Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / accel / qaic / qaic_control.c
blobd8bdab69f800957ba5e431159d1372cde5107ee2
1 // SPDX-License-Identifier: GPL-2.0-only
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
6 #include <asm/byteorder.h>
7 #include <linux/completion.h>
8 #include <linux/crc32.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/kref.h>
12 #include <linux/list.h>
13 #include <linux/mhi.h>
14 #include <linux/mm.h>
15 #include <linux/moduleparam.h>
16 #include <linux/mutex.h>
17 #include <linux/overflow.h>
18 #include <linux/pci.h>
19 #include <linux/scatterlist.h>
20 #include <linux/types.h>
21 #include <linux/uaccess.h>
22 #include <linux/workqueue.h>
23 #include <linux/wait.h>
24 #include <drm/drm_device.h>
25 #include <drm/drm_file.h>
26 #include <uapi/drm/qaic_accel.h>
28 #include "qaic.h"
30 #define MANAGE_MAGIC_NUMBER ((__force __le32)0x43494151) /* "QAIC" in little endian */
31 #define QAIC_DBC_Q_GAP SZ_256
32 #define QAIC_DBC_Q_BUF_ALIGN SZ_4K
33 #define QAIC_MANAGE_EXT_MSG_LENGTH SZ_64K /* Max DMA message length */
34 #define QAIC_WRAPPER_MAX_SIZE SZ_4K
35 #define QAIC_MHI_RETRY_WAIT_MS 100
36 #define QAIC_MHI_RETRY_MAX 20
38 static unsigned int control_resp_timeout_s = 60; /* 60 sec default */
39 module_param(control_resp_timeout_s, uint, 0600);
40 MODULE_PARM_DESC(control_resp_timeout_s, "Timeout for NNC responses from QSM");
42 struct manage_msg {
43 u32 len;
44 u32 count;
45 u8 data[];
49 * wire encoding structures for the manage protocol.
50 * All fields are little endian on the wire
52 struct wire_msg_hdr {
53 __le32 crc32; /* crc of everything following this field in the message */
54 __le32 magic_number;
55 __le32 sequence_number;
56 __le32 len; /* length of this message */
57 __le32 count; /* number of transactions in this message */
58 __le32 handle; /* unique id to track the resources consumed */
59 __le32 partition_id; /* partition id for the request (signed) */
60 __le32 padding; /* must be 0 */
61 } __packed;
63 struct wire_msg {
64 struct wire_msg_hdr hdr;
65 u8 data[];
66 } __packed;
68 struct wire_trans_hdr {
69 __le32 type;
70 __le32 len;
71 } __packed;
73 /* Each message sent from driver to device are organized in a list of wrapper_msg */
74 struct wrapper_msg {
75 struct list_head list;
76 struct kref ref_count;
77 u32 len; /* length of data to transfer */
78 struct wrapper_list *head;
79 union {
80 struct wire_msg msg;
81 struct wire_trans_hdr trans;
85 struct wrapper_list {
86 struct list_head list;
87 spinlock_t lock; /* Protects the list state during additions and removals */
90 struct wire_trans_passthrough {
91 struct wire_trans_hdr hdr;
92 u8 data[];
93 } __packed;
95 struct wire_addr_size_pair {
96 __le64 addr;
97 __le64 size;
98 } __packed;
100 struct wire_trans_dma_xfer {
101 struct wire_trans_hdr hdr;
102 __le32 tag;
103 __le32 count;
104 __le32 dma_chunk_id;
105 __le32 padding;
106 struct wire_addr_size_pair data[];
107 } __packed;
109 /* Initiated by device to continue the DMA xfer of a large piece of data */
110 struct wire_trans_dma_xfer_cont {
111 struct wire_trans_hdr hdr;
112 __le32 dma_chunk_id;
113 __le32 padding;
114 __le64 xferred_size;
115 } __packed;
117 struct wire_trans_activate_to_dev {
118 struct wire_trans_hdr hdr;
119 __le64 req_q_addr;
120 __le64 rsp_q_addr;
121 __le32 req_q_size;
122 __le32 rsp_q_size;
123 __le32 buf_len;
124 __le32 options; /* unused, but BIT(16) has meaning to the device */
125 } __packed;
127 struct wire_trans_activate_from_dev {
128 struct wire_trans_hdr hdr;
129 __le32 status;
130 __le32 dbc_id;
131 __le64 options; /* unused */
132 } __packed;
134 struct wire_trans_deactivate_from_dev {
135 struct wire_trans_hdr hdr;
136 __le32 status;
137 __le32 dbc_id;
138 } __packed;
140 struct wire_trans_terminate_to_dev {
141 struct wire_trans_hdr hdr;
142 __le32 handle;
143 __le32 padding;
144 } __packed;
146 struct wire_trans_terminate_from_dev {
147 struct wire_trans_hdr hdr;
148 __le32 status;
149 __le32 padding;
150 } __packed;
152 struct wire_trans_status_to_dev {
153 struct wire_trans_hdr hdr;
154 } __packed;
156 struct wire_trans_status_from_dev {
157 struct wire_trans_hdr hdr;
158 __le16 major;
159 __le16 minor;
160 __le32 status;
161 __le64 status_flags;
162 } __packed;
164 struct wire_trans_validate_part_to_dev {
165 struct wire_trans_hdr hdr;
166 __le32 part_id;
167 __le32 padding;
168 } __packed;
170 struct wire_trans_validate_part_from_dev {
171 struct wire_trans_hdr hdr;
172 __le32 status;
173 __le32 padding;
174 } __packed;
176 struct xfer_queue_elem {
178 * Node in list of ongoing transfer request on control channel.
179 * Maintained by root device struct.
181 struct list_head list;
182 /* Sequence number of this transfer request */
183 u32 seq_num;
184 /* This is used to wait on until completion of transfer request */
185 struct completion xfer_done;
186 /* Received data from device */
187 void *buf;
190 struct dma_xfer {
191 /* Node in list of DMA transfers which is used for cleanup */
192 struct list_head list;
193 /* SG table of memory used for DMA */
194 struct sg_table *sgt;
195 /* Array pages used for DMA */
196 struct page **page_list;
197 /* Number of pages used for DMA */
198 unsigned long nr_pages;
201 struct ioctl_resources {
202 /* List of all DMA transfers which is used later for cleanup */
203 struct list_head dma_xfers;
204 /* Base address of request queue which belongs to a DBC */
205 void *buf;
207 * Base bus address of request queue which belongs to a DBC. Response
208 * queue base bus address can be calculated by adding size of request
209 * queue to base bus address of request queue.
211 dma_addr_t dma_addr;
212 /* Total size of request queue and response queue in byte */
213 u32 total_size;
214 /* Total number of elements that can be queued in each of request and response queue */
215 u32 nelem;
216 /* Base address of response queue which belongs to a DBC */
217 void *rsp_q_base;
218 /* Status of the NNC message received */
219 u32 status;
220 /* DBC id of the DBC received from device */
221 u32 dbc_id;
223 * DMA transfer request messages can be big in size and it may not be
224 * possible to send them in one shot. In such cases the messages are
225 * broken into chunks, this field stores ID of such chunks.
227 u32 dma_chunk_id;
228 /* Total number of bytes transferred for a DMA xfer request */
229 u64 xferred_dma_size;
230 /* Header of transaction message received from user. Used during DMA xfer request. */
231 void *trans_hdr;
234 struct resp_work {
235 struct work_struct work;
236 struct qaic_device *qdev;
237 void *buf;
241 * Since we're working with little endian messages, its useful to be able to
242 * increment without filling a whole line with conversions back and forth just
243 * to add one(1) to a message count.
245 static __le32 incr_le32(__le32 val)
247 return cpu_to_le32(le32_to_cpu(val) + 1);
250 static u32 gen_crc(void *msg)
252 struct wrapper_list *wrappers = msg;
253 struct wrapper_msg *w;
254 u32 crc = ~0;
256 list_for_each_entry(w, &wrappers->list, list)
257 crc = crc32(crc, &w->msg, w->len);
259 return crc ^ ~0;
262 static u32 gen_crc_stub(void *msg)
264 return 0;
267 static bool valid_crc(void *msg)
269 struct wire_msg_hdr *hdr = msg;
270 bool ret;
271 u32 crc;
274 * The output of this algorithm is always converted to the native
275 * endianness.
277 crc = le32_to_cpu(hdr->crc32);
278 hdr->crc32 = 0;
279 ret = (crc32(~0, msg, le32_to_cpu(hdr->len)) ^ ~0) == crc;
280 hdr->crc32 = cpu_to_le32(crc);
281 return ret;
284 static bool valid_crc_stub(void *msg)
286 return true;
289 static void free_wrapper(struct kref *ref)
291 struct wrapper_msg *wrapper = container_of(ref, struct wrapper_msg, ref_count);
293 list_del(&wrapper->list);
294 kfree(wrapper);
297 static void save_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources,
298 struct qaic_user *usr)
300 u32 dbc_id = resources->dbc_id;
302 if (resources->buf) {
303 wait_event_interruptible(qdev->dbc[dbc_id].dbc_release, !qdev->dbc[dbc_id].in_use);
304 qdev->dbc[dbc_id].req_q_base = resources->buf;
305 qdev->dbc[dbc_id].rsp_q_base = resources->rsp_q_base;
306 qdev->dbc[dbc_id].dma_addr = resources->dma_addr;
307 qdev->dbc[dbc_id].total_size = resources->total_size;
308 qdev->dbc[dbc_id].nelem = resources->nelem;
309 enable_dbc(qdev, dbc_id, usr);
310 qdev->dbc[dbc_id].in_use = true;
311 resources->buf = NULL;
315 static void free_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources)
317 if (resources->buf)
318 dma_free_coherent(&qdev->pdev->dev, resources->total_size, resources->buf,
319 resources->dma_addr);
320 resources->buf = NULL;
323 static void free_dma_xfers(struct qaic_device *qdev, struct ioctl_resources *resources)
325 struct dma_xfer *xfer;
326 struct dma_xfer *x;
327 int i;
329 list_for_each_entry_safe(xfer, x, &resources->dma_xfers, list) {
330 dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
331 sg_free_table(xfer->sgt);
332 kfree(xfer->sgt);
333 for (i = 0; i < xfer->nr_pages; ++i)
334 put_page(xfer->page_list[i]);
335 kfree(xfer->page_list);
336 list_del(&xfer->list);
337 kfree(xfer);
341 static struct wrapper_msg *add_wrapper(struct wrapper_list *wrappers, u32 size)
343 struct wrapper_msg *w = kzalloc(size, GFP_KERNEL);
345 if (!w)
346 return NULL;
347 list_add_tail(&w->list, &wrappers->list);
348 kref_init(&w->ref_count);
349 w->head = wrappers;
350 return w;
353 static int encode_passthrough(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
354 u32 *user_len)
356 struct qaic_manage_trans_passthrough *in_trans = trans;
357 struct wire_trans_passthrough *out_trans;
358 struct wrapper_msg *trans_wrapper;
359 struct wrapper_msg *wrapper;
360 struct wire_msg *msg;
361 u32 msg_hdr_len;
363 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
364 msg = &wrapper->msg;
365 msg_hdr_len = le32_to_cpu(msg->hdr.len);
367 if (in_trans->hdr.len % 8 != 0)
368 return -EINVAL;
370 if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_EXT_MSG_LENGTH)
371 return -ENOSPC;
373 trans_wrapper = add_wrapper(wrappers,
374 offsetof(struct wrapper_msg, trans) + in_trans->hdr.len);
375 if (!trans_wrapper)
376 return -ENOMEM;
377 trans_wrapper->len = in_trans->hdr.len;
378 out_trans = (struct wire_trans_passthrough *)&trans_wrapper->trans;
380 memcpy(out_trans->data, in_trans->data, in_trans->hdr.len - sizeof(in_trans->hdr));
381 msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
382 msg->hdr.count = incr_le32(msg->hdr.count);
383 *user_len += in_trans->hdr.len;
384 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_PASSTHROUGH_TO_DEV);
385 out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
387 return 0;
390 /* returns error code for failure, 0 if enough pages alloc'd, 1 if dma_cont is needed */
391 static int find_and_map_user_pages(struct qaic_device *qdev,
392 struct qaic_manage_trans_dma_xfer *in_trans,
393 struct ioctl_resources *resources, struct dma_xfer *xfer)
395 u64 xfer_start_addr, remaining, end, total;
396 unsigned long need_pages;
397 struct page **page_list;
398 unsigned long nr_pages;
399 struct sg_table *sgt;
400 int ret;
401 int i;
403 if (check_add_overflow(in_trans->addr, resources->xferred_dma_size, &xfer_start_addr))
404 return -EINVAL;
406 if (in_trans->size < resources->xferred_dma_size)
407 return -EINVAL;
408 remaining = in_trans->size - resources->xferred_dma_size;
409 if (remaining == 0)
410 return 0;
412 if (check_add_overflow(xfer_start_addr, remaining, &end))
413 return -EINVAL;
415 total = remaining + offset_in_page(xfer_start_addr);
416 if (total >= SIZE_MAX)
417 return -EINVAL;
419 need_pages = DIV_ROUND_UP(total, PAGE_SIZE);
421 nr_pages = need_pages;
423 while (1) {
424 page_list = kmalloc_array(nr_pages, sizeof(*page_list), GFP_KERNEL | __GFP_NOWARN);
425 if (!page_list) {
426 nr_pages = nr_pages / 2;
427 if (!nr_pages)
428 return -ENOMEM;
429 } else {
430 break;
434 ret = get_user_pages_fast(xfer_start_addr, nr_pages, 0, page_list);
435 if (ret < 0)
436 goto free_page_list;
437 if (ret != nr_pages) {
438 nr_pages = ret;
439 ret = -EFAULT;
440 goto put_pages;
443 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
444 if (!sgt) {
445 ret = -ENOMEM;
446 goto put_pages;
449 ret = sg_alloc_table_from_pages(sgt, page_list, nr_pages,
450 offset_in_page(xfer_start_addr),
451 remaining, GFP_KERNEL);
452 if (ret) {
453 ret = -ENOMEM;
454 goto free_sgt;
457 ret = dma_map_sgtable(&qdev->pdev->dev, sgt, DMA_TO_DEVICE, 0);
458 if (ret)
459 goto free_table;
461 xfer->sgt = sgt;
462 xfer->page_list = page_list;
463 xfer->nr_pages = nr_pages;
465 return need_pages > nr_pages ? 1 : 0;
467 free_table:
468 sg_free_table(sgt);
469 free_sgt:
470 kfree(sgt);
471 put_pages:
472 for (i = 0; i < nr_pages; ++i)
473 put_page(page_list[i]);
474 free_page_list:
475 kfree(page_list);
476 return ret;
479 /* returns error code for failure, 0 if everything was encoded, 1 if dma_cont is needed */
480 static int encode_addr_size_pairs(struct dma_xfer *xfer, struct wrapper_list *wrappers,
481 struct ioctl_resources *resources, u32 msg_hdr_len, u32 *size,
482 struct wire_trans_dma_xfer **out_trans)
484 struct wrapper_msg *trans_wrapper;
485 struct sg_table *sgt = xfer->sgt;
486 struct wire_addr_size_pair *asp;
487 struct scatterlist *sg;
488 struct wrapper_msg *w;
489 unsigned int dma_len;
490 u64 dma_chunk_len;
491 void *boundary;
492 int nents_dma;
493 int nents;
494 int i;
496 nents = sgt->nents;
497 nents_dma = nents;
498 *size = QAIC_MANAGE_EXT_MSG_LENGTH - msg_hdr_len - sizeof(**out_trans);
499 for_each_sgtable_dma_sg(sgt, sg, i) {
500 *size -= sizeof(*asp);
501 /* Save 1K for possible follow-up transactions. */
502 if (*size < SZ_1K) {
503 nents_dma = i;
504 break;
508 trans_wrapper = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
509 if (!trans_wrapper)
510 return -ENOMEM;
511 *out_trans = (struct wire_trans_dma_xfer *)&trans_wrapper->trans;
513 asp = (*out_trans)->data;
514 boundary = (void *)trans_wrapper + QAIC_WRAPPER_MAX_SIZE;
515 *size = 0;
517 dma_len = 0;
518 w = trans_wrapper;
519 dma_chunk_len = 0;
520 for_each_sg(sgt->sgl, sg, nents_dma, i) {
521 asp->size = cpu_to_le64(dma_len);
522 dma_chunk_len += dma_len;
523 if (dma_len) {
524 asp++;
525 if ((void *)asp + sizeof(*asp) > boundary) {
526 w->len = (void *)asp - (void *)&w->msg;
527 *size += w->len;
528 w = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
529 if (!w)
530 return -ENOMEM;
531 boundary = (void *)w + QAIC_WRAPPER_MAX_SIZE;
532 asp = (struct wire_addr_size_pair *)&w->msg;
535 asp->addr = cpu_to_le64(sg_dma_address(sg));
536 dma_len = sg_dma_len(sg);
538 /* finalize the last segment */
539 asp->size = cpu_to_le64(dma_len);
540 w->len = (void *)asp + sizeof(*asp) - (void *)&w->msg;
541 *size += w->len;
542 dma_chunk_len += dma_len;
543 resources->xferred_dma_size += dma_chunk_len;
545 return nents_dma < nents ? 1 : 0;
548 static void cleanup_xfer(struct qaic_device *qdev, struct dma_xfer *xfer)
550 int i;
552 dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
553 sg_free_table(xfer->sgt);
554 kfree(xfer->sgt);
555 for (i = 0; i < xfer->nr_pages; ++i)
556 put_page(xfer->page_list[i]);
557 kfree(xfer->page_list);
560 static int encode_dma(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
561 u32 *user_len, struct ioctl_resources *resources, struct qaic_user *usr)
563 struct qaic_manage_trans_dma_xfer *in_trans = trans;
564 struct wire_trans_dma_xfer *out_trans;
565 struct wrapper_msg *wrapper;
566 struct dma_xfer *xfer;
567 struct wire_msg *msg;
568 bool need_cont_dma;
569 u32 msg_hdr_len;
570 u32 size;
571 int ret;
573 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
574 msg = &wrapper->msg;
575 msg_hdr_len = le32_to_cpu(msg->hdr.len);
577 /* There should be enough space to hold at least one ASP entry. */
578 if (size_add(msg_hdr_len, sizeof(*out_trans) + sizeof(struct wire_addr_size_pair)) >
579 QAIC_MANAGE_EXT_MSG_LENGTH)
580 return -ENOMEM;
582 xfer = kmalloc(sizeof(*xfer), GFP_KERNEL);
583 if (!xfer)
584 return -ENOMEM;
586 ret = find_and_map_user_pages(qdev, in_trans, resources, xfer);
587 if (ret < 0)
588 goto free_xfer;
590 need_cont_dma = (bool)ret;
592 ret = encode_addr_size_pairs(xfer, wrappers, resources, msg_hdr_len, &size, &out_trans);
593 if (ret < 0)
594 goto cleanup_xfer;
596 need_cont_dma = need_cont_dma || (bool)ret;
598 msg->hdr.len = cpu_to_le32(msg_hdr_len + size);
599 msg->hdr.count = incr_le32(msg->hdr.count);
601 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
602 out_trans->hdr.len = cpu_to_le32(size);
603 out_trans->tag = cpu_to_le32(in_trans->tag);
604 out_trans->count = cpu_to_le32((size - sizeof(*out_trans)) /
605 sizeof(struct wire_addr_size_pair));
607 *user_len += in_trans->hdr.len;
609 if (resources->dma_chunk_id) {
610 out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
611 } else if (need_cont_dma) {
612 while (resources->dma_chunk_id == 0)
613 resources->dma_chunk_id = atomic_inc_return(&usr->chunk_id);
615 out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
617 resources->trans_hdr = trans;
619 list_add(&xfer->list, &resources->dma_xfers);
620 return 0;
622 cleanup_xfer:
623 cleanup_xfer(qdev, xfer);
624 free_xfer:
625 kfree(xfer);
626 return ret;
629 static int encode_activate(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
630 u32 *user_len, struct ioctl_resources *resources)
632 struct qaic_manage_trans_activate_to_dev *in_trans = trans;
633 struct wire_trans_activate_to_dev *out_trans;
634 struct wrapper_msg *trans_wrapper;
635 struct wrapper_msg *wrapper;
636 struct wire_msg *msg;
637 dma_addr_t dma_addr;
638 u32 msg_hdr_len;
639 void *buf;
640 u32 nelem;
641 u32 size;
642 int ret;
644 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
645 msg = &wrapper->msg;
646 msg_hdr_len = le32_to_cpu(msg->hdr.len);
648 if (size_add(msg_hdr_len, sizeof(*out_trans)) > QAIC_MANAGE_MAX_MSG_LENGTH)
649 return -ENOSPC;
651 if (!in_trans->queue_size)
652 return -EINVAL;
654 if (in_trans->pad)
655 return -EINVAL;
657 nelem = in_trans->queue_size;
658 size = (get_dbc_req_elem_size() + get_dbc_rsp_elem_size()) * nelem;
659 if (size / nelem != get_dbc_req_elem_size() + get_dbc_rsp_elem_size())
660 return -EINVAL;
662 if (size + QAIC_DBC_Q_GAP + QAIC_DBC_Q_BUF_ALIGN < size)
663 return -EINVAL;
665 size = ALIGN((size + QAIC_DBC_Q_GAP), QAIC_DBC_Q_BUF_ALIGN);
667 buf = dma_alloc_coherent(&qdev->pdev->dev, size, &dma_addr, GFP_KERNEL);
668 if (!buf)
669 return -ENOMEM;
671 trans_wrapper = add_wrapper(wrappers,
672 offsetof(struct wrapper_msg, trans) + sizeof(*out_trans));
673 if (!trans_wrapper) {
674 ret = -ENOMEM;
675 goto free_dma;
677 trans_wrapper->len = sizeof(*out_trans);
678 out_trans = (struct wire_trans_activate_to_dev *)&trans_wrapper->trans;
680 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_ACTIVATE_TO_DEV);
681 out_trans->hdr.len = cpu_to_le32(sizeof(*out_trans));
682 out_trans->buf_len = cpu_to_le32(size);
683 out_trans->req_q_addr = cpu_to_le64(dma_addr);
684 out_trans->req_q_size = cpu_to_le32(nelem);
685 out_trans->rsp_q_addr = cpu_to_le64(dma_addr + size - nelem * get_dbc_rsp_elem_size());
686 out_trans->rsp_q_size = cpu_to_le32(nelem);
687 out_trans->options = cpu_to_le32(in_trans->options);
689 *user_len += in_trans->hdr.len;
690 msg->hdr.len = cpu_to_le32(msg_hdr_len + sizeof(*out_trans));
691 msg->hdr.count = incr_le32(msg->hdr.count);
693 resources->buf = buf;
694 resources->dma_addr = dma_addr;
695 resources->total_size = size;
696 resources->nelem = nelem;
697 resources->rsp_q_base = buf + size - nelem * get_dbc_rsp_elem_size();
698 return 0;
700 free_dma:
701 dma_free_coherent(&qdev->pdev->dev, size, buf, dma_addr);
702 return ret;
705 static int encode_deactivate(struct qaic_device *qdev, void *trans,
706 u32 *user_len, struct qaic_user *usr)
708 struct qaic_manage_trans_deactivate *in_trans = trans;
710 if (in_trans->dbc_id >= qdev->num_dbc || in_trans->pad)
711 return -EINVAL;
713 *user_len += in_trans->hdr.len;
715 return disable_dbc(qdev, in_trans->dbc_id, usr);
718 static int encode_status(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
719 u32 *user_len)
721 struct qaic_manage_trans_status_to_dev *in_trans = trans;
722 struct wire_trans_status_to_dev *out_trans;
723 struct wrapper_msg *trans_wrapper;
724 struct wrapper_msg *wrapper;
725 struct wire_msg *msg;
726 u32 msg_hdr_len;
728 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
729 msg = &wrapper->msg;
730 msg_hdr_len = le32_to_cpu(msg->hdr.len);
732 if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_MAX_MSG_LENGTH)
733 return -ENOSPC;
735 trans_wrapper = add_wrapper(wrappers, sizeof(*trans_wrapper));
736 if (!trans_wrapper)
737 return -ENOMEM;
739 trans_wrapper->len = sizeof(*out_trans);
740 out_trans = (struct wire_trans_status_to_dev *)&trans_wrapper->trans;
742 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_STATUS_TO_DEV);
743 out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
744 msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
745 msg->hdr.count = incr_le32(msg->hdr.count);
746 *user_len += in_trans->hdr.len;
748 return 0;
751 static int encode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
752 struct wrapper_list *wrappers, struct ioctl_resources *resources,
753 struct qaic_user *usr)
755 struct qaic_manage_trans_hdr *trans_hdr;
756 struct wrapper_msg *wrapper;
757 struct wire_msg *msg;
758 u32 user_len = 0;
759 int ret;
760 int i;
762 if (!user_msg->count ||
763 user_msg->len < sizeof(*trans_hdr)) {
764 ret = -EINVAL;
765 goto out;
768 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
769 msg = &wrapper->msg;
771 msg->hdr.len = cpu_to_le32(sizeof(msg->hdr));
773 if (resources->dma_chunk_id) {
774 ret = encode_dma(qdev, resources->trans_hdr, wrappers, &user_len, resources, usr);
775 msg->hdr.count = cpu_to_le32(1);
776 goto out;
779 for (i = 0; i < user_msg->count; ++i) {
780 if (user_len > user_msg->len - sizeof(*trans_hdr)) {
781 ret = -EINVAL;
782 break;
784 trans_hdr = (struct qaic_manage_trans_hdr *)(user_msg->data + user_len);
785 if (trans_hdr->len < sizeof(trans_hdr) ||
786 size_add(user_len, trans_hdr->len) > user_msg->len) {
787 ret = -EINVAL;
788 break;
791 switch (trans_hdr->type) {
792 case QAIC_TRANS_PASSTHROUGH_FROM_USR:
793 ret = encode_passthrough(qdev, trans_hdr, wrappers, &user_len);
794 break;
795 case QAIC_TRANS_DMA_XFER_FROM_USR:
796 ret = encode_dma(qdev, trans_hdr, wrappers, &user_len, resources, usr);
797 break;
798 case QAIC_TRANS_ACTIVATE_FROM_USR:
799 ret = encode_activate(qdev, trans_hdr, wrappers, &user_len, resources);
800 break;
801 case QAIC_TRANS_DEACTIVATE_FROM_USR:
802 ret = encode_deactivate(qdev, trans_hdr, &user_len, usr);
803 break;
804 case QAIC_TRANS_STATUS_FROM_USR:
805 ret = encode_status(qdev, trans_hdr, wrappers, &user_len);
806 break;
807 default:
808 ret = -EINVAL;
809 break;
812 if (ret)
813 break;
816 if (user_len != user_msg->len)
817 ret = -EINVAL;
818 out:
819 if (ret) {
820 free_dma_xfers(qdev, resources);
821 free_dbc_buf(qdev, resources);
822 return ret;
825 return 0;
828 static int decode_passthrough(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
829 u32 *msg_len)
831 struct qaic_manage_trans_passthrough *out_trans;
832 struct wire_trans_passthrough *in_trans = trans;
833 u32 len;
835 out_trans = (void *)user_msg->data + user_msg->len;
837 len = le32_to_cpu(in_trans->hdr.len);
838 if (len % 8 != 0)
839 return -EINVAL;
841 if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
842 return -ENOSPC;
844 memcpy(out_trans->data, in_trans->data, len - sizeof(in_trans->hdr));
845 user_msg->len += len;
846 *msg_len += len;
847 out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
848 out_trans->hdr.len = len;
850 return 0;
853 static int decode_activate(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
854 u32 *msg_len, struct ioctl_resources *resources, struct qaic_user *usr)
856 struct qaic_manage_trans_activate_from_dev *out_trans;
857 struct wire_trans_activate_from_dev *in_trans = trans;
858 u32 len;
860 out_trans = (void *)user_msg->data + user_msg->len;
862 len = le32_to_cpu(in_trans->hdr.len);
863 if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
864 return -ENOSPC;
866 user_msg->len += len;
867 *msg_len += len;
868 out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
869 out_trans->hdr.len = len;
870 out_trans->status = le32_to_cpu(in_trans->status);
871 out_trans->dbc_id = le32_to_cpu(in_trans->dbc_id);
872 out_trans->options = le64_to_cpu(in_trans->options);
874 if (!resources->buf)
875 /* how did we get an activate response without a request? */
876 return -EINVAL;
878 if (out_trans->dbc_id >= qdev->num_dbc)
880 * The device assigned an invalid resource, which should never
881 * happen. Return an error so the user can try to recover.
883 return -ENODEV;
885 if (out_trans->status)
887 * Allocating resources failed on device side. This is not an
888 * expected behaviour, user is expected to handle this situation.
890 return -ECANCELED;
892 resources->status = out_trans->status;
893 resources->dbc_id = out_trans->dbc_id;
894 save_dbc_buf(qdev, resources, usr);
896 return 0;
899 static int decode_deactivate(struct qaic_device *qdev, void *trans, u32 *msg_len,
900 struct qaic_user *usr)
902 struct wire_trans_deactivate_from_dev *in_trans = trans;
903 u32 dbc_id = le32_to_cpu(in_trans->dbc_id);
904 u32 status = le32_to_cpu(in_trans->status);
906 if (dbc_id >= qdev->num_dbc)
908 * The device assigned an invalid resource, which should never
909 * happen. Inject an error so the user can try to recover.
911 return -ENODEV;
913 if (status) {
915 * Releasing resources failed on the device side, which puts
916 * us in a bind since they may still be in use, so enable the
917 * dbc. User is expected to retry deactivation.
919 enable_dbc(qdev, dbc_id, usr);
920 return -ECANCELED;
923 release_dbc(qdev, dbc_id);
924 *msg_len += sizeof(*in_trans);
926 return 0;
929 static int decode_status(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
930 u32 *user_len, struct wire_msg *msg)
932 struct qaic_manage_trans_status_from_dev *out_trans;
933 struct wire_trans_status_from_dev *in_trans = trans;
934 u32 len;
936 out_trans = (void *)user_msg->data + user_msg->len;
938 len = le32_to_cpu(in_trans->hdr.len);
939 if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
940 return -ENOSPC;
942 out_trans->hdr.type = QAIC_TRANS_STATUS_FROM_DEV;
943 out_trans->hdr.len = len;
944 out_trans->major = le16_to_cpu(in_trans->major);
945 out_trans->minor = le16_to_cpu(in_trans->minor);
946 out_trans->status_flags = le64_to_cpu(in_trans->status_flags);
947 out_trans->status = le32_to_cpu(in_trans->status);
948 *user_len += le32_to_cpu(in_trans->hdr.len);
949 user_msg->len += len;
951 if (out_trans->status)
952 return -ECANCELED;
953 if (out_trans->status_flags & BIT(0) && !valid_crc(msg))
954 return -EPIPE;
956 return 0;
959 static int decode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
960 struct wire_msg *msg, struct ioctl_resources *resources,
961 struct qaic_user *usr)
963 u32 msg_hdr_len = le32_to_cpu(msg->hdr.len);
964 struct wire_trans_hdr *trans_hdr;
965 u32 msg_len = 0;
966 int ret;
967 int i;
969 if (msg_hdr_len < sizeof(*trans_hdr) ||
970 msg_hdr_len > QAIC_MANAGE_MAX_MSG_LENGTH)
971 return -EINVAL;
973 user_msg->len = 0;
974 user_msg->count = le32_to_cpu(msg->hdr.count);
976 for (i = 0; i < user_msg->count; ++i) {
977 u32 hdr_len;
979 if (msg_len > msg_hdr_len - sizeof(*trans_hdr))
980 return -EINVAL;
982 trans_hdr = (struct wire_trans_hdr *)(msg->data + msg_len);
983 hdr_len = le32_to_cpu(trans_hdr->len);
984 if (hdr_len < sizeof(*trans_hdr) ||
985 size_add(msg_len, hdr_len) > msg_hdr_len)
986 return -EINVAL;
988 switch (le32_to_cpu(trans_hdr->type)) {
989 case QAIC_TRANS_PASSTHROUGH_FROM_DEV:
990 ret = decode_passthrough(qdev, trans_hdr, user_msg, &msg_len);
991 break;
992 case QAIC_TRANS_ACTIVATE_FROM_DEV:
993 ret = decode_activate(qdev, trans_hdr, user_msg, &msg_len, resources, usr);
994 break;
995 case QAIC_TRANS_DEACTIVATE_FROM_DEV:
996 ret = decode_deactivate(qdev, trans_hdr, &msg_len, usr);
997 break;
998 case QAIC_TRANS_STATUS_FROM_DEV:
999 ret = decode_status(qdev, trans_hdr, user_msg, &msg_len, msg);
1000 break;
1001 default:
1002 return -EINVAL;
1005 if (ret)
1006 return ret;
1009 if (msg_len != (msg_hdr_len - sizeof(msg->hdr)))
1010 return -EINVAL;
1012 return 0;
1015 static void *msg_xfer(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 seq_num,
1016 bool ignore_signal)
1018 struct xfer_queue_elem elem;
1019 struct wire_msg *out_buf;
1020 struct wrapper_msg *w;
1021 long ret = -EAGAIN;
1022 int xfer_count = 0;
1023 int retry_count;
1025 /* Allow QAIC_BOOT state since we need to check control protocol version */
1026 if (qdev->dev_state == QAIC_OFFLINE) {
1027 mutex_unlock(&qdev->cntl_mutex);
1028 return ERR_PTR(-ENODEV);
1031 /* Attempt to avoid a partial commit of a message */
1032 list_for_each_entry(w, &wrappers->list, list)
1033 xfer_count++;
1035 for (retry_count = 0; retry_count < QAIC_MHI_RETRY_MAX; retry_count++) {
1036 if (xfer_count <= mhi_get_free_desc_count(qdev->cntl_ch, DMA_TO_DEVICE)) {
1037 ret = 0;
1038 break;
1040 msleep_interruptible(QAIC_MHI_RETRY_WAIT_MS);
1041 if (signal_pending(current))
1042 break;
1045 if (ret) {
1046 mutex_unlock(&qdev->cntl_mutex);
1047 return ERR_PTR(ret);
1050 elem.seq_num = seq_num;
1051 elem.buf = NULL;
1052 init_completion(&elem.xfer_done);
1053 if (likely(!qdev->cntl_lost_buf)) {
1055 * The max size of request to device is QAIC_MANAGE_EXT_MSG_LENGTH.
1056 * The max size of response from device is QAIC_MANAGE_MAX_MSG_LENGTH.
1058 out_buf = kmalloc(QAIC_MANAGE_MAX_MSG_LENGTH, GFP_KERNEL);
1059 if (!out_buf) {
1060 mutex_unlock(&qdev->cntl_mutex);
1061 return ERR_PTR(-ENOMEM);
1064 ret = mhi_queue_buf(qdev->cntl_ch, DMA_FROM_DEVICE, out_buf,
1065 QAIC_MANAGE_MAX_MSG_LENGTH, MHI_EOT);
1066 if (ret) {
1067 mutex_unlock(&qdev->cntl_mutex);
1068 return ERR_PTR(ret);
1070 } else {
1072 * we lost a buffer because we queued a recv buf, but then
1073 * queuing the corresponding tx buf failed. To try to avoid
1074 * a memory leak, lets reclaim it and use it for this
1075 * transaction.
1077 qdev->cntl_lost_buf = false;
1080 list_for_each_entry(w, &wrappers->list, list) {
1081 kref_get(&w->ref_count);
1082 retry_count = 0;
1083 ret = mhi_queue_buf(qdev->cntl_ch, DMA_TO_DEVICE, &w->msg, w->len,
1084 list_is_last(&w->list, &wrappers->list) ? MHI_EOT : MHI_CHAIN);
1085 if (ret) {
1086 qdev->cntl_lost_buf = true;
1087 kref_put(&w->ref_count, free_wrapper);
1088 mutex_unlock(&qdev->cntl_mutex);
1089 return ERR_PTR(ret);
1093 list_add_tail(&elem.list, &qdev->cntl_xfer_list);
1094 mutex_unlock(&qdev->cntl_mutex);
1096 if (ignore_signal)
1097 ret = wait_for_completion_timeout(&elem.xfer_done, control_resp_timeout_s * HZ);
1098 else
1099 ret = wait_for_completion_interruptible_timeout(&elem.xfer_done,
1100 control_resp_timeout_s * HZ);
1102 * not using _interruptable because we have to cleanup or we'll
1103 * likely cause memory corruption
1105 mutex_lock(&qdev->cntl_mutex);
1106 if (!list_empty(&elem.list))
1107 list_del(&elem.list);
1108 if (!ret && !elem.buf)
1109 ret = -ETIMEDOUT;
1110 else if (ret > 0 && !elem.buf)
1111 ret = -EIO;
1112 mutex_unlock(&qdev->cntl_mutex);
1114 if (ret < 0) {
1115 kfree(elem.buf);
1116 return ERR_PTR(ret);
1117 } else if (!qdev->valid_crc(elem.buf)) {
1118 kfree(elem.buf);
1119 return ERR_PTR(-EPIPE);
1122 return elem.buf;
1125 /* Add a transaction to abort the outstanding DMA continuation */
1126 static int abort_dma_cont(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 dma_chunk_id)
1128 struct wire_trans_dma_xfer *out_trans;
1129 u32 size = sizeof(*out_trans);
1130 struct wrapper_msg *wrapper;
1131 struct wrapper_msg *w;
1132 struct wire_msg *msg;
1134 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
1135 msg = &wrapper->msg;
1137 /* Remove all but the first wrapper which has the msg header */
1138 list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
1139 if (!list_is_first(&wrapper->list, &wrappers->list))
1140 kref_put(&wrapper->ref_count, free_wrapper);
1142 wrapper = add_wrapper(wrappers, sizeof(*wrapper));
1144 if (!wrapper)
1145 return -ENOMEM;
1147 out_trans = (struct wire_trans_dma_xfer *)&wrapper->trans;
1148 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
1149 out_trans->hdr.len = cpu_to_le32(size);
1150 out_trans->tag = cpu_to_le32(0);
1151 out_trans->count = cpu_to_le32(0);
1152 out_trans->dma_chunk_id = cpu_to_le32(dma_chunk_id);
1154 msg->hdr.len = cpu_to_le32(size + sizeof(*msg));
1155 msg->hdr.count = cpu_to_le32(1);
1156 wrapper->len = size;
1158 return 0;
1161 static struct wrapper_list *alloc_wrapper_list(void)
1163 struct wrapper_list *wrappers;
1165 wrappers = kmalloc(sizeof(*wrappers), GFP_KERNEL);
1166 if (!wrappers)
1167 return NULL;
1168 INIT_LIST_HEAD(&wrappers->list);
1169 spin_lock_init(&wrappers->lock);
1171 return wrappers;
1174 static int qaic_manage_msg_xfer(struct qaic_device *qdev, struct qaic_user *usr,
1175 struct manage_msg *user_msg, struct ioctl_resources *resources,
1176 struct wire_msg **rsp)
1178 struct wrapper_list *wrappers;
1179 struct wrapper_msg *wrapper;
1180 struct wrapper_msg *w;
1181 bool all_done = false;
1182 struct wire_msg *msg;
1183 int ret;
1185 wrappers = alloc_wrapper_list();
1186 if (!wrappers)
1187 return -ENOMEM;
1189 wrapper = add_wrapper(wrappers, sizeof(*wrapper));
1190 if (!wrapper) {
1191 kfree(wrappers);
1192 return -ENOMEM;
1195 msg = &wrapper->msg;
1196 wrapper->len = sizeof(*msg);
1198 ret = encode_message(qdev, user_msg, wrappers, resources, usr);
1199 if (ret && resources->dma_chunk_id)
1200 ret = abort_dma_cont(qdev, wrappers, resources->dma_chunk_id);
1201 if (ret)
1202 goto encode_failed;
1204 ret = mutex_lock_interruptible(&qdev->cntl_mutex);
1205 if (ret)
1206 goto lock_failed;
1208 msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
1209 msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
1211 if (usr) {
1212 msg->hdr.handle = cpu_to_le32(usr->handle);
1213 msg->hdr.partition_id = cpu_to_le32(usr->qddev->partition_id);
1214 } else {
1215 msg->hdr.handle = 0;
1216 msg->hdr.partition_id = cpu_to_le32(QAIC_NO_PARTITION);
1219 msg->hdr.padding = cpu_to_le32(0);
1220 msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
1222 /* msg_xfer releases the mutex */
1223 *rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, false);
1224 if (IS_ERR(*rsp))
1225 ret = PTR_ERR(*rsp);
1227 lock_failed:
1228 free_dma_xfers(qdev, resources);
1229 encode_failed:
1230 spin_lock(&wrappers->lock);
1231 list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
1232 kref_put(&wrapper->ref_count, free_wrapper);
1233 all_done = list_empty(&wrappers->list);
1234 spin_unlock(&wrappers->lock);
1235 if (all_done)
1236 kfree(wrappers);
1238 return ret;
1241 static int qaic_manage(struct qaic_device *qdev, struct qaic_user *usr, struct manage_msg *user_msg)
1243 struct wire_trans_dma_xfer_cont *dma_cont = NULL;
1244 struct ioctl_resources resources;
1245 struct wire_msg *rsp = NULL;
1246 int ret;
1248 memset(&resources, 0, sizeof(struct ioctl_resources));
1250 INIT_LIST_HEAD(&resources.dma_xfers);
1252 if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH ||
1253 user_msg->count > QAIC_MANAGE_MAX_MSG_LENGTH / sizeof(struct qaic_manage_trans_hdr))
1254 return -EINVAL;
1256 dma_xfer_continue:
1257 ret = qaic_manage_msg_xfer(qdev, usr, user_msg, &resources, &rsp);
1258 if (ret)
1259 return ret;
1260 /* dma_cont should be the only transaction if present */
1261 if (le32_to_cpu(rsp->hdr.count) == 1) {
1262 dma_cont = (struct wire_trans_dma_xfer_cont *)rsp->data;
1263 if (le32_to_cpu(dma_cont->hdr.type) != QAIC_TRANS_DMA_XFER_CONT)
1264 dma_cont = NULL;
1266 if (dma_cont) {
1267 if (le32_to_cpu(dma_cont->dma_chunk_id) == resources.dma_chunk_id &&
1268 le64_to_cpu(dma_cont->xferred_size) == resources.xferred_dma_size) {
1269 kfree(rsp);
1270 goto dma_xfer_continue;
1273 ret = -EINVAL;
1274 goto dma_cont_failed;
1277 ret = decode_message(qdev, user_msg, rsp, &resources, usr);
1279 dma_cont_failed:
1280 free_dbc_buf(qdev, &resources);
1281 kfree(rsp);
1282 return ret;
1285 int qaic_manage_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1287 struct qaic_manage_msg *user_msg = data;
1288 struct qaic_device *qdev;
1289 struct manage_msg *msg;
1290 struct qaic_user *usr;
1291 u8 __user *user_data;
1292 int qdev_rcu_id;
1293 int usr_rcu_id;
1294 int ret;
1296 if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH)
1297 return -EINVAL;
1299 usr = file_priv->driver_priv;
1301 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1302 if (!usr->qddev) {
1303 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1304 return -ENODEV;
1307 qdev = usr->qddev->qdev;
1309 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1310 if (qdev->dev_state != QAIC_ONLINE) {
1311 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1312 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1313 return -ENODEV;
1316 msg = kzalloc(QAIC_MANAGE_MAX_MSG_LENGTH + sizeof(*msg), GFP_KERNEL);
1317 if (!msg) {
1318 ret = -ENOMEM;
1319 goto out;
1322 msg->len = user_msg->len;
1323 msg->count = user_msg->count;
1325 user_data = u64_to_user_ptr(user_msg->data);
1327 if (copy_from_user(msg->data, user_data, user_msg->len)) {
1328 ret = -EFAULT;
1329 goto free_msg;
1332 ret = qaic_manage(qdev, usr, msg);
1335 * If the qaic_manage() is successful then we copy the message onto
1336 * userspace memory but we have an exception for -ECANCELED.
1337 * For -ECANCELED, it means that device has NACKed the message with a
1338 * status error code which userspace would like to know.
1340 if (ret == -ECANCELED || !ret) {
1341 if (copy_to_user(user_data, msg->data, msg->len)) {
1342 ret = -EFAULT;
1343 } else {
1344 user_msg->len = msg->len;
1345 user_msg->count = msg->count;
1349 free_msg:
1350 kfree(msg);
1351 out:
1352 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1353 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1354 return ret;
1357 int get_cntl_version(struct qaic_device *qdev, struct qaic_user *usr, u16 *major, u16 *minor)
1359 struct qaic_manage_trans_status_from_dev *status_result;
1360 struct qaic_manage_trans_status_to_dev *status_query;
1361 struct manage_msg *user_msg;
1362 int ret;
1364 user_msg = kmalloc(sizeof(*user_msg) + sizeof(*status_result), GFP_KERNEL);
1365 if (!user_msg) {
1366 ret = -ENOMEM;
1367 goto out;
1369 user_msg->len = sizeof(*status_query);
1370 user_msg->count = 1;
1372 status_query = (struct qaic_manage_trans_status_to_dev *)user_msg->data;
1373 status_query->hdr.type = QAIC_TRANS_STATUS_FROM_USR;
1374 status_query->hdr.len = sizeof(status_query->hdr);
1376 ret = qaic_manage(qdev, usr, user_msg);
1377 if (ret)
1378 goto kfree_user_msg;
1379 status_result = (struct qaic_manage_trans_status_from_dev *)user_msg->data;
1380 *major = status_result->major;
1381 *minor = status_result->minor;
1383 if (status_result->status_flags & BIT(0)) { /* device is using CRC */
1384 /* By default qdev->gen_crc is programmed to generate CRC */
1385 qdev->valid_crc = valid_crc;
1386 } else {
1387 /* By default qdev->valid_crc is programmed to bypass CRC */
1388 qdev->gen_crc = gen_crc_stub;
1391 kfree_user_msg:
1392 kfree(user_msg);
1393 out:
1394 return ret;
1397 static void resp_worker(struct work_struct *work)
1399 struct resp_work *resp = container_of(work, struct resp_work, work);
1400 struct qaic_device *qdev = resp->qdev;
1401 struct wire_msg *msg = resp->buf;
1402 struct xfer_queue_elem *elem;
1403 struct xfer_queue_elem *i;
1404 bool found = false;
1406 mutex_lock(&qdev->cntl_mutex);
1407 list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
1408 if (elem->seq_num == le32_to_cpu(msg->hdr.sequence_number)) {
1409 found = true;
1410 list_del_init(&elem->list);
1411 elem->buf = msg;
1412 complete_all(&elem->xfer_done);
1413 break;
1416 mutex_unlock(&qdev->cntl_mutex);
1418 if (!found)
1419 /* request must have timed out, drop packet */
1420 kfree(msg);
1422 kfree(resp);
1425 static void free_wrapper_from_list(struct wrapper_list *wrappers, struct wrapper_msg *wrapper)
1427 bool all_done = false;
1429 spin_lock(&wrappers->lock);
1430 kref_put(&wrapper->ref_count, free_wrapper);
1431 all_done = list_empty(&wrappers->list);
1432 spin_unlock(&wrappers->lock);
1434 if (all_done)
1435 kfree(wrappers);
1438 void qaic_mhi_ul_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
1440 struct wire_msg *msg = mhi_result->buf_addr;
1441 struct wrapper_msg *wrapper = container_of(msg, struct wrapper_msg, msg);
1443 free_wrapper_from_list(wrapper->head, wrapper);
1446 void qaic_mhi_dl_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
1448 struct qaic_device *qdev = dev_get_drvdata(&mhi_dev->dev);
1449 struct wire_msg *msg = mhi_result->buf_addr;
1450 struct resp_work *resp;
1452 if (mhi_result->transaction_status || msg->hdr.magic_number != MANAGE_MAGIC_NUMBER) {
1453 kfree(msg);
1454 return;
1457 resp = kmalloc(sizeof(*resp), GFP_ATOMIC);
1458 if (!resp) {
1459 kfree(msg);
1460 return;
1463 INIT_WORK(&resp->work, resp_worker);
1464 resp->qdev = qdev;
1465 resp->buf = msg;
1466 queue_work(qdev->cntl_wq, &resp->work);
1469 int qaic_control_open(struct qaic_device *qdev)
1471 if (!qdev->cntl_ch)
1472 return -ENODEV;
1474 qdev->cntl_lost_buf = false;
1476 * By default qaic should assume that device has CRC enabled.
1477 * Qaic comes to know if device has CRC enabled or disabled during the
1478 * device status transaction, which is the first transaction performed
1479 * on control channel.
1481 * So CRC validation of first device status transaction response is
1482 * ignored (by calling valid_crc_stub) and is done later during decoding
1483 * if device has CRC enabled.
1484 * Now that qaic knows whether device has CRC enabled or not it acts
1485 * accordingly.
1487 qdev->gen_crc = gen_crc;
1488 qdev->valid_crc = valid_crc_stub;
1490 return mhi_prepare_for_transfer(qdev->cntl_ch);
1493 void qaic_control_close(struct qaic_device *qdev)
1495 mhi_unprepare_from_transfer(qdev->cntl_ch);
1498 void qaic_release_usr(struct qaic_device *qdev, struct qaic_user *usr)
1500 struct wire_trans_terminate_to_dev *trans;
1501 struct wrapper_list *wrappers;
1502 struct wrapper_msg *wrapper;
1503 struct wire_msg *msg;
1504 struct wire_msg *rsp;
1506 wrappers = alloc_wrapper_list();
1507 if (!wrappers)
1508 return;
1510 wrapper = add_wrapper(wrappers, sizeof(*wrapper) + sizeof(*msg) + sizeof(*trans));
1511 if (!wrapper)
1512 return;
1514 msg = &wrapper->msg;
1516 trans = (struct wire_trans_terminate_to_dev *)msg->data;
1518 trans->hdr.type = cpu_to_le32(QAIC_TRANS_TERMINATE_TO_DEV);
1519 trans->hdr.len = cpu_to_le32(sizeof(*trans));
1520 trans->handle = cpu_to_le32(usr->handle);
1522 mutex_lock(&qdev->cntl_mutex);
1523 wrapper->len = sizeof(msg->hdr) + sizeof(*trans);
1524 msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
1525 msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
1526 msg->hdr.len = cpu_to_le32(wrapper->len);
1527 msg->hdr.count = cpu_to_le32(1);
1528 msg->hdr.handle = cpu_to_le32(usr->handle);
1529 msg->hdr.padding = cpu_to_le32(0);
1530 msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
1533 * msg_xfer releases the mutex
1534 * We don't care about the return of msg_xfer since we will not do
1535 * anything different based on what happens.
1536 * We ignore pending signals since one will be set if the user is
1537 * killed, and we need give the device a chance to cleanup, otherwise
1538 * DMA may still be in progress when we return.
1540 rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, true);
1541 if (!IS_ERR(rsp))
1542 kfree(rsp);
1543 free_wrapper_from_list(wrappers, wrapper);
1546 void wake_all_cntl(struct qaic_device *qdev)
1548 struct xfer_queue_elem *elem;
1549 struct xfer_queue_elem *i;
1551 mutex_lock(&qdev->cntl_mutex);
1552 list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
1553 list_del_init(&elem->list);
1554 complete_all(&elem->xfer_done);
1556 mutex_unlock(&qdev->cntl_mutex);