Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / acpi / processor_idle.c
blob698897b29de2448e55e031a02436e6d92847bee9
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * processor_idle - idle state submodule to the ACPI processor driver
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
13 #define pr_fmt(fmt) "ACPI: " fmt
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h> /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <linux/minmax.h>
23 #include <linux/perf_event.h>
24 #include <acpi/processor.h>
25 #include <linux/context_tracking.h>
28 * Include the apic definitions for x86 to have the APIC timer related defines
29 * available also for UP (on SMP it gets magically included via linux/smp.h).
30 * asm/acpi.h is not an option, as it would require more include magic. Also
31 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
33 #ifdef CONFIG_X86
34 #include <asm/apic.h>
35 #include <asm/cpu.h>
36 #endif
38 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0400);
42 static bool nocst __read_mostly;
43 module_param(nocst, bool, 0400);
44 static bool bm_check_disable __read_mostly;
45 module_param(bm_check_disable, bool, 0400);
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
52 struct cpuidle_driver acpi_idle_driver = {
53 .name = "acpi_idle",
54 .owner = THIS_MODULE,
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
61 static int disabled_by_idle_boot_param(void)
63 return boot_option_idle_override == IDLE_POLL ||
64 boot_option_idle_override == IDLE_HALT;
68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69 * For now disable this. Probably a bug somewhere else.
71 * To skip this limit, boot/load with a large max_cstate limit.
73 static int set_max_cstate(const struct dmi_system_id *id)
75 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 return 0;
78 pr_notice("%s detected - limiting to C%ld max_cstate."
79 " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
82 max_cstate = (long)id->driver_data;
84 return 0;
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88 { set_max_cstate, "Clevo 5600D", {
89 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 (void *)2},
92 { set_max_cstate, "Pavilion zv5000", {
93 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 (void *)1},
96 { set_max_cstate, "Asus L8400B", {
97 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 (void *)1},
105 * Callers should disable interrupts before the call and enable
106 * interrupts after return.
108 static void __cpuidle acpi_safe_halt(void)
110 if (!tif_need_resched()) {
111 raw_safe_halt();
112 raw_local_irq_disable();
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
119 * Some BIOS implementations switch to C3 in the published C2 state.
120 * This seems to be a common problem on AMD boxen, but other vendors
121 * are affected too. We pick the most conservative approach: we assume
122 * that the local APIC stops in both C2 and C3.
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 struct acpi_processor_cx *cx)
127 struct acpi_processor_power *pwr = &pr->power;
128 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
130 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 return;
133 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 type = ACPI_STATE_C1;
137 * Check, if one of the previous states already marked the lapic
138 * unstable
140 if (pwr->timer_broadcast_on_state < state)
141 return;
143 if (cx->type >= type)
144 pr->power.timer_broadcast_on_state = state;
147 static void __lapic_timer_propagate_broadcast(void *arg)
149 struct acpi_processor *pr = arg;
151 if (pr->power.timer_broadcast_on_state < INT_MAX)
152 tick_broadcast_enable();
153 else
154 tick_broadcast_disable();
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
159 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 (void *)pr, 1);
163 /* Power(C) State timer broadcast control */
164 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
165 struct acpi_processor_cx *cx)
167 return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
170 #else
172 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
173 struct acpi_processor_cx *cstate) { }
174 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
176 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
177 struct acpi_processor_cx *cx)
179 return false;
182 #endif
184 #if defined(CONFIG_X86)
185 static void tsc_check_state(int state)
187 switch (boot_cpu_data.x86_vendor) {
188 case X86_VENDOR_HYGON:
189 case X86_VENDOR_AMD:
190 case X86_VENDOR_INTEL:
191 case X86_VENDOR_CENTAUR:
192 case X86_VENDOR_ZHAOXIN:
194 * AMD Fam10h TSC will tick in all
195 * C/P/S0/S1 states when this bit is set.
197 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
198 return;
199 fallthrough;
200 default:
201 /* TSC could halt in idle, so notify users */
202 if (state > ACPI_STATE_C1)
203 mark_tsc_unstable("TSC halts in idle");
206 #else
207 static void tsc_check_state(int state) { return; }
208 #endif
210 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
213 if (!pr->pblk)
214 return -ENODEV;
216 /* if info is obtained from pblk/fadt, type equals state */
217 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
218 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
220 #ifndef CONFIG_HOTPLUG_CPU
222 * Check for P_LVL2_UP flag before entering C2 and above on
223 * an SMP system.
225 if ((num_online_cpus() > 1) &&
226 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
227 return -ENODEV;
228 #endif
230 /* determine C2 and C3 address from pblk */
231 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
232 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
234 /* determine latencies from FADT */
235 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
236 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
239 * FADT specified C2 latency must be less than or equal to
240 * 100 microseconds.
242 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
243 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
244 acpi_gbl_FADT.c2_latency);
245 /* invalidate C2 */
246 pr->power.states[ACPI_STATE_C2].address = 0;
250 * FADT supplied C3 latency must be less than or equal to
251 * 1000 microseconds.
253 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
254 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
255 acpi_gbl_FADT.c3_latency);
256 /* invalidate C3 */
257 pr->power.states[ACPI_STATE_C3].address = 0;
260 acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
261 pr->power.states[ACPI_STATE_C2].address,
262 pr->power.states[ACPI_STATE_C3].address);
264 snprintf(pr->power.states[ACPI_STATE_C2].desc,
265 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
266 pr->power.states[ACPI_STATE_C2].address);
267 snprintf(pr->power.states[ACPI_STATE_C3].desc,
268 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
269 pr->power.states[ACPI_STATE_C3].address);
271 return 0;
274 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 if (!pr->power.states[ACPI_STATE_C1].valid) {
277 /* set the first C-State to C1 */
278 /* all processors need to support C1 */
279 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
280 pr->power.states[ACPI_STATE_C1].valid = 1;
281 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283 snprintf(pr->power.states[ACPI_STATE_C1].desc,
284 ACPI_CX_DESC_LEN, "ACPI HLT");
286 /* the C0 state only exists as a filler in our array */
287 pr->power.states[ACPI_STATE_C0].valid = 1;
288 return 0;
291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 int ret;
295 if (nocst)
296 return -ENODEV;
298 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
299 if (ret)
300 return ret;
302 if (!pr->power.count)
303 return -EFAULT;
305 pr->flags.has_cst = 1;
306 return 0;
309 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
310 struct acpi_processor_cx *cx)
312 static int bm_check_flag = -1;
313 static int bm_control_flag = -1;
316 if (!cx->address)
317 return;
320 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
321 * DMA transfers are used by any ISA device to avoid livelock.
322 * Note that we could disable Type-F DMA (as recommended by
323 * the erratum), but this is known to disrupt certain ISA
324 * devices thus we take the conservative approach.
326 if (errata.piix4.fdma) {
327 acpi_handle_debug(pr->handle,
328 "C3 not supported on PIIX4 with Type-F DMA\n");
329 return;
332 /* All the logic here assumes flags.bm_check is same across all CPUs */
333 if (bm_check_flag == -1) {
334 /* Determine whether bm_check is needed based on CPU */
335 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
336 bm_check_flag = pr->flags.bm_check;
337 bm_control_flag = pr->flags.bm_control;
338 } else {
339 pr->flags.bm_check = bm_check_flag;
340 pr->flags.bm_control = bm_control_flag;
343 if (pr->flags.bm_check) {
344 if (!pr->flags.bm_control) {
345 if (pr->flags.has_cst != 1) {
346 /* bus mastering control is necessary */
347 acpi_handle_debug(pr->handle,
348 "C3 support requires BM control\n");
349 return;
350 } else {
351 /* Here we enter C3 without bus mastering */
352 acpi_handle_debug(pr->handle,
353 "C3 support without BM control\n");
356 } else {
358 * WBINVD should be set in fadt, for C3 state to be
359 * supported on when bm_check is not required.
361 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
362 acpi_handle_debug(pr->handle,
363 "Cache invalidation should work properly"
364 " for C3 to be enabled on SMP systems\n");
365 return;
370 * Otherwise we've met all of our C3 requirements.
371 * Normalize the C3 latency to expidite policy. Enable
372 * checking of bus mastering status (bm_check) so we can
373 * use this in our C3 policy
375 cx->valid = 1;
378 * On older chipsets, BM_RLD needs to be set
379 * in order for Bus Master activity to wake the
380 * system from C3. Newer chipsets handle DMA
381 * during C3 automatically and BM_RLD is a NOP.
382 * In either case, the proper way to
383 * handle BM_RLD is to set it and leave it set.
385 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
388 static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length)
390 int i, j, k;
392 for (i = 1; i < length; i++) {
393 if (!states[i].valid)
394 continue;
396 for (j = i - 1, k = i; j >= 0; j--) {
397 if (!states[j].valid)
398 continue;
400 if (states[j].latency > states[k].latency)
401 swap(states[j].latency, states[k].latency);
403 k = j;
408 static int acpi_processor_power_verify(struct acpi_processor *pr)
410 unsigned int i;
411 unsigned int working = 0;
412 unsigned int last_latency = 0;
413 unsigned int last_type = 0;
414 bool buggy_latency = false;
416 pr->power.timer_broadcast_on_state = INT_MAX;
418 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
419 struct acpi_processor_cx *cx = &pr->power.states[i];
421 switch (cx->type) {
422 case ACPI_STATE_C1:
423 cx->valid = 1;
424 break;
426 case ACPI_STATE_C2:
427 if (!cx->address)
428 break;
429 cx->valid = 1;
430 break;
432 case ACPI_STATE_C3:
433 acpi_processor_power_verify_c3(pr, cx);
434 break;
436 if (!cx->valid)
437 continue;
438 if (cx->type >= last_type && cx->latency < last_latency)
439 buggy_latency = true;
440 last_latency = cx->latency;
441 last_type = cx->type;
443 lapic_timer_check_state(i, pr, cx);
444 tsc_check_state(cx->type);
445 working++;
448 if (buggy_latency) {
449 pr_notice("FW issue: working around C-state latencies out of order\n");
450 acpi_cst_latency_sort(&pr->power.states[1], max_cstate);
453 lapic_timer_propagate_broadcast(pr);
455 return working;
458 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
460 unsigned int i;
461 int result;
464 /* NOTE: the idle thread may not be running while calling
465 * this function */
467 /* Zero initialize all the C-states info. */
468 memset(pr->power.states, 0, sizeof(pr->power.states));
470 result = acpi_processor_get_power_info_cst(pr);
471 if (result == -ENODEV)
472 result = acpi_processor_get_power_info_fadt(pr);
474 if (result)
475 return result;
477 acpi_processor_get_power_info_default(pr);
479 pr->power.count = acpi_processor_power_verify(pr);
482 * if one state of type C2 or C3 is available, mark this
483 * CPU as being "idle manageable"
485 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
486 if (pr->power.states[i].valid) {
487 pr->power.count = i;
488 pr->flags.power = 1;
492 return 0;
496 * acpi_idle_bm_check - checks if bus master activity was detected
498 static int acpi_idle_bm_check(void)
500 u32 bm_status = 0;
502 if (bm_check_disable)
503 return 0;
505 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
506 if (bm_status)
507 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
509 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
510 * the true state of bus mastering activity; forcing us to
511 * manually check the BMIDEA bit of each IDE channel.
513 else if (errata.piix4.bmisx) {
514 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
515 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
516 bm_status = 1;
518 return bm_status;
521 static __cpuidle void io_idle(unsigned long addr)
523 /* IO port based C-state */
524 inb(addr);
526 #ifdef CONFIG_X86
527 /* No delay is needed if we are in guest */
528 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
529 return;
531 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
532 * not this code. Assume that any Intel systems using this
533 * are ancient and may need the dummy wait. This also assumes
534 * that the motivating chipset issue was Intel-only.
536 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
537 return;
538 #endif
540 * Dummy wait op - must do something useless after P_LVL2 read
541 * because chipsets cannot guarantee that STPCLK# signal gets
542 * asserted in time to freeze execution properly
544 * This workaround has been in place since the original ACPI
545 * implementation was merged, circa 2002.
547 * If a profile is pointing to this instruction, please first
548 * consider moving your system to a more modern idle
549 * mechanism.
551 inl(acpi_gbl_FADT.xpm_timer_block.address);
555 * acpi_idle_do_entry - enter idle state using the appropriate method
556 * @cx: cstate data
558 * Caller disables interrupt before call and enables interrupt after return.
560 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
562 perf_lopwr_cb(true);
564 if (cx->entry_method == ACPI_CSTATE_FFH) {
565 /* Call into architectural FFH based C-state */
566 acpi_processor_ffh_cstate_enter(cx);
567 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
568 acpi_safe_halt();
569 } else {
570 io_idle(cx->address);
573 perf_lopwr_cb(false);
577 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
578 * @dev: the target CPU
579 * @index: the index of suggested state
581 static void acpi_idle_play_dead(struct cpuidle_device *dev, int index)
583 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
585 ACPI_FLUSH_CPU_CACHE();
587 while (1) {
589 if (cx->entry_method == ACPI_CSTATE_HALT)
590 raw_safe_halt();
591 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
592 io_idle(cx->address);
593 } else
594 return;
598 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
600 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
601 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
604 static int c3_cpu_count;
605 static DEFINE_RAW_SPINLOCK(c3_lock);
608 * acpi_idle_enter_bm - enters C3 with proper BM handling
609 * @drv: cpuidle driver
610 * @pr: Target processor
611 * @cx: Target state context
612 * @index: index of target state
614 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
615 struct acpi_processor *pr,
616 struct acpi_processor_cx *cx,
617 int index)
619 static struct acpi_processor_cx safe_cx = {
620 .entry_method = ACPI_CSTATE_HALT,
624 * disable bus master
625 * bm_check implies we need ARB_DIS
626 * bm_control implies whether we can do ARB_DIS
628 * That leaves a case where bm_check is set and bm_control is not set.
629 * In that case we cannot do much, we enter C3 without doing anything.
631 bool dis_bm = pr->flags.bm_control;
633 instrumentation_begin();
635 /* If we can skip BM, demote to a safe state. */
636 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
637 dis_bm = false;
638 index = drv->safe_state_index;
639 if (index >= 0) {
640 cx = this_cpu_read(acpi_cstate[index]);
641 } else {
642 cx = &safe_cx;
643 index = -EBUSY;
647 if (dis_bm) {
648 raw_spin_lock(&c3_lock);
649 c3_cpu_count++;
650 /* Disable bus master arbitration when all CPUs are in C3 */
651 if (c3_cpu_count == num_online_cpus())
652 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
653 raw_spin_unlock(&c3_lock);
656 ct_cpuidle_enter();
658 acpi_idle_do_entry(cx);
660 ct_cpuidle_exit();
662 /* Re-enable bus master arbitration */
663 if (dis_bm) {
664 raw_spin_lock(&c3_lock);
665 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
666 c3_cpu_count--;
667 raw_spin_unlock(&c3_lock);
670 instrumentation_end();
672 return index;
675 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
676 struct cpuidle_driver *drv, int index)
678 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
679 struct acpi_processor *pr;
681 pr = __this_cpu_read(processors);
682 if (unlikely(!pr))
683 return -EINVAL;
685 if (cx->type != ACPI_STATE_C1) {
686 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
687 return acpi_idle_enter_bm(drv, pr, cx, index);
689 /* C2 to C1 demotion. */
690 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
691 index = ACPI_IDLE_STATE_START;
692 cx = per_cpu(acpi_cstate[index], dev->cpu);
696 if (cx->type == ACPI_STATE_C3)
697 ACPI_FLUSH_CPU_CACHE();
699 acpi_idle_do_entry(cx);
701 return index;
704 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
705 struct cpuidle_driver *drv, int index)
707 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
709 if (cx->type == ACPI_STATE_C3) {
710 struct acpi_processor *pr = __this_cpu_read(processors);
712 if (unlikely(!pr))
713 return 0;
715 if (pr->flags.bm_check) {
716 u8 bm_sts_skip = cx->bm_sts_skip;
718 /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
719 cx->bm_sts_skip = 1;
720 acpi_idle_enter_bm(drv, pr, cx, index);
721 cx->bm_sts_skip = bm_sts_skip;
723 return 0;
724 } else {
725 ACPI_FLUSH_CPU_CACHE();
728 acpi_idle_do_entry(cx);
730 return 0;
733 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
734 struct cpuidle_device *dev)
736 int i, count = ACPI_IDLE_STATE_START;
737 struct acpi_processor_cx *cx;
738 struct cpuidle_state *state;
740 if (max_cstate == 0)
741 max_cstate = 1;
743 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
744 state = &acpi_idle_driver.states[count];
745 cx = &pr->power.states[i];
747 if (!cx->valid)
748 continue;
750 per_cpu(acpi_cstate[count], dev->cpu) = cx;
752 if (lapic_timer_needs_broadcast(pr, cx))
753 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
755 if (cx->type == ACPI_STATE_C3) {
756 state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
757 if (pr->flags.bm_check)
758 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
761 count++;
762 if (count == CPUIDLE_STATE_MAX)
763 break;
766 if (!count)
767 return -EINVAL;
769 return 0;
772 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
774 int i, count;
775 struct acpi_processor_cx *cx;
776 struct cpuidle_state *state;
777 struct cpuidle_driver *drv = &acpi_idle_driver;
779 if (max_cstate == 0)
780 max_cstate = 1;
782 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
783 cpuidle_poll_state_init(drv);
784 count = 1;
785 } else {
786 count = 0;
789 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
790 cx = &pr->power.states[i];
792 if (!cx->valid)
793 continue;
795 state = &drv->states[count];
796 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
797 strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
798 state->exit_latency = cx->latency;
799 state->target_residency = cx->latency * latency_factor;
800 state->enter = acpi_idle_enter;
802 state->flags = 0;
804 state->enter_dead = acpi_idle_play_dead;
806 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2)
807 drv->safe_state_index = count;
810 * Halt-induced C1 is not good for ->enter_s2idle, because it
811 * re-enables interrupts on exit. Moreover, C1 is generally not
812 * particularly interesting from the suspend-to-idle angle, so
813 * avoid C1 and the situations in which we may need to fall back
814 * to it altogether.
816 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
817 state->enter_s2idle = acpi_idle_enter_s2idle;
819 count++;
820 if (count == CPUIDLE_STATE_MAX)
821 break;
824 drv->state_count = count;
826 if (!count)
827 return -EINVAL;
829 return 0;
832 static inline void acpi_processor_cstate_first_run_checks(void)
834 static int first_run;
836 if (first_run)
837 return;
838 dmi_check_system(processor_power_dmi_table);
839 max_cstate = acpi_processor_cstate_check(max_cstate);
840 if (max_cstate < ACPI_C_STATES_MAX)
841 pr_notice("processor limited to max C-state %d\n", max_cstate);
843 first_run++;
845 if (nocst)
846 return;
848 acpi_processor_claim_cst_control();
850 #else
852 static inline int disabled_by_idle_boot_param(void) { return 0; }
853 static inline void acpi_processor_cstate_first_run_checks(void) { }
854 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
856 return -ENODEV;
859 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
860 struct cpuidle_device *dev)
862 return -EINVAL;
865 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
867 return -EINVAL;
870 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
872 struct acpi_lpi_states_array {
873 unsigned int size;
874 unsigned int composite_states_size;
875 struct acpi_lpi_state *entries;
876 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
879 static int obj_get_integer(union acpi_object *obj, u32 *value)
881 if (obj->type != ACPI_TYPE_INTEGER)
882 return -EINVAL;
884 *value = obj->integer.value;
885 return 0;
888 static int acpi_processor_evaluate_lpi(acpi_handle handle,
889 struct acpi_lpi_states_array *info)
891 acpi_status status;
892 int ret = 0;
893 int pkg_count, state_idx = 1, loop;
894 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
895 union acpi_object *lpi_data;
896 struct acpi_lpi_state *lpi_state;
898 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
899 if (ACPI_FAILURE(status)) {
900 acpi_handle_debug(handle, "No _LPI, giving up\n");
901 return -ENODEV;
904 lpi_data = buffer.pointer;
906 /* There must be at least 4 elements = 3 elements + 1 package */
907 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
908 lpi_data->package.count < 4) {
909 pr_debug("not enough elements in _LPI\n");
910 ret = -ENODATA;
911 goto end;
914 pkg_count = lpi_data->package.elements[2].integer.value;
916 /* Validate number of power states. */
917 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
918 pr_debug("count given by _LPI is not valid\n");
919 ret = -ENODATA;
920 goto end;
923 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
924 if (!lpi_state) {
925 ret = -ENOMEM;
926 goto end;
929 info->size = pkg_count;
930 info->entries = lpi_state;
932 /* LPI States start at index 3 */
933 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
934 union acpi_object *element, *pkg_elem, *obj;
936 element = &lpi_data->package.elements[loop];
937 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
938 continue;
940 pkg_elem = element->package.elements;
942 obj = pkg_elem + 6;
943 if (obj->type == ACPI_TYPE_BUFFER) {
944 struct acpi_power_register *reg;
946 reg = (struct acpi_power_register *)obj->buffer.pointer;
947 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
948 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
949 continue;
951 lpi_state->address = reg->address;
952 lpi_state->entry_method =
953 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
954 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
955 } else if (obj->type == ACPI_TYPE_INTEGER) {
956 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
957 lpi_state->address = obj->integer.value;
958 } else {
959 continue;
962 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
964 obj = pkg_elem + 9;
965 if (obj->type == ACPI_TYPE_STRING)
966 strscpy(lpi_state->desc, obj->string.pointer,
967 ACPI_CX_DESC_LEN);
969 lpi_state->index = state_idx;
970 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
971 pr_debug("No min. residency found, assuming 10 us\n");
972 lpi_state->min_residency = 10;
975 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
976 pr_debug("No wakeup residency found, assuming 10 us\n");
977 lpi_state->wake_latency = 10;
980 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
981 lpi_state->flags = 0;
983 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
984 lpi_state->arch_flags = 0;
986 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
987 lpi_state->res_cnt_freq = 1;
989 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
990 lpi_state->enable_parent_state = 0;
993 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
994 end:
995 kfree(buffer.pointer);
996 return ret;
1000 * flat_state_cnt - the number of composite LPI states after the process of flattening
1002 static int flat_state_cnt;
1005 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1007 * @local: local LPI state
1008 * @parent: parent LPI state
1009 * @result: composite LPI state
1011 static bool combine_lpi_states(struct acpi_lpi_state *local,
1012 struct acpi_lpi_state *parent,
1013 struct acpi_lpi_state *result)
1015 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1016 if (!parent->address) /* 0 means autopromotable */
1017 return false;
1018 result->address = local->address + parent->address;
1019 } else {
1020 result->address = parent->address;
1023 result->min_residency = max(local->min_residency, parent->min_residency);
1024 result->wake_latency = local->wake_latency + parent->wake_latency;
1025 result->enable_parent_state = parent->enable_parent_state;
1026 result->entry_method = local->entry_method;
1028 result->flags = parent->flags;
1029 result->arch_flags = parent->arch_flags;
1030 result->index = parent->index;
1032 strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1033 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1034 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1035 return true;
1038 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1040 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1041 struct acpi_lpi_state *t)
1043 curr_level->composite_states[curr_level->composite_states_size++] = t;
1046 static int flatten_lpi_states(struct acpi_processor *pr,
1047 struct acpi_lpi_states_array *curr_level,
1048 struct acpi_lpi_states_array *prev_level)
1050 int i, j, state_count = curr_level->size;
1051 struct acpi_lpi_state *p, *t = curr_level->entries;
1053 curr_level->composite_states_size = 0;
1054 for (j = 0; j < state_count; j++, t++) {
1055 struct acpi_lpi_state *flpi;
1057 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1058 continue;
1060 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1061 pr_warn("Limiting number of LPI states to max (%d)\n",
1062 ACPI_PROCESSOR_MAX_POWER);
1063 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1064 break;
1067 flpi = &pr->power.lpi_states[flat_state_cnt];
1069 if (!prev_level) { /* leaf/processor node */
1070 memcpy(flpi, t, sizeof(*t));
1071 stash_composite_state(curr_level, flpi);
1072 flat_state_cnt++;
1073 continue;
1076 for (i = 0; i < prev_level->composite_states_size; i++) {
1077 p = prev_level->composite_states[i];
1078 if (t->index <= p->enable_parent_state &&
1079 combine_lpi_states(p, t, flpi)) {
1080 stash_composite_state(curr_level, flpi);
1081 flat_state_cnt++;
1082 flpi++;
1087 kfree(curr_level->entries);
1088 return 0;
1091 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1093 return -EOPNOTSUPP;
1096 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1098 int ret, i;
1099 acpi_status status;
1100 acpi_handle handle = pr->handle, pr_ahandle;
1101 struct acpi_device *d = NULL;
1102 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1104 /* make sure our architecture has support */
1105 ret = acpi_processor_ffh_lpi_probe(pr->id);
1106 if (ret == -EOPNOTSUPP)
1107 return ret;
1109 if (!osc_pc_lpi_support_confirmed)
1110 return -EOPNOTSUPP;
1112 if (!acpi_has_method(handle, "_LPI"))
1113 return -EINVAL;
1115 flat_state_cnt = 0;
1116 prev = &info[0];
1117 curr = &info[1];
1118 handle = pr->handle;
1119 ret = acpi_processor_evaluate_lpi(handle, prev);
1120 if (ret)
1121 return ret;
1122 flatten_lpi_states(pr, prev, NULL);
1124 status = acpi_get_parent(handle, &pr_ahandle);
1125 while (ACPI_SUCCESS(status)) {
1126 d = acpi_fetch_acpi_dev(pr_ahandle);
1127 if (!d)
1128 break;
1130 handle = pr_ahandle;
1132 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1133 break;
1135 /* can be optional ? */
1136 if (!acpi_has_method(handle, "_LPI"))
1137 break;
1139 ret = acpi_processor_evaluate_lpi(handle, curr);
1140 if (ret)
1141 break;
1143 /* flatten all the LPI states in this level of hierarchy */
1144 flatten_lpi_states(pr, curr, prev);
1146 tmp = prev, prev = curr, curr = tmp;
1148 status = acpi_get_parent(handle, &pr_ahandle);
1151 pr->power.count = flat_state_cnt;
1152 /* reset the index after flattening */
1153 for (i = 0; i < pr->power.count; i++)
1154 pr->power.lpi_states[i].index = i;
1156 /* Tell driver that _LPI is supported. */
1157 pr->flags.has_lpi = 1;
1158 pr->flags.power = 1;
1160 return 0;
1163 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1165 return -ENODEV;
1169 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1170 * @dev: the target CPU
1171 * @drv: cpuidle driver containing cpuidle state info
1172 * @index: index of target state
1174 * Return: 0 for success or negative value for error
1176 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1177 struct cpuidle_driver *drv, int index)
1179 struct acpi_processor *pr;
1180 struct acpi_lpi_state *lpi;
1182 pr = __this_cpu_read(processors);
1184 if (unlikely(!pr))
1185 return -EINVAL;
1187 lpi = &pr->power.lpi_states[index];
1188 if (lpi->entry_method == ACPI_CSTATE_FFH)
1189 return acpi_processor_ffh_lpi_enter(lpi);
1191 return -EINVAL;
1194 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1196 int i;
1197 struct acpi_lpi_state *lpi;
1198 struct cpuidle_state *state;
1199 struct cpuidle_driver *drv = &acpi_idle_driver;
1201 if (!pr->flags.has_lpi)
1202 return -EOPNOTSUPP;
1204 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1205 lpi = &pr->power.lpi_states[i];
1207 state = &drv->states[i];
1208 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1209 strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1210 state->exit_latency = lpi->wake_latency;
1211 state->target_residency = lpi->min_residency;
1212 state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1213 if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1214 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1215 state->enter = acpi_idle_lpi_enter;
1216 drv->safe_state_index = i;
1219 drv->state_count = i;
1221 return 0;
1225 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1226 * global state data i.e. idle routines
1228 * @pr: the ACPI processor
1230 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1232 int i;
1233 struct cpuidle_driver *drv = &acpi_idle_driver;
1235 if (!pr->flags.power_setup_done || !pr->flags.power)
1236 return -EINVAL;
1238 drv->safe_state_index = -1;
1239 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1240 drv->states[i].name[0] = '\0';
1241 drv->states[i].desc[0] = '\0';
1244 if (pr->flags.has_lpi)
1245 return acpi_processor_setup_lpi_states(pr);
1247 return acpi_processor_setup_cstates(pr);
1251 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1252 * device i.e. per-cpu data
1254 * @pr: the ACPI processor
1255 * @dev : the cpuidle device
1257 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1258 struct cpuidle_device *dev)
1260 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1261 return -EINVAL;
1263 dev->cpu = pr->id;
1264 if (pr->flags.has_lpi)
1265 return acpi_processor_ffh_lpi_probe(pr->id);
1267 return acpi_processor_setup_cpuidle_cx(pr, dev);
1270 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1272 int ret;
1274 ret = acpi_processor_get_lpi_info(pr);
1275 if (ret)
1276 ret = acpi_processor_get_cstate_info(pr);
1278 return ret;
1281 int acpi_processor_hotplug(struct acpi_processor *pr)
1283 int ret = 0;
1284 struct cpuidle_device *dev;
1286 if (disabled_by_idle_boot_param())
1287 return 0;
1289 if (!pr->flags.power_setup_done)
1290 return -ENODEV;
1292 dev = per_cpu(acpi_cpuidle_device, pr->id);
1293 cpuidle_pause_and_lock();
1294 cpuidle_disable_device(dev);
1295 ret = acpi_processor_get_power_info(pr);
1296 if (!ret && pr->flags.power) {
1297 acpi_processor_setup_cpuidle_dev(pr, dev);
1298 ret = cpuidle_enable_device(dev);
1300 cpuidle_resume_and_unlock();
1302 return ret;
1305 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1307 int cpu;
1308 struct acpi_processor *_pr;
1309 struct cpuidle_device *dev;
1311 if (disabled_by_idle_boot_param())
1312 return 0;
1314 if (!pr->flags.power_setup_done)
1315 return -ENODEV;
1318 * FIXME: Design the ACPI notification to make it once per
1319 * system instead of once per-cpu. This condition is a hack
1320 * to make the code that updates C-States be called once.
1323 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1325 /* Protect against cpu-hotplug */
1326 cpus_read_lock();
1327 cpuidle_pause_and_lock();
1329 /* Disable all cpuidle devices */
1330 for_each_online_cpu(cpu) {
1331 _pr = per_cpu(processors, cpu);
1332 if (!_pr || !_pr->flags.power_setup_done)
1333 continue;
1334 dev = per_cpu(acpi_cpuidle_device, cpu);
1335 cpuidle_disable_device(dev);
1338 /* Populate Updated C-state information */
1339 acpi_processor_get_power_info(pr);
1340 acpi_processor_setup_cpuidle_states(pr);
1342 /* Enable all cpuidle devices */
1343 for_each_online_cpu(cpu) {
1344 _pr = per_cpu(processors, cpu);
1345 if (!_pr || !_pr->flags.power_setup_done)
1346 continue;
1347 acpi_processor_get_power_info(_pr);
1348 if (_pr->flags.power) {
1349 dev = per_cpu(acpi_cpuidle_device, cpu);
1350 acpi_processor_setup_cpuidle_dev(_pr, dev);
1351 cpuidle_enable_device(dev);
1354 cpuidle_resume_and_unlock();
1355 cpus_read_unlock();
1358 return 0;
1361 static int acpi_processor_registered;
1363 int acpi_processor_power_init(struct acpi_processor *pr)
1365 int retval;
1366 struct cpuidle_device *dev;
1368 if (disabled_by_idle_boot_param())
1369 return 0;
1371 acpi_processor_cstate_first_run_checks();
1373 if (!acpi_processor_get_power_info(pr))
1374 pr->flags.power_setup_done = 1;
1377 * Install the idle handler if processor power management is supported.
1378 * Note that we use previously set idle handler will be used on
1379 * platforms that only support C1.
1381 if (pr->flags.power) {
1382 /* Register acpi_idle_driver if not already registered */
1383 if (!acpi_processor_registered) {
1384 acpi_processor_setup_cpuidle_states(pr);
1385 retval = cpuidle_register_driver(&acpi_idle_driver);
1386 if (retval)
1387 return retval;
1388 pr_debug("%s registered with cpuidle\n",
1389 acpi_idle_driver.name);
1392 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1393 if (!dev)
1394 return -ENOMEM;
1395 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1397 acpi_processor_setup_cpuidle_dev(pr, dev);
1399 /* Register per-cpu cpuidle_device. Cpuidle driver
1400 * must already be registered before registering device
1402 retval = cpuidle_register_device(dev);
1403 if (retval) {
1404 if (acpi_processor_registered == 0)
1405 cpuidle_unregister_driver(&acpi_idle_driver);
1406 return retval;
1408 acpi_processor_registered++;
1410 return 0;
1413 int acpi_processor_power_exit(struct acpi_processor *pr)
1415 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1417 if (disabled_by_idle_boot_param())
1418 return 0;
1420 if (pr->flags.power) {
1421 cpuidle_unregister_device(dev);
1422 acpi_processor_registered--;
1423 if (acpi_processor_registered == 0)
1424 cpuidle_unregister_driver(&acpi_idle_driver);
1426 kfree(dev);
1429 pr->flags.power_setup_done = 0;
1430 return 0;