_poll() ensures the hctxs and requests
995 * are still valid as well.
998 bio
= READ_ONCE(kiocb
->private);
1000 ret
= bio_poll(bio
, iob
, flags
);
1005 EXPORT_SYMBOL_GPL(iocb_bio_iopoll
);
1007 void update_io_ticks(struct block_device
*part
, unsigned long now
, bool end
)
1009 unsigned long stamp
;
1011 stamp
= READ_ONCE(part
->bd_stamp
);
1012 if (unlikely(time_after(now
, stamp
)) &&
1013 likely(try_cmpxchg(&part
->bd_stamp
, &stamp
, now
)) &&
1014 (end
|| part_in_flight(part
)))
1015 __part_stat_add(part
, io_ticks
, now
- stamp
);
1017 if (bdev_is_partition(part
)) {
1018 part
= bdev_whole(part
);
1023 unsigned long bdev_start_io_acct(struct block_device
*bdev
, enum req_op op
,
1024 unsigned long start_time
)
1027 update_io_ticks(bdev
, start_time
, false);
1028 part_stat_local_inc(bdev
, in_flight
[op_is_write(op
)]);
1033 EXPORT_SYMBOL(bdev_start_io_acct
);
1036 * bio_start_io_acct - start I/O accounting for bio based drivers
1037 * @bio: bio to start account for
1039 * Returns the start time that should be passed back to bio_end_io_acct().
1041 unsigned long bio_start_io_acct(struct bio
*bio
)
1043 return bdev_start_io_acct(bio
->bi_bdev
, bio_op(bio
), jiffies
);
1045 EXPORT_SYMBOL_GPL(bio_start_io_acct
);
1047 void bdev_end_io_acct(struct block_device
*bdev
, enum req_op op
,
1048 unsigned int sectors
, unsigned long start_time
)
1050 const int sgrp
= op_stat_group(op
);
1051 unsigned long now
= READ_ONCE(jiffies
);
1052 unsigned long duration
= now
- start_time
;
1055 update_io_ticks(bdev
, now
, true);
1056 part_stat_inc(bdev
, ios
[sgrp
]);
1057 part_stat_add(bdev
, sectors
[sgrp
], sectors
);
1058 part_stat_add(bdev
, nsecs
[sgrp
], jiffies_to_nsecs(duration
));
1059 part_stat_local_dec(bdev
, in_flight
[op_is_write(op
)]);
1062 EXPORT_SYMBOL(bdev_end_io_acct
);
1064 void bio_end_io_acct_remapped(struct bio
*bio
, unsigned long start_time
,
1065 struct block_device
*orig_bdev
)
1067 bdev_end_io_acct(orig_bdev
, bio_op(bio
), bio_sectors(bio
), start_time
);
1069 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped
);
1072 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1073 * @q : the queue of the device being checked
1076 * Check if underlying low-level drivers of a device are busy.
1077 * If the drivers want to export their busy state, they must set own
1078 * exporting function using blk_queue_lld_busy() first.
1080 * Basically, this function is used only by request stacking drivers
1081 * to stop dispatching requests to underlying devices when underlying
1082 * devices are busy. This behavior helps more I/O merging on the queue
1083 * of the request stacking driver and prevents I/O throughput regression
1084 * on burst I/O load.
1087 * 0 - Not busy (The request stacking driver should dispatch request)
1088 * 1 - Busy (The request stacking driver should stop dispatching request)
1090 int blk_lld_busy(struct request_queue
*q
)
1092 if (queue_is_mq(q
) && q
->mq_ops
->busy
)
1093 return q
->mq_ops
->busy(q
);
1097 EXPORT_SYMBOL_GPL(blk_lld_busy
);
1099 int kblockd_schedule_work(struct work_struct
*work
)
1101 return queue_work(kblockd_workqueue
, work
);
1103 EXPORT_SYMBOL(kblockd_schedule_work
);
1105 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
1106 unsigned long delay
)
1108 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
1110 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
1112 void blk_start_plug_nr_ios(struct blk_plug
*plug
, unsigned short nr_ios
)
1114 struct task_struct
*tsk
= current
;
1117 * If this is a nested plug, don't actually assign it.
1122 plug
->cur_ktime
= 0;
1123 rq_list_init(&plug
->mq_list
);
1124 rq_list_init(&plug
->cached_rqs
);
1125 plug
->nr_ios
= min_t(unsigned short, nr_ios
, BLK_MAX_REQUEST_COUNT
);
1127 plug
->multiple_queues
= false;
1128 plug
->has_elevator
= false;
1129 INIT_LIST_HEAD(&plug
->cb_list
);
1132 * Store ordering should not be needed here, since a potential
1133 * preempt will imply a full memory barrier
1139 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1140 * @plug: The &struct blk_plug that needs to be initialized
1143 * blk_start_plug() indicates to the block layer an intent by the caller
1144 * to submit multiple I/O requests in a batch. The block layer may use
1145 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1146 * is called. However, the block layer may choose to submit requests
1147 * before a call to blk_finish_plug() if the number of queued I/Os
1148 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1149 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1150 * the task schedules (see below).
1152 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1153 * pending I/O should the task end up blocking between blk_start_plug() and
1154 * blk_finish_plug(). This is important from a performance perspective, but
1155 * also ensures that we don't deadlock. For instance, if the task is blocking
1156 * for a memory allocation, memory reclaim could end up wanting to free a
1157 * page belonging to that request that is currently residing in our private
1158 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1159 * this kind of deadlock.
1161 void blk_start_plug(struct blk_plug
*plug
)
1163 blk_start_plug_nr_ios(plug
, 1);
1165 EXPORT_SYMBOL(blk_start_plug
);
1167 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
1169 LIST_HEAD(callbacks
);
1171 while (!list_empty(&plug
->cb_list
)) {
1172 list_splice_init(&plug
->cb_list
, &callbacks
);
1174 while (!list_empty(&callbacks
)) {
1175 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
1178 list_del(&cb
->list
);
1179 cb
->callback(cb
, from_schedule
);
1184 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
1187 struct blk_plug
*plug
= current
->plug
;
1188 struct blk_plug_cb
*cb
;
1193 list_for_each_entry(cb
, &plug
->cb_list
, list
)
1194 if (cb
->callback
== unplug
&& cb
->data
== data
)
1197 /* Not currently on the callback list */
1198 BUG_ON(size
< sizeof(*cb
));
1199 cb
= kzalloc(size
, GFP_ATOMIC
);
1202 cb
->callback
= unplug
;
1203 list_add(&cb
->list
, &plug
->cb_list
);
1207 EXPORT_SYMBOL(blk_check_plugged
);
1209 void __blk_flush_plug(struct blk_plug
*plug
, bool from_schedule
)
1211 if (!list_empty(&plug
->cb_list
))
1212 flush_plug_callbacks(plug
, from_schedule
);
1213 blk_mq_flush_plug_list(plug
, from_schedule
);
1215 * Unconditionally flush out cached requests, even if the unplug
1216 * event came from schedule. Since we know hold references to the
1217 * queue for cached requests, we don't want a blocked task holding
1218 * up a queue freeze/quiesce event.
1220 if (unlikely(!rq_list_empty(&plug
->cached_rqs
)))
1221 blk_mq_free_plug_rqs(plug
);
1223 plug
->cur_ktime
= 0;
1224 current
->flags
&= ~PF_BLOCK_TS
;
1228 * blk_finish_plug - mark the end of a batch of submitted I/O
1229 * @plug: The &struct blk_plug passed to blk_start_plug()
1232 * Indicate that a batch of I/O submissions is complete. This function
1233 * must be paired with an initial call to blk_start_plug(). The intent
1234 * is to allow the block layer to optimize I/O submission. See the
1235 * documentation for blk_start_plug() for more information.
1237 void blk_finish_plug(struct blk_plug
*plug
)
1239 if (plug
== current
->plug
) {
1240 __blk_flush_plug(plug
, false);
1241 current
->plug
= NULL
;
1244 EXPORT_SYMBOL(blk_finish_plug
);
1246 void blk_io_schedule(void)
1248 /* Prevent hang_check timer from firing at us during very long I/O */
1249 unsigned long timeout
= sysctl_hung_task_timeout_secs
* HZ
/ 2;
1252 io_schedule_timeout(timeout
);
1256 EXPORT_SYMBOL_GPL(blk_io_schedule
);
1258 int __init
blk_dev_init(void)
1260 BUILD_BUG_ON((__force u32
)REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
1261 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1262 sizeof_field(struct request
, cmd_flags
));
1263 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1264 sizeof_field(struct bio
, bi_opf
));
1266 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1267 kblockd_workqueue
= alloc_workqueue("kblockd",
1268 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
1269 if (!kblockd_workqueue
)
1270 panic("Failed to create kblockd\n");
1272 blk_requestq_cachep
= KMEM_CACHE(request_queue
, SLAB_PANIC
);
1274 blk_debugfs_root
= debugfs_create_dir("block", NULL
);