2 * Non-physical true random number generator based on timing jitter --
3 * Linux Kernel Crypto API specific code
5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, and the entire permission notice in its entirety,
12 * including the disclaimer of warranties.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote
17 * products derived from this software without specific prior
20 * ALTERNATIVELY, this product may be distributed under the terms of
21 * the GNU General Public License, in which case the provisions of the GPL2 are
22 * required INSTEAD OF the above restrictions. (This clause is
23 * necessary due to a potential bad interaction between the GPL and
24 * the restrictions contained in a BSD-style copyright.)
26 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
29 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
30 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
32 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
33 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
40 #include <crypto/hash.h>
41 #include <crypto/sha3.h>
42 #include <linux/fips.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
46 #include <linux/time.h>
47 #include <crypto/internal/rng.h>
49 #include "jitterentropy.h"
51 #define JENT_CONDITIONING_HASH "sha3-256-generic"
53 /***************************************************************************
55 ***************************************************************************/
57 void *jent_kvzalloc(unsigned int len
)
59 return kvzalloc(len
, GFP_KERNEL
);
62 void jent_kvzfree(void *ptr
, unsigned int len
)
64 kvfree_sensitive(ptr
, len
);
67 void *jent_zalloc(unsigned int len
)
69 return kzalloc(len
, GFP_KERNEL
);
72 void jent_zfree(void *ptr
)
78 * Obtain a high-resolution time stamp value. The time stamp is used to measure
79 * the execution time of a given code path and its variations. Hence, the time
80 * stamp must have a sufficiently high resolution.
82 * Note, if the function returns zero because a given architecture does not
83 * implement a high-resolution time stamp, the RNG code's runtime test
84 * will detect it and will not produce output.
86 void jent_get_nstime(__u64
*out
)
90 tmp
= random_get_entropy();
93 * If random_get_entropy does not return a value, i.e. it is not
94 * implemented for a given architecture, use a clock source.
95 * hoping that there are timers we can work with.
101 jent_raw_hires_entropy_store(tmp
);
104 int jent_hash_time(void *hash_state
, __u64 time
, u8
*addtl
,
105 unsigned int addtl_len
, __u64 hash_loop_cnt
,
108 struct shash_desc
*hash_state_desc
= (struct shash_desc
*)hash_state
;
109 SHASH_DESC_ON_STACK(desc
, hash_state_desc
->tfm
);
110 u8 intermediary
[SHA3_256_DIGEST_SIZE
];
114 desc
->tfm
= hash_state_desc
->tfm
;
116 if (sizeof(intermediary
) != crypto_shash_digestsize(desc
->tfm
)) {
117 pr_warn_ratelimited("Unexpected digest size\n");
122 * This loop fills a buffer which is injected into the entropy pool.
123 * The main reason for this loop is to execute something over which we
124 * can perform a timing measurement. The injection of the resulting
125 * data into the pool is performed to ensure the result is used and
126 * the compiler cannot optimize the loop away in case the result is not
127 * used at all. Yet that data is considered "additional information"
128 * considering the terminology from SP800-90A without any entropy.
130 * Note, it does not matter which or how much data you inject, we are
131 * interested in one Keccack1600 compression operation performed with
132 * the crypto_shash_final.
134 for (j
= 0; j
< hash_loop_cnt
; j
++) {
135 ret
= crypto_shash_init(desc
) ?:
136 crypto_shash_update(desc
, intermediary
,
137 sizeof(intermediary
)) ?:
138 crypto_shash_finup(desc
, addtl
, addtl_len
, intermediary
);
144 * Inject the data from the previous loop into the pool. This data is
145 * not considered to contain any entropy, but it stirs the pool a bit.
147 ret
= crypto_shash_update(desc
, intermediary
, sizeof(intermediary
));
152 * Insert the time stamp into the hash context representing the pool.
154 * If the time stamp is stuck, do not finally insert the value into the
155 * entropy pool. Although this operation should not do any harm even
156 * when the time stamp has no entropy, SP800-90B requires that any
157 * conditioning operation to have an identical amount of input data
158 * according to section 3.1.5.
161 ret
= crypto_shash_update(hash_state_desc
, (u8
*)&time
,
166 shash_desc_zero(desc
);
167 memzero_explicit(intermediary
, sizeof(intermediary
));
172 int jent_read_random_block(void *hash_state
, char *dst
, unsigned int dst_len
)
174 struct shash_desc
*hash_state_desc
= (struct shash_desc
*)hash_state
;
175 u8 jent_block
[SHA3_256_DIGEST_SIZE
];
176 /* Obtain data from entropy pool and re-initialize it */
177 int ret
= crypto_shash_final(hash_state_desc
, jent_block
) ?:
178 crypto_shash_init(hash_state_desc
) ?:
179 crypto_shash_update(hash_state_desc
, jent_block
,
183 memcpy(dst
, jent_block
, dst_len
);
185 memzero_explicit(jent_block
, sizeof(jent_block
));
189 /***************************************************************************
190 * Kernel crypto API interface
191 ***************************************************************************/
193 struct jitterentropy
{
194 spinlock_t jent_lock
;
195 struct rand_data
*entropy_collector
;
196 struct crypto_shash
*tfm
;
197 struct shash_desc
*sdesc
;
200 static void jent_kcapi_cleanup(struct crypto_tfm
*tfm
)
202 struct jitterentropy
*rng
= crypto_tfm_ctx(tfm
);
204 spin_lock(&rng
->jent_lock
);
207 shash_desc_zero(rng
->sdesc
);
213 crypto_free_shash(rng
->tfm
);
216 if (rng
->entropy_collector
)
217 jent_entropy_collector_free(rng
->entropy_collector
);
218 rng
->entropy_collector
= NULL
;
219 spin_unlock(&rng
->jent_lock
);
222 static int jent_kcapi_init(struct crypto_tfm
*tfm
)
224 struct jitterentropy
*rng
= crypto_tfm_ctx(tfm
);
225 struct crypto_shash
*hash
;
226 struct shash_desc
*sdesc
;
229 spin_lock_init(&rng
->jent_lock
);
232 * Use SHA3-256 as conditioner. We allocate only the generic
233 * implementation as we are not interested in high-performance. The
234 * execution time of the SHA3 operation is measured and adds to the
235 * Jitter RNG's unpredictable behavior. If we have a slower hash
236 * implementation, the execution timing variations are larger. When
237 * using a fast implementation, we would need to call it more often
238 * as its variations are lower.
240 hash
= crypto_alloc_shash(JENT_CONDITIONING_HASH
, 0, 0);
242 pr_err("Cannot allocate conditioning digest\n");
243 return PTR_ERR(hash
);
247 size
= sizeof(struct shash_desc
) + crypto_shash_descsize(hash
);
248 sdesc
= kmalloc(size
, GFP_KERNEL
);
255 crypto_shash_init(sdesc
);
258 rng
->entropy_collector
=
259 jent_entropy_collector_alloc(CONFIG_CRYPTO_JITTERENTROPY_OSR
, 0,
261 if (!rng
->entropy_collector
) {
266 spin_lock_init(&rng
->jent_lock
);
270 jent_kcapi_cleanup(tfm
);
274 static int jent_kcapi_random(struct crypto_rng
*tfm
,
275 const u8
*src
, unsigned int slen
,
276 u8
*rdata
, unsigned int dlen
)
278 struct jitterentropy
*rng
= crypto_rng_ctx(tfm
);
281 spin_lock(&rng
->jent_lock
);
283 ret
= jent_read_entropy(rng
->entropy_collector
, rdata
, dlen
);
286 /* Handle permanent health test error */
288 * If the kernel was booted with fips=1, it implies that
289 * the entire kernel acts as a FIPS 140 module. In this case
290 * an SP800-90B permanent health test error is treated as
291 * a FIPS module error.
294 panic("Jitter RNG permanent health test failure\n");
296 pr_err("Jitter RNG permanent health test failure\n");
298 } else if (ret
== -2) {
299 /* Handle intermittent health test error */
300 pr_warn_ratelimited("Reset Jitter RNG due to intermittent health test failure\n");
302 } else if (ret
== -1) {
303 /* Handle other errors */
307 spin_unlock(&rng
->jent_lock
);
312 static int jent_kcapi_reset(struct crypto_rng
*tfm
,
313 const u8
*seed
, unsigned int slen
)
318 static struct rng_alg jent_alg
= {
319 .generate
= jent_kcapi_random
,
320 .seed
= jent_kcapi_reset
,
323 .cra_name
= "jitterentropy_rng",
324 .cra_driver_name
= "jitterentropy_rng",
326 .cra_ctxsize
= sizeof(struct jitterentropy
),
327 .cra_module
= THIS_MODULE
,
328 .cra_init
= jent_kcapi_init
,
329 .cra_exit
= jent_kcapi_cleanup
,
333 static int __init
jent_mod_init(void)
335 SHASH_DESC_ON_STACK(desc
, tfm
);
336 struct crypto_shash
*tfm
;
341 tfm
= crypto_alloc_shash(JENT_CONDITIONING_HASH
, 0, 0);
348 crypto_shash_init(desc
);
349 ret
= jent_entropy_init(CONFIG_CRYPTO_JITTERENTROPY_OSR
, 0, desc
, NULL
);
350 shash_desc_zero(desc
);
351 crypto_free_shash(tfm
);
353 /* Handle permanent health test error */
355 panic("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret
);
358 pr_info("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret
);
361 return crypto_register_rng(&jent_alg
);
364 static void __exit
jent_mod_exit(void)
367 crypto_unregister_rng(&jent_alg
);
370 module_init(jent_mod_init
);
371 module_exit(jent_mod_exit
);
373 MODULE_LICENSE("Dual BSD/GPL");
374 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
375 MODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter");
376 MODULE_ALIAS_CRYPTO("jitterentropy_rng");