1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * processor_idle - idle state submodule to the ACPI processor driver
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
13 #define pr_fmt(fmt) "ACPI: " fmt
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h> /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <linux/minmax.h>
23 #include <linux/perf_event.h>
24 #include <acpi/processor.h>
25 #include <linux/context_tracking.h>
28 * Include the apic definitions for x86 to have the APIC timer related defines
29 * available also for UP (on SMP it gets magically included via linux/smp.h).
30 * asm/acpi.h is not an option, as it would require more include magic. Also
31 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
38 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40 static unsigned int max_cstate __read_mostly
= ACPI_PROCESSOR_MAX_POWER
;
41 module_param(max_cstate
, uint
, 0400);
42 static bool nocst __read_mostly
;
43 module_param(nocst
, bool, 0400);
44 static bool bm_check_disable __read_mostly
;
45 module_param(bm_check_disable
, bool, 0400);
47 static unsigned int latency_factor __read_mostly
= 2;
48 module_param(latency_factor
, uint
, 0644);
50 static DEFINE_PER_CPU(struct cpuidle_device
*, acpi_cpuidle_device
);
52 struct cpuidle_driver acpi_idle_driver
= {
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
59 DEFINE_PER_CPU(struct acpi_processor_cx
* [CPUIDLE_STATE_MAX
], acpi_cstate
);
61 static int disabled_by_idle_boot_param(void)
63 return boot_option_idle_override
== IDLE_POLL
||
64 boot_option_idle_override
== IDLE_HALT
;
68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69 * For now disable this. Probably a bug somewhere else.
71 * To skip this limit, boot/load with a large max_cstate limit.
73 static int set_max_cstate(const struct dmi_system_id
*id
)
75 if (max_cstate
> ACPI_PROCESSOR_MAX_POWER
)
78 pr_notice("%s detected - limiting to C%ld max_cstate."
79 " Override with \"processor.max_cstate=%d\"\n", id
->ident
,
80 (long)id
->driver_data
, ACPI_PROCESSOR_MAX_POWER
+ 1);
82 max_cstate
= (long)id
->driver_data
;
87 static const struct dmi_system_id processor_power_dmi_table
[] = {
88 { set_max_cstate
, "Clevo 5600D", {
89 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
90 DMI_MATCH(DMI_BIOS_VERSION
,"SHE845M0.86C.0013.D.0302131307")},
92 { set_max_cstate
, "Pavilion zv5000", {
93 DMI_MATCH(DMI_SYS_VENDOR
, "Hewlett-Packard"),
94 DMI_MATCH(DMI_PRODUCT_NAME
,"Pavilion zv5000 (DS502A#ABA)")},
96 { set_max_cstate
, "Asus L8400B", {
97 DMI_MATCH(DMI_SYS_VENDOR
, "ASUSTeK Computer Inc."),
98 DMI_MATCH(DMI_PRODUCT_NAME
,"L8400B series Notebook PC")},
105 * Callers should disable interrupts before the call and enable
106 * interrupts after return.
108 static void __cpuidle
acpi_safe_halt(void)
110 if (!tif_need_resched()) {
112 raw_local_irq_disable();
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
119 * Some BIOS implementations switch to C3 in the published C2 state.
120 * This seems to be a common problem on AMD boxen, but other vendors
121 * are affected too. We pick the most conservative approach: we assume
122 * that the local APIC stops in both C2 and C3.
124 static void lapic_timer_check_state(int state
, struct acpi_processor
*pr
,
125 struct acpi_processor_cx
*cx
)
127 struct acpi_processor_power
*pwr
= &pr
->power
;
128 u8 type
= local_apic_timer_c2_ok
? ACPI_STATE_C3
: ACPI_STATE_C2
;
130 if (cpu_has(&cpu_data(pr
->id
), X86_FEATURE_ARAT
))
133 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E
))
134 type
= ACPI_STATE_C1
;
137 * Check, if one of the previous states already marked the lapic
140 if (pwr
->timer_broadcast_on_state
< state
)
143 if (cx
->type
>= type
)
144 pr
->power
.timer_broadcast_on_state
= state
;
147 static void __lapic_timer_propagate_broadcast(void *arg
)
149 struct acpi_processor
*pr
= arg
;
151 if (pr
->power
.timer_broadcast_on_state
< INT_MAX
)
152 tick_broadcast_enable();
154 tick_broadcast_disable();
157 static void lapic_timer_propagate_broadcast(struct acpi_processor
*pr
)
159 smp_call_function_single(pr
->id
, __lapic_timer_propagate_broadcast
,
163 /* Power(C) State timer broadcast control */
164 static bool lapic_timer_needs_broadcast(struct acpi_processor
*pr
,
165 struct acpi_processor_cx
*cx
)
167 return cx
- pr
->power
.states
>= pr
->power
.timer_broadcast_on_state
;
172 static void lapic_timer_check_state(int state
, struct acpi_processor
*pr
,
173 struct acpi_processor_cx
*cstate
) { }
174 static void lapic_timer_propagate_broadcast(struct acpi_processor
*pr
) { }
176 static bool lapic_timer_needs_broadcast(struct acpi_processor
*pr
,
177 struct acpi_processor_cx
*cx
)
184 #if defined(CONFIG_X86)
185 static void tsc_check_state(int state
)
187 switch (boot_cpu_data
.x86_vendor
) {
188 case X86_VENDOR_HYGON
:
190 case X86_VENDOR_INTEL
:
191 case X86_VENDOR_CENTAUR
:
192 case X86_VENDOR_ZHAOXIN
:
194 * AMD Fam10h TSC will tick in all
195 * C/P/S0/S1 states when this bit is set.
197 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
201 /* TSC could halt in idle, so notify users */
202 if (state
> ACPI_STATE_C1
)
203 mark_tsc_unstable("TSC halts in idle");
207 static void tsc_check_state(int state
) { return; }
210 static int acpi_processor_get_power_info_fadt(struct acpi_processor
*pr
)
216 /* if info is obtained from pblk/fadt, type equals state */
217 pr
->power
.states
[ACPI_STATE_C2
].type
= ACPI_STATE_C2
;
218 pr
->power
.states
[ACPI_STATE_C3
].type
= ACPI_STATE_C3
;
220 #ifndef CONFIG_HOTPLUG_CPU
222 * Check for P_LVL2_UP flag before entering C2 and above on
225 if ((num_online_cpus() > 1) &&
226 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
230 /* determine C2 and C3 address from pblk */
231 pr
->power
.states
[ACPI_STATE_C2
].address
= pr
->pblk
+ 4;
232 pr
->power
.states
[ACPI_STATE_C3
].address
= pr
->pblk
+ 5;
234 /* determine latencies from FADT */
235 pr
->power
.states
[ACPI_STATE_C2
].latency
= acpi_gbl_FADT
.c2_latency
;
236 pr
->power
.states
[ACPI_STATE_C3
].latency
= acpi_gbl_FADT
.c3_latency
;
239 * FADT specified C2 latency must be less than or equal to
242 if (acpi_gbl_FADT
.c2_latency
> ACPI_PROCESSOR_MAX_C2_LATENCY
) {
243 acpi_handle_debug(pr
->handle
, "C2 latency too large [%d]\n",
244 acpi_gbl_FADT
.c2_latency
);
246 pr
->power
.states
[ACPI_STATE_C2
].address
= 0;
250 * FADT supplied C3 latency must be less than or equal to
253 if (acpi_gbl_FADT
.c3_latency
> ACPI_PROCESSOR_MAX_C3_LATENCY
) {
254 acpi_handle_debug(pr
->handle
, "C3 latency too large [%d]\n",
255 acpi_gbl_FADT
.c3_latency
);
257 pr
->power
.states
[ACPI_STATE_C3
].address
= 0;
260 acpi_handle_debug(pr
->handle
, "lvl2[0x%08x] lvl3[0x%08x]\n",
261 pr
->power
.states
[ACPI_STATE_C2
].address
,
262 pr
->power
.states
[ACPI_STATE_C3
].address
);
264 snprintf(pr
->power
.states
[ACPI_STATE_C2
].desc
,
265 ACPI_CX_DESC_LEN
, "ACPI P_LVL2 IOPORT 0x%x",
266 pr
->power
.states
[ACPI_STATE_C2
].address
);
267 snprintf(pr
->power
.states
[ACPI_STATE_C3
].desc
,
268 ACPI_CX_DESC_LEN
, "ACPI P_LVL3 IOPORT 0x%x",
269 pr
->power
.states
[ACPI_STATE_C3
].address
);
274 static int acpi_processor_get_power_info_default(struct acpi_processor
*pr
)
276 if (!pr
->power
.states
[ACPI_STATE_C1
].valid
) {
277 /* set the first C-State to C1 */
278 /* all processors need to support C1 */
279 pr
->power
.states
[ACPI_STATE_C1
].type
= ACPI_STATE_C1
;
280 pr
->power
.states
[ACPI_STATE_C1
].valid
= 1;
281 pr
->power
.states
[ACPI_STATE_C1
].entry_method
= ACPI_CSTATE_HALT
;
283 snprintf(pr
->power
.states
[ACPI_STATE_C1
].desc
,
284 ACPI_CX_DESC_LEN
, "ACPI HLT");
286 /* the C0 state only exists as a filler in our array */
287 pr
->power
.states
[ACPI_STATE_C0
].valid
= 1;
291 static int acpi_processor_get_power_info_cst(struct acpi_processor
*pr
)
298 ret
= acpi_processor_evaluate_cst(pr
->handle
, pr
->id
, &pr
->power
);
302 if (!pr
->power
.count
)
305 pr
->flags
.has_cst
= 1;
309 static void acpi_processor_power_verify_c3(struct acpi_processor
*pr
,
310 struct acpi_processor_cx
*cx
)
312 static int bm_check_flag
= -1;
313 static int bm_control_flag
= -1;
320 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
321 * DMA transfers are used by any ISA device to avoid livelock.
322 * Note that we could disable Type-F DMA (as recommended by
323 * the erratum), but this is known to disrupt certain ISA
324 * devices thus we take the conservative approach.
326 if (errata
.piix4
.fdma
) {
327 acpi_handle_debug(pr
->handle
,
328 "C3 not supported on PIIX4 with Type-F DMA\n");
332 /* All the logic here assumes flags.bm_check is same across all CPUs */
333 if (bm_check_flag
== -1) {
334 /* Determine whether bm_check is needed based on CPU */
335 acpi_processor_power_init_bm_check(&(pr
->flags
), pr
->id
);
336 bm_check_flag
= pr
->flags
.bm_check
;
337 bm_control_flag
= pr
->flags
.bm_control
;
339 pr
->flags
.bm_check
= bm_check_flag
;
340 pr
->flags
.bm_control
= bm_control_flag
;
343 if (pr
->flags
.bm_check
) {
344 if (!pr
->flags
.bm_control
) {
345 if (pr
->flags
.has_cst
!= 1) {
346 /* bus mastering control is necessary */
347 acpi_handle_debug(pr
->handle
,
348 "C3 support requires BM control\n");
351 /* Here we enter C3 without bus mastering */
352 acpi_handle_debug(pr
->handle
,
353 "C3 support without BM control\n");
358 * WBINVD should be set in fadt, for C3 state to be
359 * supported on when bm_check is not required.
361 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_WBINVD
)) {
362 acpi_handle_debug(pr
->handle
,
363 "Cache invalidation should work properly"
364 " for C3 to be enabled on SMP systems\n");
370 * Otherwise we've met all of our C3 requirements.
371 * Normalize the C3 latency to expidite policy. Enable
372 * checking of bus mastering status (bm_check) so we can
373 * use this in our C3 policy
378 * On older chipsets, BM_RLD needs to be set
379 * in order for Bus Master activity to wake the
380 * system from C3. Newer chipsets handle DMA
381 * during C3 automatically and BM_RLD is a NOP.
382 * In either case, the proper way to
383 * handle BM_RLD is to set it and leave it set.
385 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
388 static void acpi_cst_latency_sort(struct acpi_processor_cx
*states
, size_t length
)
392 for (i
= 1; i
< length
; i
++) {
393 if (!states
[i
].valid
)
396 for (j
= i
- 1, k
= i
; j
>= 0; j
--) {
397 if (!states
[j
].valid
)
400 if (states
[j
].latency
> states
[k
].latency
)
401 swap(states
[j
].latency
, states
[k
].latency
);
408 static int acpi_processor_power_verify(struct acpi_processor
*pr
)
411 unsigned int working
= 0;
412 unsigned int last_latency
= 0;
413 unsigned int last_type
= 0;
414 bool buggy_latency
= false;
416 pr
->power
.timer_broadcast_on_state
= INT_MAX
;
418 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
419 struct acpi_processor_cx
*cx
= &pr
->power
.states
[i
];
433 acpi_processor_power_verify_c3(pr
, cx
);
438 if (cx
->type
>= last_type
&& cx
->latency
< last_latency
)
439 buggy_latency
= true;
440 last_latency
= cx
->latency
;
441 last_type
= cx
->type
;
443 lapic_timer_check_state(i
, pr
, cx
);
444 tsc_check_state(cx
->type
);
449 pr_notice("FW issue: working around C-state latencies out of order\n");
450 acpi_cst_latency_sort(&pr
->power
.states
[1], max_cstate
);
453 lapic_timer_propagate_broadcast(pr
);
458 static int acpi_processor_get_cstate_info(struct acpi_processor
*pr
)
464 /* NOTE: the idle thread may not be running while calling
467 /* Zero initialize all the C-states info. */
468 memset(pr
->power
.states
, 0, sizeof(pr
->power
.states
));
470 result
= acpi_processor_get_power_info_cst(pr
);
471 if (result
== -ENODEV
)
472 result
= acpi_processor_get_power_info_fadt(pr
);
477 acpi_processor_get_power_info_default(pr
);
479 pr
->power
.count
= acpi_processor_power_verify(pr
);
482 * if one state of type C2 or C3 is available, mark this
483 * CPU as being "idle manageable"
485 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
486 if (pr
->power
.states
[i
].valid
) {
496 * acpi_idle_bm_check - checks if bus master activity was detected
498 static int acpi_idle_bm_check(void)
502 if (bm_check_disable
)
505 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
507 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
509 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
510 * the true state of bus mastering activity; forcing us to
511 * manually check the BMIDEA bit of each IDE channel.
513 else if (errata
.piix4
.bmisx
) {
514 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
515 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
521 static __cpuidle
void io_idle(unsigned long addr
)
523 /* IO port based C-state */
527 /* No delay is needed if we are in guest */
528 if (boot_cpu_has(X86_FEATURE_HYPERVISOR
))
531 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
532 * not this code. Assume that any Intel systems using this
533 * are ancient and may need the dummy wait. This also assumes
534 * that the motivating chipset issue was Intel-only.
536 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
540 * Dummy wait op - must do something useless after P_LVL2 read
541 * because chipsets cannot guarantee that STPCLK# signal gets
542 * asserted in time to freeze execution properly
544 * This workaround has been in place since the original ACPI
545 * implementation was merged, circa 2002.
547 * If a profile is pointing to this instruction, please first
548 * consider moving your system to a more modern idle
551 inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
555 * acpi_idle_do_entry - enter idle state using the appropriate method
558 * Caller disables interrupt before call and enables interrupt after return.
560 static void __cpuidle
acpi_idle_do_entry(struct acpi_processor_cx
*cx
)
564 if (cx
->entry_method
== ACPI_CSTATE_FFH
) {
565 /* Call into architectural FFH based C-state */
566 acpi_processor_ffh_cstate_enter(cx
);
567 } else if (cx
->entry_method
== ACPI_CSTATE_HALT
) {
570 io_idle(cx
->address
);
573 perf_lopwr_cb(false);
577 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
578 * @dev: the target CPU
579 * @index: the index of suggested state
581 static void acpi_idle_play_dead(struct cpuidle_device
*dev
, int index
)
583 struct acpi_processor_cx
*cx
= per_cpu(acpi_cstate
[index
], dev
->cpu
);
585 ACPI_FLUSH_CPU_CACHE();
589 if (cx
->entry_method
== ACPI_CSTATE_HALT
)
591 else if (cx
->entry_method
== ACPI_CSTATE_SYSTEMIO
) {
592 io_idle(cx
->address
);
598 static __always_inline
bool acpi_idle_fallback_to_c1(struct acpi_processor
*pr
)
600 return IS_ENABLED(CONFIG_HOTPLUG_CPU
) && !pr
->flags
.has_cst
&&
601 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
);
604 static int c3_cpu_count
;
605 static DEFINE_RAW_SPINLOCK(c3_lock
);
608 * acpi_idle_enter_bm - enters C3 with proper BM handling
609 * @drv: cpuidle driver
610 * @pr: Target processor
611 * @cx: Target state context
612 * @index: index of target state
614 static int __cpuidle
acpi_idle_enter_bm(struct cpuidle_driver
*drv
,
615 struct acpi_processor
*pr
,
616 struct acpi_processor_cx
*cx
,
619 static struct acpi_processor_cx safe_cx
= {
620 .entry_method
= ACPI_CSTATE_HALT
,
625 * bm_check implies we need ARB_DIS
626 * bm_control implies whether we can do ARB_DIS
628 * That leaves a case where bm_check is set and bm_control is not set.
629 * In that case we cannot do much, we enter C3 without doing anything.
631 bool dis_bm
= pr
->flags
.bm_control
;
633 instrumentation_begin();
635 /* If we can skip BM, demote to a safe state. */
636 if (!cx
->bm_sts_skip
&& acpi_idle_bm_check()) {
638 index
= drv
->safe_state_index
;
640 cx
= this_cpu_read(acpi_cstate
[index
]);
648 raw_spin_lock(&c3_lock
);
650 /* Disable bus master arbitration when all CPUs are in C3 */
651 if (c3_cpu_count
== num_online_cpus())
652 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE
, 1);
653 raw_spin_unlock(&c3_lock
);
658 acpi_idle_do_entry(cx
);
662 /* Re-enable bus master arbitration */
664 raw_spin_lock(&c3_lock
);
665 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE
, 0);
667 raw_spin_unlock(&c3_lock
);
670 instrumentation_end();
675 static int __cpuidle
acpi_idle_enter(struct cpuidle_device
*dev
,
676 struct cpuidle_driver
*drv
, int index
)
678 struct acpi_processor_cx
*cx
= per_cpu(acpi_cstate
[index
], dev
->cpu
);
679 struct acpi_processor
*pr
;
681 pr
= __this_cpu_read(processors
);
685 if (cx
->type
!= ACPI_STATE_C1
) {
686 if (cx
->type
== ACPI_STATE_C3
&& pr
->flags
.bm_check
)
687 return acpi_idle_enter_bm(drv
, pr
, cx
, index
);
689 /* C2 to C1 demotion. */
690 if (acpi_idle_fallback_to_c1(pr
) && num_online_cpus() > 1) {
691 index
= ACPI_IDLE_STATE_START
;
692 cx
= per_cpu(acpi_cstate
[index
], dev
->cpu
);
696 if (cx
->type
== ACPI_STATE_C3
)
697 ACPI_FLUSH_CPU_CACHE();
699 acpi_idle_do_entry(cx
);
704 static int __cpuidle
acpi_idle_enter_s2idle(struct cpuidle_device
*dev
,
705 struct cpuidle_driver
*drv
, int index
)
707 struct acpi_processor_cx
*cx
= per_cpu(acpi_cstate
[index
], dev
->cpu
);
709 if (cx
->type
== ACPI_STATE_C3
) {
710 struct acpi_processor
*pr
= __this_cpu_read(processors
);
715 if (pr
->flags
.bm_check
) {
716 u8 bm_sts_skip
= cx
->bm_sts_skip
;
718 /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
720 acpi_idle_enter_bm(drv
, pr
, cx
, index
);
721 cx
->bm_sts_skip
= bm_sts_skip
;
725 ACPI_FLUSH_CPU_CACHE();
728 acpi_idle_do_entry(cx
);
733 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor
*pr
,
734 struct cpuidle_device
*dev
)
736 int i
, count
= ACPI_IDLE_STATE_START
;
737 struct acpi_processor_cx
*cx
;
738 struct cpuidle_state
*state
;
743 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
744 state
= &acpi_idle_driver
.states
[count
];
745 cx
= &pr
->power
.states
[i
];
750 per_cpu(acpi_cstate
[count
], dev
->cpu
) = cx
;
752 if (lapic_timer_needs_broadcast(pr
, cx
))
753 state
->flags
|= CPUIDLE_FLAG_TIMER_STOP
;
755 if (cx
->type
== ACPI_STATE_C3
) {
756 state
->flags
|= CPUIDLE_FLAG_TLB_FLUSHED
;
757 if (pr
->flags
.bm_check
)
758 state
->flags
|= CPUIDLE_FLAG_RCU_IDLE
;
762 if (count
== CPUIDLE_STATE_MAX
)
772 static int acpi_processor_setup_cstates(struct acpi_processor
*pr
)
775 struct acpi_processor_cx
*cx
;
776 struct cpuidle_state
*state
;
777 struct cpuidle_driver
*drv
= &acpi_idle_driver
;
782 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX
)) {
783 cpuidle_poll_state_init(drv
);
789 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
790 cx
= &pr
->power
.states
[i
];
795 state
= &drv
->states
[count
];
796 snprintf(state
->name
, CPUIDLE_NAME_LEN
, "C%d", i
);
797 strscpy(state
->desc
, cx
->desc
, CPUIDLE_DESC_LEN
);
798 state
->exit_latency
= cx
->latency
;
799 state
->target_residency
= cx
->latency
* latency_factor
;
800 state
->enter
= acpi_idle_enter
;
804 state
->enter_dead
= acpi_idle_play_dead
;
806 if (cx
->type
== ACPI_STATE_C1
|| cx
->type
== ACPI_STATE_C2
)
807 drv
->safe_state_index
= count
;
810 * Halt-induced C1 is not good for ->enter_s2idle, because it
811 * re-enables interrupts on exit. Moreover, C1 is generally not
812 * particularly interesting from the suspend-to-idle angle, so
813 * avoid C1 and the situations in which we may need to fall back
816 if (cx
->type
!= ACPI_STATE_C1
&& !acpi_idle_fallback_to_c1(pr
))
817 state
->enter_s2idle
= acpi_idle_enter_s2idle
;
820 if (count
== CPUIDLE_STATE_MAX
)
824 drv
->state_count
= count
;
832 static inline void acpi_processor_cstate_first_run_checks(void)
834 static int first_run
;
838 dmi_check_system(processor_power_dmi_table
);
839 max_cstate
= acpi_processor_cstate_check(max_cstate
);
840 if (max_cstate
< ACPI_C_STATES_MAX
)
841 pr_notice("processor limited to max C-state %d\n", max_cstate
);
848 acpi_processor_claim_cst_control();
852 static inline int disabled_by_idle_boot_param(void) { return 0; }
853 static inline void acpi_processor_cstate_first_run_checks(void) { }
854 static int acpi_processor_get_cstate_info(struct acpi_processor
*pr
)
859 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor
*pr
,
860 struct cpuidle_device
*dev
)
865 static int acpi_processor_setup_cstates(struct acpi_processor
*pr
)
870 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
872 struct acpi_lpi_states_array
{
874 unsigned int composite_states_size
;
875 struct acpi_lpi_state
*entries
;
876 struct acpi_lpi_state
*composite_states
[ACPI_PROCESSOR_MAX_POWER
];
879 static int obj_get_integer(union acpi_object
*obj
, u32
*value
)
881 if (obj
->type
!= ACPI_TYPE_INTEGER
)
884 *value
= obj
->integer
.value
;
888 static int acpi_processor_evaluate_lpi(acpi_handle handle
,
889 struct acpi_lpi_states_array
*info
)
893 int pkg_count
, state_idx
= 1, loop
;
894 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
895 union acpi_object
*lpi_data
;
896 struct acpi_lpi_state
*lpi_state
;
898 status
= acpi_evaluate_object(handle
, "_LPI", NULL
, &buffer
);
899 if (ACPI_FAILURE(status
)) {
900 acpi_handle_debug(handle
, "No _LPI, giving up\n");
904 lpi_data
= buffer
.pointer
;
906 /* There must be at least 4 elements = 3 elements + 1 package */
907 if (!lpi_data
|| lpi_data
->type
!= ACPI_TYPE_PACKAGE
||
908 lpi_data
->package
.count
< 4) {
909 pr_debug("not enough elements in _LPI\n");
914 pkg_count
= lpi_data
->package
.elements
[2].integer
.value
;
916 /* Validate number of power states. */
917 if (pkg_count
< 1 || pkg_count
!= lpi_data
->package
.count
- 3) {
918 pr_debug("count given by _LPI is not valid\n");
923 lpi_state
= kcalloc(pkg_count
, sizeof(*lpi_state
), GFP_KERNEL
);
929 info
->size
= pkg_count
;
930 info
->entries
= lpi_state
;
932 /* LPI States start at index 3 */
933 for (loop
= 3; state_idx
<= pkg_count
; loop
++, state_idx
++, lpi_state
++) {
934 union acpi_object
*element
, *pkg_elem
, *obj
;
936 element
= &lpi_data
->package
.elements
[loop
];
937 if (element
->type
!= ACPI_TYPE_PACKAGE
|| element
->package
.count
< 7)
940 pkg_elem
= element
->package
.elements
;
943 if (obj
->type
== ACPI_TYPE_BUFFER
) {
944 struct acpi_power_register
*reg
;
946 reg
= (struct acpi_power_register
*)obj
->buffer
.pointer
;
947 if (reg
->space_id
!= ACPI_ADR_SPACE_SYSTEM_IO
&&
948 reg
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
)
951 lpi_state
->address
= reg
->address
;
952 lpi_state
->entry_method
=
953 reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
?
954 ACPI_CSTATE_FFH
: ACPI_CSTATE_SYSTEMIO
;
955 } else if (obj
->type
== ACPI_TYPE_INTEGER
) {
956 lpi_state
->entry_method
= ACPI_CSTATE_INTEGER
;
957 lpi_state
->address
= obj
->integer
.value
;
962 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
965 if (obj
->type
== ACPI_TYPE_STRING
)
966 strscpy(lpi_state
->desc
, obj
->string
.pointer
,
969 lpi_state
->index
= state_idx
;
970 if (obj_get_integer(pkg_elem
+ 0, &lpi_state
->min_residency
)) {
971 pr_debug("No min. residency found, assuming 10 us\n");
972 lpi_state
->min_residency
= 10;
975 if (obj_get_integer(pkg_elem
+ 1, &lpi_state
->wake_latency
)) {
976 pr_debug("No wakeup residency found, assuming 10 us\n");
977 lpi_state
->wake_latency
= 10;
980 if (obj_get_integer(pkg_elem
+ 2, &lpi_state
->flags
))
981 lpi_state
->flags
= 0;
983 if (obj_get_integer(pkg_elem
+ 3, &lpi_state
->arch_flags
))
984 lpi_state
->arch_flags
= 0;
986 if (obj_get_integer(pkg_elem
+ 4, &lpi_state
->res_cnt_freq
))
987 lpi_state
->res_cnt_freq
= 1;
989 if (obj_get_integer(pkg_elem
+ 5, &lpi_state
->enable_parent_state
))
990 lpi_state
->enable_parent_state
= 0;
993 acpi_handle_debug(handle
, "Found %d power states\n", state_idx
);
995 kfree(buffer
.pointer
);
1000 * flat_state_cnt - the number of composite LPI states after the process of flattening
1002 static int flat_state_cnt
;
1005 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1007 * @local: local LPI state
1008 * @parent: parent LPI state
1009 * @result: composite LPI state
1011 static bool combine_lpi_states(struct acpi_lpi_state
*local
,
1012 struct acpi_lpi_state
*parent
,
1013 struct acpi_lpi_state
*result
)
1015 if (parent
->entry_method
== ACPI_CSTATE_INTEGER
) {
1016 if (!parent
->address
) /* 0 means autopromotable */
1018 result
->address
= local
->address
+ parent
->address
;
1020 result
->address
= parent
->address
;
1023 result
->min_residency
= max(local
->min_residency
, parent
->min_residency
);
1024 result
->wake_latency
= local
->wake_latency
+ parent
->wake_latency
;
1025 result
->enable_parent_state
= parent
->enable_parent_state
;
1026 result
->entry_method
= local
->entry_method
;
1028 result
->flags
= parent
->flags
;
1029 result
->arch_flags
= parent
->arch_flags
;
1030 result
->index
= parent
->index
;
1032 strscpy(result
->desc
, local
->desc
, ACPI_CX_DESC_LEN
);
1033 strlcat(result
->desc
, "+", ACPI_CX_DESC_LEN
);
1034 strlcat(result
->desc
, parent
->desc
, ACPI_CX_DESC_LEN
);
1038 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1040 static void stash_composite_state(struct acpi_lpi_states_array
*curr_level
,
1041 struct acpi_lpi_state
*t
)
1043 curr_level
->composite_states
[curr_level
->composite_states_size
++] = t
;
1046 static int flatten_lpi_states(struct acpi_processor
*pr
,
1047 struct acpi_lpi_states_array
*curr_level
,
1048 struct acpi_lpi_states_array
*prev_level
)
1050 int i
, j
, state_count
= curr_level
->size
;
1051 struct acpi_lpi_state
*p
, *t
= curr_level
->entries
;
1053 curr_level
->composite_states_size
= 0;
1054 for (j
= 0; j
< state_count
; j
++, t
++) {
1055 struct acpi_lpi_state
*flpi
;
1057 if (!(t
->flags
& ACPI_LPI_STATE_FLAGS_ENABLED
))
1060 if (flat_state_cnt
>= ACPI_PROCESSOR_MAX_POWER
) {
1061 pr_warn("Limiting number of LPI states to max (%d)\n",
1062 ACPI_PROCESSOR_MAX_POWER
);
1063 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1067 flpi
= &pr
->power
.lpi_states
[flat_state_cnt
];
1069 if (!prev_level
) { /* leaf/processor node */
1070 memcpy(flpi
, t
, sizeof(*t
));
1071 stash_composite_state(curr_level
, flpi
);
1076 for (i
= 0; i
< prev_level
->composite_states_size
; i
++) {
1077 p
= prev_level
->composite_states
[i
];
1078 if (t
->index
<= p
->enable_parent_state
&&
1079 combine_lpi_states(p
, t
, flpi
)) {
1080 stash_composite_state(curr_level
, flpi
);
1087 kfree(curr_level
->entries
);
1091 int __weak
acpi_processor_ffh_lpi_probe(unsigned int cpu
)
1096 static int acpi_processor_get_lpi_info(struct acpi_processor
*pr
)
1100 acpi_handle handle
= pr
->handle
, pr_ahandle
;
1101 struct acpi_device
*d
= NULL
;
1102 struct acpi_lpi_states_array info
[2], *tmp
, *prev
, *curr
;
1104 /* make sure our architecture has support */
1105 ret
= acpi_processor_ffh_lpi_probe(pr
->id
);
1106 if (ret
== -EOPNOTSUPP
)
1109 if (!osc_pc_lpi_support_confirmed
)
1112 if (!acpi_has_method(handle
, "_LPI"))
1118 handle
= pr
->handle
;
1119 ret
= acpi_processor_evaluate_lpi(handle
, prev
);
1122 flatten_lpi_states(pr
, prev
, NULL
);
1124 status
= acpi_get_parent(handle
, &pr_ahandle
);
1125 while (ACPI_SUCCESS(status
)) {
1126 d
= acpi_fetch_acpi_dev(pr_ahandle
);
1130 handle
= pr_ahandle
;
1132 if (strcmp(acpi_device_hid(d
), ACPI_PROCESSOR_CONTAINER_HID
))
1135 /* can be optional ? */
1136 if (!acpi_has_method(handle
, "_LPI"))
1139 ret
= acpi_processor_evaluate_lpi(handle
, curr
);
1143 /* flatten all the LPI states in this level of hierarchy */
1144 flatten_lpi_states(pr
, curr
, prev
);
1146 tmp
= prev
, prev
= curr
, curr
= tmp
;
1148 status
= acpi_get_parent(handle
, &pr_ahandle
);
1151 pr
->power
.count
= flat_state_cnt
;
1152 /* reset the index after flattening */
1153 for (i
= 0; i
< pr
->power
.count
; i
++)
1154 pr
->power
.lpi_states
[i
].index
= i
;
1156 /* Tell driver that _LPI is supported. */
1157 pr
->flags
.has_lpi
= 1;
1158 pr
->flags
.power
= 1;
1163 int __weak
acpi_processor_ffh_lpi_enter(struct acpi_lpi_state
*lpi
)
1169 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1170 * @dev: the target CPU
1171 * @drv: cpuidle driver containing cpuidle state info
1172 * @index: index of target state
1174 * Return: 0 for success or negative value for error
1176 static int acpi_idle_lpi_enter(struct cpuidle_device
*dev
,
1177 struct cpuidle_driver
*drv
, int index
)
1179 struct acpi_processor
*pr
;
1180 struct acpi_lpi_state
*lpi
;
1182 pr
= __this_cpu_read(processors
);
1187 lpi
= &pr
->power
.lpi_states
[index
];
1188 if (lpi
->entry_method
== ACPI_CSTATE_FFH
)
1189 return acpi_processor_ffh_lpi_enter(lpi
);
1194 static int acpi_processor_setup_lpi_states(struct acpi_processor
*pr
)
1197 struct acpi_lpi_state
*lpi
;
1198 struct cpuidle_state
*state
;
1199 struct cpuidle_driver
*drv
= &acpi_idle_driver
;
1201 if (!pr
->flags
.has_lpi
)
1204 for (i
= 0; i
< pr
->power
.count
&& i
< CPUIDLE_STATE_MAX
; i
++) {
1205 lpi
= &pr
->power
.lpi_states
[i
];
1207 state
= &drv
->states
[i
];
1208 snprintf(state
->name
, CPUIDLE_NAME_LEN
, "LPI-%d", i
);
1209 strscpy(state
->desc
, lpi
->desc
, CPUIDLE_DESC_LEN
);
1210 state
->exit_latency
= lpi
->wake_latency
;
1211 state
->target_residency
= lpi
->min_residency
;
1212 state
->flags
|= arch_get_idle_state_flags(lpi
->arch_flags
);
1213 if (i
!= 0 && lpi
->entry_method
== ACPI_CSTATE_FFH
)
1214 state
->flags
|= CPUIDLE_FLAG_RCU_IDLE
;
1215 state
->enter
= acpi_idle_lpi_enter
;
1216 drv
->safe_state_index
= i
;
1219 drv
->state_count
= i
;
1225 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1226 * global state data i.e. idle routines
1228 * @pr: the ACPI processor
1230 static int acpi_processor_setup_cpuidle_states(struct acpi_processor
*pr
)
1233 struct cpuidle_driver
*drv
= &acpi_idle_driver
;
1235 if (!pr
->flags
.power_setup_done
|| !pr
->flags
.power
)
1238 drv
->safe_state_index
= -1;
1239 for (i
= ACPI_IDLE_STATE_START
; i
< CPUIDLE_STATE_MAX
; i
++) {
1240 drv
->states
[i
].name
[0] = '\0';
1241 drv
->states
[i
].desc
[0] = '\0';
1244 if (pr
->flags
.has_lpi
)
1245 return acpi_processor_setup_lpi_states(pr
);
1247 return acpi_processor_setup_cstates(pr
);
1251 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1252 * device i.e. per-cpu data
1254 * @pr: the ACPI processor
1255 * @dev : the cpuidle device
1257 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor
*pr
,
1258 struct cpuidle_device
*dev
)
1260 if (!pr
->flags
.power_setup_done
|| !pr
->flags
.power
|| !dev
)
1264 if (pr
->flags
.has_lpi
)
1265 return acpi_processor_ffh_lpi_probe(pr
->id
);
1267 return acpi_processor_setup_cpuidle_cx(pr
, dev
);
1270 static int acpi_processor_get_power_info(struct acpi_processor
*pr
)
1274 ret
= acpi_processor_get_lpi_info(pr
);
1276 ret
= acpi_processor_get_cstate_info(pr
);
1281 int acpi_processor_hotplug(struct acpi_processor
*pr
)
1284 struct cpuidle_device
*dev
;
1286 if (disabled_by_idle_boot_param())
1289 if (!pr
->flags
.power_setup_done
)
1292 dev
= per_cpu(acpi_cpuidle_device
, pr
->id
);
1293 cpuidle_pause_and_lock();
1294 cpuidle_disable_device(dev
);
1295 ret
= acpi_processor_get_power_info(pr
);
1296 if (!ret
&& pr
->flags
.power
) {
1297 acpi_processor_setup_cpuidle_dev(pr
, dev
);
1298 ret
= cpuidle_enable_device(dev
);
1300 cpuidle_resume_and_unlock();
1305 int acpi_processor_power_state_has_changed(struct acpi_processor
*pr
)
1308 struct acpi_processor
*_pr
;
1309 struct cpuidle_device
*dev
;
1311 if (disabled_by_idle_boot_param())
1314 if (!pr
->flags
.power_setup_done
)
1318 * FIXME: Design the ACPI notification to make it once per
1319 * system instead of once per-cpu. This condition is a hack
1320 * to make the code that updates C-States be called once.
1323 if (pr
->id
== 0 && cpuidle_get_driver() == &acpi_idle_driver
) {
1325 /* Protect against cpu-hotplug */
1327 cpuidle_pause_and_lock();
1329 /* Disable all cpuidle devices */
1330 for_each_online_cpu(cpu
) {
1331 _pr
= per_cpu(processors
, cpu
);
1332 if (!_pr
|| !_pr
->flags
.power_setup_done
)
1334 dev
= per_cpu(acpi_cpuidle_device
, cpu
);
1335 cpuidle_disable_device(dev
);
1338 /* Populate Updated C-state information */
1339 acpi_processor_get_power_info(pr
);
1340 acpi_processor_setup_cpuidle_states(pr
);
1342 /* Enable all cpuidle devices */
1343 for_each_online_cpu(cpu
) {
1344 _pr
= per_cpu(processors
, cpu
);
1345 if (!_pr
|| !_pr
->flags
.power_setup_done
)
1347 acpi_processor_get_power_info(_pr
);
1348 if (_pr
->flags
.power
) {
1349 dev
= per_cpu(acpi_cpuidle_device
, cpu
);
1350 acpi_processor_setup_cpuidle_dev(_pr
, dev
);
1351 cpuidle_enable_device(dev
);
1354 cpuidle_resume_and_unlock();
1361 static int acpi_processor_registered
;
1363 int acpi_processor_power_init(struct acpi_processor
*pr
)
1366 struct cpuidle_device
*dev
;
1368 if (disabled_by_idle_boot_param())
1371 acpi_processor_cstate_first_run_checks();
1373 if (!acpi_processor_get_power_info(pr
))
1374 pr
->flags
.power_setup_done
= 1;
1377 * Install the idle handler if processor power management is supported.
1378 * Note that we use previously set idle handler will be used on
1379 * platforms that only support C1.
1381 if (pr
->flags
.power
) {
1382 /* Register acpi_idle_driver if not already registered */
1383 if (!acpi_processor_registered
) {
1384 acpi_processor_setup_cpuidle_states(pr
);
1385 retval
= cpuidle_register_driver(&acpi_idle_driver
);
1388 pr_debug("%s registered with cpuidle\n",
1389 acpi_idle_driver
.name
);
1392 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1395 per_cpu(acpi_cpuidle_device
, pr
->id
) = dev
;
1397 acpi_processor_setup_cpuidle_dev(pr
, dev
);
1399 /* Register per-cpu cpuidle_device. Cpuidle driver
1400 * must already be registered before registering device
1402 retval
= cpuidle_register_device(dev
);
1404 if (acpi_processor_registered
== 0)
1405 cpuidle_unregister_driver(&acpi_idle_driver
);
1408 acpi_processor_registered
++;
1413 int acpi_processor_power_exit(struct acpi_processor
*pr
)
1415 struct cpuidle_device
*dev
= per_cpu(acpi_cpuidle_device
, pr
->id
);
1417 if (disabled_by_idle_boot_param())
1420 if (pr
->flags
.power
) {
1421 cpuidle_unregister_device(dev
);
1422 acpi_processor_registered
--;
1423 if (acpi_processor_registered
== 0)
1424 cpuidle_unregister_driver(&acpi_idle_driver
);
1429 pr
->flags
.power_setup_done
= 0;