1 // SPDX-License-Identifier: GPL-2.0
3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
5 * Copyright (C) 2018, ARM
7 * This file implements parsing of the Processor Properties Topology Table
8 * which is optionally used to describe the processor and cache topology.
9 * Due to the relative pointers used throughout the table, this doesn't
10 * leverage the existing subtable parsing in the kernel.
12 * The PPTT structure is an inverted tree, with each node potentially
13 * holding one or two inverted tree data structures describing
14 * the caches available at that level. Each cache structure optionally
15 * contains properties describing the cache at a given level which can be
16 * used to override hardware probed values.
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
24 static struct acpi_subtable_header
*fetch_pptt_subtable(struct acpi_table_header
*table_hdr
,
27 struct acpi_subtable_header
*entry
;
29 /* there isn't a subtable at reference 0 */
30 if (pptt_ref
< sizeof(struct acpi_subtable_header
))
33 if (pptt_ref
+ sizeof(struct acpi_subtable_header
) > table_hdr
->length
)
36 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, table_hdr
, pptt_ref
);
38 if (entry
->length
== 0)
41 if (pptt_ref
+ entry
->length
> table_hdr
->length
)
47 static struct acpi_pptt_processor
*fetch_pptt_node(struct acpi_table_header
*table_hdr
,
50 return (struct acpi_pptt_processor
*)fetch_pptt_subtable(table_hdr
, pptt_ref
);
53 static struct acpi_pptt_cache
*fetch_pptt_cache(struct acpi_table_header
*table_hdr
,
56 return (struct acpi_pptt_cache
*)fetch_pptt_subtable(table_hdr
, pptt_ref
);
59 static struct acpi_subtable_header
*acpi_get_pptt_resource(struct acpi_table_header
*table_hdr
,
60 struct acpi_pptt_processor
*node
,
65 if (resource
>= node
->number_of_priv_resources
)
68 ref
= ACPI_ADD_PTR(u32
, node
, sizeof(struct acpi_pptt_processor
));
71 return fetch_pptt_subtable(table_hdr
, *ref
);
74 static inline bool acpi_pptt_match_type(int table_type
, int type
)
76 return ((table_type
& ACPI_PPTT_MASK_CACHE_TYPE
) == type
||
77 table_type
& ACPI_PPTT_CACHE_TYPE_UNIFIED
& type
);
81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82 * @table_hdr: Pointer to the head of the PPTT table
83 * @local_level: passed res reflects this cache level
84 * @split_levels: Number of split cache levels (data/instruction).
85 * @res: cache resource in the PPTT we want to walk
86 * @found: returns a pointer to the requested level if found
87 * @level: the requested cache level
88 * @type: the requested cache type
90 * Attempt to find a given cache level, while counting the max number
91 * of cache levels for the cache node.
93 * Given a pptt resource, verify that it is a cache node, then walk
94 * down each level of caches, counting how many levels are found
95 * as well as checking the cache type (icache, dcache, unified). If a
96 * level & type match, then we set found, and continue the search.
97 * Once the entire cache branch has been walked return its max
100 * Return: The cache structure and the level we terminated with.
102 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header
*table_hdr
,
103 unsigned int local_level
,
104 unsigned int *split_levels
,
105 struct acpi_subtable_header
*res
,
106 struct acpi_pptt_cache
**found
,
107 unsigned int level
, int type
)
109 struct acpi_pptt_cache
*cache
;
111 if (res
->type
!= ACPI_PPTT_TYPE_CACHE
)
114 cache
= (struct acpi_pptt_cache
*) res
;
118 if (!(cache
->flags
& ACPI_PPTT_CACHE_TYPE_VALID
)) {
119 cache
= fetch_pptt_cache(table_hdr
, cache
->next_level_of_cache
);
124 (acpi_pptt_match_type(cache
->attributes
, ACPI_PPTT_CACHE_TYPE_DATA
) ||
125 acpi_pptt_match_type(cache
->attributes
, ACPI_PPTT_CACHE_TYPE_INSTR
)))
126 *split_levels
= local_level
;
128 if (local_level
== level
&&
129 acpi_pptt_match_type(cache
->attributes
, type
)) {
130 if (*found
!= NULL
&& cache
!= *found
)
131 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
133 pr_debug("Found cache @ level %u\n", level
);
136 * continue looking at this node's resource list
137 * to verify that we don't find a duplicate
141 cache
= fetch_pptt_cache(table_hdr
, cache
->next_level_of_cache
);
146 static struct acpi_pptt_cache
*
147 acpi_find_cache_level(struct acpi_table_header
*table_hdr
,
148 struct acpi_pptt_processor
*cpu_node
,
149 unsigned int *starting_level
, unsigned int *split_levels
,
150 unsigned int level
, int type
)
152 struct acpi_subtable_header
*res
;
153 unsigned int number_of_levels
= *starting_level
;
155 struct acpi_pptt_cache
*ret
= NULL
;
156 unsigned int local_level
;
158 /* walk down from processor node */
159 while ((res
= acpi_get_pptt_resource(table_hdr
, cpu_node
, resource
))) {
162 local_level
= acpi_pptt_walk_cache(table_hdr
, *starting_level
,
163 split_levels
, res
, &ret
,
166 * we are looking for the max depth. Since its potentially
167 * possible for a given node to have resources with differing
168 * depths verify that the depth we have found is the largest.
170 if (number_of_levels
< local_level
)
171 number_of_levels
= local_level
;
173 if (number_of_levels
> *starting_level
)
174 *starting_level
= number_of_levels
;
180 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the cache
181 * levels and split cache levels (data/instruction).
182 * @table_hdr: Pointer to the head of the PPTT table
183 * @cpu_node: processor node we wish to count caches for
184 * @levels: Number of levels if success.
185 * @split_levels: Number of split cache levels (data/instruction) if
186 * success. Can by NULL.
188 * Given a processor node containing a processing unit, walk into it and count
189 * how many levels exist solely for it, and then walk up each level until we hit
190 * the root node (ignore the package level because it may be possible to have
191 * caches that exist across packages). Count the number of cache levels and
192 * split cache levels (data/instruction) that exist at each level on the way
195 static void acpi_count_levels(struct acpi_table_header
*table_hdr
,
196 struct acpi_pptt_processor
*cpu_node
,
197 unsigned int *levels
, unsigned int *split_levels
)
200 acpi_find_cache_level(table_hdr
, cpu_node
, levels
, split_levels
, 0, 0);
201 cpu_node
= fetch_pptt_node(table_hdr
, cpu_node
->parent
);
206 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
207 * @table_hdr: Pointer to the head of the PPTT table
208 * @node: passed node is checked to see if its a leaf
210 * Determine if the *node parameter is a leaf node by iterating the
211 * PPTT table, looking for nodes which reference it.
213 * Return: 0 if we find a node referencing the passed node (or table error),
216 static int acpi_pptt_leaf_node(struct acpi_table_header
*table_hdr
,
217 struct acpi_pptt_processor
*node
)
219 struct acpi_subtable_header
*entry
;
220 unsigned long table_end
;
222 struct acpi_pptt_processor
*cpu_node
;
225 if (table_hdr
->revision
> 1)
226 return (node
->flags
& ACPI_PPTT_ACPI_LEAF_NODE
);
228 table_end
= (unsigned long)table_hdr
+ table_hdr
->length
;
229 node_entry
= ACPI_PTR_DIFF(node
, table_hdr
);
230 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, table_hdr
,
231 sizeof(struct acpi_table_pptt
));
232 proc_sz
= sizeof(struct acpi_pptt_processor
*);
234 while ((unsigned long)entry
+ proc_sz
< table_end
) {
235 cpu_node
= (struct acpi_pptt_processor
*)entry
;
236 if (entry
->type
== ACPI_PPTT_TYPE_PROCESSOR
&&
237 cpu_node
->parent
== node_entry
)
239 if (entry
->length
== 0)
241 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, entry
,
249 * acpi_find_processor_node() - Given a PPTT table find the requested processor
250 * @table_hdr: Pointer to the head of the PPTT table
251 * @acpi_cpu_id: CPU we are searching for
253 * Find the subtable entry describing the provided processor.
254 * This is done by iterating the PPTT table looking for processor nodes
255 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
256 * passed into the function. If we find a node that matches this criteria
257 * we verify that its a leaf node in the topology rather than depending
258 * on the valid flag, which doesn't need to be set for leaf nodes.
260 * Return: NULL, or the processors acpi_pptt_processor*
262 static struct acpi_pptt_processor
*acpi_find_processor_node(struct acpi_table_header
*table_hdr
,
265 struct acpi_subtable_header
*entry
;
266 unsigned long table_end
;
267 struct acpi_pptt_processor
*cpu_node
;
270 table_end
= (unsigned long)table_hdr
+ table_hdr
->length
;
271 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, table_hdr
,
272 sizeof(struct acpi_table_pptt
));
273 proc_sz
= sizeof(struct acpi_pptt_processor
*);
275 /* find the processor structure associated with this cpuid */
276 while ((unsigned long)entry
+ proc_sz
< table_end
) {
277 cpu_node
= (struct acpi_pptt_processor
*)entry
;
279 if (entry
->length
== 0) {
280 pr_warn("Invalid zero length subtable\n");
283 if (entry
->type
== ACPI_PPTT_TYPE_PROCESSOR
&&
284 acpi_cpu_id
== cpu_node
->acpi_processor_id
&&
285 acpi_pptt_leaf_node(table_hdr
, cpu_node
)) {
286 return (struct acpi_pptt_processor
*)entry
;
289 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, entry
,
296 static u8
acpi_cache_type(enum cache_type type
)
299 case CACHE_TYPE_DATA
:
300 pr_debug("Looking for data cache\n");
301 return ACPI_PPTT_CACHE_TYPE_DATA
;
302 case CACHE_TYPE_INST
:
303 pr_debug("Looking for instruction cache\n");
304 return ACPI_PPTT_CACHE_TYPE_INSTR
;
306 case CACHE_TYPE_UNIFIED
:
307 pr_debug("Looking for unified cache\n");
309 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
310 * contains the bit pattern that will match both
311 * ACPI unified bit patterns because we use it later
312 * to match both cases.
314 return ACPI_PPTT_CACHE_TYPE_UNIFIED
;
318 static struct acpi_pptt_cache
*acpi_find_cache_node(struct acpi_table_header
*table_hdr
,
320 enum cache_type type
,
322 struct acpi_pptt_processor
**node
)
324 unsigned int total_levels
= 0;
325 struct acpi_pptt_cache
*found
= NULL
;
326 struct acpi_pptt_processor
*cpu_node
;
327 u8 acpi_type
= acpi_cache_type(type
);
329 pr_debug("Looking for CPU %d's level %u cache type %d\n",
330 acpi_cpu_id
, level
, acpi_type
);
332 cpu_node
= acpi_find_processor_node(table_hdr
, acpi_cpu_id
);
334 while (cpu_node
&& !found
) {
335 found
= acpi_find_cache_level(table_hdr
, cpu_node
,
336 &total_levels
, NULL
, level
, acpi_type
);
338 cpu_node
= fetch_pptt_node(table_hdr
, cpu_node
->parent
);
345 * update_cache_properties() - Update cacheinfo for the given processor
346 * @this_leaf: Kernel cache info structure being updated
347 * @found_cache: The PPTT node describing this cache instance
348 * @cpu_node: A unique reference to describe this cache instance
349 * @revision: The revision of the PPTT table
351 * The ACPI spec implies that the fields in the cache structures are used to
352 * extend and correct the information probed from the hardware. Lets only
353 * set fields that we determine are VALID.
355 * Return: nothing. Side effect of updating the global cacheinfo
357 static void update_cache_properties(struct cacheinfo
*this_leaf
,
358 struct acpi_pptt_cache
*found_cache
,
359 struct acpi_pptt_processor
*cpu_node
,
362 struct acpi_pptt_cache_v1
* found_cache_v1
;
364 this_leaf
->fw_token
= cpu_node
;
365 if (found_cache
->flags
& ACPI_PPTT_SIZE_PROPERTY_VALID
)
366 this_leaf
->size
= found_cache
->size
;
367 if (found_cache
->flags
& ACPI_PPTT_LINE_SIZE_VALID
)
368 this_leaf
->coherency_line_size
= found_cache
->line_size
;
369 if (found_cache
->flags
& ACPI_PPTT_NUMBER_OF_SETS_VALID
)
370 this_leaf
->number_of_sets
= found_cache
->number_of_sets
;
371 if (found_cache
->flags
& ACPI_PPTT_ASSOCIATIVITY_VALID
)
372 this_leaf
->ways_of_associativity
= found_cache
->associativity
;
373 if (found_cache
->flags
& ACPI_PPTT_WRITE_POLICY_VALID
) {
374 switch (found_cache
->attributes
& ACPI_PPTT_MASK_WRITE_POLICY
) {
375 case ACPI_PPTT_CACHE_POLICY_WT
:
376 this_leaf
->attributes
= CACHE_WRITE_THROUGH
;
378 case ACPI_PPTT_CACHE_POLICY_WB
:
379 this_leaf
->attributes
= CACHE_WRITE_BACK
;
383 if (found_cache
->flags
& ACPI_PPTT_ALLOCATION_TYPE_VALID
) {
384 switch (found_cache
->attributes
& ACPI_PPTT_MASK_ALLOCATION_TYPE
) {
385 case ACPI_PPTT_CACHE_READ_ALLOCATE
:
386 this_leaf
->attributes
|= CACHE_READ_ALLOCATE
;
388 case ACPI_PPTT_CACHE_WRITE_ALLOCATE
:
389 this_leaf
->attributes
|= CACHE_WRITE_ALLOCATE
;
391 case ACPI_PPTT_CACHE_RW_ALLOCATE
:
392 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT
:
393 this_leaf
->attributes
|=
394 CACHE_READ_ALLOCATE
| CACHE_WRITE_ALLOCATE
;
399 * If cache type is NOCACHE, then the cache hasn't been specified
400 * via other mechanisms. Update the type if a cache type has been
403 * Note, we assume such caches are unified based on conventional system
404 * design and known examples. Significant work is required elsewhere to
405 * fully support data/instruction only type caches which are only
408 if (this_leaf
->type
== CACHE_TYPE_NOCACHE
&&
409 found_cache
->flags
& ACPI_PPTT_CACHE_TYPE_VALID
)
410 this_leaf
->type
= CACHE_TYPE_UNIFIED
;
412 if (revision
>= 3 && (found_cache
->flags
& ACPI_PPTT_CACHE_ID_VALID
)) {
413 found_cache_v1
= ACPI_ADD_PTR(struct acpi_pptt_cache_v1
,
414 found_cache
, sizeof(struct acpi_pptt_cache
));
415 this_leaf
->id
= found_cache_v1
->cache_id
;
416 this_leaf
->attributes
|= CACHE_ID
;
420 static void cache_setup_acpi_cpu(struct acpi_table_header
*table
,
423 struct acpi_pptt_cache
*found_cache
;
424 struct cpu_cacheinfo
*this_cpu_ci
= get_cpu_cacheinfo(cpu
);
425 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
426 struct cacheinfo
*this_leaf
;
427 unsigned int index
= 0;
428 struct acpi_pptt_processor
*cpu_node
= NULL
;
430 while (index
< get_cpu_cacheinfo(cpu
)->num_leaves
) {
431 this_leaf
= this_cpu_ci
->info_list
+ index
;
432 found_cache
= acpi_find_cache_node(table
, acpi_cpu_id
,
436 pr_debug("found = %p %p\n", found_cache
, cpu_node
);
438 update_cache_properties(this_leaf
, found_cache
,
439 ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node
, table
)),
446 static bool flag_identical(struct acpi_table_header
*table_hdr
,
447 struct acpi_pptt_processor
*cpu
)
449 struct acpi_pptt_processor
*next
;
451 /* heterogeneous machines must use PPTT revision > 1 */
452 if (table_hdr
->revision
< 2)
455 /* Locate the last node in the tree with IDENTICAL set */
456 if (cpu
->flags
& ACPI_PPTT_ACPI_IDENTICAL
) {
457 next
= fetch_pptt_node(table_hdr
, cpu
->parent
);
458 if (!(next
&& next
->flags
& ACPI_PPTT_ACPI_IDENTICAL
))
465 /* Passing level values greater than this will result in search termination */
466 #define PPTT_ABORT_PACKAGE 0xFF
468 static struct acpi_pptt_processor
*acpi_find_processor_tag(struct acpi_table_header
*table_hdr
,
469 struct acpi_pptt_processor
*cpu
,
472 struct acpi_pptt_processor
*prev_node
;
474 while (cpu
&& level
) {
475 /* special case the identical flag to find last identical */
476 if (flag
== ACPI_PPTT_ACPI_IDENTICAL
) {
477 if (flag_identical(table_hdr
, cpu
))
479 } else if (cpu
->flags
& flag
)
481 pr_debug("level %d\n", level
);
482 prev_node
= fetch_pptt_node(table_hdr
, cpu
->parent
);
483 if (prev_node
== NULL
)
491 static void acpi_pptt_warn_missing(void)
493 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
497 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
498 * @table: Pointer to the head of the PPTT table
499 * @cpu: Kernel logical CPU number
500 * @level: A level that terminates the search
501 * @flag: A flag which terminates the search
503 * Get a unique value given a CPU, and a topology level, that can be
504 * matched to determine which cpus share common topological features
507 * Return: Unique value, or -ENOENT if unable to locate CPU
509 static int topology_get_acpi_cpu_tag(struct acpi_table_header
*table
,
510 unsigned int cpu
, int level
, int flag
)
512 struct acpi_pptt_processor
*cpu_node
;
513 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
515 cpu_node
= acpi_find_processor_node(table
, acpi_cpu_id
);
517 cpu_node
= acpi_find_processor_tag(table
, cpu_node
,
520 * As per specification if the processor structure represents
521 * an actual processor, then ACPI processor ID must be valid.
522 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
523 * should be set if the UID is valid
526 cpu_node
->flags
& ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
)
527 return cpu_node
->acpi_processor_id
;
528 return ACPI_PTR_DIFF(cpu_node
, table
);
530 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
536 static struct acpi_table_header
*acpi_get_pptt(void)
538 static struct acpi_table_header
*pptt
;
539 static bool is_pptt_checked
;
543 * PPTT will be used at runtime on every CPU hotplug in path, so we
544 * don't need to call acpi_put_table() to release the table mapping.
546 if (!pptt
&& !is_pptt_checked
) {
547 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &pptt
);
548 if (ACPI_FAILURE(status
))
549 acpi_pptt_warn_missing();
551 is_pptt_checked
= true;
557 static int find_acpi_cpu_topology_tag(unsigned int cpu
, int level
, int flag
)
559 struct acpi_table_header
*table
;
562 table
= acpi_get_pptt();
566 retval
= topology_get_acpi_cpu_tag(table
, cpu
, level
, flag
);
567 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
574 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
575 * @cpu: Kernel logical CPU number
576 * @rev: The minimum PPTT revision defining the flag
577 * @flag: The flag itself
579 * Check the node representing a CPU for a given flag.
581 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
582 * the table revision isn't new enough.
583 * 1, any passed flag set
586 static int check_acpi_cpu_flag(unsigned int cpu
, int rev
, u32 flag
)
588 struct acpi_table_header
*table
;
589 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
590 struct acpi_pptt_processor
*cpu_node
= NULL
;
593 table
= acpi_get_pptt();
597 if (table
->revision
>= rev
)
598 cpu_node
= acpi_find_processor_node(table
, acpi_cpu_id
);
601 ret
= (cpu_node
->flags
& flag
) != 0;
607 * acpi_get_cache_info() - Determine the number of cache levels and
608 * split cache levels (data/instruction) and for a PE.
609 * @cpu: Kernel logical CPU number
610 * @levels: Number of levels if success.
611 * @split_levels: Number of levels being split (i.e. data/instruction)
612 * if success. Can by NULL.
614 * Given a logical CPU number, returns the number of levels of cache represented
615 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
616 * indicating we didn't find any cache levels.
618 * Return: -ENOENT if no PPTT table or no PPTT processor struct found.
621 int acpi_get_cache_info(unsigned int cpu
, unsigned int *levels
,
622 unsigned int *split_levels
)
624 struct acpi_pptt_processor
*cpu_node
;
625 struct acpi_table_header
*table
;
632 table
= acpi_get_pptt();
636 pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu
);
638 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
639 cpu_node
= acpi_find_processor_node(table
, acpi_cpu_id
);
643 acpi_count_levels(table
, cpu_node
, levels
, split_levels
);
645 pr_debug("Cache Setup: last_level=%d split_levels=%d\n",
646 *levels
, split_levels
? *split_levels
: -1);
652 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
653 * @cpu: Kernel logical CPU number
655 * Updates the global cache info provided by cpu_get_cacheinfo()
656 * when there are valid properties in the acpi_pptt_cache nodes. A
657 * successful parse may not result in any updates if none of the
658 * cache levels have any valid flags set. Further, a unique value is
659 * associated with each known CPU cache entry. This unique value
660 * can be used to determine whether caches are shared between CPUs.
662 * Return: -ENOENT on failure to find table, or 0 on success
664 int cache_setup_acpi(unsigned int cpu
)
666 struct acpi_table_header
*table
;
668 table
= acpi_get_pptt();
672 pr_debug("Cache Setup ACPI CPU %d\n", cpu
);
674 cache_setup_acpi_cpu(table
, cpu
);
680 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
681 * @cpu: Kernel logical CPU number
683 * Return: 1, a thread
685 * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
686 * the table revision isn't new enough.
688 int acpi_pptt_cpu_is_thread(unsigned int cpu
)
690 return check_acpi_cpu_flag(cpu
, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD
);
694 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
695 * @cpu: Kernel logical CPU number
696 * @level: The topological level for which we would like a unique ID
698 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
699 * /socket/etc. This ID can then be used to group peers, which will have
702 * The search terminates when either the requested level is found or
703 * we reach a root node. Levels beyond the termination point will return the
704 * same unique ID. The unique id for level 0 is the acpi processor id. All
705 * other levels beyond this use a generated value to uniquely identify
706 * a topological feature.
708 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
709 * Otherwise returns a value which represents a unique topological feature.
711 int find_acpi_cpu_topology(unsigned int cpu
, int level
)
713 return find_acpi_cpu_topology_tag(cpu
, level
, 0);
717 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
718 * @cpu: Kernel logical CPU number
720 * Determine a topology unique package ID for the given CPU.
721 * This ID can then be used to group peers, which will have matching ids.
723 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
724 * flag set or we reach a root node.
726 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
727 * Otherwise returns a value which represents the package for this CPU.
729 int find_acpi_cpu_topology_package(unsigned int cpu
)
731 return find_acpi_cpu_topology_tag(cpu
, PPTT_ABORT_PACKAGE
,
732 ACPI_PPTT_PHYSICAL_PACKAGE
);
736 * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
737 * @cpu: Kernel logical CPU number
739 * Determine a topology unique cluster ID for the given CPU/thread.
740 * This ID can then be used to group peers, which will have matching ids.
742 * The cluster, if present is the level of topology above CPUs. In a
743 * multi-thread CPU, it will be the level above the CPU, not the thread.
744 * It may not exist in single CPU systems. In simple multi-CPU systems,
745 * it may be equal to the package topology level.
747 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
748 * or there is no toplogy level above the CPU..
749 * Otherwise returns a value which represents the package for this CPU.
752 int find_acpi_cpu_topology_cluster(unsigned int cpu
)
754 struct acpi_table_header
*table
;
755 struct acpi_pptt_processor
*cpu_node
, *cluster_node
;
760 table
= acpi_get_pptt();
764 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
765 cpu_node
= acpi_find_processor_node(table
, acpi_cpu_id
);
766 if (!cpu_node
|| !cpu_node
->parent
)
769 is_thread
= cpu_node
->flags
& ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD
;
770 cluster_node
= fetch_pptt_node(table
, cpu_node
->parent
);
775 if (!cluster_node
->parent
)
778 cluster_node
= fetch_pptt_node(table
, cluster_node
->parent
);
782 if (cluster_node
->flags
& ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
)
783 retval
= cluster_node
->acpi_processor_id
;
785 retval
= ACPI_PTR_DIFF(cluster_node
, table
);
791 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
792 * @cpu: Kernel logical CPU number
794 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
795 * implementation should have matching tags.
797 * The returned tag can be used to group peers with identical implementation.
799 * The search terminates when a level is found with the identical implementation
800 * flag set or we reach a root node.
802 * Due to limitations in the PPTT data structure, there may be rare situations
803 * where two cores in a heterogeneous machine may be identical, but won't have
806 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
807 * Otherwise returns a value which represents a group of identical cores
808 * similar to this CPU.
810 int find_acpi_cpu_topology_hetero_id(unsigned int cpu
)
812 return find_acpi_cpu_topology_tag(cpu
, PPTT_ABORT_PACKAGE
,
813 ACPI_PPTT_ACPI_IDENTICAL
);