1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
33 #include <trace/events/block.h>
35 #include <linux/t10-pi.h>
38 #include "blk-mq-debugfs.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
44 static DEFINE_PER_CPU(struct llist_head
, blk_cpu_done
);
45 static DEFINE_PER_CPU(call_single_data_t
, blk_cpu_csd
);
47 static void blk_mq_insert_request(struct request
*rq
, blk_insert_t flags
);
48 static void blk_mq_request_bypass_insert(struct request
*rq
,
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
51 struct list_head
*list
);
52 static int blk_hctx_poll(struct request_queue
*q
, struct blk_mq_hw_ctx
*hctx
,
53 struct io_comp_batch
*iob
, unsigned int flags
);
56 * Check if any of the ctx, dispatch list or elevator
57 * have pending work in this hardware queue.
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
61 return !list_empty_careful(&hctx
->dispatch
) ||
62 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
63 blk_mq_sched_has_work(hctx
);
67 * Mark this ctx as having pending work in this hardware queue
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
70 struct blk_mq_ctx
*ctx
)
72 const int bit
= ctx
->index_hw
[hctx
->type
];
74 if (!sbitmap_test_bit(&hctx
->ctx_map
, bit
))
75 sbitmap_set_bit(&hctx
->ctx_map
, bit
);
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
79 struct blk_mq_ctx
*ctx
)
81 const int bit
= ctx
->index_hw
[hctx
->type
];
83 sbitmap_clear_bit(&hctx
->ctx_map
, bit
);
87 struct block_device
*part
;
88 unsigned int inflight
[2];
91 static bool blk_mq_check_inflight(struct request
*rq
, void *priv
)
93 struct mq_inflight
*mi
= priv
;
95 if (rq
->rq_flags
& RQF_IO_STAT
&&
96 (!bdev_is_partition(mi
->part
) || rq
->part
== mi
->part
) &&
97 blk_mq_rq_state(rq
) == MQ_RQ_IN_FLIGHT
)
98 mi
->inflight
[rq_data_dir(rq
)]++;
103 unsigned int blk_mq_in_flight(struct request_queue
*q
,
104 struct block_device
*part
)
106 struct mq_inflight mi
= { .part
= part
};
108 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
110 return mi
.inflight
[0] + mi
.inflight
[1];
113 void blk_mq_in_flight_rw(struct request_queue
*q
, struct block_device
*part
,
114 unsigned int inflight
[2])
116 struct mq_inflight mi
= { .part
= part
};
118 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
119 inflight
[0] = mi
.inflight
[0];
120 inflight
[1] = mi
.inflight
[1];
123 #ifdef CONFIG_LOCKDEP
124 static bool blk_freeze_set_owner(struct request_queue
*q
,
125 struct task_struct
*owner
)
130 if (!q
->mq_freeze_depth
) {
131 q
->mq_freeze_owner
= owner
;
132 q
->mq_freeze_owner_depth
= 1;
136 if (owner
== q
->mq_freeze_owner
)
137 q
->mq_freeze_owner_depth
+= 1;
141 /* verify the last unfreeze in owner context */
142 static bool blk_unfreeze_check_owner(struct request_queue
*q
)
144 if (!q
->mq_freeze_owner
)
146 if (q
->mq_freeze_owner
!= current
)
148 if (--q
->mq_freeze_owner_depth
== 0) {
149 q
->mq_freeze_owner
= NULL
;
157 static bool blk_freeze_set_owner(struct request_queue
*q
,
158 struct task_struct
*owner
)
163 static bool blk_unfreeze_check_owner(struct request_queue
*q
)
169 bool __blk_freeze_queue_start(struct request_queue
*q
,
170 struct task_struct
*owner
)
174 mutex_lock(&q
->mq_freeze_lock
);
175 freeze
= blk_freeze_set_owner(q
, owner
);
176 if (++q
->mq_freeze_depth
== 1) {
177 percpu_ref_kill(&q
->q_usage_counter
);
178 mutex_unlock(&q
->mq_freeze_lock
);
180 blk_mq_run_hw_queues(q
, false);
182 mutex_unlock(&q
->mq_freeze_lock
);
188 void blk_freeze_queue_start(struct request_queue
*q
)
190 if (__blk_freeze_queue_start(q
, current
))
191 blk_freeze_acquire_lock(q
, false, false);
193 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
195 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
197 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
201 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
202 unsigned long timeout
)
204 return wait_event_timeout(q
->mq_freeze_wq
,
205 percpu_ref_is_zero(&q
->q_usage_counter
),
208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
210 void blk_mq_freeze_queue(struct request_queue
*q
)
212 blk_freeze_queue_start(q
);
213 blk_mq_freeze_queue_wait(q
);
215 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
217 bool __blk_mq_unfreeze_queue(struct request_queue
*q
, bool force_atomic
)
221 mutex_lock(&q
->mq_freeze_lock
);
223 q
->q_usage_counter
.data
->force_atomic
= true;
224 q
->mq_freeze_depth
--;
225 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
226 if (!q
->mq_freeze_depth
) {
227 percpu_ref_resurrect(&q
->q_usage_counter
);
228 wake_up_all(&q
->mq_freeze_wq
);
230 unfreeze
= blk_unfreeze_check_owner(q
);
231 mutex_unlock(&q
->mq_freeze_lock
);
236 void blk_mq_unfreeze_queue(struct request_queue
*q
)
238 if (__blk_mq_unfreeze_queue(q
, false))
239 blk_unfreeze_release_lock(q
, false, false);
241 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
244 * non_owner variant of blk_freeze_queue_start
246 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
247 * by the same task. This is fragile and should not be used if at all
250 void blk_freeze_queue_start_non_owner(struct request_queue
*q
)
252 __blk_freeze_queue_start(q
, NULL
);
254 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner
);
256 /* non_owner variant of blk_mq_unfreeze_queue */
257 void blk_mq_unfreeze_queue_non_owner(struct request_queue
*q
)
259 __blk_mq_unfreeze_queue(q
, false);
261 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner
);
264 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
265 * mpt3sas driver such that this function can be removed.
267 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
271 spin_lock_irqsave(&q
->queue_lock
, flags
);
272 if (!q
->quiesce_depth
++)
273 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
274 spin_unlock_irqrestore(&q
->queue_lock
, flags
);
276 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
279 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
280 * @set: tag_set to wait on
282 * Note: it is driver's responsibility for making sure that quiesce has
283 * been started on or more of the request_queues of the tag_set. This
284 * function only waits for the quiesce on those request_queues that had
285 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
287 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set
*set
)
289 if (set
->flags
& BLK_MQ_F_BLOCKING
)
290 synchronize_srcu(set
->srcu
);
294 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done
);
297 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
300 * Note: this function does not prevent that the struct request end_io()
301 * callback function is invoked. Once this function is returned, we make
302 * sure no dispatch can happen until the queue is unquiesced via
303 * blk_mq_unquiesce_queue().
305 void blk_mq_quiesce_queue(struct request_queue
*q
)
307 blk_mq_quiesce_queue_nowait(q
);
308 /* nothing to wait for non-mq queues */
310 blk_mq_wait_quiesce_done(q
->tag_set
);
312 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
315 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
318 * This function recovers queue into the state before quiescing
319 * which is done by blk_mq_quiesce_queue.
321 void blk_mq_unquiesce_queue(struct request_queue
*q
)
324 bool run_queue
= false;
326 spin_lock_irqsave(&q
->queue_lock
, flags
);
327 if (WARN_ON_ONCE(q
->quiesce_depth
<= 0)) {
329 } else if (!--q
->quiesce_depth
) {
330 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
333 spin_unlock_irqrestore(&q
->queue_lock
, flags
);
335 /* dispatch requests which are inserted during quiescing */
337 blk_mq_run_hw_queues(q
, true);
339 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
341 void blk_mq_quiesce_tagset(struct blk_mq_tag_set
*set
)
343 struct request_queue
*q
;
345 mutex_lock(&set
->tag_list_lock
);
346 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
347 if (!blk_queue_skip_tagset_quiesce(q
))
348 blk_mq_quiesce_queue_nowait(q
);
350 mutex_unlock(&set
->tag_list_lock
);
352 blk_mq_wait_quiesce_done(set
);
354 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset
);
356 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set
*set
)
358 struct request_queue
*q
;
360 mutex_lock(&set
->tag_list_lock
);
361 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
362 if (!blk_queue_skip_tagset_quiesce(q
))
363 blk_mq_unquiesce_queue(q
);
365 mutex_unlock(&set
->tag_list_lock
);
367 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset
);
369 void blk_mq_wake_waiters(struct request_queue
*q
)
371 struct blk_mq_hw_ctx
*hctx
;
374 queue_for_each_hw_ctx(q
, hctx
, i
)
375 if (blk_mq_hw_queue_mapped(hctx
))
376 blk_mq_tag_wakeup_all(hctx
->tags
, true);
379 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
381 memset(rq
, 0, sizeof(*rq
));
383 INIT_LIST_HEAD(&rq
->queuelist
);
385 rq
->__sector
= (sector_t
) -1;
386 INIT_HLIST_NODE(&rq
->hash
);
387 RB_CLEAR_NODE(&rq
->rb_node
);
388 rq
->tag
= BLK_MQ_NO_TAG
;
389 rq
->internal_tag
= BLK_MQ_NO_TAG
;
390 rq
->start_time_ns
= blk_time_get_ns();
391 blk_crypto_rq_set_defaults(rq
);
393 EXPORT_SYMBOL(blk_rq_init
);
395 /* Set start and alloc time when the allocated request is actually used */
396 static inline void blk_mq_rq_time_init(struct request
*rq
, u64 alloc_time_ns
)
398 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
399 if (blk_queue_rq_alloc_time(rq
->q
))
400 rq
->alloc_time_ns
= alloc_time_ns
;
402 rq
->alloc_time_ns
= 0;
406 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
407 struct blk_mq_tags
*tags
, unsigned int tag
)
409 struct blk_mq_ctx
*ctx
= data
->ctx
;
410 struct blk_mq_hw_ctx
*hctx
= data
->hctx
;
411 struct request_queue
*q
= data
->q
;
412 struct request
*rq
= tags
->static_rqs
[tag
];
417 rq
->cmd_flags
= data
->cmd_flags
;
419 if (data
->flags
& BLK_MQ_REQ_PM
)
420 data
->rq_flags
|= RQF_PM
;
421 rq
->rq_flags
= data
->rq_flags
;
423 if (data
->rq_flags
& RQF_SCHED_TAGS
) {
424 rq
->tag
= BLK_MQ_NO_TAG
;
425 rq
->internal_tag
= tag
;
428 rq
->internal_tag
= BLK_MQ_NO_TAG
;
433 rq
->io_start_time_ns
= 0;
434 rq
->stats_sectors
= 0;
435 rq
->nr_phys_segments
= 0;
436 rq
->nr_integrity_segments
= 0;
438 rq
->end_io_data
= NULL
;
440 blk_crypto_rq_set_defaults(rq
);
441 INIT_LIST_HEAD(&rq
->queuelist
);
442 /* tag was already set */
443 WRITE_ONCE(rq
->deadline
, 0);
446 if (rq
->rq_flags
& RQF_USE_SCHED
) {
447 struct elevator_queue
*e
= data
->q
->elevator
;
449 INIT_HLIST_NODE(&rq
->hash
);
450 RB_CLEAR_NODE(&rq
->rb_node
);
452 if (e
->type
->ops
.prepare_request
)
453 e
->type
->ops
.prepare_request(rq
);
459 static inline struct request
*
460 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data
*data
)
462 unsigned int tag
, tag_offset
;
463 struct blk_mq_tags
*tags
;
465 unsigned long tag_mask
;
468 tag_mask
= blk_mq_get_tags(data
, data
->nr_tags
, &tag_offset
);
469 if (unlikely(!tag_mask
))
472 tags
= blk_mq_tags_from_data(data
);
473 for (i
= 0; tag_mask
; i
++) {
474 if (!(tag_mask
& (1UL << i
)))
476 tag
= tag_offset
+ i
;
477 prefetch(tags
->static_rqs
[tag
]);
478 tag_mask
&= ~(1UL << i
);
479 rq
= blk_mq_rq_ctx_init(data
, tags
, tag
);
480 rq_list_add_head(data
->cached_rqs
, rq
);
483 if (!(data
->rq_flags
& RQF_SCHED_TAGS
))
484 blk_mq_add_active_requests(data
->hctx
, nr
);
485 /* caller already holds a reference, add for remainder */
486 percpu_ref_get_many(&data
->q
->q_usage_counter
, nr
- 1);
489 return rq_list_pop(data
->cached_rqs
);
492 static struct request
*__blk_mq_alloc_requests(struct blk_mq_alloc_data
*data
)
494 struct request_queue
*q
= data
->q
;
495 u64 alloc_time_ns
= 0;
499 /* alloc_time includes depth and tag waits */
500 if (blk_queue_rq_alloc_time(q
))
501 alloc_time_ns
= blk_time_get_ns();
503 if (data
->cmd_flags
& REQ_NOWAIT
)
504 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
507 data
->ctx
= blk_mq_get_ctx(q
);
508 data
->hctx
= blk_mq_map_queue(q
, data
->cmd_flags
, data
->ctx
);
512 * All requests use scheduler tags when an I/O scheduler is
513 * enabled for the queue.
515 data
->rq_flags
|= RQF_SCHED_TAGS
;
518 * Flush/passthrough requests are special and go directly to the
521 if ((data
->cmd_flags
& REQ_OP_MASK
) != REQ_OP_FLUSH
&&
522 !blk_op_is_passthrough(data
->cmd_flags
)) {
523 struct elevator_mq_ops
*ops
= &q
->elevator
->type
->ops
;
525 WARN_ON_ONCE(data
->flags
& BLK_MQ_REQ_RESERVED
);
527 data
->rq_flags
|= RQF_USE_SCHED
;
528 if (ops
->limit_depth
)
529 ops
->limit_depth(data
->cmd_flags
, data
);
532 blk_mq_tag_busy(data
->hctx
);
535 if (data
->flags
& BLK_MQ_REQ_RESERVED
)
536 data
->rq_flags
|= RQF_RESV
;
539 * Try batched alloc if we want more than 1 tag.
541 if (data
->nr_tags
> 1) {
542 rq
= __blk_mq_alloc_requests_batch(data
);
544 blk_mq_rq_time_init(rq
, alloc_time_ns
);
551 * Waiting allocations only fail because of an inactive hctx. In that
552 * case just retry the hctx assignment and tag allocation as CPU hotplug
553 * should have migrated us to an online CPU by now.
555 tag
= blk_mq_get_tag(data
);
556 if (tag
== BLK_MQ_NO_TAG
) {
557 if (data
->flags
& BLK_MQ_REQ_NOWAIT
)
560 * Give up the CPU and sleep for a random short time to
561 * ensure that thread using a realtime scheduling class
562 * are migrated off the CPU, and thus off the hctx that
569 if (!(data
->rq_flags
& RQF_SCHED_TAGS
))
570 blk_mq_inc_active_requests(data
->hctx
);
571 rq
= blk_mq_rq_ctx_init(data
, blk_mq_tags_from_data(data
), tag
);
572 blk_mq_rq_time_init(rq
, alloc_time_ns
);
576 static struct request
*blk_mq_rq_cache_fill(struct request_queue
*q
,
577 struct blk_plug
*plug
,
579 blk_mq_req_flags_t flags
)
581 struct blk_mq_alloc_data data
= {
585 .nr_tags
= plug
->nr_ios
,
586 .cached_rqs
= &plug
->cached_rqs
,
590 if (blk_queue_enter(q
, flags
))
595 rq
= __blk_mq_alloc_requests(&data
);
601 static struct request
*blk_mq_alloc_cached_request(struct request_queue
*q
,
603 blk_mq_req_flags_t flags
)
605 struct blk_plug
*plug
= current
->plug
;
611 if (rq_list_empty(&plug
->cached_rqs
)) {
612 if (plug
->nr_ios
== 1)
614 rq
= blk_mq_rq_cache_fill(q
, plug
, opf
, flags
);
618 rq
= rq_list_peek(&plug
->cached_rqs
);
619 if (!rq
|| rq
->q
!= q
)
622 if (blk_mq_get_hctx_type(opf
) != rq
->mq_hctx
->type
)
624 if (op_is_flush(rq
->cmd_flags
) != op_is_flush(opf
))
627 rq_list_pop(&plug
->cached_rqs
);
628 blk_mq_rq_time_init(rq
, blk_time_get_ns());
632 INIT_LIST_HEAD(&rq
->queuelist
);
636 struct request
*blk_mq_alloc_request(struct request_queue
*q
, blk_opf_t opf
,
637 blk_mq_req_flags_t flags
)
641 rq
= blk_mq_alloc_cached_request(q
, opf
, flags
);
643 struct blk_mq_alloc_data data
= {
651 ret
= blk_queue_enter(q
, flags
);
655 rq
= __blk_mq_alloc_requests(&data
);
660 rq
->__sector
= (sector_t
) -1;
661 rq
->bio
= rq
->biotail
= NULL
;
665 return ERR_PTR(-EWOULDBLOCK
);
667 EXPORT_SYMBOL(blk_mq_alloc_request
);
669 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
670 blk_opf_t opf
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
672 struct blk_mq_alloc_data data
= {
678 u64 alloc_time_ns
= 0;
684 /* alloc_time includes depth and tag waits */
685 if (blk_queue_rq_alloc_time(q
))
686 alloc_time_ns
= blk_time_get_ns();
689 * If the tag allocator sleeps we could get an allocation for a
690 * different hardware context. No need to complicate the low level
691 * allocator for this for the rare use case of a command tied to
694 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)) ||
695 WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_RESERVED
)))
696 return ERR_PTR(-EINVAL
);
698 if (hctx_idx
>= q
->nr_hw_queues
)
699 return ERR_PTR(-EIO
);
701 ret
= blk_queue_enter(q
, flags
);
706 * Check if the hardware context is actually mapped to anything.
707 * If not tell the caller that it should skip this queue.
710 data
.hctx
= xa_load(&q
->hctx_table
, hctx_idx
);
711 if (!blk_mq_hw_queue_mapped(data
.hctx
))
713 cpu
= cpumask_first_and(data
.hctx
->cpumask
, cpu_online_mask
);
714 if (cpu
>= nr_cpu_ids
)
716 data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
719 data
.rq_flags
|= RQF_SCHED_TAGS
;
721 blk_mq_tag_busy(data
.hctx
);
723 if (flags
& BLK_MQ_REQ_RESERVED
)
724 data
.rq_flags
|= RQF_RESV
;
727 tag
= blk_mq_get_tag(&data
);
728 if (tag
== BLK_MQ_NO_TAG
)
730 if (!(data
.rq_flags
& RQF_SCHED_TAGS
))
731 blk_mq_inc_active_requests(data
.hctx
);
732 rq
= blk_mq_rq_ctx_init(&data
, blk_mq_tags_from_data(&data
), tag
);
733 blk_mq_rq_time_init(rq
, alloc_time_ns
);
735 rq
->__sector
= (sector_t
) -1;
736 rq
->bio
= rq
->biotail
= NULL
;
743 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
745 static void blk_mq_finish_request(struct request
*rq
)
747 struct request_queue
*q
= rq
->q
;
749 blk_zone_finish_request(rq
);
751 if (rq
->rq_flags
& RQF_USE_SCHED
) {
752 q
->elevator
->type
->ops
.finish_request(rq
);
754 * For postflush request that may need to be
755 * completed twice, we should clear this flag
756 * to avoid double finish_request() on the rq.
758 rq
->rq_flags
&= ~RQF_USE_SCHED
;
762 static void __blk_mq_free_request(struct request
*rq
)
764 struct request_queue
*q
= rq
->q
;
765 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
766 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
767 const int sched_tag
= rq
->internal_tag
;
769 blk_crypto_free_request(rq
);
770 blk_pm_mark_last_busy(rq
);
773 if (rq
->tag
!= BLK_MQ_NO_TAG
) {
774 blk_mq_dec_active_requests(hctx
);
775 blk_mq_put_tag(hctx
->tags
, ctx
, rq
->tag
);
777 if (sched_tag
!= BLK_MQ_NO_TAG
)
778 blk_mq_put_tag(hctx
->sched_tags
, ctx
, sched_tag
);
779 blk_mq_sched_restart(hctx
);
783 void blk_mq_free_request(struct request
*rq
)
785 struct request_queue
*q
= rq
->q
;
787 blk_mq_finish_request(rq
);
789 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
790 laptop_io_completion(q
->disk
->bdi
);
794 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
795 if (req_ref_put_and_test(rq
))
796 __blk_mq_free_request(rq
);
798 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
800 void blk_mq_free_plug_rqs(struct blk_plug
*plug
)
804 while ((rq
= rq_list_pop(&plug
->cached_rqs
)) != NULL
)
805 blk_mq_free_request(rq
);
808 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
810 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
811 rq
->q
->disk
? rq
->q
->disk
->disk_name
: "?",
812 (__force
unsigned long long) rq
->cmd_flags
);
814 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
815 (unsigned long long)blk_rq_pos(rq
),
816 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
817 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
818 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
820 EXPORT_SYMBOL(blk_dump_rq_flags
);
822 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
824 if (req
->rq_flags
& RQF_IO_STAT
) {
825 const int sgrp
= op_stat_group(req_op(req
));
828 part_stat_add(req
->part
, sectors
[sgrp
], bytes
>> 9);
833 static void blk_print_req_error(struct request
*req
, blk_status_t status
)
835 printk_ratelimited(KERN_ERR
836 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
837 "phys_seg %u prio class %u\n",
838 blk_status_to_str(status
),
839 req
->q
->disk
? req
->q
->disk
->disk_name
: "?",
840 blk_rq_pos(req
), (__force u32
)req_op(req
),
841 blk_op_str(req_op(req
)),
842 (__force u32
)(req
->cmd_flags
& ~REQ_OP_MASK
),
843 req
->nr_phys_segments
,
844 IOPRIO_PRIO_CLASS(req_get_ioprio(req
)));
848 * Fully end IO on a request. Does not support partial completions, or
851 static void blk_complete_request(struct request
*req
)
853 const bool is_flush
= (req
->rq_flags
& RQF_FLUSH_SEQ
) != 0;
854 int total_bytes
= blk_rq_bytes(req
);
855 struct bio
*bio
= req
->bio
;
857 trace_block_rq_complete(req
, BLK_STS_OK
, total_bytes
);
862 if (blk_integrity_rq(req
) && req_op(req
) == REQ_OP_READ
)
863 blk_integrity_complete(req
, total_bytes
);
866 * Upper layers may call blk_crypto_evict_key() anytime after the last
867 * bio_endio(). Therefore, the keyslot must be released before that.
869 blk_crypto_rq_put_keyslot(req
);
871 blk_account_io_completion(req
, total_bytes
);
874 struct bio
*next
= bio
->bi_next
;
876 /* Completion has already been traced */
877 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
879 blk_zone_update_request_bio(req
, bio
);
887 * Reset counters so that the request stacking driver
888 * can find how many bytes remain in the request
898 * blk_update_request - Complete multiple bytes without completing the request
899 * @req: the request being processed
900 * @error: block status code
901 * @nr_bytes: number of bytes to complete for @req
904 * Ends I/O on a number of bytes attached to @req, but doesn't complete
905 * the request structure even if @req doesn't have leftover.
906 * If @req has leftover, sets it up for the next range of segments.
908 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
909 * %false return from this function.
912 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
913 * except in the consistency check at the end of this function.
916 * %false - this request doesn't have any more data
917 * %true - this request has more data
919 bool blk_update_request(struct request
*req
, blk_status_t error
,
920 unsigned int nr_bytes
)
922 bool is_flush
= req
->rq_flags
& RQF_FLUSH_SEQ
;
923 bool quiet
= req
->rq_flags
& RQF_QUIET
;
926 trace_block_rq_complete(req
, error
, nr_bytes
);
931 if (blk_integrity_rq(req
) && req_op(req
) == REQ_OP_READ
&&
933 blk_integrity_complete(req
, nr_bytes
);
936 * Upper layers may call blk_crypto_evict_key() anytime after the last
937 * bio_endio(). Therefore, the keyslot must be released before that.
939 if (blk_crypto_rq_has_keyslot(req
) && nr_bytes
>= blk_rq_bytes(req
))
940 __blk_crypto_rq_put_keyslot(req
);
942 if (unlikely(error
&& !blk_rq_is_passthrough(req
) && !quiet
) &&
943 !test_bit(GD_DEAD
, &req
->q
->disk
->state
)) {
944 blk_print_req_error(req
, error
);
945 trace_block_rq_error(req
, error
, nr_bytes
);
948 blk_account_io_completion(req
, nr_bytes
);
952 struct bio
*bio
= req
->bio
;
953 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
956 bio
->bi_status
= error
;
958 if (bio_bytes
== bio
->bi_iter
.bi_size
) {
959 req
->bio
= bio
->bi_next
;
960 } else if (bio_is_zone_append(bio
) && error
== BLK_STS_OK
) {
962 * Partial zone append completions cannot be supported
963 * as the BIO fragments may end up not being written
966 bio
->bi_status
= BLK_STS_IOERR
;
969 /* Completion has already been traced */
970 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
972 bio_set_flag(bio
, BIO_QUIET
);
974 bio_advance(bio
, bio_bytes
);
976 /* Don't actually finish bio if it's part of flush sequence */
977 if (!bio
->bi_iter
.bi_size
) {
978 blk_zone_update_request_bio(req
, bio
);
983 total_bytes
+= bio_bytes
;
984 nr_bytes
-= bio_bytes
;
995 * Reset counters so that the request stacking driver
996 * can find how many bytes remain in the request
1003 req
->__data_len
-= total_bytes
;
1005 /* update sector only for requests with clear definition of sector */
1006 if (!blk_rq_is_passthrough(req
))
1007 req
->__sector
+= total_bytes
>> 9;
1009 /* mixed attributes always follow the first bio */
1010 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
1011 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
1012 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
1015 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
1017 * If total number of sectors is less than the first segment
1018 * size, something has gone terribly wrong.
1020 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
1021 blk_dump_rq_flags(req
, "request botched");
1022 req
->__data_len
= blk_rq_cur_bytes(req
);
1025 /* recalculate the number of segments */
1026 req
->nr_phys_segments
= blk_recalc_rq_segments(req
);
1031 EXPORT_SYMBOL_GPL(blk_update_request
);
1033 static inline void blk_account_io_done(struct request
*req
, u64 now
)
1035 trace_block_io_done(req
);
1038 * Account IO completion. flush_rq isn't accounted as a
1039 * normal IO on queueing nor completion. Accounting the
1040 * containing request is enough.
1042 if ((req
->rq_flags
& (RQF_IO_STAT
|RQF_FLUSH_SEQ
)) == RQF_IO_STAT
) {
1043 const int sgrp
= op_stat_group(req_op(req
));
1046 update_io_ticks(req
->part
, jiffies
, true);
1047 part_stat_inc(req
->part
, ios
[sgrp
]);
1048 part_stat_add(req
->part
, nsecs
[sgrp
], now
- req
->start_time_ns
);
1049 part_stat_local_dec(req
->part
,
1050 in_flight
[op_is_write(req_op(req
))]);
1055 static inline bool blk_rq_passthrough_stats(struct request
*req
)
1057 struct bio
*bio
= req
->bio
;
1059 if (!blk_queue_passthrough_stat(req
->q
))
1062 /* Requests without a bio do not transfer data. */
1067 * Stats are accumulated in the bdev, so must have one attached to a
1068 * bio to track stats. Most drivers do not set the bdev for passthrough
1069 * requests, but nvme is one that will set it.
1075 * We don't know what a passthrough command does, but we know the
1076 * payload size and data direction. Ensuring the size is aligned to the
1077 * block size filters out most commands with payloads that don't
1078 * represent sector access.
1080 if (blk_rq_bytes(req
) & (bdev_logical_block_size(bio
->bi_bdev
) - 1))
1085 static inline void blk_account_io_start(struct request
*req
)
1087 trace_block_io_start(req
);
1089 if (!blk_queue_io_stat(req
->q
))
1091 if (blk_rq_is_passthrough(req
) && !blk_rq_passthrough_stats(req
))
1094 req
->rq_flags
|= RQF_IO_STAT
;
1095 req
->start_time_ns
= blk_time_get_ns();
1098 * All non-passthrough requests are created from a bio with one
1099 * exception: when a flush command that is part of a flush sequence
1100 * generated by the state machine in blk-flush.c is cloned onto the
1101 * lower device by dm-multipath we can get here without a bio.
1104 req
->part
= req
->bio
->bi_bdev
;
1106 req
->part
= req
->q
->disk
->part0
;
1109 update_io_ticks(req
->part
, jiffies
, false);
1110 part_stat_local_inc(req
->part
, in_flight
[op_is_write(req_op(req
))]);
1114 static inline void __blk_mq_end_request_acct(struct request
*rq
, u64 now
)
1116 if (rq
->rq_flags
& RQF_STATS
)
1117 blk_stat_add(rq
, now
);
1119 blk_mq_sched_completed_request(rq
, now
);
1120 blk_account_io_done(rq
, now
);
1123 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
1125 if (blk_mq_need_time_stamp(rq
))
1126 __blk_mq_end_request_acct(rq
, blk_time_get_ns());
1128 blk_mq_finish_request(rq
);
1131 rq_qos_done(rq
->q
, rq
);
1132 if (rq
->end_io(rq
, error
) == RQ_END_IO_FREE
)
1133 blk_mq_free_request(rq
);
1135 blk_mq_free_request(rq
);
1138 EXPORT_SYMBOL(__blk_mq_end_request
);
1140 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
1142 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
1144 __blk_mq_end_request(rq
, error
);
1146 EXPORT_SYMBOL(blk_mq_end_request
);
1148 #define TAG_COMP_BATCH 32
1150 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx
*hctx
,
1151 int *tag_array
, int nr_tags
)
1153 struct request_queue
*q
= hctx
->queue
;
1155 blk_mq_sub_active_requests(hctx
, nr_tags
);
1157 blk_mq_put_tags(hctx
->tags
, tag_array
, nr_tags
);
1158 percpu_ref_put_many(&q
->q_usage_counter
, nr_tags
);
1161 void blk_mq_end_request_batch(struct io_comp_batch
*iob
)
1163 int tags
[TAG_COMP_BATCH
], nr_tags
= 0;
1164 struct blk_mq_hw_ctx
*cur_hctx
= NULL
;
1169 now
= blk_time_get_ns();
1171 while ((rq
= rq_list_pop(&iob
->req_list
)) != NULL
) {
1173 prefetch(rq
->rq_next
);
1175 blk_complete_request(rq
);
1177 __blk_mq_end_request_acct(rq
, now
);
1179 blk_mq_finish_request(rq
);
1181 rq_qos_done(rq
->q
, rq
);
1184 * If end_io handler returns NONE, then it still has
1185 * ownership of the request.
1187 if (rq
->end_io
&& rq
->end_io(rq
, 0) == RQ_END_IO_NONE
)
1190 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
1191 if (!req_ref_put_and_test(rq
))
1194 blk_crypto_free_request(rq
);
1195 blk_pm_mark_last_busy(rq
);
1197 if (nr_tags
== TAG_COMP_BATCH
|| cur_hctx
!= rq
->mq_hctx
) {
1199 blk_mq_flush_tag_batch(cur_hctx
, tags
, nr_tags
);
1201 cur_hctx
= rq
->mq_hctx
;
1203 tags
[nr_tags
++] = rq
->tag
;
1207 blk_mq_flush_tag_batch(cur_hctx
, tags
, nr_tags
);
1209 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch
);
1211 static void blk_complete_reqs(struct llist_head
*list
)
1213 struct llist_node
*entry
= llist_reverse_order(llist_del_all(list
));
1214 struct request
*rq
, *next
;
1216 llist_for_each_entry_safe(rq
, next
, entry
, ipi_list
)
1217 rq
->q
->mq_ops
->complete(rq
);
1220 static __latent_entropy
void blk_done_softirq(void)
1222 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done
));
1225 static int blk_softirq_cpu_dead(unsigned int cpu
)
1227 blk_complete_reqs(&per_cpu(blk_cpu_done
, cpu
));
1231 static void __blk_mq_complete_request_remote(void *data
)
1233 __raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1236 static inline bool blk_mq_complete_need_ipi(struct request
*rq
)
1238 int cpu
= raw_smp_processor_id();
1240 if (!IS_ENABLED(CONFIG_SMP
) ||
1241 !test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
))
1244 * With force threaded interrupts enabled, raising softirq from an SMP
1245 * function call will always result in waking the ksoftirqd thread.
1246 * This is probably worse than completing the request on a different
1249 if (force_irqthreads())
1252 /* same CPU or cache domain and capacity? Complete locally */
1253 if (cpu
== rq
->mq_ctx
->cpu
||
1254 (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
) &&
1255 cpus_share_cache(cpu
, rq
->mq_ctx
->cpu
) &&
1256 cpus_equal_capacity(cpu
, rq
->mq_ctx
->cpu
)))
1259 /* don't try to IPI to an offline CPU */
1260 return cpu_online(rq
->mq_ctx
->cpu
);
1263 static void blk_mq_complete_send_ipi(struct request
*rq
)
1267 cpu
= rq
->mq_ctx
->cpu
;
1268 if (llist_add(&rq
->ipi_list
, &per_cpu(blk_cpu_done
, cpu
)))
1269 smp_call_function_single_async(cpu
, &per_cpu(blk_cpu_csd
, cpu
));
1272 static void blk_mq_raise_softirq(struct request
*rq
)
1274 struct llist_head
*list
;
1277 list
= this_cpu_ptr(&blk_cpu_done
);
1278 if (llist_add(&rq
->ipi_list
, list
))
1279 raise_softirq(BLOCK_SOFTIRQ
);
1283 bool blk_mq_complete_request_remote(struct request
*rq
)
1285 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
1288 * For request which hctx has only one ctx mapping,
1289 * or a polled request, always complete locally,
1290 * it's pointless to redirect the completion.
1292 if ((rq
->mq_hctx
->nr_ctx
== 1 &&
1293 rq
->mq_ctx
->cpu
== raw_smp_processor_id()) ||
1294 rq
->cmd_flags
& REQ_POLLED
)
1297 if (blk_mq_complete_need_ipi(rq
)) {
1298 blk_mq_complete_send_ipi(rq
);
1302 if (rq
->q
->nr_hw_queues
== 1) {
1303 blk_mq_raise_softirq(rq
);
1308 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote
);
1311 * blk_mq_complete_request - end I/O on a request
1312 * @rq: the request being processed
1315 * Complete a request by scheduling the ->complete_rq operation.
1317 void blk_mq_complete_request(struct request
*rq
)
1319 if (!blk_mq_complete_request_remote(rq
))
1320 rq
->q
->mq_ops
->complete(rq
);
1322 EXPORT_SYMBOL(blk_mq_complete_request
);
1325 * blk_mq_start_request - Start processing a request
1326 * @rq: Pointer to request to be started
1328 * Function used by device drivers to notify the block layer that a request
1329 * is going to be processed now, so blk layer can do proper initializations
1330 * such as starting the timeout timer.
1332 void blk_mq_start_request(struct request
*rq
)
1334 struct request_queue
*q
= rq
->q
;
1336 trace_block_rq_issue(rq
);
1338 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
) &&
1339 !blk_rq_is_passthrough(rq
)) {
1340 rq
->io_start_time_ns
= blk_time_get_ns();
1341 rq
->stats_sectors
= blk_rq_sectors(rq
);
1342 rq
->rq_flags
|= RQF_STATS
;
1343 rq_qos_issue(q
, rq
);
1346 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
1349 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
1350 rq
->mq_hctx
->tags
->rqs
[rq
->tag
] = rq
;
1352 if (blk_integrity_rq(rq
) && req_op(rq
) == REQ_OP_WRITE
)
1353 blk_integrity_prepare(rq
);
1355 if (rq
->bio
&& rq
->bio
->bi_opf
& REQ_POLLED
)
1356 WRITE_ONCE(rq
->bio
->bi_cookie
, rq
->mq_hctx
->queue_num
);
1358 EXPORT_SYMBOL(blk_mq_start_request
);
1361 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1362 * queues. This is important for md arrays to benefit from merging
1365 static inline unsigned short blk_plug_max_rq_count(struct blk_plug
*plug
)
1367 if (plug
->multiple_queues
)
1368 return BLK_MAX_REQUEST_COUNT
* 2;
1369 return BLK_MAX_REQUEST_COUNT
;
1372 static void blk_add_rq_to_plug(struct blk_plug
*plug
, struct request
*rq
)
1374 struct request
*last
= rq_list_peek(&plug
->mq_list
);
1376 if (!plug
->rq_count
) {
1377 trace_block_plug(rq
->q
);
1378 } else if (plug
->rq_count
>= blk_plug_max_rq_count(plug
) ||
1379 (!blk_queue_nomerges(rq
->q
) &&
1380 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1381 blk_mq_flush_plug_list(plug
, false);
1383 trace_block_plug(rq
->q
);
1386 if (!plug
->multiple_queues
&& last
&& last
->q
!= rq
->q
)
1387 plug
->multiple_queues
= true;
1389 * Any request allocated from sched tags can't be issued to
1390 * ->queue_rqs() directly
1392 if (!plug
->has_elevator
&& (rq
->rq_flags
& RQF_SCHED_TAGS
))
1393 plug
->has_elevator
= true;
1394 rq_list_add_tail(&plug
->mq_list
, rq
);
1399 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1400 * @rq: request to insert
1401 * @at_head: insert request at head or tail of queue
1404 * Insert a fully prepared request at the back of the I/O scheduler queue
1405 * for execution. Don't wait for completion.
1408 * This function will invoke @done directly if the queue is dead.
1410 void blk_execute_rq_nowait(struct request
*rq
, bool at_head
)
1412 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1414 WARN_ON(irqs_disabled());
1415 WARN_ON(!blk_rq_is_passthrough(rq
));
1417 blk_account_io_start(rq
);
1419 if (current
->plug
&& !at_head
) {
1420 blk_add_rq_to_plug(current
->plug
, rq
);
1424 blk_mq_insert_request(rq
, at_head
? BLK_MQ_INSERT_AT_HEAD
: 0);
1425 blk_mq_run_hw_queue(hctx
, hctx
->flags
& BLK_MQ_F_BLOCKING
);
1427 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
1429 struct blk_rq_wait
{
1430 struct completion done
;
1434 static enum rq_end_io_ret
blk_end_sync_rq(struct request
*rq
, blk_status_t ret
)
1436 struct blk_rq_wait
*wait
= rq
->end_io_data
;
1439 complete(&wait
->done
);
1440 return RQ_END_IO_NONE
;
1443 bool blk_rq_is_poll(struct request
*rq
)
1447 if (rq
->mq_hctx
->type
!= HCTX_TYPE_POLL
)
1451 EXPORT_SYMBOL_GPL(blk_rq_is_poll
);
1453 static void blk_rq_poll_completion(struct request
*rq
, struct completion
*wait
)
1456 blk_hctx_poll(rq
->q
, rq
->mq_hctx
, NULL
, 0);
1458 } while (!completion_done(wait
));
1462 * blk_execute_rq - insert a request into queue for execution
1463 * @rq: request to insert
1464 * @at_head: insert request at head or tail of queue
1467 * Insert a fully prepared request at the back of the I/O scheduler queue
1468 * for execution and wait for completion.
1469 * Return: The blk_status_t result provided to blk_mq_end_request().
1471 blk_status_t
blk_execute_rq(struct request
*rq
, bool at_head
)
1473 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1474 struct blk_rq_wait wait
= {
1475 .done
= COMPLETION_INITIALIZER_ONSTACK(wait
.done
),
1478 WARN_ON(irqs_disabled());
1479 WARN_ON(!blk_rq_is_passthrough(rq
));
1481 rq
->end_io_data
= &wait
;
1482 rq
->end_io
= blk_end_sync_rq
;
1484 blk_account_io_start(rq
);
1485 blk_mq_insert_request(rq
, at_head
? BLK_MQ_INSERT_AT_HEAD
: 0);
1486 blk_mq_run_hw_queue(hctx
, false);
1488 if (blk_rq_is_poll(rq
))
1489 blk_rq_poll_completion(rq
, &wait
.done
);
1491 blk_wait_io(&wait
.done
);
1495 EXPORT_SYMBOL(blk_execute_rq
);
1497 static void __blk_mq_requeue_request(struct request
*rq
)
1499 struct request_queue
*q
= rq
->q
;
1501 blk_mq_put_driver_tag(rq
);
1503 trace_block_rq_requeue(rq
);
1504 rq_qos_requeue(q
, rq
);
1506 if (blk_mq_request_started(rq
)) {
1507 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
1508 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
1512 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
1514 struct request_queue
*q
= rq
->q
;
1515 unsigned long flags
;
1517 __blk_mq_requeue_request(rq
);
1519 /* this request will be re-inserted to io scheduler queue */
1520 blk_mq_sched_requeue_request(rq
);
1522 spin_lock_irqsave(&q
->requeue_lock
, flags
);
1523 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
1524 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
1526 if (kick_requeue_list
)
1527 blk_mq_kick_requeue_list(q
);
1529 EXPORT_SYMBOL(blk_mq_requeue_request
);
1531 static void blk_mq_requeue_work(struct work_struct
*work
)
1533 struct request_queue
*q
=
1534 container_of(work
, struct request_queue
, requeue_work
.work
);
1536 LIST_HEAD(flush_list
);
1539 spin_lock_irq(&q
->requeue_lock
);
1540 list_splice_init(&q
->requeue_list
, &rq_list
);
1541 list_splice_init(&q
->flush_list
, &flush_list
);
1542 spin_unlock_irq(&q
->requeue_lock
);
1544 while (!list_empty(&rq_list
)) {
1545 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
1547 * If RQF_DONTPREP ist set, the request has been started by the
1548 * driver already and might have driver-specific data allocated
1549 * already. Insert it into the hctx dispatch list to avoid
1550 * block layer merges for the request.
1552 if (rq
->rq_flags
& RQF_DONTPREP
) {
1553 list_del_init(&rq
->queuelist
);
1554 blk_mq_request_bypass_insert(rq
, 0);
1556 list_del_init(&rq
->queuelist
);
1557 blk_mq_insert_request(rq
, BLK_MQ_INSERT_AT_HEAD
);
1561 while (!list_empty(&flush_list
)) {
1562 rq
= list_entry(flush_list
.next
, struct request
, queuelist
);
1563 list_del_init(&rq
->queuelist
);
1564 blk_mq_insert_request(rq
, 0);
1567 blk_mq_run_hw_queues(q
, false);
1570 void blk_mq_kick_requeue_list(struct request_queue
*q
)
1572 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
1574 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
1576 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
1577 unsigned long msecs
)
1579 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
1580 msecs_to_jiffies(msecs
));
1582 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
1584 static bool blk_is_flush_data_rq(struct request
*rq
)
1586 return (rq
->rq_flags
& RQF_FLUSH_SEQ
) && !is_flush_rq(rq
);
1589 static bool blk_mq_rq_inflight(struct request
*rq
, void *priv
)
1592 * If we find a request that isn't idle we know the queue is busy
1593 * as it's checked in the iter.
1594 * Return false to stop the iteration.
1596 * In case of queue quiesce, if one flush data request is completed,
1597 * don't count it as inflight given the flush sequence is suspended,
1598 * and the original flush data request is invisible to driver, just
1599 * like other pending requests because of quiesce
1601 if (blk_mq_request_started(rq
) && !(blk_queue_quiesced(rq
->q
) &&
1602 blk_is_flush_data_rq(rq
) &&
1603 blk_mq_request_completed(rq
))) {
1613 bool blk_mq_queue_inflight(struct request_queue
*q
)
1617 blk_mq_queue_tag_busy_iter(q
, blk_mq_rq_inflight
, &busy
);
1620 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight
);
1622 static void blk_mq_rq_timed_out(struct request
*req
)
1624 req
->rq_flags
|= RQF_TIMED_OUT
;
1625 if (req
->q
->mq_ops
->timeout
) {
1626 enum blk_eh_timer_return ret
;
1628 ret
= req
->q
->mq_ops
->timeout(req
);
1629 if (ret
== BLK_EH_DONE
)
1631 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
1637 struct blk_expired_data
{
1638 bool has_timedout_rq
;
1640 unsigned long timeout_start
;
1643 static bool blk_mq_req_expired(struct request
*rq
, struct blk_expired_data
*expired
)
1645 unsigned long deadline
;
1647 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
1649 if (rq
->rq_flags
& RQF_TIMED_OUT
)
1652 deadline
= READ_ONCE(rq
->deadline
);
1653 if (time_after_eq(expired
->timeout_start
, deadline
))
1656 if (expired
->next
== 0)
1657 expired
->next
= deadline
;
1658 else if (time_after(expired
->next
, deadline
))
1659 expired
->next
= deadline
;
1663 void blk_mq_put_rq_ref(struct request
*rq
)
1665 if (is_flush_rq(rq
)) {
1666 if (rq
->end_io(rq
, 0) == RQ_END_IO_FREE
)
1667 blk_mq_free_request(rq
);
1668 } else if (req_ref_put_and_test(rq
)) {
1669 __blk_mq_free_request(rq
);
1673 static bool blk_mq_check_expired(struct request
*rq
, void *priv
)
1675 struct blk_expired_data
*expired
= priv
;
1678 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1679 * be reallocated underneath the timeout handler's processing, then
1680 * the expire check is reliable. If the request is not expired, then
1681 * it was completed and reallocated as a new request after returning
1682 * from blk_mq_check_expired().
1684 if (blk_mq_req_expired(rq
, expired
)) {
1685 expired
->has_timedout_rq
= true;
1691 static bool blk_mq_handle_expired(struct request
*rq
, void *priv
)
1693 struct blk_expired_data
*expired
= priv
;
1695 if (blk_mq_req_expired(rq
, expired
))
1696 blk_mq_rq_timed_out(rq
);
1700 static void blk_mq_timeout_work(struct work_struct
*work
)
1702 struct request_queue
*q
=
1703 container_of(work
, struct request_queue
, timeout_work
);
1704 struct blk_expired_data expired
= {
1705 .timeout_start
= jiffies
,
1707 struct blk_mq_hw_ctx
*hctx
;
1710 /* A deadlock might occur if a request is stuck requiring a
1711 * timeout at the same time a queue freeze is waiting
1712 * completion, since the timeout code would not be able to
1713 * acquire the queue reference here.
1715 * That's why we don't use blk_queue_enter here; instead, we use
1716 * percpu_ref_tryget directly, because we need to be able to
1717 * obtain a reference even in the short window between the queue
1718 * starting to freeze, by dropping the first reference in
1719 * blk_freeze_queue_start, and the moment the last request is
1720 * consumed, marked by the instant q_usage_counter reaches
1723 if (!percpu_ref_tryget(&q
->q_usage_counter
))
1726 /* check if there is any timed-out request */
1727 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &expired
);
1728 if (expired
.has_timedout_rq
) {
1730 * Before walking tags, we must ensure any submit started
1731 * before the current time has finished. Since the submit
1732 * uses srcu or rcu, wait for a synchronization point to
1733 * ensure all running submits have finished
1735 blk_mq_wait_quiesce_done(q
->tag_set
);
1738 blk_mq_queue_tag_busy_iter(q
, blk_mq_handle_expired
, &expired
);
1741 if (expired
.next
!= 0) {
1742 mod_timer(&q
->timeout
, expired
.next
);
1745 * Request timeouts are handled as a forward rolling timer. If
1746 * we end up here it means that no requests are pending and
1747 * also that no request has been pending for a while. Mark
1748 * each hctx as idle.
1750 queue_for_each_hw_ctx(q
, hctx
, i
) {
1751 /* the hctx may be unmapped, so check it here */
1752 if (blk_mq_hw_queue_mapped(hctx
))
1753 blk_mq_tag_idle(hctx
);
1759 struct flush_busy_ctx_data
{
1760 struct blk_mq_hw_ctx
*hctx
;
1761 struct list_head
*list
;
1764 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
1766 struct flush_busy_ctx_data
*flush_data
= data
;
1767 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
1768 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1769 enum hctx_type type
= hctx
->type
;
1771 spin_lock(&ctx
->lock
);
1772 list_splice_tail_init(&ctx
->rq_lists
[type
], flush_data
->list
);
1773 sbitmap_clear_bit(sb
, bitnr
);
1774 spin_unlock(&ctx
->lock
);
1779 * Process software queues that have been marked busy, splicing them
1780 * to the for-dispatch
1782 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
1784 struct flush_busy_ctx_data data
= {
1789 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
1792 struct dispatch_rq_data
{
1793 struct blk_mq_hw_ctx
*hctx
;
1797 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
1800 struct dispatch_rq_data
*dispatch_data
= data
;
1801 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
1802 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1803 enum hctx_type type
= hctx
->type
;
1805 spin_lock(&ctx
->lock
);
1806 if (!list_empty(&ctx
->rq_lists
[type
])) {
1807 dispatch_data
->rq
= list_entry_rq(ctx
->rq_lists
[type
].next
);
1808 list_del_init(&dispatch_data
->rq
->queuelist
);
1809 if (list_empty(&ctx
->rq_lists
[type
]))
1810 sbitmap_clear_bit(sb
, bitnr
);
1812 spin_unlock(&ctx
->lock
);
1814 return !dispatch_data
->rq
;
1817 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
1818 struct blk_mq_ctx
*start
)
1820 unsigned off
= start
? start
->index_hw
[hctx
->type
] : 0;
1821 struct dispatch_rq_data data
= {
1826 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
1827 dispatch_rq_from_ctx
, &data
);
1832 bool __blk_mq_alloc_driver_tag(struct request
*rq
)
1834 struct sbitmap_queue
*bt
= &rq
->mq_hctx
->tags
->bitmap_tags
;
1835 unsigned int tag_offset
= rq
->mq_hctx
->tags
->nr_reserved_tags
;
1838 blk_mq_tag_busy(rq
->mq_hctx
);
1840 if (blk_mq_tag_is_reserved(rq
->mq_hctx
->sched_tags
, rq
->internal_tag
)) {
1841 bt
= &rq
->mq_hctx
->tags
->breserved_tags
;
1844 if (!hctx_may_queue(rq
->mq_hctx
, bt
))
1848 tag
= __sbitmap_queue_get(bt
);
1849 if (tag
== BLK_MQ_NO_TAG
)
1852 rq
->tag
= tag
+ tag_offset
;
1853 blk_mq_inc_active_requests(rq
->mq_hctx
);
1857 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1858 int flags
, void *key
)
1860 struct blk_mq_hw_ctx
*hctx
;
1862 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1864 spin_lock(&hctx
->dispatch_wait_lock
);
1865 if (!list_empty(&wait
->entry
)) {
1866 struct sbitmap_queue
*sbq
;
1868 list_del_init(&wait
->entry
);
1869 sbq
= &hctx
->tags
->bitmap_tags
;
1870 atomic_dec(&sbq
->ws_active
);
1872 spin_unlock(&hctx
->dispatch_wait_lock
);
1874 blk_mq_run_hw_queue(hctx
, true);
1879 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1880 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1881 * restart. For both cases, take care to check the condition again after
1882 * marking us as waiting.
1884 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1887 struct sbitmap_queue
*sbq
;
1888 struct wait_queue_head
*wq
;
1889 wait_queue_entry_t
*wait
;
1892 if (!(hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
) &&
1893 !(blk_mq_is_shared_tags(hctx
->flags
))) {
1894 blk_mq_sched_mark_restart_hctx(hctx
);
1897 * It's possible that a tag was freed in the window between the
1898 * allocation failure and adding the hardware queue to the wait
1901 * Don't clear RESTART here, someone else could have set it.
1902 * At most this will cost an extra queue run.
1904 return blk_mq_get_driver_tag(rq
);
1907 wait
= &hctx
->dispatch_wait
;
1908 if (!list_empty_careful(&wait
->entry
))
1911 if (blk_mq_tag_is_reserved(rq
->mq_hctx
->sched_tags
, rq
->internal_tag
))
1912 sbq
= &hctx
->tags
->breserved_tags
;
1914 sbq
= &hctx
->tags
->bitmap_tags
;
1915 wq
= &bt_wait_ptr(sbq
, hctx
)->wait
;
1917 spin_lock_irq(&wq
->lock
);
1918 spin_lock(&hctx
->dispatch_wait_lock
);
1919 if (!list_empty(&wait
->entry
)) {
1920 spin_unlock(&hctx
->dispatch_wait_lock
);
1921 spin_unlock_irq(&wq
->lock
);
1925 atomic_inc(&sbq
->ws_active
);
1926 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1927 __add_wait_queue(wq
, wait
);
1930 * Add one explicit barrier since blk_mq_get_driver_tag() may
1931 * not imply barrier in case of failure.
1933 * Order adding us to wait queue and allocating driver tag.
1935 * The pair is the one implied in sbitmap_queue_wake_up() which
1936 * orders clearing sbitmap tag bits and waitqueue_active() in
1937 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1939 * Otherwise, re-order of adding wait queue and getting driver tag
1940 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1941 * the waitqueue_active() may not observe us in wait queue.
1946 * It's possible that a tag was freed in the window between the
1947 * allocation failure and adding the hardware queue to the wait
1950 ret
= blk_mq_get_driver_tag(rq
);
1952 spin_unlock(&hctx
->dispatch_wait_lock
);
1953 spin_unlock_irq(&wq
->lock
);
1958 * We got a tag, remove ourselves from the wait queue to ensure
1959 * someone else gets the wakeup.
1961 list_del_init(&wait
->entry
);
1962 atomic_dec(&sbq
->ws_active
);
1963 spin_unlock(&hctx
->dispatch_wait_lock
);
1964 spin_unlock_irq(&wq
->lock
);
1969 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1970 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1972 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1973 * - EWMA is one simple way to compute running average value
1974 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1975 * - take 4 as factor for avoiding to get too small(0) result, and this
1976 * factor doesn't matter because EWMA decreases exponentially
1978 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1982 ewma
= hctx
->dispatch_busy
;
1987 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1989 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1990 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1992 hctx
->dispatch_busy
= ewma
;
1995 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1997 static void blk_mq_handle_dev_resource(struct request
*rq
,
1998 struct list_head
*list
)
2000 list_add(&rq
->queuelist
, list
);
2001 __blk_mq_requeue_request(rq
);
2004 enum prep_dispatch
{
2006 PREP_DISPATCH_NO_TAG
,
2007 PREP_DISPATCH_NO_BUDGET
,
2010 static enum prep_dispatch
blk_mq_prep_dispatch_rq(struct request
*rq
,
2013 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2014 int budget_token
= -1;
2017 budget_token
= blk_mq_get_dispatch_budget(rq
->q
);
2018 if (budget_token
< 0) {
2019 blk_mq_put_driver_tag(rq
);
2020 return PREP_DISPATCH_NO_BUDGET
;
2022 blk_mq_set_rq_budget_token(rq
, budget_token
);
2025 if (!blk_mq_get_driver_tag(rq
)) {
2027 * The initial allocation attempt failed, so we need to
2028 * rerun the hardware queue when a tag is freed. The
2029 * waitqueue takes care of that. If the queue is run
2030 * before we add this entry back on the dispatch list,
2031 * we'll re-run it below.
2033 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
2035 * All budgets not got from this function will be put
2036 * together during handling partial dispatch
2039 blk_mq_put_dispatch_budget(rq
->q
, budget_token
);
2040 return PREP_DISPATCH_NO_TAG
;
2044 return PREP_DISPATCH_OK
;
2047 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2048 static void blk_mq_release_budgets(struct request_queue
*q
,
2049 struct list_head
*list
)
2053 list_for_each_entry(rq
, list
, queuelist
) {
2054 int budget_token
= blk_mq_get_rq_budget_token(rq
);
2056 if (budget_token
>= 0)
2057 blk_mq_put_dispatch_budget(q
, budget_token
);
2062 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2063 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2065 * Attention, we should explicitly call this in unusual cases:
2066 * 1) did not queue everything initially scheduled to queue
2067 * 2) the last attempt to queue a request failed
2069 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx
*hctx
, int queued
,
2072 if (hctx
->queue
->mq_ops
->commit_rqs
&& queued
) {
2073 trace_block_unplug(hctx
->queue
, queued
, !from_schedule
);
2074 hctx
->queue
->mq_ops
->commit_rqs(hctx
);
2079 * Returns true if we did some work AND can potentially do more.
2081 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
,
2082 unsigned int nr_budgets
)
2084 enum prep_dispatch prep
;
2085 struct request_queue
*q
= hctx
->queue
;
2088 blk_status_t ret
= BLK_STS_OK
;
2089 bool needs_resource
= false;
2091 if (list_empty(list
))
2095 * Now process all the entries, sending them to the driver.
2099 struct blk_mq_queue_data bd
;
2101 rq
= list_first_entry(list
, struct request
, queuelist
);
2103 WARN_ON_ONCE(hctx
!= rq
->mq_hctx
);
2104 prep
= blk_mq_prep_dispatch_rq(rq
, !nr_budgets
);
2105 if (prep
!= PREP_DISPATCH_OK
)
2108 list_del_init(&rq
->queuelist
);
2111 bd
.last
= list_empty(list
);
2114 * once the request is queued to lld, no need to cover the
2119 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
2124 case BLK_STS_RESOURCE
:
2125 needs_resource
= true;
2127 case BLK_STS_DEV_RESOURCE
:
2128 blk_mq_handle_dev_resource(rq
, list
);
2131 blk_mq_end_request(rq
, ret
);
2133 } while (!list_empty(list
));
2135 /* If we didn't flush the entire list, we could have told the driver
2136 * there was more coming, but that turned out to be a lie.
2138 if (!list_empty(list
) || ret
!= BLK_STS_OK
)
2139 blk_mq_commit_rqs(hctx
, queued
, false);
2142 * Any items that need requeuing? Stuff them into hctx->dispatch,
2143 * that is where we will continue on next queue run.
2145 if (!list_empty(list
)) {
2147 /* For non-shared tags, the RESTART check will suffice */
2148 bool no_tag
= prep
== PREP_DISPATCH_NO_TAG
&&
2149 ((hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
) ||
2150 blk_mq_is_shared_tags(hctx
->flags
));
2153 blk_mq_release_budgets(q
, list
);
2155 spin_lock(&hctx
->lock
);
2156 list_splice_tail_init(list
, &hctx
->dispatch
);
2157 spin_unlock(&hctx
->lock
);
2160 * Order adding requests to hctx->dispatch and checking
2161 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2162 * in blk_mq_sched_restart(). Avoid restart code path to
2163 * miss the new added requests to hctx->dispatch, meantime
2164 * SCHED_RESTART is observed here.
2169 * If SCHED_RESTART was set by the caller of this function and
2170 * it is no longer set that means that it was cleared by another
2171 * thread and hence that a queue rerun is needed.
2173 * If 'no_tag' is set, that means that we failed getting
2174 * a driver tag with an I/O scheduler attached. If our dispatch
2175 * waitqueue is no longer active, ensure that we run the queue
2176 * AFTER adding our entries back to the list.
2178 * If no I/O scheduler has been configured it is possible that
2179 * the hardware queue got stopped and restarted before requests
2180 * were pushed back onto the dispatch list. Rerun the queue to
2181 * avoid starvation. Notes:
2182 * - blk_mq_run_hw_queue() checks whether or not a queue has
2183 * been stopped before rerunning a queue.
2184 * - Some but not all block drivers stop a queue before
2185 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2188 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2189 * bit is set, run queue after a delay to avoid IO stalls
2190 * that could otherwise occur if the queue is idle. We'll do
2191 * similar if we couldn't get budget or couldn't lock a zone
2192 * and SCHED_RESTART is set.
2194 needs_restart
= blk_mq_sched_needs_restart(hctx
);
2195 if (prep
== PREP_DISPATCH_NO_BUDGET
)
2196 needs_resource
= true;
2197 if (!needs_restart
||
2198 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
2199 blk_mq_run_hw_queue(hctx
, true);
2200 else if (needs_resource
)
2201 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
2203 blk_mq_update_dispatch_busy(hctx
, true);
2207 blk_mq_update_dispatch_busy(hctx
, false);
2211 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
2213 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
2215 if (cpu
>= nr_cpu_ids
)
2216 cpu
= cpumask_first(hctx
->cpumask
);
2221 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2222 * it for speeding up the check
2224 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx
*hctx
)
2226 return hctx
->next_cpu
>= nr_cpu_ids
;
2230 * It'd be great if the workqueue API had a way to pass
2231 * in a mask and had some smarts for more clever placement.
2232 * For now we just round-robin here, switching for every
2233 * BLK_MQ_CPU_WORK_BATCH queued items.
2235 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
2238 int next_cpu
= hctx
->next_cpu
;
2240 /* Switch to unbound if no allowable CPUs in this hctx */
2241 if (hctx
->queue
->nr_hw_queues
== 1 || blk_mq_hctx_empty_cpumask(hctx
))
2242 return WORK_CPU_UNBOUND
;
2244 if (--hctx
->next_cpu_batch
<= 0) {
2246 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
2248 if (next_cpu
>= nr_cpu_ids
)
2249 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2250 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2254 * Do unbound schedule if we can't find a online CPU for this hctx,
2255 * and it should only happen in the path of handling CPU DEAD.
2257 if (!cpu_online(next_cpu
)) {
2264 * Make sure to re-select CPU next time once after CPUs
2265 * in hctx->cpumask become online again.
2267 hctx
->next_cpu
= next_cpu
;
2268 hctx
->next_cpu_batch
= 1;
2269 return WORK_CPU_UNBOUND
;
2272 hctx
->next_cpu
= next_cpu
;
2277 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2278 * @hctx: Pointer to the hardware queue to run.
2279 * @msecs: Milliseconds of delay to wait before running the queue.
2281 * Run a hardware queue asynchronously with a delay of @msecs.
2283 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
2285 if (unlikely(blk_mq_hctx_stopped(hctx
)))
2287 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
2288 msecs_to_jiffies(msecs
));
2290 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
2292 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx
*hctx
)
2297 * When queue is quiesced, we may be switching io scheduler, or
2298 * updating nr_hw_queues, or other things, and we can't run queue
2299 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2301 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2304 __blk_mq_run_dispatch_ops(hctx
->queue
, false,
2305 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
2306 blk_mq_hctx_has_pending(hctx
));
2311 * blk_mq_run_hw_queue - Start to run a hardware queue.
2312 * @hctx: Pointer to the hardware queue to run.
2313 * @async: If we want to run the queue asynchronously.
2315 * Check if the request queue is not in a quiesced state and if there are
2316 * pending requests to be sent. If this is true, run the queue to send requests
2319 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
2324 * We can't run the queue inline with interrupts disabled.
2326 WARN_ON_ONCE(!async
&& in_interrupt());
2328 might_sleep_if(!async
&& hctx
->flags
& BLK_MQ_F_BLOCKING
);
2330 need_run
= blk_mq_hw_queue_need_run(hctx
);
2332 unsigned long flags
;
2335 * Synchronize with blk_mq_unquiesce_queue(), because we check
2336 * if hw queue is quiesced locklessly above, we need the use
2337 * ->queue_lock to make sure we see the up-to-date status to
2338 * not miss rerunning the hw queue.
2340 spin_lock_irqsave(&hctx
->queue
->queue_lock
, flags
);
2341 need_run
= blk_mq_hw_queue_need_run(hctx
);
2342 spin_unlock_irqrestore(&hctx
->queue
->queue_lock
, flags
);
2348 if (async
|| !cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
)) {
2349 blk_mq_delay_run_hw_queue(hctx
, 0);
2353 blk_mq_run_dispatch_ops(hctx
->queue
,
2354 blk_mq_sched_dispatch_requests(hctx
));
2356 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
2359 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2362 static struct blk_mq_hw_ctx
*blk_mq_get_sq_hctx(struct request_queue
*q
)
2364 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
2366 * If the IO scheduler does not respect hardware queues when
2367 * dispatching, we just don't bother with multiple HW queues and
2368 * dispatch from hctx for the current CPU since running multiple queues
2369 * just causes lock contention inside the scheduler and pointless cache
2372 struct blk_mq_hw_ctx
*hctx
= ctx
->hctxs
[HCTX_TYPE_DEFAULT
];
2374 if (!blk_mq_hctx_stopped(hctx
))
2380 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2381 * @q: Pointer to the request queue to run.
2382 * @async: If we want to run the queue asynchronously.
2384 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
2386 struct blk_mq_hw_ctx
*hctx
, *sq_hctx
;
2390 if (blk_queue_sq_sched(q
))
2391 sq_hctx
= blk_mq_get_sq_hctx(q
);
2392 queue_for_each_hw_ctx(q
, hctx
, i
) {
2393 if (blk_mq_hctx_stopped(hctx
))
2396 * Dispatch from this hctx either if there's no hctx preferred
2397 * by IO scheduler or if it has requests that bypass the
2400 if (!sq_hctx
|| sq_hctx
== hctx
||
2401 !list_empty_careful(&hctx
->dispatch
))
2402 blk_mq_run_hw_queue(hctx
, async
);
2405 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
2408 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2409 * @q: Pointer to the request queue to run.
2410 * @msecs: Milliseconds of delay to wait before running the queues.
2412 void blk_mq_delay_run_hw_queues(struct request_queue
*q
, unsigned long msecs
)
2414 struct blk_mq_hw_ctx
*hctx
, *sq_hctx
;
2418 if (blk_queue_sq_sched(q
))
2419 sq_hctx
= blk_mq_get_sq_hctx(q
);
2420 queue_for_each_hw_ctx(q
, hctx
, i
) {
2421 if (blk_mq_hctx_stopped(hctx
))
2424 * If there is already a run_work pending, leave the
2425 * pending delay untouched. Otherwise, a hctx can stall
2426 * if another hctx is re-delaying the other's work
2427 * before the work executes.
2429 if (delayed_work_pending(&hctx
->run_work
))
2432 * Dispatch from this hctx either if there's no hctx preferred
2433 * by IO scheduler or if it has requests that bypass the
2436 if (!sq_hctx
|| sq_hctx
== hctx
||
2437 !list_empty_careful(&hctx
->dispatch
))
2438 blk_mq_delay_run_hw_queue(hctx
, msecs
);
2441 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues
);
2444 * This function is often used for pausing .queue_rq() by driver when
2445 * there isn't enough resource or some conditions aren't satisfied, and
2446 * BLK_STS_RESOURCE is usually returned.
2448 * We do not guarantee that dispatch can be drained or blocked
2449 * after blk_mq_stop_hw_queue() returns. Please use
2450 * blk_mq_quiesce_queue() for that requirement.
2452 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
2454 cancel_delayed_work(&hctx
->run_work
);
2456 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
2458 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
2461 * This function is often used for pausing .queue_rq() by driver when
2462 * there isn't enough resource or some conditions aren't satisfied, and
2463 * BLK_STS_RESOURCE is usually returned.
2465 * We do not guarantee that dispatch can be drained or blocked
2466 * after blk_mq_stop_hw_queues() returns. Please use
2467 * blk_mq_quiesce_queue() for that requirement.
2469 void blk_mq_stop_hw_queues(struct request_queue
*q
)
2471 struct blk_mq_hw_ctx
*hctx
;
2474 queue_for_each_hw_ctx(q
, hctx
, i
)
2475 blk_mq_stop_hw_queue(hctx
);
2477 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
2479 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
2481 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
2483 blk_mq_run_hw_queue(hctx
, hctx
->flags
& BLK_MQ_F_BLOCKING
);
2485 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
2487 void blk_mq_start_hw_queues(struct request_queue
*q
)
2489 struct blk_mq_hw_ctx
*hctx
;
2492 queue_for_each_hw_ctx(q
, hctx
, i
)
2493 blk_mq_start_hw_queue(hctx
);
2495 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
2497 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
2499 if (!blk_mq_hctx_stopped(hctx
))
2502 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
2504 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2505 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2506 * list in the subsequent routine.
2508 smp_mb__after_atomic();
2509 blk_mq_run_hw_queue(hctx
, async
);
2511 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
2513 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
2515 struct blk_mq_hw_ctx
*hctx
;
2518 queue_for_each_hw_ctx(q
, hctx
, i
)
2519 blk_mq_start_stopped_hw_queue(hctx
, async
||
2520 (hctx
->flags
& BLK_MQ_F_BLOCKING
));
2522 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
2524 static void blk_mq_run_work_fn(struct work_struct
*work
)
2526 struct blk_mq_hw_ctx
*hctx
=
2527 container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
2529 blk_mq_run_dispatch_ops(hctx
->queue
,
2530 blk_mq_sched_dispatch_requests(hctx
));
2534 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2535 * @rq: Pointer to request to be inserted.
2536 * @flags: BLK_MQ_INSERT_*
2538 * Should only be used carefully, when the caller knows we want to
2539 * bypass a potential IO scheduler on the target device.
2541 static void blk_mq_request_bypass_insert(struct request
*rq
, blk_insert_t flags
)
2543 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2545 spin_lock(&hctx
->lock
);
2546 if (flags
& BLK_MQ_INSERT_AT_HEAD
)
2547 list_add(&rq
->queuelist
, &hctx
->dispatch
);
2549 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
2550 spin_unlock(&hctx
->lock
);
2553 static void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
,
2554 struct blk_mq_ctx
*ctx
, struct list_head
*list
,
2555 bool run_queue_async
)
2558 enum hctx_type type
= hctx
->type
;
2561 * Try to issue requests directly if the hw queue isn't busy to save an
2562 * extra enqueue & dequeue to the sw queue.
2564 if (!hctx
->dispatch_busy
&& !run_queue_async
) {
2565 blk_mq_run_dispatch_ops(hctx
->queue
,
2566 blk_mq_try_issue_list_directly(hctx
, list
));
2567 if (list_empty(list
))
2572 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2575 list_for_each_entry(rq
, list
, queuelist
) {
2576 BUG_ON(rq
->mq_ctx
!= ctx
);
2577 trace_block_rq_insert(rq
);
2578 if (rq
->cmd_flags
& REQ_NOWAIT
)
2579 run_queue_async
= true;
2582 spin_lock(&ctx
->lock
);
2583 list_splice_tail_init(list
, &ctx
->rq_lists
[type
]);
2584 blk_mq_hctx_mark_pending(hctx
, ctx
);
2585 spin_unlock(&ctx
->lock
);
2587 blk_mq_run_hw_queue(hctx
, run_queue_async
);
2590 static void blk_mq_insert_request(struct request
*rq
, blk_insert_t flags
)
2592 struct request_queue
*q
= rq
->q
;
2593 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
2594 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2596 if (blk_rq_is_passthrough(rq
)) {
2598 * Passthrough request have to be added to hctx->dispatch
2599 * directly. The device may be in a situation where it can't
2600 * handle FS request, and always returns BLK_STS_RESOURCE for
2601 * them, which gets them added to hctx->dispatch.
2603 * If a passthrough request is required to unblock the queues,
2604 * and it is added to the scheduler queue, there is no chance to
2605 * dispatch it given we prioritize requests in hctx->dispatch.
2607 blk_mq_request_bypass_insert(rq
, flags
);
2608 } else if (req_op(rq
) == REQ_OP_FLUSH
) {
2610 * Firstly normal IO request is inserted to scheduler queue or
2611 * sw queue, meantime we add flush request to dispatch queue(
2612 * hctx->dispatch) directly and there is at most one in-flight
2613 * flush request for each hw queue, so it doesn't matter to add
2614 * flush request to tail or front of the dispatch queue.
2616 * Secondly in case of NCQ, flush request belongs to non-NCQ
2617 * command, and queueing it will fail when there is any
2618 * in-flight normal IO request(NCQ command). When adding flush
2619 * rq to the front of hctx->dispatch, it is easier to introduce
2620 * extra time to flush rq's latency because of S_SCHED_RESTART
2621 * compared with adding to the tail of dispatch queue, then
2622 * chance of flush merge is increased, and less flush requests
2623 * will be issued to controller. It is observed that ~10% time
2624 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2625 * drive when adding flush rq to the front of hctx->dispatch.
2627 * Simply queue flush rq to the front of hctx->dispatch so that
2628 * intensive flush workloads can benefit in case of NCQ HW.
2630 blk_mq_request_bypass_insert(rq
, BLK_MQ_INSERT_AT_HEAD
);
2631 } else if (q
->elevator
) {
2634 WARN_ON_ONCE(rq
->tag
!= BLK_MQ_NO_TAG
);
2636 list_add(&rq
->queuelist
, &list
);
2637 q
->elevator
->type
->ops
.insert_requests(hctx
, &list
, flags
);
2639 trace_block_rq_insert(rq
);
2641 spin_lock(&ctx
->lock
);
2642 if (flags
& BLK_MQ_INSERT_AT_HEAD
)
2643 list_add(&rq
->queuelist
, &ctx
->rq_lists
[hctx
->type
]);
2645 list_add_tail(&rq
->queuelist
,
2646 &ctx
->rq_lists
[hctx
->type
]);
2647 blk_mq_hctx_mark_pending(hctx
, ctx
);
2648 spin_unlock(&ctx
->lock
);
2652 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
,
2653 unsigned int nr_segs
)
2657 if (bio
->bi_opf
& REQ_RAHEAD
)
2658 rq
->cmd_flags
|= REQ_FAILFAST_MASK
;
2660 rq
->__sector
= bio
->bi_iter
.bi_sector
;
2661 blk_rq_bio_prep(rq
, bio
, nr_segs
);
2662 if (bio_integrity(bio
))
2663 rq
->nr_integrity_segments
= blk_rq_count_integrity_sg(rq
->q
,
2666 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2667 err
= blk_crypto_rq_bio_prep(rq
, bio
, GFP_NOIO
);
2670 blk_account_io_start(rq
);
2673 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
2674 struct request
*rq
, bool last
)
2676 struct request_queue
*q
= rq
->q
;
2677 struct blk_mq_queue_data bd
= {
2684 * For OK queue, we are done. For error, caller may kill it.
2685 * Any other error (busy), just add it to our list as we
2686 * previously would have done.
2688 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
2691 blk_mq_update_dispatch_busy(hctx
, false);
2693 case BLK_STS_RESOURCE
:
2694 case BLK_STS_DEV_RESOURCE
:
2695 blk_mq_update_dispatch_busy(hctx
, true);
2696 __blk_mq_requeue_request(rq
);
2699 blk_mq_update_dispatch_busy(hctx
, false);
2706 static bool blk_mq_get_budget_and_tag(struct request
*rq
)
2710 budget_token
= blk_mq_get_dispatch_budget(rq
->q
);
2711 if (budget_token
< 0)
2713 blk_mq_set_rq_budget_token(rq
, budget_token
);
2714 if (!blk_mq_get_driver_tag(rq
)) {
2715 blk_mq_put_dispatch_budget(rq
->q
, budget_token
);
2722 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2723 * @hctx: Pointer of the associated hardware queue.
2724 * @rq: Pointer to request to be sent.
2726 * If the device has enough resources to accept a new request now, send the
2727 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2728 * we can try send it another time in the future. Requests inserted at this
2729 * queue have higher priority.
2731 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
2736 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(rq
->q
)) {
2737 blk_mq_insert_request(rq
, 0);
2738 blk_mq_run_hw_queue(hctx
, false);
2742 if ((rq
->rq_flags
& RQF_USE_SCHED
) || !blk_mq_get_budget_and_tag(rq
)) {
2743 blk_mq_insert_request(rq
, 0);
2744 blk_mq_run_hw_queue(hctx
, rq
->cmd_flags
& REQ_NOWAIT
);
2748 ret
= __blk_mq_issue_directly(hctx
, rq
, true);
2752 case BLK_STS_RESOURCE
:
2753 case BLK_STS_DEV_RESOURCE
:
2754 blk_mq_request_bypass_insert(rq
, 0);
2755 blk_mq_run_hw_queue(hctx
, false);
2758 blk_mq_end_request(rq
, ret
);
2763 static blk_status_t
blk_mq_request_issue_directly(struct request
*rq
, bool last
)
2765 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2767 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(rq
->q
)) {
2768 blk_mq_insert_request(rq
, 0);
2769 blk_mq_run_hw_queue(hctx
, false);
2773 if (!blk_mq_get_budget_and_tag(rq
))
2774 return BLK_STS_RESOURCE
;
2775 return __blk_mq_issue_directly(hctx
, rq
, last
);
2778 static void blk_mq_plug_issue_direct(struct blk_plug
*plug
)
2780 struct blk_mq_hw_ctx
*hctx
= NULL
;
2783 blk_status_t ret
= BLK_STS_OK
;
2785 while ((rq
= rq_list_pop(&plug
->mq_list
))) {
2786 bool last
= rq_list_empty(&plug
->mq_list
);
2788 if (hctx
!= rq
->mq_hctx
) {
2790 blk_mq_commit_rqs(hctx
, queued
, false);
2796 ret
= blk_mq_request_issue_directly(rq
, last
);
2801 case BLK_STS_RESOURCE
:
2802 case BLK_STS_DEV_RESOURCE
:
2803 blk_mq_request_bypass_insert(rq
, 0);
2804 blk_mq_run_hw_queue(hctx
, false);
2807 blk_mq_end_request(rq
, ret
);
2813 if (ret
!= BLK_STS_OK
)
2814 blk_mq_commit_rqs(hctx
, queued
, false);
2817 static void __blk_mq_flush_plug_list(struct request_queue
*q
,
2818 struct blk_plug
*plug
)
2820 if (blk_queue_quiesced(q
))
2822 q
->mq_ops
->queue_rqs(&plug
->mq_list
);
2825 static void blk_mq_dispatch_plug_list(struct blk_plug
*plug
, bool from_sched
)
2827 struct blk_mq_hw_ctx
*this_hctx
= NULL
;
2828 struct blk_mq_ctx
*this_ctx
= NULL
;
2829 struct rq_list requeue_list
= {};
2830 unsigned int depth
= 0;
2831 bool is_passthrough
= false;
2835 struct request
*rq
= rq_list_pop(&plug
->mq_list
);
2838 this_hctx
= rq
->mq_hctx
;
2839 this_ctx
= rq
->mq_ctx
;
2840 is_passthrough
= blk_rq_is_passthrough(rq
);
2841 } else if (this_hctx
!= rq
->mq_hctx
|| this_ctx
!= rq
->mq_ctx
||
2842 is_passthrough
!= blk_rq_is_passthrough(rq
)) {
2843 rq_list_add_tail(&requeue_list
, rq
);
2846 list_add_tail(&rq
->queuelist
, &list
);
2848 } while (!rq_list_empty(&plug
->mq_list
));
2850 plug
->mq_list
= requeue_list
;
2851 trace_block_unplug(this_hctx
->queue
, depth
, !from_sched
);
2853 percpu_ref_get(&this_hctx
->queue
->q_usage_counter
);
2854 /* passthrough requests should never be issued to the I/O scheduler */
2855 if (is_passthrough
) {
2856 spin_lock(&this_hctx
->lock
);
2857 list_splice_tail_init(&list
, &this_hctx
->dispatch
);
2858 spin_unlock(&this_hctx
->lock
);
2859 blk_mq_run_hw_queue(this_hctx
, from_sched
);
2860 } else if (this_hctx
->queue
->elevator
) {
2861 this_hctx
->queue
->elevator
->type
->ops
.insert_requests(this_hctx
,
2863 blk_mq_run_hw_queue(this_hctx
, from_sched
);
2865 blk_mq_insert_requests(this_hctx
, this_ctx
, &list
, from_sched
);
2867 percpu_ref_put(&this_hctx
->queue
->q_usage_counter
);
2870 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2876 * We may have been called recursively midway through handling
2877 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2878 * To avoid mq_list changing under our feet, clear rq_count early and
2879 * bail out specifically if rq_count is 0 rather than checking
2880 * whether the mq_list is empty.
2882 if (plug
->rq_count
== 0)
2884 depth
= plug
->rq_count
;
2887 if (!plug
->multiple_queues
&& !plug
->has_elevator
&& !from_schedule
) {
2888 struct request_queue
*q
;
2890 rq
= rq_list_peek(&plug
->mq_list
);
2892 trace_block_unplug(q
, depth
, true);
2895 * Peek first request and see if we have a ->queue_rqs() hook.
2896 * If we do, we can dispatch the whole plug list in one go. We
2897 * already know at this point that all requests belong to the
2898 * same queue, caller must ensure that's the case.
2900 if (q
->mq_ops
->queue_rqs
) {
2901 blk_mq_run_dispatch_ops(q
,
2902 __blk_mq_flush_plug_list(q
, plug
));
2903 if (rq_list_empty(&plug
->mq_list
))
2907 blk_mq_run_dispatch_ops(q
,
2908 blk_mq_plug_issue_direct(plug
));
2909 if (rq_list_empty(&plug
->mq_list
))
2914 blk_mq_dispatch_plug_list(plug
, from_schedule
);
2915 } while (!rq_list_empty(&plug
->mq_list
));
2918 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
2919 struct list_head
*list
)
2922 blk_status_t ret
= BLK_STS_OK
;
2924 while (!list_empty(list
)) {
2925 struct request
*rq
= list_first_entry(list
, struct request
,
2928 list_del_init(&rq
->queuelist
);
2929 ret
= blk_mq_request_issue_directly(rq
, list_empty(list
));
2934 case BLK_STS_RESOURCE
:
2935 case BLK_STS_DEV_RESOURCE
:
2936 blk_mq_request_bypass_insert(rq
, 0);
2937 if (list_empty(list
))
2938 blk_mq_run_hw_queue(hctx
, false);
2941 blk_mq_end_request(rq
, ret
);
2947 if (ret
!= BLK_STS_OK
)
2948 blk_mq_commit_rqs(hctx
, queued
, false);
2951 static bool blk_mq_attempt_bio_merge(struct request_queue
*q
,
2952 struct bio
*bio
, unsigned int nr_segs
)
2954 if (!blk_queue_nomerges(q
) && bio_mergeable(bio
)) {
2955 if (blk_attempt_plug_merge(q
, bio
, nr_segs
))
2957 if (blk_mq_sched_bio_merge(q
, bio
, nr_segs
))
2963 static struct request
*blk_mq_get_new_requests(struct request_queue
*q
,
2964 struct blk_plug
*plug
,
2968 struct blk_mq_alloc_data data
= {
2971 .cmd_flags
= bio
->bi_opf
,
2975 rq_qos_throttle(q
, bio
);
2978 data
.nr_tags
= plug
->nr_ios
;
2980 data
.cached_rqs
= &plug
->cached_rqs
;
2983 rq
= __blk_mq_alloc_requests(&data
);
2986 rq_qos_cleanup(q
, bio
);
2987 if (bio
->bi_opf
& REQ_NOWAIT
)
2988 bio_wouldblock_error(bio
);
2993 * Check if there is a suitable cached request and return it.
2995 static struct request
*blk_mq_peek_cached_request(struct blk_plug
*plug
,
2996 struct request_queue
*q
, blk_opf_t opf
)
2998 enum hctx_type type
= blk_mq_get_hctx_type(opf
);
3003 rq
= rq_list_peek(&plug
->cached_rqs
);
3004 if (!rq
|| rq
->q
!= q
)
3006 if (type
!= rq
->mq_hctx
->type
&&
3007 (type
!= HCTX_TYPE_READ
|| rq
->mq_hctx
->type
!= HCTX_TYPE_DEFAULT
))
3009 if (op_is_flush(rq
->cmd_flags
) != op_is_flush(opf
))
3014 static void blk_mq_use_cached_rq(struct request
*rq
, struct blk_plug
*plug
,
3017 if (rq_list_pop(&plug
->cached_rqs
) != rq
)
3021 * If any qos ->throttle() end up blocking, we will have flushed the
3022 * plug and hence killed the cached_rq list as well. Pop this entry
3023 * before we throttle.
3025 rq_qos_throttle(rq
->q
, bio
);
3027 blk_mq_rq_time_init(rq
, blk_time_get_ns());
3028 rq
->cmd_flags
= bio
->bi_opf
;
3029 INIT_LIST_HEAD(&rq
->queuelist
);
3032 static bool bio_unaligned(const struct bio
*bio
, struct request_queue
*q
)
3034 unsigned int bs_mask
= queue_logical_block_size(q
) - 1;
3036 /* .bi_sector of any zero sized bio need to be initialized */
3037 if ((bio
->bi_iter
.bi_size
& bs_mask
) ||
3038 ((bio
->bi_iter
.bi_sector
<< SECTOR_SHIFT
) & bs_mask
))
3044 * blk_mq_submit_bio - Create and send a request to block device.
3045 * @bio: Bio pointer.
3047 * Builds up a request structure from @q and @bio and send to the device. The
3048 * request may not be queued directly to hardware if:
3049 * * This request can be merged with another one
3050 * * We want to place request at plug queue for possible future merging
3051 * * There is an IO scheduler active at this queue
3053 * It will not queue the request if there is an error with the bio, or at the
3056 void blk_mq_submit_bio(struct bio
*bio
)
3058 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
3059 struct blk_plug
*plug
= current
->plug
;
3060 const int is_sync
= op_is_sync(bio
->bi_opf
);
3061 struct blk_mq_hw_ctx
*hctx
;
3062 unsigned int nr_segs
;
3067 * If the plug has a cached request for this queue, try to use it.
3069 rq
= blk_mq_peek_cached_request(plug
, q
, bio
->bi_opf
);
3072 * A BIO that was released from a zone write plug has already been
3073 * through the preparation in this function, already holds a reference
3074 * on the queue usage counter, and is the only write BIO in-flight for
3075 * the target zone. Go straight to preparing a request for it.
3077 if (bio_zone_write_plugging(bio
)) {
3078 nr_segs
= bio
->__bi_nr_segments
;
3084 bio
= blk_queue_bounce(bio
, q
);
3087 * The cached request already holds a q_usage_counter reference and we
3088 * don't have to acquire a new one if we use it.
3091 if (unlikely(bio_queue_enter(bio
)))
3096 * Device reconfiguration may change logical block size, so alignment
3097 * check has to be done with queue usage counter held
3099 if (unlikely(bio_unaligned(bio
, q
))) {
3104 bio
= __bio_split_to_limits(bio
, &q
->limits
, &nr_segs
);
3108 if (!bio_integrity_prep(bio
))
3111 if (blk_mq_attempt_bio_merge(q
, bio
, nr_segs
))
3114 if (blk_queue_is_zoned(q
) && blk_zone_plug_bio(bio
, nr_segs
))
3119 rq
= blk_mq_get_new_requests(q
, plug
, bio
, nr_segs
);
3123 blk_mq_use_cached_rq(rq
, plug
, bio
);
3126 trace_block_getrq(bio
);
3128 rq_qos_track(q
, rq
, bio
);
3130 blk_mq_bio_to_request(rq
, bio
, nr_segs
);
3132 ret
= blk_crypto_rq_get_keyslot(rq
);
3133 if (ret
!= BLK_STS_OK
) {
3134 bio
->bi_status
= ret
;
3136 blk_mq_free_request(rq
);
3140 if (bio_zone_write_plugging(bio
))
3141 blk_zone_write_plug_init_request(rq
);
3143 if (op_is_flush(bio
->bi_opf
) && blk_insert_flush(rq
))
3147 blk_add_rq_to_plug(plug
, rq
);
3152 if ((rq
->rq_flags
& RQF_USE_SCHED
) ||
3153 (hctx
->dispatch_busy
&& (q
->nr_hw_queues
== 1 || !is_sync
))) {
3154 blk_mq_insert_request(rq
, 0);
3155 blk_mq_run_hw_queue(hctx
, true);
3157 blk_mq_run_dispatch_ops(q
, blk_mq_try_issue_directly(hctx
, rq
));
3163 * Don't drop the queue reference if we were trying to use a cached
3164 * request and thus didn't acquire one.
3170 #ifdef CONFIG_BLK_MQ_STACKING
3172 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3173 * @rq: the request being queued
3175 blk_status_t
blk_insert_cloned_request(struct request
*rq
)
3177 struct request_queue
*q
= rq
->q
;
3178 unsigned int max_sectors
= blk_queue_get_max_sectors(rq
);
3179 unsigned int max_segments
= blk_rq_get_max_segments(rq
);
3182 if (blk_rq_sectors(rq
) > max_sectors
) {
3184 * SCSI device does not have a good way to return if
3185 * Write Same/Zero is actually supported. If a device rejects
3186 * a non-read/write command (discard, write same,etc.) the
3187 * low-level device driver will set the relevant queue limit to
3188 * 0 to prevent blk-lib from issuing more of the offending
3189 * operations. Commands queued prior to the queue limit being
3190 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3191 * errors being propagated to upper layers.
3193 if (max_sectors
== 0)
3194 return BLK_STS_NOTSUPP
;
3196 printk(KERN_ERR
"%s: over max size limit. (%u > %u)\n",
3197 __func__
, blk_rq_sectors(rq
), max_sectors
);
3198 return BLK_STS_IOERR
;
3202 * The queue settings related to segment counting may differ from the
3205 rq
->nr_phys_segments
= blk_recalc_rq_segments(rq
);
3206 if (rq
->nr_phys_segments
> max_segments
) {
3207 printk(KERN_ERR
"%s: over max segments limit. (%u > %u)\n",
3208 __func__
, rq
->nr_phys_segments
, max_segments
);
3209 return BLK_STS_IOERR
;
3212 if (q
->disk
&& should_fail_request(q
->disk
->part0
, blk_rq_bytes(rq
)))
3213 return BLK_STS_IOERR
;
3215 ret
= blk_crypto_rq_get_keyslot(rq
);
3216 if (ret
!= BLK_STS_OK
)
3219 blk_account_io_start(rq
);
3222 * Since we have a scheduler attached on the top device,
3223 * bypass a potential scheduler on the bottom device for
3226 blk_mq_run_dispatch_ops(q
,
3227 ret
= blk_mq_request_issue_directly(rq
, true));
3229 blk_account_io_done(rq
, blk_time_get_ns());
3232 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
3235 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3236 * @rq: the clone request to be cleaned up
3239 * Free all bios in @rq for a cloned request.
3241 void blk_rq_unprep_clone(struct request
*rq
)
3245 while ((bio
= rq
->bio
) != NULL
) {
3246 rq
->bio
= bio
->bi_next
;
3251 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3254 * blk_rq_prep_clone - Helper function to setup clone request
3255 * @rq: the request to be setup
3256 * @rq_src: original request to be cloned
3257 * @bs: bio_set that bios for clone are allocated from
3258 * @gfp_mask: memory allocation mask for bio
3259 * @bio_ctr: setup function to be called for each clone bio.
3260 * Returns %0 for success, non %0 for failure.
3261 * @data: private data to be passed to @bio_ctr
3264 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3265 * Also, pages which the original bios are pointing to are not copied
3266 * and the cloned bios just point same pages.
3267 * So cloned bios must be completed before original bios, which means
3268 * the caller must complete @rq before @rq_src.
3270 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3271 struct bio_set
*bs
, gfp_t gfp_mask
,
3272 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3275 struct bio
*bio_src
;
3280 __rq_for_each_bio(bio_src
, rq_src
) {
3281 struct bio
*bio
= bio_alloc_clone(rq
->q
->disk
->part0
, bio_src
,
3286 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
)) {
3292 rq
->biotail
->bi_next
= bio
;
3295 rq
->bio
= rq
->biotail
= bio
;
3299 /* Copy attributes of the original request to the clone request. */
3300 rq
->__sector
= blk_rq_pos(rq_src
);
3301 rq
->__data_len
= blk_rq_bytes(rq_src
);
3302 if (rq_src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
3303 rq
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
3304 rq
->special_vec
= rq_src
->special_vec
;
3306 rq
->nr_phys_segments
= rq_src
->nr_phys_segments
;
3308 if (rq
->bio
&& blk_crypto_rq_bio_prep(rq
, rq
->bio
, gfp_mask
) < 0)
3314 blk_rq_unprep_clone(rq
);
3318 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3319 #endif /* CONFIG_BLK_MQ_STACKING */
3322 * Steal bios from a request and add them to a bio list.
3323 * The request must not have been partially completed before.
3325 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
3329 list
->tail
->bi_next
= rq
->bio
;
3331 list
->head
= rq
->bio
;
3332 list
->tail
= rq
->biotail
;
3340 EXPORT_SYMBOL_GPL(blk_steal_bios
);
3342 static size_t order_to_size(unsigned int order
)
3344 return (size_t)PAGE_SIZE
<< order
;
3347 /* called before freeing request pool in @tags */
3348 static void blk_mq_clear_rq_mapping(struct blk_mq_tags
*drv_tags
,
3349 struct blk_mq_tags
*tags
)
3352 unsigned long flags
;
3355 * There is no need to clear mapping if driver tags is not initialized
3356 * or the mapping belongs to the driver tags.
3358 if (!drv_tags
|| drv_tags
== tags
)
3361 list_for_each_entry(page
, &tags
->page_list
, lru
) {
3362 unsigned long start
= (unsigned long)page_address(page
);
3363 unsigned long end
= start
+ order_to_size(page
->private);
3366 for (i
= 0; i
< drv_tags
->nr_tags
; i
++) {
3367 struct request
*rq
= drv_tags
->rqs
[i
];
3368 unsigned long rq_addr
= (unsigned long)rq
;
3370 if (rq_addr
>= start
&& rq_addr
< end
) {
3371 WARN_ON_ONCE(req_ref_read(rq
) != 0);
3372 cmpxchg(&drv_tags
->rqs
[i
], rq
, NULL
);
3378 * Wait until all pending iteration is done.
3380 * Request reference is cleared and it is guaranteed to be observed
3381 * after the ->lock is released.
3383 spin_lock_irqsave(&drv_tags
->lock
, flags
);
3384 spin_unlock_irqrestore(&drv_tags
->lock
, flags
);
3387 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
3388 unsigned int hctx_idx
)
3390 struct blk_mq_tags
*drv_tags
;
3393 if (list_empty(&tags
->page_list
))
3396 if (blk_mq_is_shared_tags(set
->flags
))
3397 drv_tags
= set
->shared_tags
;
3399 drv_tags
= set
->tags
[hctx_idx
];
3401 if (tags
->static_rqs
&& set
->ops
->exit_request
) {
3404 for (i
= 0; i
< tags
->nr_tags
; i
++) {
3405 struct request
*rq
= tags
->static_rqs
[i
];
3409 set
->ops
->exit_request(set
, rq
, hctx_idx
);
3410 tags
->static_rqs
[i
] = NULL
;
3414 blk_mq_clear_rq_mapping(drv_tags
, tags
);
3416 while (!list_empty(&tags
->page_list
)) {
3417 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
3418 list_del_init(&page
->lru
);
3420 * Remove kmemleak object previously allocated in
3421 * blk_mq_alloc_rqs().
3423 kmemleak_free(page_address(page
));
3424 __free_pages(page
, page
->private);
3428 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
3432 kfree(tags
->static_rqs
);
3433 tags
->static_rqs
= NULL
;
3435 blk_mq_free_tags(tags
);
3438 static enum hctx_type
hctx_idx_to_type(struct blk_mq_tag_set
*set
,
3439 unsigned int hctx_idx
)
3443 for (i
= 0; i
< set
->nr_maps
; i
++) {
3444 unsigned int start
= set
->map
[i
].queue_offset
;
3445 unsigned int end
= start
+ set
->map
[i
].nr_queues
;
3447 if (hctx_idx
>= start
&& hctx_idx
< end
)
3451 if (i
>= set
->nr_maps
)
3452 i
= HCTX_TYPE_DEFAULT
;
3457 static int blk_mq_get_hctx_node(struct blk_mq_tag_set
*set
,
3458 unsigned int hctx_idx
)
3460 enum hctx_type type
= hctx_idx_to_type(set
, hctx_idx
);
3462 return blk_mq_hw_queue_to_node(&set
->map
[type
], hctx_idx
);
3465 static struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
3466 unsigned int hctx_idx
,
3467 unsigned int nr_tags
,
3468 unsigned int reserved_tags
)
3470 int node
= blk_mq_get_hctx_node(set
, hctx_idx
);
3471 struct blk_mq_tags
*tags
;
3473 if (node
== NUMA_NO_NODE
)
3474 node
= set
->numa_node
;
3476 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
3477 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
3481 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
3482 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
3487 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
3488 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
3490 if (!tags
->static_rqs
)
3498 blk_mq_free_tags(tags
);
3502 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
3503 unsigned int hctx_idx
, int node
)
3507 if (set
->ops
->init_request
) {
3508 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
3513 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
3517 static int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
,
3518 struct blk_mq_tags
*tags
,
3519 unsigned int hctx_idx
, unsigned int depth
)
3521 unsigned int i
, j
, entries_per_page
, max_order
= 4;
3522 int node
= blk_mq_get_hctx_node(set
, hctx_idx
);
3523 size_t rq_size
, left
;
3525 if (node
== NUMA_NO_NODE
)
3526 node
= set
->numa_node
;
3528 INIT_LIST_HEAD(&tags
->page_list
);
3531 * rq_size is the size of the request plus driver payload, rounded
3532 * to the cacheline size
3534 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
3536 left
= rq_size
* depth
;
3538 for (i
= 0; i
< depth
; ) {
3539 int this_order
= max_order
;
3544 while (this_order
&& left
< order_to_size(this_order
- 1))
3548 page
= alloc_pages_node(node
,
3549 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
3555 if (order_to_size(this_order
) < rq_size
)
3562 page
->private = this_order
;
3563 list_add_tail(&page
->lru
, &tags
->page_list
);
3565 p
= page_address(page
);
3567 * Allow kmemleak to scan these pages as they contain pointers
3568 * to additional allocations like via ops->init_request().
3570 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
3571 entries_per_page
= order_to_size(this_order
) / rq_size
;
3572 to_do
= min(entries_per_page
, depth
- i
);
3573 left
-= to_do
* rq_size
;
3574 for (j
= 0; j
< to_do
; j
++) {
3575 struct request
*rq
= p
;
3577 tags
->static_rqs
[i
] = rq
;
3578 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
3579 tags
->static_rqs
[i
] = NULL
;
3590 blk_mq_free_rqs(set
, tags
, hctx_idx
);
3594 struct rq_iter_data
{
3595 struct blk_mq_hw_ctx
*hctx
;
3599 static bool blk_mq_has_request(struct request
*rq
, void *data
)
3601 struct rq_iter_data
*iter_data
= data
;
3603 if (rq
->mq_hctx
!= iter_data
->hctx
)
3605 iter_data
->has_rq
= true;
3609 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx
*hctx
)
3611 struct blk_mq_tags
*tags
= hctx
->sched_tags
?
3612 hctx
->sched_tags
: hctx
->tags
;
3613 struct rq_iter_data data
= {
3617 blk_mq_all_tag_iter(tags
, blk_mq_has_request
, &data
);
3621 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx
*hctx
,
3622 unsigned int this_cpu
)
3624 enum hctx_type type
= hctx
->type
;
3628 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3629 * might submit IOs on these isolated CPUs, so use the queue map to
3630 * check if all CPUs mapped to this hctx are offline
3632 for_each_online_cpu(cpu
) {
3633 struct blk_mq_hw_ctx
*h
= blk_mq_map_queue_type(hctx
->queue
,
3639 /* this hctx has at least one online CPU */
3640 if (this_cpu
!= cpu
)
3647 static int blk_mq_hctx_notify_offline(unsigned int cpu
, struct hlist_node
*node
)
3649 struct blk_mq_hw_ctx
*hctx
= hlist_entry_safe(node
,
3650 struct blk_mq_hw_ctx
, cpuhp_online
);
3652 if (blk_mq_hctx_has_online_cpu(hctx
, cpu
))
3656 * Prevent new request from being allocated on the current hctx.
3658 * The smp_mb__after_atomic() Pairs with the implied barrier in
3659 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3660 * seen once we return from the tag allocator.
3662 set_bit(BLK_MQ_S_INACTIVE
, &hctx
->state
);
3663 smp_mb__after_atomic();
3666 * Try to grab a reference to the queue and wait for any outstanding
3667 * requests. If we could not grab a reference the queue has been
3668 * frozen and there are no requests.
3670 if (percpu_ref_tryget(&hctx
->queue
->q_usage_counter
)) {
3671 while (blk_mq_hctx_has_requests(hctx
))
3673 percpu_ref_put(&hctx
->queue
->q_usage_counter
);
3680 * Check if one CPU is mapped to the specified hctx
3682 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3683 * to be used for scheduling kworker only. For other usage, please call this
3684 * helper for checking if one CPU belongs to the specified hctx
3686 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu
,
3687 const struct blk_mq_hw_ctx
*hctx
)
3689 struct blk_mq_hw_ctx
*mapped_hctx
= blk_mq_map_queue_type(hctx
->queue
,
3692 return mapped_hctx
== hctx
;
3695 static int blk_mq_hctx_notify_online(unsigned int cpu
, struct hlist_node
*node
)
3697 struct blk_mq_hw_ctx
*hctx
= hlist_entry_safe(node
,
3698 struct blk_mq_hw_ctx
, cpuhp_online
);
3700 if (blk_mq_cpu_mapped_to_hctx(cpu
, hctx
))
3701 clear_bit(BLK_MQ_S_INACTIVE
, &hctx
->state
);
3706 * 'cpu' is going away. splice any existing rq_list entries from this
3707 * software queue to the hw queue dispatch list, and ensure that it
3710 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
3712 struct blk_mq_hw_ctx
*hctx
;
3713 struct blk_mq_ctx
*ctx
;
3715 enum hctx_type type
;
3717 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
3718 if (!blk_mq_cpu_mapped_to_hctx(cpu
, hctx
))
3721 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
3724 spin_lock(&ctx
->lock
);
3725 if (!list_empty(&ctx
->rq_lists
[type
])) {
3726 list_splice_init(&ctx
->rq_lists
[type
], &tmp
);
3727 blk_mq_hctx_clear_pending(hctx
, ctx
);
3729 spin_unlock(&ctx
->lock
);
3731 if (list_empty(&tmp
))
3734 spin_lock(&hctx
->lock
);
3735 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
3736 spin_unlock(&hctx
->lock
);
3738 blk_mq_run_hw_queue(hctx
, true);
3742 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
3744 if (!(hctx
->flags
& BLK_MQ_F_STACKING
))
3745 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE
,
3746 &hctx
->cpuhp_online
);
3747 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
3752 * Before freeing hw queue, clearing the flush request reference in
3753 * tags->rqs[] for avoiding potential UAF.
3755 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags
*tags
,
3756 unsigned int queue_depth
, struct request
*flush_rq
)
3759 unsigned long flags
;
3761 /* The hw queue may not be mapped yet */
3765 WARN_ON_ONCE(req_ref_read(flush_rq
) != 0);
3767 for (i
= 0; i
< queue_depth
; i
++)
3768 cmpxchg(&tags
->rqs
[i
], flush_rq
, NULL
);
3771 * Wait until all pending iteration is done.
3773 * Request reference is cleared and it is guaranteed to be observed
3774 * after the ->lock is released.
3776 spin_lock_irqsave(&tags
->lock
, flags
);
3777 spin_unlock_irqrestore(&tags
->lock
, flags
);
3780 /* hctx->ctxs will be freed in queue's release handler */
3781 static void blk_mq_exit_hctx(struct request_queue
*q
,
3782 struct blk_mq_tag_set
*set
,
3783 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
3785 struct request
*flush_rq
= hctx
->fq
->flush_rq
;
3787 if (blk_mq_hw_queue_mapped(hctx
))
3788 blk_mq_tag_idle(hctx
);
3790 if (blk_queue_init_done(q
))
3791 blk_mq_clear_flush_rq_mapping(set
->tags
[hctx_idx
],
3792 set
->queue_depth
, flush_rq
);
3793 if (set
->ops
->exit_request
)
3794 set
->ops
->exit_request(set
, flush_rq
, hctx_idx
);
3796 if (set
->ops
->exit_hctx
)
3797 set
->ops
->exit_hctx(hctx
, hctx_idx
);
3799 blk_mq_remove_cpuhp(hctx
);
3801 xa_erase(&q
->hctx_table
, hctx_idx
);
3803 spin_lock(&q
->unused_hctx_lock
);
3804 list_add(&hctx
->hctx_list
, &q
->unused_hctx_list
);
3805 spin_unlock(&q
->unused_hctx_lock
);
3808 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
3809 struct blk_mq_tag_set
*set
, int nr_queue
)
3811 struct blk_mq_hw_ctx
*hctx
;
3814 queue_for_each_hw_ctx(q
, hctx
, i
) {
3817 blk_mq_exit_hctx(q
, set
, hctx
, i
);
3821 static int blk_mq_init_hctx(struct request_queue
*q
,
3822 struct blk_mq_tag_set
*set
,
3823 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
3825 hctx
->queue_num
= hctx_idx
;
3827 if (!(hctx
->flags
& BLK_MQ_F_STACKING
))
3828 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE
,
3829 &hctx
->cpuhp_online
);
3830 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
3832 hctx
->tags
= set
->tags
[hctx_idx
];
3834 if (set
->ops
->init_hctx
&&
3835 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
3836 goto unregister_cpu_notifier
;
3838 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
3842 if (xa_insert(&q
->hctx_table
, hctx_idx
, hctx
, GFP_KERNEL
))
3848 if (set
->ops
->exit_request
)
3849 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
3851 if (set
->ops
->exit_hctx
)
3852 set
->ops
->exit_hctx(hctx
, hctx_idx
);
3853 unregister_cpu_notifier
:
3854 blk_mq_remove_cpuhp(hctx
);
3858 static struct blk_mq_hw_ctx
*
3859 blk_mq_alloc_hctx(struct request_queue
*q
, struct blk_mq_tag_set
*set
,
3862 struct blk_mq_hw_ctx
*hctx
;
3863 gfp_t gfp
= GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
;
3865 hctx
= kzalloc_node(sizeof(struct blk_mq_hw_ctx
), gfp
, node
);
3867 goto fail_alloc_hctx
;
3869 if (!zalloc_cpumask_var_node(&hctx
->cpumask
, gfp
, node
))
3872 atomic_set(&hctx
->nr_active
, 0);
3873 if (node
== NUMA_NO_NODE
)
3874 node
= set
->numa_node
;
3875 hctx
->numa_node
= node
;
3877 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
3878 spin_lock_init(&hctx
->lock
);
3879 INIT_LIST_HEAD(&hctx
->dispatch
);
3881 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_QUEUE_SHARED
;
3883 INIT_LIST_HEAD(&hctx
->hctx_list
);
3886 * Allocate space for all possible cpus to avoid allocation at
3889 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
3894 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8),
3895 gfp
, node
, false, false))
3899 spin_lock_init(&hctx
->dispatch_wait_lock
);
3900 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
3901 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
3903 hctx
->fq
= blk_alloc_flush_queue(hctx
->numa_node
, set
->cmd_size
, gfp
);
3907 blk_mq_hctx_kobj_init(hctx
);
3912 sbitmap_free(&hctx
->ctx_map
);
3916 free_cpumask_var(hctx
->cpumask
);
3923 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
3924 unsigned int nr_hw_queues
)
3926 struct blk_mq_tag_set
*set
= q
->tag_set
;
3929 for_each_possible_cpu(i
) {
3930 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
3931 struct blk_mq_hw_ctx
*hctx
;
3935 spin_lock_init(&__ctx
->lock
);
3936 for (k
= HCTX_TYPE_DEFAULT
; k
< HCTX_MAX_TYPES
; k
++)
3937 INIT_LIST_HEAD(&__ctx
->rq_lists
[k
]);
3942 * Set local node, IFF we have more than one hw queue. If
3943 * not, we remain on the home node of the device
3945 for (j
= 0; j
< set
->nr_maps
; j
++) {
3946 hctx
= blk_mq_map_queue_type(q
, j
, i
);
3947 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
3948 hctx
->numa_node
= cpu_to_node(i
);
3953 struct blk_mq_tags
*blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set
*set
,
3954 unsigned int hctx_idx
,
3957 struct blk_mq_tags
*tags
;
3960 tags
= blk_mq_alloc_rq_map(set
, hctx_idx
, depth
, set
->reserved_tags
);
3964 ret
= blk_mq_alloc_rqs(set
, tags
, hctx_idx
, depth
);
3966 blk_mq_free_rq_map(tags
);
3973 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set
*set
,
3976 if (blk_mq_is_shared_tags(set
->flags
)) {
3977 set
->tags
[hctx_idx
] = set
->shared_tags
;
3982 set
->tags
[hctx_idx
] = blk_mq_alloc_map_and_rqs(set
, hctx_idx
,
3985 return set
->tags
[hctx_idx
];
3988 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set
*set
,
3989 struct blk_mq_tags
*tags
,
3990 unsigned int hctx_idx
)
3993 blk_mq_free_rqs(set
, tags
, hctx_idx
);
3994 blk_mq_free_rq_map(tags
);
3998 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set
*set
,
3999 unsigned int hctx_idx
)
4001 if (!blk_mq_is_shared_tags(set
->flags
))
4002 blk_mq_free_map_and_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
4004 set
->tags
[hctx_idx
] = NULL
;
4007 static void blk_mq_map_swqueue(struct request_queue
*q
)
4009 unsigned int j
, hctx_idx
;
4011 struct blk_mq_hw_ctx
*hctx
;
4012 struct blk_mq_ctx
*ctx
;
4013 struct blk_mq_tag_set
*set
= q
->tag_set
;
4015 queue_for_each_hw_ctx(q
, hctx
, i
) {
4016 cpumask_clear(hctx
->cpumask
);
4018 hctx
->dispatch_from
= NULL
;
4022 * Map software to hardware queues.
4024 * If the cpu isn't present, the cpu is mapped to first hctx.
4026 for_each_possible_cpu(i
) {
4028 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
4029 for (j
= 0; j
< set
->nr_maps
; j
++) {
4030 if (!set
->map
[j
].nr_queues
) {
4031 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
4032 HCTX_TYPE_DEFAULT
, i
);
4035 hctx_idx
= set
->map
[j
].mq_map
[i
];
4036 /* unmapped hw queue can be remapped after CPU topo changed */
4037 if (!set
->tags
[hctx_idx
] &&
4038 !__blk_mq_alloc_map_and_rqs(set
, hctx_idx
)) {
4040 * If tags initialization fail for some hctx,
4041 * that hctx won't be brought online. In this
4042 * case, remap the current ctx to hctx[0] which
4043 * is guaranteed to always have tags allocated
4045 set
->map
[j
].mq_map
[i
] = 0;
4048 hctx
= blk_mq_map_queue_type(q
, j
, i
);
4049 ctx
->hctxs
[j
] = hctx
;
4051 * If the CPU is already set in the mask, then we've
4052 * mapped this one already. This can happen if
4053 * devices share queues across queue maps.
4055 if (cpumask_test_cpu(i
, hctx
->cpumask
))
4058 cpumask_set_cpu(i
, hctx
->cpumask
);
4060 ctx
->index_hw
[hctx
->type
] = hctx
->nr_ctx
;
4061 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
4064 * If the nr_ctx type overflows, we have exceeded the
4065 * amount of sw queues we can support.
4067 BUG_ON(!hctx
->nr_ctx
);
4070 for (; j
< HCTX_MAX_TYPES
; j
++)
4071 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
4072 HCTX_TYPE_DEFAULT
, i
);
4075 queue_for_each_hw_ctx(q
, hctx
, i
) {
4079 * If no software queues are mapped to this hardware queue,
4080 * disable it and free the request entries.
4082 if (!hctx
->nr_ctx
) {
4083 /* Never unmap queue 0. We need it as a
4084 * fallback in case of a new remap fails
4088 __blk_mq_free_map_and_rqs(set
, i
);
4094 hctx
->tags
= set
->tags
[i
];
4095 WARN_ON(!hctx
->tags
);
4098 * Set the map size to the number of mapped software queues.
4099 * This is more accurate and more efficient than looping
4100 * over all possibly mapped software queues.
4102 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
4105 * Rule out isolated CPUs from hctx->cpumask to avoid
4106 * running block kworker on isolated CPUs
4108 for_each_cpu(cpu
, hctx
->cpumask
) {
4109 if (cpu_is_isolated(cpu
))
4110 cpumask_clear_cpu(cpu
, hctx
->cpumask
);
4114 * Initialize batch roundrobin counts
4116 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
4117 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
4122 * Caller needs to ensure that we're either frozen/quiesced, or that
4123 * the queue isn't live yet.
4125 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
4127 struct blk_mq_hw_ctx
*hctx
;
4130 queue_for_each_hw_ctx(q
, hctx
, i
) {
4132 hctx
->flags
|= BLK_MQ_F_TAG_QUEUE_SHARED
;
4134 blk_mq_tag_idle(hctx
);
4135 hctx
->flags
&= ~BLK_MQ_F_TAG_QUEUE_SHARED
;
4140 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set
*set
,
4143 struct request_queue
*q
;
4145 lockdep_assert_held(&set
->tag_list_lock
);
4147 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4148 blk_mq_freeze_queue(q
);
4149 queue_set_hctx_shared(q
, shared
);
4150 blk_mq_unfreeze_queue(q
);
4154 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
4156 struct blk_mq_tag_set
*set
= q
->tag_set
;
4158 mutex_lock(&set
->tag_list_lock
);
4159 list_del(&q
->tag_set_list
);
4160 if (list_is_singular(&set
->tag_list
)) {
4161 /* just transitioned to unshared */
4162 set
->flags
&= ~BLK_MQ_F_TAG_QUEUE_SHARED
;
4163 /* update existing queue */
4164 blk_mq_update_tag_set_shared(set
, false);
4166 mutex_unlock(&set
->tag_list_lock
);
4167 INIT_LIST_HEAD(&q
->tag_set_list
);
4170 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
4171 struct request_queue
*q
)
4173 mutex_lock(&set
->tag_list_lock
);
4176 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4178 if (!list_empty(&set
->tag_list
) &&
4179 !(set
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)) {
4180 set
->flags
|= BLK_MQ_F_TAG_QUEUE_SHARED
;
4181 /* update existing queue */
4182 blk_mq_update_tag_set_shared(set
, true);
4184 if (set
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
4185 queue_set_hctx_shared(q
, true);
4186 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
4188 mutex_unlock(&set
->tag_list_lock
);
4191 /* All allocations will be freed in release handler of q->mq_kobj */
4192 static int blk_mq_alloc_ctxs(struct request_queue
*q
)
4194 struct blk_mq_ctxs
*ctxs
;
4197 ctxs
= kzalloc(sizeof(*ctxs
), GFP_KERNEL
);
4201 ctxs
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
4202 if (!ctxs
->queue_ctx
)
4205 for_each_possible_cpu(cpu
) {
4206 struct blk_mq_ctx
*ctx
= per_cpu_ptr(ctxs
->queue_ctx
, cpu
);
4210 q
->mq_kobj
= &ctxs
->kobj
;
4211 q
->queue_ctx
= ctxs
->queue_ctx
;
4220 * It is the actual release handler for mq, but we do it from
4221 * request queue's release handler for avoiding use-after-free
4222 * and headache because q->mq_kobj shouldn't have been introduced,
4223 * but we can't group ctx/kctx kobj without it.
4225 void blk_mq_release(struct request_queue
*q
)
4227 struct blk_mq_hw_ctx
*hctx
, *next
;
4230 queue_for_each_hw_ctx(q
, hctx
, i
)
4231 WARN_ON_ONCE(hctx
&& list_empty(&hctx
->hctx_list
));
4233 /* all hctx are in .unused_hctx_list now */
4234 list_for_each_entry_safe(hctx
, next
, &q
->unused_hctx_list
, hctx_list
) {
4235 list_del_init(&hctx
->hctx_list
);
4236 kobject_put(&hctx
->kobj
);
4239 xa_destroy(&q
->hctx_table
);
4242 * release .mq_kobj and sw queue's kobject now because
4243 * both share lifetime with request queue.
4245 blk_mq_sysfs_deinit(q
);
4248 static bool blk_mq_can_poll(struct blk_mq_tag_set
*set
)
4250 return set
->nr_maps
> HCTX_TYPE_POLL
&&
4251 set
->map
[HCTX_TYPE_POLL
].nr_queues
;
4254 struct request_queue
*blk_mq_alloc_queue(struct blk_mq_tag_set
*set
,
4255 struct queue_limits
*lim
, void *queuedata
)
4257 struct queue_limits default_lim
= { };
4258 struct request_queue
*q
;
4263 lim
->features
|= BLK_FEAT_IO_STAT
| BLK_FEAT_NOWAIT
;
4264 if (blk_mq_can_poll(set
))
4265 lim
->features
|= BLK_FEAT_POLL
;
4267 q
= blk_alloc_queue(lim
, set
->numa_node
);
4270 q
->queuedata
= queuedata
;
4271 ret
= blk_mq_init_allocated_queue(set
, q
);
4274 return ERR_PTR(ret
);
4278 EXPORT_SYMBOL(blk_mq_alloc_queue
);
4281 * blk_mq_destroy_queue - shutdown a request queue
4282 * @q: request queue to shutdown
4284 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4285 * requests will be failed with -ENODEV. The caller is responsible for dropping
4286 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4288 * Context: can sleep
4290 void blk_mq_destroy_queue(struct request_queue
*q
)
4292 WARN_ON_ONCE(!queue_is_mq(q
));
4293 WARN_ON_ONCE(blk_queue_registered(q
));
4297 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
4298 blk_queue_start_drain(q
);
4299 blk_mq_freeze_queue_wait(q
);
4302 blk_mq_cancel_work_sync(q
);
4303 blk_mq_exit_queue(q
);
4305 EXPORT_SYMBOL(blk_mq_destroy_queue
);
4307 struct gendisk
*__blk_mq_alloc_disk(struct blk_mq_tag_set
*set
,
4308 struct queue_limits
*lim
, void *queuedata
,
4309 struct lock_class_key
*lkclass
)
4311 struct request_queue
*q
;
4312 struct gendisk
*disk
;
4314 q
= blk_mq_alloc_queue(set
, lim
, queuedata
);
4318 disk
= __alloc_disk_node(q
, set
->numa_node
, lkclass
);
4320 blk_mq_destroy_queue(q
);
4322 return ERR_PTR(-ENOMEM
);
4324 set_bit(GD_OWNS_QUEUE
, &disk
->state
);
4327 EXPORT_SYMBOL(__blk_mq_alloc_disk
);
4329 struct gendisk
*blk_mq_alloc_disk_for_queue(struct request_queue
*q
,
4330 struct lock_class_key
*lkclass
)
4332 struct gendisk
*disk
;
4334 if (!blk_get_queue(q
))
4336 disk
= __alloc_disk_node(q
, NUMA_NO_NODE
, lkclass
);
4341 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue
);
4343 static struct blk_mq_hw_ctx
*blk_mq_alloc_and_init_hctx(
4344 struct blk_mq_tag_set
*set
, struct request_queue
*q
,
4345 int hctx_idx
, int node
)
4347 struct blk_mq_hw_ctx
*hctx
= NULL
, *tmp
;
4349 /* reuse dead hctx first */
4350 spin_lock(&q
->unused_hctx_lock
);
4351 list_for_each_entry(tmp
, &q
->unused_hctx_list
, hctx_list
) {
4352 if (tmp
->numa_node
== node
) {
4358 list_del_init(&hctx
->hctx_list
);
4359 spin_unlock(&q
->unused_hctx_lock
);
4362 hctx
= blk_mq_alloc_hctx(q
, set
, node
);
4366 if (blk_mq_init_hctx(q
, set
, hctx
, hctx_idx
))
4372 kobject_put(&hctx
->kobj
);
4377 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
4378 struct request_queue
*q
)
4380 struct blk_mq_hw_ctx
*hctx
;
4383 /* protect against switching io scheduler */
4384 mutex_lock(&q
->sysfs_lock
);
4385 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
4387 int node
= blk_mq_get_hctx_node(set
, i
);
4388 struct blk_mq_hw_ctx
*old_hctx
= xa_load(&q
->hctx_table
, i
);
4391 old_node
= old_hctx
->numa_node
;
4392 blk_mq_exit_hctx(q
, set
, old_hctx
, i
);
4395 if (!blk_mq_alloc_and_init_hctx(set
, q
, i
, node
)) {
4398 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4400 hctx
= blk_mq_alloc_and_init_hctx(set
, q
, i
, old_node
);
4401 WARN_ON_ONCE(!hctx
);
4405 * Increasing nr_hw_queues fails. Free the newly allocated
4406 * hctxs and keep the previous q->nr_hw_queues.
4408 if (i
!= set
->nr_hw_queues
) {
4409 j
= q
->nr_hw_queues
;
4412 q
->nr_hw_queues
= set
->nr_hw_queues
;
4415 xa_for_each_start(&q
->hctx_table
, j
, hctx
, j
)
4416 blk_mq_exit_hctx(q
, set
, hctx
, j
);
4417 mutex_unlock(&q
->sysfs_lock
);
4420 int blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
4421 struct request_queue
*q
)
4423 /* mark the queue as mq asap */
4424 q
->mq_ops
= set
->ops
;
4427 * ->tag_set has to be setup before initialize hctx, which cpuphp
4428 * handler needs it for checking queue mapping
4432 if (blk_mq_alloc_ctxs(q
))
4435 /* init q->mq_kobj and sw queues' kobjects */
4436 blk_mq_sysfs_init(q
);
4438 INIT_LIST_HEAD(&q
->unused_hctx_list
);
4439 spin_lock_init(&q
->unused_hctx_lock
);
4441 xa_init(&q
->hctx_table
);
4443 blk_mq_realloc_hw_ctxs(set
, q
);
4444 if (!q
->nr_hw_queues
)
4447 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
4448 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
4450 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
4452 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
4453 INIT_LIST_HEAD(&q
->flush_list
);
4454 INIT_LIST_HEAD(&q
->requeue_list
);
4455 spin_lock_init(&q
->requeue_lock
);
4457 q
->nr_requests
= set
->queue_depth
;
4459 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
4460 blk_mq_add_queue_tag_set(set
, q
);
4461 blk_mq_map_swqueue(q
);
4470 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
4472 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4473 void blk_mq_exit_queue(struct request_queue
*q
)
4475 struct blk_mq_tag_set
*set
= q
->tag_set
;
4477 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4478 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
4479 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4480 blk_mq_del_queue_tag_set(q
);
4483 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
4487 if (blk_mq_is_shared_tags(set
->flags
)) {
4488 set
->shared_tags
= blk_mq_alloc_map_and_rqs(set
,
4491 if (!set
->shared_tags
)
4495 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
4496 if (!__blk_mq_alloc_map_and_rqs(set
, i
))
4505 __blk_mq_free_map_and_rqs(set
, i
);
4507 if (blk_mq_is_shared_tags(set
->flags
)) {
4508 blk_mq_free_map_and_rqs(set
, set
->shared_tags
,
4509 BLK_MQ_NO_HCTX_IDX
);
4516 * Allocate the request maps associated with this tag_set. Note that this
4517 * may reduce the depth asked for, if memory is tight. set->queue_depth
4518 * will be updated to reflect the allocated depth.
4520 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set
*set
)
4525 depth
= set
->queue_depth
;
4527 err
= __blk_mq_alloc_rq_maps(set
);
4531 set
->queue_depth
>>= 1;
4532 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
4536 } while (set
->queue_depth
);
4538 if (!set
->queue_depth
|| err
) {
4539 pr_err("blk-mq: failed to allocate request map\n");
4543 if (depth
!= set
->queue_depth
)
4544 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4545 depth
, set
->queue_depth
);
4550 static void blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
4553 * blk_mq_map_queues() and multiple .map_queues() implementations
4554 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4555 * number of hardware queues.
4557 if (set
->nr_maps
== 1)
4558 set
->map
[HCTX_TYPE_DEFAULT
].nr_queues
= set
->nr_hw_queues
;
4560 if (set
->ops
->map_queues
) {
4564 * transport .map_queues is usually done in the following
4567 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4568 * mask = get_cpu_mask(queue)
4569 * for_each_cpu(cpu, mask)
4570 * set->map[x].mq_map[cpu] = queue;
4573 * When we need to remap, the table has to be cleared for
4574 * killing stale mapping since one CPU may not be mapped
4577 for (i
= 0; i
< set
->nr_maps
; i
++)
4578 blk_mq_clear_mq_map(&set
->map
[i
]);
4580 set
->ops
->map_queues(set
);
4582 BUG_ON(set
->nr_maps
> 1);
4583 blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
4587 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set
*set
,
4588 int new_nr_hw_queues
)
4590 struct blk_mq_tags
**new_tags
;
4593 if (set
->nr_hw_queues
>= new_nr_hw_queues
)
4596 new_tags
= kcalloc_node(new_nr_hw_queues
, sizeof(struct blk_mq_tags
*),
4597 GFP_KERNEL
, set
->numa_node
);
4602 memcpy(new_tags
, set
->tags
, set
->nr_hw_queues
*
4603 sizeof(*set
->tags
));
4605 set
->tags
= new_tags
;
4607 for (i
= set
->nr_hw_queues
; i
< new_nr_hw_queues
; i
++) {
4608 if (!__blk_mq_alloc_map_and_rqs(set
, i
)) {
4609 while (--i
>= set
->nr_hw_queues
)
4610 __blk_mq_free_map_and_rqs(set
, i
);
4617 set
->nr_hw_queues
= new_nr_hw_queues
;
4622 * Alloc a tag set to be associated with one or more request queues.
4623 * May fail with EINVAL for various error conditions. May adjust the
4624 * requested depth down, if it's too large. In that case, the set
4625 * value will be stored in set->queue_depth.
4627 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
4631 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
4633 if (!set
->nr_hw_queues
)
4635 if (!set
->queue_depth
)
4637 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
4640 if (!set
->ops
->queue_rq
)
4643 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
4646 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
4647 pr_info("blk-mq: reduced tag depth to %u\n",
4649 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
4654 else if (set
->nr_maps
> HCTX_MAX_TYPES
)
4658 * If a crashdump is active, then we are potentially in a very
4659 * memory constrained environment. Limit us to 64 tags to prevent
4660 * using too much memory.
4662 if (is_kdump_kernel())
4663 set
->queue_depth
= min(64U, set
->queue_depth
);
4666 * There is no use for more h/w queues than cpus if we just have
4669 if (set
->nr_maps
== 1 && set
->nr_hw_queues
> nr_cpu_ids
)
4670 set
->nr_hw_queues
= nr_cpu_ids
;
4672 if (set
->flags
& BLK_MQ_F_BLOCKING
) {
4673 set
->srcu
= kmalloc(sizeof(*set
->srcu
), GFP_KERNEL
);
4676 ret
= init_srcu_struct(set
->srcu
);
4682 set
->tags
= kcalloc_node(set
->nr_hw_queues
,
4683 sizeof(struct blk_mq_tags
*), GFP_KERNEL
,
4686 goto out_cleanup_srcu
;
4688 for (i
= 0; i
< set
->nr_maps
; i
++) {
4689 set
->map
[i
].mq_map
= kcalloc_node(nr_cpu_ids
,
4690 sizeof(set
->map
[i
].mq_map
[0]),
4691 GFP_KERNEL
, set
->numa_node
);
4692 if (!set
->map
[i
].mq_map
)
4693 goto out_free_mq_map
;
4694 set
->map
[i
].nr_queues
= set
->nr_hw_queues
;
4697 blk_mq_update_queue_map(set
);
4699 ret
= blk_mq_alloc_set_map_and_rqs(set
);
4701 goto out_free_mq_map
;
4703 mutex_init(&set
->tag_list_lock
);
4704 INIT_LIST_HEAD(&set
->tag_list
);
4709 for (i
= 0; i
< set
->nr_maps
; i
++) {
4710 kfree(set
->map
[i
].mq_map
);
4711 set
->map
[i
].mq_map
= NULL
;
4716 if (set
->flags
& BLK_MQ_F_BLOCKING
)
4717 cleanup_srcu_struct(set
->srcu
);
4719 if (set
->flags
& BLK_MQ_F_BLOCKING
)
4723 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
4725 /* allocate and initialize a tagset for a simple single-queue device */
4726 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set
*set
,
4727 const struct blk_mq_ops
*ops
, unsigned int queue_depth
,
4728 unsigned int set_flags
)
4730 memset(set
, 0, sizeof(*set
));
4732 set
->nr_hw_queues
= 1;
4734 set
->queue_depth
= queue_depth
;
4735 set
->numa_node
= NUMA_NO_NODE
;
4736 set
->flags
= set_flags
;
4737 return blk_mq_alloc_tag_set(set
);
4739 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set
);
4741 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
4745 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
4746 __blk_mq_free_map_and_rqs(set
, i
);
4748 if (blk_mq_is_shared_tags(set
->flags
)) {
4749 blk_mq_free_map_and_rqs(set
, set
->shared_tags
,
4750 BLK_MQ_NO_HCTX_IDX
);
4753 for (j
= 0; j
< set
->nr_maps
; j
++) {
4754 kfree(set
->map
[j
].mq_map
);
4755 set
->map
[j
].mq_map
= NULL
;
4760 if (set
->flags
& BLK_MQ_F_BLOCKING
) {
4761 cleanup_srcu_struct(set
->srcu
);
4765 EXPORT_SYMBOL(blk_mq_free_tag_set
);
4767 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
4769 struct blk_mq_tag_set
*set
= q
->tag_set
;
4770 struct blk_mq_hw_ctx
*hctx
;
4774 if (WARN_ON_ONCE(!q
->mq_freeze_depth
))
4780 if (q
->nr_requests
== nr
)
4783 blk_mq_quiesce_queue(q
);
4786 queue_for_each_hw_ctx(q
, hctx
, i
) {
4790 * If we're using an MQ scheduler, just update the scheduler
4791 * queue depth. This is similar to what the old code would do.
4793 if (hctx
->sched_tags
) {
4794 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
4797 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
4802 if (q
->elevator
&& q
->elevator
->type
->ops
.depth_updated
)
4803 q
->elevator
->type
->ops
.depth_updated(hctx
);
4806 q
->nr_requests
= nr
;
4807 if (blk_mq_is_shared_tags(set
->flags
)) {
4809 blk_mq_tag_update_sched_shared_tags(q
);
4811 blk_mq_tag_resize_shared_tags(set
, nr
);
4815 blk_mq_unquiesce_queue(q
);
4821 * request_queue and elevator_type pair.
4822 * It is just used by __blk_mq_update_nr_hw_queues to cache
4823 * the elevator_type associated with a request_queue.
4825 struct blk_mq_qe_pair
{
4826 struct list_head node
;
4827 struct request_queue
*q
;
4828 struct elevator_type
*type
;
4832 * Cache the elevator_type in qe pair list and switch the
4833 * io scheduler to 'none'
4835 static bool blk_mq_elv_switch_none(struct list_head
*head
,
4836 struct request_queue
*q
)
4838 struct blk_mq_qe_pair
*qe
;
4840 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
4844 /* q->elevator needs protection from ->sysfs_lock */
4845 mutex_lock(&q
->sysfs_lock
);
4847 /* the check has to be done with holding sysfs_lock */
4853 INIT_LIST_HEAD(&qe
->node
);
4855 qe
->type
= q
->elevator
->type
;
4856 /* keep a reference to the elevator module as we'll switch back */
4857 __elevator_get(qe
->type
);
4858 list_add(&qe
->node
, head
);
4859 elevator_disable(q
);
4861 mutex_unlock(&q
->sysfs_lock
);
4866 static struct blk_mq_qe_pair
*blk_lookup_qe_pair(struct list_head
*head
,
4867 struct request_queue
*q
)
4869 struct blk_mq_qe_pair
*qe
;
4871 list_for_each_entry(qe
, head
, node
)
4878 static void blk_mq_elv_switch_back(struct list_head
*head
,
4879 struct request_queue
*q
)
4881 struct blk_mq_qe_pair
*qe
;
4882 struct elevator_type
*t
;
4884 qe
= blk_lookup_qe_pair(head
, q
);
4888 list_del(&qe
->node
);
4891 mutex_lock(&q
->sysfs_lock
);
4892 elevator_switch(q
, t
);
4893 /* drop the reference acquired in blk_mq_elv_switch_none */
4895 mutex_unlock(&q
->sysfs_lock
);
4898 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
4901 struct request_queue
*q
;
4903 int prev_nr_hw_queues
= set
->nr_hw_queues
;
4906 lockdep_assert_held(&set
->tag_list_lock
);
4908 if (set
->nr_maps
== 1 && nr_hw_queues
> nr_cpu_ids
)
4909 nr_hw_queues
= nr_cpu_ids
;
4910 if (nr_hw_queues
< 1)
4912 if (set
->nr_maps
== 1 && nr_hw_queues
== set
->nr_hw_queues
)
4915 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4916 blk_mq_freeze_queue(q
);
4918 * Switch IO scheduler to 'none', cleaning up the data associated
4919 * with the previous scheduler. We will switch back once we are done
4920 * updating the new sw to hw queue mappings.
4922 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4923 if (!blk_mq_elv_switch_none(&head
, q
))
4926 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4927 blk_mq_debugfs_unregister_hctxs(q
);
4928 blk_mq_sysfs_unregister_hctxs(q
);
4931 if (blk_mq_realloc_tag_set_tags(set
, nr_hw_queues
) < 0)
4935 blk_mq_update_queue_map(set
);
4936 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4937 struct queue_limits lim
;
4939 blk_mq_realloc_hw_ctxs(set
, q
);
4941 if (q
->nr_hw_queues
!= set
->nr_hw_queues
) {
4942 int i
= prev_nr_hw_queues
;
4944 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4945 nr_hw_queues
, prev_nr_hw_queues
);
4946 for (; i
< set
->nr_hw_queues
; i
++)
4947 __blk_mq_free_map_and_rqs(set
, i
);
4949 set
->nr_hw_queues
= prev_nr_hw_queues
;
4952 lim
= queue_limits_start_update(q
);
4953 if (blk_mq_can_poll(set
))
4954 lim
.features
|= BLK_FEAT_POLL
;
4956 lim
.features
&= ~BLK_FEAT_POLL
;
4957 if (queue_limits_commit_update(q
, &lim
) < 0)
4958 pr_warn("updating the poll flag failed\n");
4959 blk_mq_map_swqueue(q
);
4963 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4964 blk_mq_sysfs_register_hctxs(q
);
4965 blk_mq_debugfs_register_hctxs(q
);
4969 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4970 blk_mq_elv_switch_back(&head
, q
);
4972 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4973 blk_mq_unfreeze_queue(q
);
4975 /* Free the excess tags when nr_hw_queues shrink. */
4976 for (i
= set
->nr_hw_queues
; i
< prev_nr_hw_queues
; i
++)
4977 __blk_mq_free_map_and_rqs(set
, i
);
4980 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
4982 mutex_lock(&set
->tag_list_lock
);
4983 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
4984 mutex_unlock(&set
->tag_list_lock
);
4986 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
4988 static int blk_hctx_poll(struct request_queue
*q
, struct blk_mq_hw_ctx
*hctx
,
4989 struct io_comp_batch
*iob
, unsigned int flags
)
4991 long state
= get_current_state();
4995 ret
= q
->mq_ops
->poll(hctx
, iob
);
4997 __set_current_state(TASK_RUNNING
);
5001 if (signal_pending_state(state
, current
))
5002 __set_current_state(TASK_RUNNING
);
5003 if (task_is_running(current
))
5006 if (ret
< 0 || (flags
& BLK_POLL_ONESHOT
))
5009 } while (!need_resched());
5011 __set_current_state(TASK_RUNNING
);
5015 int blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
,
5016 struct io_comp_batch
*iob
, unsigned int flags
)
5018 struct blk_mq_hw_ctx
*hctx
= xa_load(&q
->hctx_table
, cookie
);
5020 return blk_hctx_poll(q
, hctx
, iob
, flags
);
5023 int blk_rq_poll(struct request
*rq
, struct io_comp_batch
*iob
,
5024 unsigned int poll_flags
)
5026 struct request_queue
*q
= rq
->q
;
5029 if (!blk_rq_is_poll(rq
))
5031 if (!percpu_ref_tryget(&q
->q_usage_counter
))
5034 ret
= blk_hctx_poll(q
, rq
->mq_hctx
, iob
, poll_flags
);
5039 EXPORT_SYMBOL_GPL(blk_rq_poll
);
5041 unsigned int blk_mq_rq_cpu(struct request
*rq
)
5043 return rq
->mq_ctx
->cpu
;
5045 EXPORT_SYMBOL(blk_mq_rq_cpu
);
5047 void blk_mq_cancel_work_sync(struct request_queue
*q
)
5049 struct blk_mq_hw_ctx
*hctx
;
5052 cancel_delayed_work_sync(&q
->requeue_work
);
5054 queue_for_each_hw_ctx(q
, hctx
, i
)
5055 cancel_delayed_work_sync(&hctx
->run_work
);
5058 static int __init
blk_mq_init(void)
5062 for_each_possible_cpu(i
)
5063 init_llist_head(&per_cpu(blk_cpu_done
, i
));
5064 for_each_possible_cpu(i
)
5065 INIT_CSD(&per_cpu(blk_cpu_csd
, i
),
5066 __blk_mq_complete_request_remote
, NULL
);
5067 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
);
5069 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD
,
5070 "block/softirq:dead", NULL
,
5071 blk_softirq_cpu_dead
);
5072 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
5073 blk_mq_hctx_notify_dead
);
5074 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE
, "block/mq:online",
5075 blk_mq_hctx_notify_online
,
5076 blk_mq_hctx_notify_offline
);
5079 subsys_initcall(blk_mq_init
);