Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / crypto / simd.c
blobb07721d1f3f6ea37ff7f4d9dc9fce0688ca59d57
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Shared crypto simd helpers
5 * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
6 * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
7 * Copyright (c) 2019 Google LLC
9 * Based on aesni-intel_glue.c by:
10 * Copyright (C) 2008, Intel Corp.
11 * Author: Huang Ying <ying.huang@intel.com>
15 * Shared crypto SIMD helpers. These functions dynamically create and register
16 * an skcipher or AEAD algorithm that wraps another, internal algorithm. The
17 * wrapper ensures that the internal algorithm is only executed in a context
18 * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
19 * If SIMD is already usable, the wrapper directly calls the internal algorithm.
20 * Otherwise it defers execution to a workqueue via cryptd.
22 * This is an alternative to the internal algorithm implementing a fallback for
23 * the !may_use_simd() case itself.
25 * Note that the wrapper algorithm is asynchronous, i.e. it has the
26 * CRYPTO_ALG_ASYNC flag set. Therefore it won't be found by users who
27 * explicitly allocate a synchronous algorithm.
30 #include <crypto/cryptd.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/preempt.h>
37 #include <asm/simd.h>
39 /* skcipher support */
41 struct simd_skcipher_alg {
42 const char *ialg_name;
43 struct skcipher_alg alg;
46 struct simd_skcipher_ctx {
47 struct cryptd_skcipher *cryptd_tfm;
50 static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
51 unsigned int key_len)
53 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
54 struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
56 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
57 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
58 CRYPTO_TFM_REQ_MASK);
59 return crypto_skcipher_setkey(child, key, key_len);
62 static int simd_skcipher_encrypt(struct skcipher_request *req)
64 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
65 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
66 struct skcipher_request *subreq;
67 struct crypto_skcipher *child;
69 subreq = skcipher_request_ctx(req);
70 *subreq = *req;
72 if (!crypto_simd_usable() ||
73 (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
74 child = &ctx->cryptd_tfm->base;
75 else
76 child = cryptd_skcipher_child(ctx->cryptd_tfm);
78 skcipher_request_set_tfm(subreq, child);
80 return crypto_skcipher_encrypt(subreq);
83 static int simd_skcipher_decrypt(struct skcipher_request *req)
85 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
86 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
87 struct skcipher_request *subreq;
88 struct crypto_skcipher *child;
90 subreq = skcipher_request_ctx(req);
91 *subreq = *req;
93 if (!crypto_simd_usable() ||
94 (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
95 child = &ctx->cryptd_tfm->base;
96 else
97 child = cryptd_skcipher_child(ctx->cryptd_tfm);
99 skcipher_request_set_tfm(subreq, child);
101 return crypto_skcipher_decrypt(subreq);
104 static void simd_skcipher_exit(struct crypto_skcipher *tfm)
106 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
108 cryptd_free_skcipher(ctx->cryptd_tfm);
111 static int simd_skcipher_init(struct crypto_skcipher *tfm)
113 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
114 struct cryptd_skcipher *cryptd_tfm;
115 struct simd_skcipher_alg *salg;
116 struct skcipher_alg *alg;
117 unsigned reqsize;
119 alg = crypto_skcipher_alg(tfm);
120 salg = container_of(alg, struct simd_skcipher_alg, alg);
122 cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
123 CRYPTO_ALG_INTERNAL,
124 CRYPTO_ALG_INTERNAL);
125 if (IS_ERR(cryptd_tfm))
126 return PTR_ERR(cryptd_tfm);
128 ctx->cryptd_tfm = cryptd_tfm;
130 reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
131 reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
132 reqsize += sizeof(struct skcipher_request);
134 crypto_skcipher_set_reqsize(tfm, reqsize);
136 return 0;
139 struct simd_skcipher_alg *simd_skcipher_create_compat(struct skcipher_alg *ialg,
140 const char *algname,
141 const char *drvname,
142 const char *basename)
144 struct simd_skcipher_alg *salg;
145 struct skcipher_alg *alg;
146 int err;
148 salg = kzalloc(sizeof(*salg), GFP_KERNEL);
149 if (!salg) {
150 salg = ERR_PTR(-ENOMEM);
151 goto out;
154 salg->ialg_name = basename;
155 alg = &salg->alg;
157 err = -ENAMETOOLONG;
158 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
159 CRYPTO_MAX_ALG_NAME)
160 goto out_free_salg;
162 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
163 drvname) >= CRYPTO_MAX_ALG_NAME)
164 goto out_free_salg;
166 alg->base.cra_flags = CRYPTO_ALG_ASYNC |
167 (ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
168 alg->base.cra_priority = ialg->base.cra_priority;
169 alg->base.cra_blocksize = ialg->base.cra_blocksize;
170 alg->base.cra_alignmask = ialg->base.cra_alignmask;
171 alg->base.cra_module = ialg->base.cra_module;
172 alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
174 alg->ivsize = ialg->ivsize;
175 alg->chunksize = ialg->chunksize;
176 alg->min_keysize = ialg->min_keysize;
177 alg->max_keysize = ialg->max_keysize;
179 alg->init = simd_skcipher_init;
180 alg->exit = simd_skcipher_exit;
182 alg->setkey = simd_skcipher_setkey;
183 alg->encrypt = simd_skcipher_encrypt;
184 alg->decrypt = simd_skcipher_decrypt;
186 err = crypto_register_skcipher(alg);
187 if (err)
188 goto out_free_salg;
190 out:
191 return salg;
193 out_free_salg:
194 kfree(salg);
195 salg = ERR_PTR(err);
196 goto out;
198 EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
200 void simd_skcipher_free(struct simd_skcipher_alg *salg)
202 crypto_unregister_skcipher(&salg->alg);
203 kfree(salg);
205 EXPORT_SYMBOL_GPL(simd_skcipher_free);
207 int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
208 struct simd_skcipher_alg **simd_algs)
210 int err;
211 int i;
212 const char *algname;
213 const char *drvname;
214 const char *basename;
215 struct simd_skcipher_alg *simd;
217 err = crypto_register_skciphers(algs, count);
218 if (err)
219 return err;
221 for (i = 0; i < count; i++) {
222 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
223 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
224 algname = algs[i].base.cra_name + 2;
225 drvname = algs[i].base.cra_driver_name + 2;
226 basename = algs[i].base.cra_driver_name;
227 simd = simd_skcipher_create_compat(algs + i, algname, drvname, basename);
228 err = PTR_ERR(simd);
229 if (IS_ERR(simd))
230 goto err_unregister;
231 simd_algs[i] = simd;
233 return 0;
235 err_unregister:
236 simd_unregister_skciphers(algs, count, simd_algs);
237 return err;
239 EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
241 void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
242 struct simd_skcipher_alg **simd_algs)
244 int i;
246 crypto_unregister_skciphers(algs, count);
248 for (i = 0; i < count; i++) {
249 if (simd_algs[i]) {
250 simd_skcipher_free(simd_algs[i]);
251 simd_algs[i] = NULL;
255 EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
257 /* AEAD support */
259 struct simd_aead_alg {
260 const char *ialg_name;
261 struct aead_alg alg;
264 struct simd_aead_ctx {
265 struct cryptd_aead *cryptd_tfm;
268 static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
269 unsigned int key_len)
271 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
272 struct crypto_aead *child = &ctx->cryptd_tfm->base;
274 crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
275 crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
276 CRYPTO_TFM_REQ_MASK);
277 return crypto_aead_setkey(child, key, key_len);
280 static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
282 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
283 struct crypto_aead *child = &ctx->cryptd_tfm->base;
285 return crypto_aead_setauthsize(child, authsize);
288 static int simd_aead_encrypt(struct aead_request *req)
290 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
291 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
292 struct aead_request *subreq;
293 struct crypto_aead *child;
295 subreq = aead_request_ctx(req);
296 *subreq = *req;
298 if (!crypto_simd_usable() ||
299 (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
300 child = &ctx->cryptd_tfm->base;
301 else
302 child = cryptd_aead_child(ctx->cryptd_tfm);
304 aead_request_set_tfm(subreq, child);
306 return crypto_aead_encrypt(subreq);
309 static int simd_aead_decrypt(struct aead_request *req)
311 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
312 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
313 struct aead_request *subreq;
314 struct crypto_aead *child;
316 subreq = aead_request_ctx(req);
317 *subreq = *req;
319 if (!crypto_simd_usable() ||
320 (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
321 child = &ctx->cryptd_tfm->base;
322 else
323 child = cryptd_aead_child(ctx->cryptd_tfm);
325 aead_request_set_tfm(subreq, child);
327 return crypto_aead_decrypt(subreq);
330 static void simd_aead_exit(struct crypto_aead *tfm)
332 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
334 cryptd_free_aead(ctx->cryptd_tfm);
337 static int simd_aead_init(struct crypto_aead *tfm)
339 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
340 struct cryptd_aead *cryptd_tfm;
341 struct simd_aead_alg *salg;
342 struct aead_alg *alg;
343 unsigned reqsize;
345 alg = crypto_aead_alg(tfm);
346 salg = container_of(alg, struct simd_aead_alg, alg);
348 cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
349 CRYPTO_ALG_INTERNAL);
350 if (IS_ERR(cryptd_tfm))
351 return PTR_ERR(cryptd_tfm);
353 ctx->cryptd_tfm = cryptd_tfm;
355 reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
356 reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
357 reqsize += sizeof(struct aead_request);
359 crypto_aead_set_reqsize(tfm, reqsize);
361 return 0;
364 static struct simd_aead_alg *simd_aead_create_compat(struct aead_alg *ialg,
365 const char *algname,
366 const char *drvname,
367 const char *basename)
369 struct simd_aead_alg *salg;
370 struct aead_alg *alg;
371 int err;
373 salg = kzalloc(sizeof(*salg), GFP_KERNEL);
374 if (!salg) {
375 salg = ERR_PTR(-ENOMEM);
376 goto out;
379 salg->ialg_name = basename;
380 alg = &salg->alg;
382 err = -ENAMETOOLONG;
383 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
384 CRYPTO_MAX_ALG_NAME)
385 goto out_free_salg;
387 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
388 drvname) >= CRYPTO_MAX_ALG_NAME)
389 goto out_free_salg;
391 alg->base.cra_flags = CRYPTO_ALG_ASYNC |
392 (ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
393 alg->base.cra_priority = ialg->base.cra_priority;
394 alg->base.cra_blocksize = ialg->base.cra_blocksize;
395 alg->base.cra_alignmask = ialg->base.cra_alignmask;
396 alg->base.cra_module = ialg->base.cra_module;
397 alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
399 alg->ivsize = ialg->ivsize;
400 alg->maxauthsize = ialg->maxauthsize;
401 alg->chunksize = ialg->chunksize;
403 alg->init = simd_aead_init;
404 alg->exit = simd_aead_exit;
406 alg->setkey = simd_aead_setkey;
407 alg->setauthsize = simd_aead_setauthsize;
408 alg->encrypt = simd_aead_encrypt;
409 alg->decrypt = simd_aead_decrypt;
411 err = crypto_register_aead(alg);
412 if (err)
413 goto out_free_salg;
415 out:
416 return salg;
418 out_free_salg:
419 kfree(salg);
420 salg = ERR_PTR(err);
421 goto out;
424 static void simd_aead_free(struct simd_aead_alg *salg)
426 crypto_unregister_aead(&salg->alg);
427 kfree(salg);
430 int simd_register_aeads_compat(struct aead_alg *algs, int count,
431 struct simd_aead_alg **simd_algs)
433 int err;
434 int i;
435 const char *algname;
436 const char *drvname;
437 const char *basename;
438 struct simd_aead_alg *simd;
440 err = crypto_register_aeads(algs, count);
441 if (err)
442 return err;
444 for (i = 0; i < count; i++) {
445 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
446 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
447 algname = algs[i].base.cra_name + 2;
448 drvname = algs[i].base.cra_driver_name + 2;
449 basename = algs[i].base.cra_driver_name;
450 simd = simd_aead_create_compat(algs + i, algname, drvname, basename);
451 err = PTR_ERR(simd);
452 if (IS_ERR(simd))
453 goto err_unregister;
454 simd_algs[i] = simd;
456 return 0;
458 err_unregister:
459 simd_unregister_aeads(algs, count, simd_algs);
460 return err;
462 EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
464 void simd_unregister_aeads(struct aead_alg *algs, int count,
465 struct simd_aead_alg **simd_algs)
467 int i;
469 crypto_unregister_aeads(algs, count);
471 for (i = 0; i < count; i++) {
472 if (simd_algs[i]) {
473 simd_aead_free(simd_algs[i]);
474 simd_algs[i] = NULL;
478 EXPORT_SYMBOL_GPL(simd_unregister_aeads);
480 MODULE_DESCRIPTION("Shared crypto SIMD helpers");
481 MODULE_LICENSE("GPL");