1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/blk-mq.h>
12 struct blk_mq_ctx __percpu
*queue_ctx
;
16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
21 struct list_head rq_lists
[HCTX_MAX_TYPES
];
22 } ____cacheline_aligned_in_smp
;
25 unsigned short index_hw
[HCTX_MAX_TYPES
];
26 struct blk_mq_hw_ctx
*hctxs
[HCTX_MAX_TYPES
];
28 struct request_queue
*queue
;
29 struct blk_mq_ctxs
*ctxs
;
31 } ____cacheline_aligned_in_smp
;
36 BLK_MQ_TAG_MAX
= BLK_MQ_NO_TAG
- 1,
39 #define BLK_MQ_CPU_WORK_BATCH (8)
41 typedef unsigned int __bitwise blk_insert_t
;
42 #define BLK_MQ_INSERT_AT_HEAD ((__force blk_insert_t)0x01)
44 void blk_mq_submit_bio(struct bio
*bio
);
45 int blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
, struct io_comp_batch
*iob
,
47 void blk_mq_exit_queue(struct request_queue
*q
);
48 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
);
49 void blk_mq_wake_waiters(struct request_queue
*q
);
50 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx
*hctx
, struct list_head
*,
52 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
);
53 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
54 struct blk_mq_ctx
*start
);
55 void blk_mq_put_rq_ref(struct request
*rq
);
58 * Internal helpers for allocating/freeing the request map
60 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
61 unsigned int hctx_idx
);
62 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
);
63 struct blk_mq_tags
*blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set
*set
,
64 unsigned int hctx_idx
, unsigned int depth
);
65 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set
*set
,
66 struct blk_mq_tags
*tags
,
67 unsigned int hctx_idx
);
70 * CPU -> queue mappings
72 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map
*qmap
, unsigned int);
75 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
77 * @type: the hctx type index
80 static inline struct blk_mq_hw_ctx
*blk_mq_map_queue_type(struct request_queue
*q
,
84 return xa_load(&q
->hctx_table
, q
->tag_set
->map
[type
].mq_map
[cpu
]);
87 static inline enum hctx_type
blk_mq_get_hctx_type(blk_opf_t opf
)
89 enum hctx_type type
= HCTX_TYPE_DEFAULT
;
92 * The caller ensure that if REQ_POLLED, poll must be enabled.
95 type
= HCTX_TYPE_POLL
;
96 else if ((opf
& REQ_OP_MASK
) == REQ_OP_READ
)
97 type
= HCTX_TYPE_READ
;
102 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
104 * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
105 * @ctx: software queue cpu ctx
107 static inline struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
,
109 struct blk_mq_ctx
*ctx
)
111 return ctx
->hctxs
[blk_mq_get_hctx_type(opf
)];
117 extern void blk_mq_sysfs_init(struct request_queue
*q
);
118 extern void blk_mq_sysfs_deinit(struct request_queue
*q
);
119 int blk_mq_sysfs_register(struct gendisk
*disk
);
120 void blk_mq_sysfs_unregister(struct gendisk
*disk
);
121 int blk_mq_sysfs_register_hctxs(struct request_queue
*q
);
122 void blk_mq_sysfs_unregister_hctxs(struct request_queue
*q
);
123 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx
*hctx
);
124 void blk_mq_free_plug_rqs(struct blk_plug
*plug
);
125 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
);
127 void blk_mq_cancel_work_sync(struct request_queue
*q
);
129 void blk_mq_release(struct request_queue
*q
);
131 static inline struct blk_mq_ctx
*__blk_mq_get_ctx(struct request_queue
*q
,
134 return per_cpu_ptr(q
->queue_ctx
, cpu
);
138 * This assumes per-cpu software queueing queues. They could be per-node
139 * as well, for instance. For now this is hardcoded as-is. Note that we don't
140 * care about preemption, since we know the ctx's are persistent. This does
141 * mean that we can't rely on ctx always matching the currently running CPU.
143 static inline struct blk_mq_ctx
*blk_mq_get_ctx(struct request_queue
*q
)
145 return __blk_mq_get_ctx(q
, raw_smp_processor_id());
148 struct blk_mq_alloc_data
{
149 /* input parameter */
150 struct request_queue
*q
;
151 blk_mq_req_flags_t flags
;
152 unsigned int shallow_depth
;
154 req_flags_t rq_flags
;
156 /* allocate multiple requests/tags in one go */
157 unsigned int nr_tags
;
158 struct rq_list
*cached_rqs
;
160 /* input & output parameter */
161 struct blk_mq_ctx
*ctx
;
162 struct blk_mq_hw_ctx
*hctx
;
165 struct blk_mq_tags
*blk_mq_init_tags(unsigned int nr_tags
,
166 unsigned int reserved_tags
, int node
, int alloc_policy
);
167 void blk_mq_free_tags(struct blk_mq_tags
*tags
);
168 int blk_mq_init_bitmaps(struct sbitmap_queue
*bitmap_tags
,
169 struct sbitmap_queue
*breserved_tags
, unsigned int queue_depth
,
170 unsigned int reserved
, int node
, int alloc_policy
);
172 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data
*data
);
173 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data
*data
, int nr_tags
,
174 unsigned int *offset
);
175 void blk_mq_put_tag(struct blk_mq_tags
*tags
, struct blk_mq_ctx
*ctx
,
177 void blk_mq_put_tags(struct blk_mq_tags
*tags
, int *tag_array
, int nr_tags
);
178 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx
*hctx
,
179 struct blk_mq_tags
**tags
, unsigned int depth
, bool can_grow
);
180 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set
*set
,
182 void blk_mq_tag_update_sched_shared_tags(struct request_queue
*q
);
184 void blk_mq_tag_wakeup_all(struct blk_mq_tags
*tags
, bool);
185 void blk_mq_queue_tag_busy_iter(struct request_queue
*q
, busy_tag_iter_fn
*fn
,
187 void blk_mq_all_tag_iter(struct blk_mq_tags
*tags
, busy_tag_iter_fn
*fn
,
190 static inline struct sbq_wait_state
*bt_wait_ptr(struct sbitmap_queue
*bt
,
191 struct blk_mq_hw_ctx
*hctx
)
195 return sbq_wait_ptr(bt
, &hctx
->wait_index
);
198 void __blk_mq_tag_busy(struct blk_mq_hw_ctx
*);
199 void __blk_mq_tag_idle(struct blk_mq_hw_ctx
*);
201 static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx
*hctx
)
203 if (hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
204 __blk_mq_tag_busy(hctx
);
207 static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx
*hctx
)
209 if (hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
210 __blk_mq_tag_idle(hctx
);
213 static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags
*tags
,
216 return tag
< tags
->nr_reserved_tags
;
219 static inline bool blk_mq_is_shared_tags(unsigned int flags
)
221 return flags
& BLK_MQ_F_TAG_HCTX_SHARED
;
224 static inline struct blk_mq_tags
*blk_mq_tags_from_data(struct blk_mq_alloc_data
*data
)
226 if (data
->rq_flags
& RQF_SCHED_TAGS
)
227 return data
->hctx
->sched_tags
;
228 return data
->hctx
->tags
;
231 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx
*hctx
)
233 /* Fast path: hardware queue is not stopped most of the time. */
234 if (likely(!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
238 * This barrier is used to order adding of dispatch list before and
239 * the test of BLK_MQ_S_STOPPED below. Pairs with the memory barrier
240 * in blk_mq_start_stopped_hw_queue() so that dispatch code could
241 * either see BLK_MQ_S_STOPPED is cleared or dispatch list is not
242 * empty to avoid missing dispatching requests.
246 return test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
249 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx
*hctx
)
251 return hctx
->nr_ctx
&& hctx
->tags
;
254 unsigned int blk_mq_in_flight(struct request_queue
*q
,
255 struct block_device
*part
);
256 void blk_mq_in_flight_rw(struct request_queue
*q
, struct block_device
*part
,
257 unsigned int inflight
[2]);
259 static inline void blk_mq_put_dispatch_budget(struct request_queue
*q
,
262 if (q
->mq_ops
->put_budget
)
263 q
->mq_ops
->put_budget(q
, budget_token
);
266 static inline int blk_mq_get_dispatch_budget(struct request_queue
*q
)
268 if (q
->mq_ops
->get_budget
)
269 return q
->mq_ops
->get_budget(q
);
273 static inline void blk_mq_set_rq_budget_token(struct request
*rq
, int token
)
278 if (rq
->q
->mq_ops
->set_rq_budget_token
)
279 rq
->q
->mq_ops
->set_rq_budget_token(rq
, token
);
282 static inline int blk_mq_get_rq_budget_token(struct request
*rq
)
284 if (rq
->q
->mq_ops
->get_rq_budget_token
)
285 return rq
->q
->mq_ops
->get_rq_budget_token(rq
);
289 static inline void __blk_mq_add_active_requests(struct blk_mq_hw_ctx
*hctx
,
292 if (blk_mq_is_shared_tags(hctx
->flags
))
293 atomic_add(val
, &hctx
->queue
->nr_active_requests_shared_tags
);
295 atomic_add(val
, &hctx
->nr_active
);
298 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx
*hctx
)
300 __blk_mq_add_active_requests(hctx
, 1);
303 static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx
*hctx
,
306 if (blk_mq_is_shared_tags(hctx
->flags
))
307 atomic_sub(val
, &hctx
->queue
->nr_active_requests_shared_tags
);
309 atomic_sub(val
, &hctx
->nr_active
);
312 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx
*hctx
)
314 __blk_mq_sub_active_requests(hctx
, 1);
317 static inline void blk_mq_add_active_requests(struct blk_mq_hw_ctx
*hctx
,
320 if (hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
321 __blk_mq_add_active_requests(hctx
, val
);
324 static inline void blk_mq_inc_active_requests(struct blk_mq_hw_ctx
*hctx
)
326 if (hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
327 __blk_mq_inc_active_requests(hctx
);
330 static inline void blk_mq_sub_active_requests(struct blk_mq_hw_ctx
*hctx
,
333 if (hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
334 __blk_mq_sub_active_requests(hctx
, val
);
337 static inline void blk_mq_dec_active_requests(struct blk_mq_hw_ctx
*hctx
)
339 if (hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
340 __blk_mq_dec_active_requests(hctx
);
343 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx
*hctx
)
345 if (blk_mq_is_shared_tags(hctx
->flags
))
346 return atomic_read(&hctx
->queue
->nr_active_requests_shared_tags
);
347 return atomic_read(&hctx
->nr_active
);
349 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx
*hctx
,
352 blk_mq_dec_active_requests(hctx
);
353 blk_mq_put_tag(hctx
->tags
, rq
->mq_ctx
, rq
->tag
);
354 rq
->tag
= BLK_MQ_NO_TAG
;
357 static inline void blk_mq_put_driver_tag(struct request
*rq
)
359 if (rq
->tag
== BLK_MQ_NO_TAG
|| rq
->internal_tag
== BLK_MQ_NO_TAG
)
362 __blk_mq_put_driver_tag(rq
->mq_hctx
, rq
);
365 bool __blk_mq_alloc_driver_tag(struct request
*rq
);
367 static inline bool blk_mq_get_driver_tag(struct request
*rq
)
369 if (rq
->tag
== BLK_MQ_NO_TAG
&& !__blk_mq_alloc_driver_tag(rq
))
375 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map
*qmap
)
379 for_each_possible_cpu(cpu
)
380 qmap
->mq_map
[cpu
] = 0;
383 /* Free all requests on the list */
384 static inline void blk_mq_free_requests(struct list_head
*list
)
386 while (!list_empty(list
)) {
387 struct request
*rq
= list_entry_rq(list
->next
);
389 list_del_init(&rq
->queuelist
);
390 blk_mq_free_request(rq
);
395 * For shared tag users, we track the number of currently active users
396 * and attempt to provide a fair share of the tag depth for each of them.
398 static inline bool hctx_may_queue(struct blk_mq_hw_ctx
*hctx
,
399 struct sbitmap_queue
*bt
)
401 unsigned int depth
, users
;
403 if (!hctx
|| !(hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
))
407 * Don't try dividing an ant
409 if (bt
->sb
.depth
== 1)
412 if (blk_mq_is_shared_tags(hctx
->flags
)) {
413 struct request_queue
*q
= hctx
->queue
;
415 if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE
, &q
->queue_flags
))
418 if (!test_bit(BLK_MQ_S_TAG_ACTIVE
, &hctx
->state
))
422 users
= READ_ONCE(hctx
->tags
->active_queues
);
427 * Allow at least some tags
429 depth
= max((bt
->sb
.depth
+ users
- 1) / users
, 4U);
430 return __blk_mq_active_requests(hctx
) < depth
;
433 /* run the code block in @dispatch_ops with rcu/srcu read lock held */
434 #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops) \
436 if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) { \
437 struct blk_mq_tag_set *__tag_set = (q)->tag_set; \
440 might_sleep_if(check_sleep); \
441 srcu_idx = srcu_read_lock(__tag_set->srcu); \
443 srcu_read_unlock(__tag_set->srcu, srcu_idx); \
451 #define blk_mq_run_dispatch_ops(q, dispatch_ops) \
452 __blk_mq_run_dispatch_ops(q, true, dispatch_ops) \