Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / atm / nicstar.c
blob27153d6bc7815fe740ae363b360da0438014fa36
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * nicstar.c
5 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
7 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
8 * It was taken from the frle-0.22 device driver.
9 * As the file doesn't have a copyright notice, in the file
10 * nicstarmac.copyright I put the copyright notice from the
11 * frle-0.22 device driver.
12 * Some code is based on the nicstar driver by M. Welsh.
14 * Author: Rui Prior (rprior@inescn.pt)
15 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
18 * (C) INESC 1999
22 * IMPORTANT INFORMATION
24 * There are currently three types of spinlocks:
26 * 1 - Per card interrupt spinlock (to protect structures and such)
27 * 2 - Per SCQ scq spinlock
28 * 3 - Per card resource spinlock (to access registers, etc.)
30 * These must NEVER be grabbed in reverse order.
34 /* Header files */
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/skbuff.h>
39 #include <linux/atmdev.h>
40 #include <linux/atm.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/types.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/sched.h>
48 #include <linux/timer.h>
49 #include <linux/interrupt.h>
50 #include <linux/bitops.h>
51 #include <linux/slab.h>
52 #include <linux/idr.h>
53 #include <asm/io.h>
54 #include <linux/uaccess.h>
55 #include <linux/atomic.h>
56 #include <linux/etherdevice.h>
57 #include "nicstar.h"
58 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
59 #include "suni.h"
60 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
61 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
62 #include "idt77105.h"
63 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
65 /* Additional code */
67 #include "nicstarmac.c"
69 /* Configurable parameters */
71 #undef PHY_LOOPBACK
72 #undef TX_DEBUG
73 #undef RX_DEBUG
74 #undef GENERAL_DEBUG
75 #undef EXTRA_DEBUG
77 /* Do not touch these */
79 #ifdef TX_DEBUG
80 #define TXPRINTK(args...) printk(args)
81 #else
82 #define TXPRINTK(args...)
83 #endif /* TX_DEBUG */
85 #ifdef RX_DEBUG
86 #define RXPRINTK(args...) printk(args)
87 #else
88 #define RXPRINTK(args...)
89 #endif /* RX_DEBUG */
91 #ifdef GENERAL_DEBUG
92 #define PRINTK(args...) printk(args)
93 #else
94 #define PRINTK(args...) do {} while (0)
95 #endif /* GENERAL_DEBUG */
97 #ifdef EXTRA_DEBUG
98 #define XPRINTK(args...) printk(args)
99 #else
100 #define XPRINTK(args...)
101 #endif /* EXTRA_DEBUG */
103 /* Macros */
105 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
107 #define NS_DELAY mdelay(1)
109 #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b)))
111 #ifndef ATM_SKB
112 #define ATM_SKB(s) (&(s)->atm)
113 #endif
115 #define scq_virt_to_bus(scq, p) \
116 (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
118 /* Function declarations */
120 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
121 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
122 int count);
123 static int ns_init_card(int i, struct pci_dev *pcidev);
124 static void ns_init_card_error(ns_dev * card, int error);
125 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
126 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
127 static void push_rxbufs(ns_dev *, struct sk_buff *);
128 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
129 static int ns_open(struct atm_vcc *vcc);
130 static void ns_close(struct atm_vcc *vcc);
131 static void fill_tst(ns_dev * card, int n, vc_map * vc);
132 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
133 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb);
134 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
135 struct sk_buff *skb, bool may_sleep);
136 static void process_tsq(ns_dev * card);
137 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
138 static void process_rsq(ns_dev * card);
139 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
140 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
141 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
142 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
143 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
144 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
145 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
146 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
147 #ifdef EXTRA_DEBUG
148 static void which_list(ns_dev * card, struct sk_buff *skb);
149 #endif
150 static void ns_poll(struct timer_list *unused);
151 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
152 unsigned long addr);
153 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
155 /* Global variables */
157 static struct ns_dev *cards[NS_MAX_CARDS];
158 static unsigned num_cards;
159 static const struct atmdev_ops atm_ops = {
160 .open = ns_open,
161 .close = ns_close,
162 .ioctl = ns_ioctl,
163 .send = ns_send,
164 .send_bh = ns_send_bh,
165 .phy_put = ns_phy_put,
166 .phy_get = ns_phy_get,
167 .proc_read = ns_proc_read,
168 .owner = THIS_MODULE,
171 static struct timer_list ns_timer;
172 static char *mac[NS_MAX_CARDS];
173 module_param_array(mac, charp, NULL, 0);
174 MODULE_DESCRIPTION("ATM NIC driver for IDT 77201/77211 \"NICStAR\" and Fore ForeRunnerLE.");
175 MODULE_LICENSE("GPL");
177 /* Functions */
179 static int nicstar_init_one(struct pci_dev *pcidev,
180 const struct pci_device_id *ent)
182 static int index = -1;
183 unsigned int error;
185 index++;
186 cards[index] = NULL;
188 error = ns_init_card(index, pcidev);
189 if (error) {
190 cards[index--] = NULL; /* don't increment index */
191 goto err_out;
194 return 0;
195 err_out:
196 return -ENODEV;
199 static void nicstar_remove_one(struct pci_dev *pcidev)
201 int i, j;
202 ns_dev *card = pci_get_drvdata(pcidev);
203 struct sk_buff *hb;
204 struct sk_buff *iovb;
205 struct sk_buff *lb;
206 struct sk_buff *sb;
208 i = card->index;
210 if (cards[i] == NULL)
211 return;
213 if (card->atmdev->phy && card->atmdev->phy->stop)
214 card->atmdev->phy->stop(card->atmdev);
216 /* Stop everything */
217 writel(0x00000000, card->membase + CFG);
219 /* De-register device */
220 atm_dev_deregister(card->atmdev);
222 /* Disable PCI device */
223 pci_disable_device(pcidev);
225 /* Free up resources */
226 j = 0;
227 PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
228 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
229 dev_kfree_skb_any(hb);
230 j++;
232 PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
233 j = 0;
234 PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
235 card->iovpool.count);
236 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
237 dev_kfree_skb_any(iovb);
238 j++;
240 PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
241 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
242 dev_kfree_skb_any(lb);
243 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
244 dev_kfree_skb_any(sb);
245 free_scq(card, card->scq0, NULL);
246 for (j = 0; j < NS_FRSCD_NUM; j++) {
247 if (card->scd2vc[j] != NULL)
248 free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
250 idr_destroy(&card->idr);
251 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
252 card->rsq.org, card->rsq.dma);
253 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
254 card->tsq.org, card->tsq.dma);
255 free_irq(card->pcidev->irq, card);
256 iounmap(card->membase);
257 kfree(card);
260 static const struct pci_device_id nicstar_pci_tbl[] = {
261 { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
262 {0,} /* terminate list */
265 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
267 static struct pci_driver nicstar_driver = {
268 .name = "nicstar",
269 .id_table = nicstar_pci_tbl,
270 .probe = nicstar_init_one,
271 .remove = nicstar_remove_one,
274 static int __init nicstar_init(void)
276 unsigned error = 0; /* Initialized to remove compile warning */
278 XPRINTK("nicstar: nicstar_init() called.\n");
280 error = pci_register_driver(&nicstar_driver);
282 TXPRINTK("nicstar: TX debug enabled.\n");
283 RXPRINTK("nicstar: RX debug enabled.\n");
284 PRINTK("nicstar: General debug enabled.\n");
285 #ifdef PHY_LOOPBACK
286 printk("nicstar: using PHY loopback.\n");
287 #endif /* PHY_LOOPBACK */
288 XPRINTK("nicstar: nicstar_init() returned.\n");
290 if (!error) {
291 timer_setup(&ns_timer, ns_poll, 0);
292 ns_timer.expires = jiffies + NS_POLL_PERIOD;
293 add_timer(&ns_timer);
296 return error;
299 static void __exit nicstar_cleanup(void)
301 XPRINTK("nicstar: nicstar_cleanup() called.\n");
303 del_timer_sync(&ns_timer);
305 pci_unregister_driver(&nicstar_driver);
307 XPRINTK("nicstar: nicstar_cleanup() returned.\n");
310 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
312 unsigned long flags;
313 u32 data;
314 sram_address <<= 2;
315 sram_address &= 0x0007FFFC; /* address must be dword aligned */
316 sram_address |= 0x50000000; /* SRAM read command */
317 spin_lock_irqsave(&card->res_lock, flags);
318 while (CMD_BUSY(card)) ;
319 writel(sram_address, card->membase + CMD);
320 while (CMD_BUSY(card)) ;
321 data = readl(card->membase + DR0);
322 spin_unlock_irqrestore(&card->res_lock, flags);
323 return data;
326 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
327 int count)
329 unsigned long flags;
330 int i, c;
331 count--; /* count range now is 0..3 instead of 1..4 */
332 c = count;
333 c <<= 2; /* to use increments of 4 */
334 spin_lock_irqsave(&card->res_lock, flags);
335 while (CMD_BUSY(card)) ;
336 for (i = 0; i <= c; i += 4)
337 writel(*(value++), card->membase + i);
338 /* Note: DR# registers are the first 4 dwords in nicstar's memspace,
339 so card->membase + DR0 == card->membase */
340 sram_address <<= 2;
341 sram_address &= 0x0007FFFC;
342 sram_address |= (0x40000000 | count);
343 writel(sram_address, card->membase + CMD);
344 spin_unlock_irqrestore(&card->res_lock, flags);
347 static int ns_init_card(int i, struct pci_dev *pcidev)
349 int j;
350 struct ns_dev *card = NULL;
351 unsigned char pci_latency;
352 unsigned error;
353 u32 data;
354 u32 u32d[4];
355 u32 ns_cfg_rctsize;
356 int bcount;
357 unsigned long membase;
359 error = 0;
361 if (pci_enable_device(pcidev)) {
362 printk("nicstar%d: can't enable PCI device\n", i);
363 error = 2;
364 ns_init_card_error(card, error);
365 return error;
367 if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
368 printk(KERN_WARNING
369 "nicstar%d: No suitable DMA available.\n", i);
370 error = 2;
371 ns_init_card_error(card, error);
372 return error;
375 card = kmalloc(sizeof(*card), GFP_KERNEL);
376 if (!card) {
377 printk
378 ("nicstar%d: can't allocate memory for device structure.\n",
380 error = 2;
381 ns_init_card_error(card, error);
382 return error;
384 cards[i] = card;
385 spin_lock_init(&card->int_lock);
386 spin_lock_init(&card->res_lock);
388 pci_set_drvdata(pcidev, card);
390 card->index = i;
391 card->atmdev = NULL;
392 card->pcidev = pcidev;
393 membase = pci_resource_start(pcidev, 1);
394 card->membase = ioremap(membase, NS_IOREMAP_SIZE);
395 if (!card->membase) {
396 printk("nicstar%d: can't ioremap() membase.\n", i);
397 error = 3;
398 ns_init_card_error(card, error);
399 return error;
401 PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
403 pci_set_master(pcidev);
405 if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
406 printk("nicstar%d: can't read PCI latency timer.\n", i);
407 error = 6;
408 ns_init_card_error(card, error);
409 return error;
411 #ifdef NS_PCI_LATENCY
412 if (pci_latency < NS_PCI_LATENCY) {
413 PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
414 NS_PCI_LATENCY);
415 for (j = 1; j < 4; j++) {
416 if (pci_write_config_byte
417 (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
418 break;
420 if (j == 4) {
421 printk
422 ("nicstar%d: can't set PCI latency timer to %d.\n",
423 i, NS_PCI_LATENCY);
424 error = 7;
425 ns_init_card_error(card, error);
426 return error;
429 #endif /* NS_PCI_LATENCY */
431 /* Clear timer overflow */
432 data = readl(card->membase + STAT);
433 if (data & NS_STAT_TMROF)
434 writel(NS_STAT_TMROF, card->membase + STAT);
436 /* Software reset */
437 writel(NS_CFG_SWRST, card->membase + CFG);
438 NS_DELAY;
439 writel(0x00000000, card->membase + CFG);
441 /* PHY reset */
442 writel(0x00000008, card->membase + GP);
443 NS_DELAY;
444 writel(0x00000001, card->membase + GP);
445 NS_DELAY;
446 while (CMD_BUSY(card)) ;
447 writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
448 NS_DELAY;
450 /* Detect PHY type */
451 while (CMD_BUSY(card)) ;
452 writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
453 while (CMD_BUSY(card)) ;
454 data = readl(card->membase + DR0);
455 switch (data) {
456 case 0x00000009:
457 printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
458 card->max_pcr = ATM_25_PCR;
459 while (CMD_BUSY(card)) ;
460 writel(0x00000008, card->membase + DR0);
461 writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
462 /* Clear an eventual pending interrupt */
463 writel(NS_STAT_SFBQF, card->membase + STAT);
464 #ifdef PHY_LOOPBACK
465 while (CMD_BUSY(card)) ;
466 writel(0x00000022, card->membase + DR0);
467 writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
468 #endif /* PHY_LOOPBACK */
469 break;
470 case 0x00000030:
471 case 0x00000031:
472 printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
473 card->max_pcr = ATM_OC3_PCR;
474 #ifdef PHY_LOOPBACK
475 while (CMD_BUSY(card)) ;
476 writel(0x00000002, card->membase + DR0);
477 writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
478 #endif /* PHY_LOOPBACK */
479 break;
480 default:
481 printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
482 error = 8;
483 ns_init_card_error(card, error);
484 return error;
486 writel(0x00000000, card->membase + GP);
488 /* Determine SRAM size */
489 data = 0x76543210;
490 ns_write_sram(card, 0x1C003, &data, 1);
491 data = 0x89ABCDEF;
492 ns_write_sram(card, 0x14003, &data, 1);
493 if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
494 ns_read_sram(card, 0x1C003) == 0x76543210)
495 card->sram_size = 128;
496 else
497 card->sram_size = 32;
498 PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
500 card->rct_size = NS_MAX_RCTSIZE;
502 #if (NS_MAX_RCTSIZE == 4096)
503 if (card->sram_size == 128)
504 printk
505 ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
507 #elif (NS_MAX_RCTSIZE == 16384)
508 if (card->sram_size == 32) {
509 printk
510 ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
512 card->rct_size = 4096;
514 #else
515 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
516 #endif
518 card->vpibits = NS_VPIBITS;
519 if (card->rct_size == 4096)
520 card->vcibits = 12 - NS_VPIBITS;
521 else /* card->rct_size == 16384 */
522 card->vcibits = 14 - NS_VPIBITS;
524 /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
525 if (mac[i] == NULL)
526 nicstar_init_eprom(card->membase);
528 /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
529 writel(0x00000000, card->membase + VPM);
531 card->intcnt = 0;
532 if (request_irq
533 (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
534 pr_err("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
535 error = 9;
536 ns_init_card_error(card, error);
537 return error;
540 /* Initialize TSQ */
541 card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
542 NS_TSQSIZE + NS_TSQ_ALIGNMENT,
543 &card->tsq.dma, GFP_KERNEL);
544 if (card->tsq.org == NULL) {
545 printk("nicstar%d: can't allocate TSQ.\n", i);
546 error = 10;
547 ns_init_card_error(card, error);
548 return error;
550 card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
551 card->tsq.next = card->tsq.base;
552 card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
553 for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
554 ns_tsi_init(card->tsq.base + j);
555 writel(0x00000000, card->membase + TSQH);
556 writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
557 PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
559 /* Initialize RSQ */
560 card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
561 NS_RSQSIZE + NS_RSQ_ALIGNMENT,
562 &card->rsq.dma, GFP_KERNEL);
563 if (card->rsq.org == NULL) {
564 printk("nicstar%d: can't allocate RSQ.\n", i);
565 error = 11;
566 ns_init_card_error(card, error);
567 return error;
569 card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
570 card->rsq.next = card->rsq.base;
571 card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
572 for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
573 ns_rsqe_init(card->rsq.base + j);
574 writel(0x00000000, card->membase + RSQH);
575 writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
576 PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
578 /* Initialize SCQ0, the only VBR SCQ used */
579 card->scq1 = NULL;
580 card->scq2 = NULL;
581 card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
582 if (card->scq0 == NULL) {
583 printk("nicstar%d: can't get SCQ0.\n", i);
584 error = 12;
585 ns_init_card_error(card, error);
586 return error;
588 u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
589 u32d[1] = (u32) 0x00000000;
590 u32d[2] = (u32) 0xffffffff;
591 u32d[3] = (u32) 0x00000000;
592 ns_write_sram(card, NS_VRSCD0, u32d, 4);
593 ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
594 ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
595 card->scq0->scd = NS_VRSCD0;
596 PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
598 /* Initialize TSTs */
599 card->tst_addr = NS_TST0;
600 card->tst_free_entries = NS_TST_NUM_ENTRIES;
601 data = NS_TST_OPCODE_VARIABLE;
602 for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
603 ns_write_sram(card, NS_TST0 + j, &data, 1);
604 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
605 ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
606 for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
607 ns_write_sram(card, NS_TST1 + j, &data, 1);
608 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
609 ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
610 for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
611 card->tste2vc[j] = NULL;
612 writel(NS_TST0 << 2, card->membase + TSTB);
614 /* Initialize RCT. AAL type is set on opening the VC. */
615 #ifdef RCQ_SUPPORT
616 u32d[0] = NS_RCTE_RAWCELLINTEN;
617 #else
618 u32d[0] = 0x00000000;
619 #endif /* RCQ_SUPPORT */
620 u32d[1] = 0x00000000;
621 u32d[2] = 0x00000000;
622 u32d[3] = 0xFFFFFFFF;
623 for (j = 0; j < card->rct_size; j++)
624 ns_write_sram(card, j * 4, u32d, 4);
626 memset(card->vcmap, 0, sizeof(card->vcmap));
628 for (j = 0; j < NS_FRSCD_NUM; j++)
629 card->scd2vc[j] = NULL;
631 /* Initialize buffer levels */
632 card->sbnr.min = MIN_SB;
633 card->sbnr.init = NUM_SB;
634 card->sbnr.max = MAX_SB;
635 card->lbnr.min = MIN_LB;
636 card->lbnr.init = NUM_LB;
637 card->lbnr.max = MAX_LB;
638 card->iovnr.min = MIN_IOVB;
639 card->iovnr.init = NUM_IOVB;
640 card->iovnr.max = MAX_IOVB;
641 card->hbnr.min = MIN_HB;
642 card->hbnr.init = NUM_HB;
643 card->hbnr.max = MAX_HB;
645 card->sm_handle = NULL;
646 card->sm_addr = 0x00000000;
647 card->lg_handle = NULL;
648 card->lg_addr = 0x00000000;
650 card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
652 idr_init(&card->idr);
654 /* Pre-allocate some huge buffers */
655 skb_queue_head_init(&card->hbpool.queue);
656 card->hbpool.count = 0;
657 for (j = 0; j < NUM_HB; j++) {
658 struct sk_buff *hb;
659 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
660 if (hb == NULL) {
661 printk
662 ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
663 i, j, NUM_HB);
664 error = 13;
665 ns_init_card_error(card, error);
666 return error;
668 NS_PRV_BUFTYPE(hb) = BUF_NONE;
669 skb_queue_tail(&card->hbpool.queue, hb);
670 card->hbpool.count++;
673 /* Allocate large buffers */
674 skb_queue_head_init(&card->lbpool.queue);
675 card->lbpool.count = 0; /* Not used */
676 for (j = 0; j < NUM_LB; j++) {
677 struct sk_buff *lb;
678 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
679 if (lb == NULL) {
680 printk
681 ("nicstar%d: can't allocate %dth of %d large buffers.\n",
682 i, j, NUM_LB);
683 error = 14;
684 ns_init_card_error(card, error);
685 return error;
687 NS_PRV_BUFTYPE(lb) = BUF_LG;
688 skb_queue_tail(&card->lbpool.queue, lb);
689 skb_reserve(lb, NS_SMBUFSIZE);
690 push_rxbufs(card, lb);
691 /* Due to the implementation of push_rxbufs() this is 1, not 0 */
692 if (j == 1) {
693 card->rcbuf = lb;
694 card->rawcell = (struct ns_rcqe *) lb->data;
695 card->rawch = NS_PRV_DMA(lb);
698 /* Test for strange behaviour which leads to crashes */
699 if ((bcount =
700 ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
701 printk
702 ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
703 i, j, bcount);
704 error = 14;
705 ns_init_card_error(card, error);
706 return error;
709 /* Allocate small buffers */
710 skb_queue_head_init(&card->sbpool.queue);
711 card->sbpool.count = 0; /* Not used */
712 for (j = 0; j < NUM_SB; j++) {
713 struct sk_buff *sb;
714 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
715 if (sb == NULL) {
716 printk
717 ("nicstar%d: can't allocate %dth of %d small buffers.\n",
718 i, j, NUM_SB);
719 error = 15;
720 ns_init_card_error(card, error);
721 return error;
723 NS_PRV_BUFTYPE(sb) = BUF_SM;
724 skb_queue_tail(&card->sbpool.queue, sb);
725 skb_reserve(sb, NS_AAL0_HEADER);
726 push_rxbufs(card, sb);
728 /* Test for strange behaviour which leads to crashes */
729 if ((bcount =
730 ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
731 printk
732 ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
733 i, j, bcount);
734 error = 15;
735 ns_init_card_error(card, error);
736 return error;
739 /* Allocate iovec buffers */
740 skb_queue_head_init(&card->iovpool.queue);
741 card->iovpool.count = 0;
742 for (j = 0; j < NUM_IOVB; j++) {
743 struct sk_buff *iovb;
744 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
745 if (iovb == NULL) {
746 printk
747 ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
748 i, j, NUM_IOVB);
749 error = 16;
750 ns_init_card_error(card, error);
751 return error;
753 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
754 skb_queue_tail(&card->iovpool.queue, iovb);
755 card->iovpool.count++;
758 /* Configure NICStAR */
759 if (card->rct_size == 4096)
760 ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
761 else /* (card->rct_size == 16384) */
762 ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
764 card->efbie = 1;
766 /* Register device */
767 card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
768 -1, NULL);
769 if (card->atmdev == NULL) {
770 printk("nicstar%d: can't register device.\n", i);
771 error = 17;
772 ns_init_card_error(card, error);
773 return error;
776 if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
777 nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
778 card->atmdev->esi, 6);
779 if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
780 nicstar_read_eprom(card->membase,
781 NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
782 card->atmdev->esi, 6);
786 printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
788 card->atmdev->dev_data = card;
789 card->atmdev->ci_range.vpi_bits = card->vpibits;
790 card->atmdev->ci_range.vci_bits = card->vcibits;
791 card->atmdev->link_rate = card->max_pcr;
792 card->atmdev->phy = NULL;
794 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
795 if (card->max_pcr == ATM_OC3_PCR)
796 suni_init(card->atmdev);
797 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
799 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
800 if (card->max_pcr == ATM_25_PCR)
801 idt77105_init(card->atmdev);
802 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
804 if (card->atmdev->phy && card->atmdev->phy->start)
805 card->atmdev->phy->start(card->atmdev);
807 writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
808 NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
809 NS_CFG_PHYIE, card->membase + CFG);
811 num_cards++;
813 return error;
816 static void ns_init_card_error(ns_dev *card, int error)
818 if (error >= 17) {
819 writel(0x00000000, card->membase + CFG);
821 if (error >= 16) {
822 struct sk_buff *iovb;
823 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
824 dev_kfree_skb_any(iovb);
826 if (error >= 15) {
827 struct sk_buff *sb;
828 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
829 dev_kfree_skb_any(sb);
830 free_scq(card, card->scq0, NULL);
832 if (error >= 14) {
833 struct sk_buff *lb;
834 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
835 dev_kfree_skb_any(lb);
837 if (error >= 13) {
838 struct sk_buff *hb;
839 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
840 dev_kfree_skb_any(hb);
842 if (error >= 12) {
843 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
844 card->rsq.org, card->rsq.dma);
846 if (error >= 11) {
847 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
848 card->tsq.org, card->tsq.dma);
850 if (error >= 10) {
851 free_irq(card->pcidev->irq, card);
853 if (error >= 4) {
854 iounmap(card->membase);
856 if (error >= 3) {
857 pci_disable_device(card->pcidev);
858 kfree(card);
862 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
864 scq_info *scq;
866 if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
867 return NULL;
869 scq = kmalloc(sizeof(*scq), GFP_KERNEL);
870 if (!scq)
871 return NULL;
872 scq->org = dma_alloc_coherent(&card->pcidev->dev,
873 2 * size, &scq->dma, GFP_KERNEL);
874 if (!scq->org) {
875 kfree(scq);
876 return NULL;
878 scq->skb = kcalloc(size / NS_SCQE_SIZE, sizeof(*scq->skb),
879 GFP_KERNEL);
880 if (!scq->skb) {
881 dma_free_coherent(&card->pcidev->dev,
882 2 * size, scq->org, scq->dma);
883 kfree(scq);
884 return NULL;
886 scq->num_entries = size / NS_SCQE_SIZE;
887 scq->base = PTR_ALIGN(scq->org, size);
888 scq->next = scq->base;
889 scq->last = scq->base + (scq->num_entries - 1);
890 scq->tail = scq->last;
891 scq->scd = scd;
892 scq->tbd_count = 0;
893 init_waitqueue_head(&scq->scqfull_waitq);
894 scq->full = 0;
895 spin_lock_init(&scq->lock);
897 return scq;
900 /* For variable rate SCQ vcc must be NULL */
901 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
903 int i;
905 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
906 for (i = 0; i < scq->num_entries; i++) {
907 if (scq->skb[i] != NULL) {
908 vcc = ATM_SKB(scq->skb[i])->vcc;
909 if (vcc->pop != NULL)
910 vcc->pop(vcc, scq->skb[i]);
911 else
912 dev_kfree_skb_any(scq->skb[i]);
914 } else { /* vcc must be != NULL */
916 if (vcc == NULL) {
917 printk
918 ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
919 for (i = 0; i < scq->num_entries; i++)
920 dev_kfree_skb_any(scq->skb[i]);
921 } else
922 for (i = 0; i < scq->num_entries; i++) {
923 if (scq->skb[i] != NULL) {
924 if (vcc->pop != NULL)
925 vcc->pop(vcc, scq->skb[i]);
926 else
927 dev_kfree_skb_any(scq->skb[i]);
931 kfree(scq->skb);
932 dma_free_coherent(&card->pcidev->dev,
933 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
934 VBR_SCQSIZE : CBR_SCQSIZE),
935 scq->org, scq->dma);
936 kfree(scq);
939 /* The handles passed must be pointers to the sk_buff containing the small
940 or large buffer(s) cast to u32. */
941 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
943 struct sk_buff *handle1, *handle2;
944 int id1, id2;
945 u32 addr1, addr2;
946 u32 stat;
947 unsigned long flags;
949 /* *BARF* */
950 handle2 = NULL;
951 addr2 = 0;
952 handle1 = skb;
953 addr1 = dma_map_single(&card->pcidev->dev,
954 skb->data,
955 (NS_PRV_BUFTYPE(skb) == BUF_SM
956 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
957 DMA_TO_DEVICE);
958 NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
960 #ifdef GENERAL_DEBUG
961 if (!addr1)
962 printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
963 card->index);
964 #endif /* GENERAL_DEBUG */
966 stat = readl(card->membase + STAT);
967 card->sbfqc = ns_stat_sfbqc_get(stat);
968 card->lbfqc = ns_stat_lfbqc_get(stat);
969 if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
970 if (!addr2) {
971 if (card->sm_addr) {
972 addr2 = card->sm_addr;
973 handle2 = card->sm_handle;
974 card->sm_addr = 0x00000000;
975 card->sm_handle = NULL;
976 } else { /* (!sm_addr) */
978 card->sm_addr = addr1;
979 card->sm_handle = handle1;
982 } else { /* buf_type == BUF_LG */
984 if (!addr2) {
985 if (card->lg_addr) {
986 addr2 = card->lg_addr;
987 handle2 = card->lg_handle;
988 card->lg_addr = 0x00000000;
989 card->lg_handle = NULL;
990 } else { /* (!lg_addr) */
992 card->lg_addr = addr1;
993 card->lg_handle = handle1;
998 if (addr2) {
999 if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1000 if (card->sbfqc >= card->sbnr.max) {
1001 skb_unlink(handle1, &card->sbpool.queue);
1002 dev_kfree_skb_any(handle1);
1003 skb_unlink(handle2, &card->sbpool.queue);
1004 dev_kfree_skb_any(handle2);
1005 return;
1006 } else
1007 card->sbfqc += 2;
1008 } else { /* (buf_type == BUF_LG) */
1010 if (card->lbfqc >= card->lbnr.max) {
1011 skb_unlink(handle1, &card->lbpool.queue);
1012 dev_kfree_skb_any(handle1);
1013 skb_unlink(handle2, &card->lbpool.queue);
1014 dev_kfree_skb_any(handle2);
1015 return;
1016 } else
1017 card->lbfqc += 2;
1020 id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1021 if (id1 < 0)
1022 goto out;
1024 id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1025 if (id2 < 0)
1026 goto out;
1028 spin_lock_irqsave(&card->res_lock, flags);
1029 while (CMD_BUSY(card)) ;
1030 writel(addr2, card->membase + DR3);
1031 writel(id2, card->membase + DR2);
1032 writel(addr1, card->membase + DR1);
1033 writel(id1, card->membase + DR0);
1034 writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1035 card->membase + CMD);
1036 spin_unlock_irqrestore(&card->res_lock, flags);
1038 XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1039 card->index,
1040 (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1041 addr1, addr2);
1044 if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1045 card->lbfqc >= card->lbnr.min) {
1046 card->efbie = 1;
1047 writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1048 card->membase + CFG);
1051 out:
1052 return;
1055 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1057 u32 stat_r;
1058 ns_dev *card;
1059 struct atm_dev *dev;
1060 unsigned long flags;
1062 card = (ns_dev *) dev_id;
1063 dev = card->atmdev;
1064 card->intcnt++;
1066 PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1068 spin_lock_irqsave(&card->int_lock, flags);
1070 stat_r = readl(card->membase + STAT);
1072 /* Transmit Status Indicator has been written to T. S. Queue */
1073 if (stat_r & NS_STAT_TSIF) {
1074 TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1075 process_tsq(card);
1076 writel(NS_STAT_TSIF, card->membase + STAT);
1079 /* Incomplete CS-PDU has been transmitted */
1080 if (stat_r & NS_STAT_TXICP) {
1081 writel(NS_STAT_TXICP, card->membase + STAT);
1082 TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1083 card->index);
1086 /* Transmit Status Queue 7/8 full */
1087 if (stat_r & NS_STAT_TSQF) {
1088 writel(NS_STAT_TSQF, card->membase + STAT);
1089 PRINTK("nicstar%d: TSQ full.\n", card->index);
1090 process_tsq(card);
1093 /* Timer overflow */
1094 if (stat_r & NS_STAT_TMROF) {
1095 writel(NS_STAT_TMROF, card->membase + STAT);
1096 PRINTK("nicstar%d: Timer overflow.\n", card->index);
1099 /* PHY device interrupt signal active */
1100 if (stat_r & NS_STAT_PHYI) {
1101 writel(NS_STAT_PHYI, card->membase + STAT);
1102 PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1103 if (dev->phy && dev->phy->interrupt) {
1104 dev->phy->interrupt(dev);
1108 /* Small Buffer Queue is full */
1109 if (stat_r & NS_STAT_SFBQF) {
1110 writel(NS_STAT_SFBQF, card->membase + STAT);
1111 printk("nicstar%d: Small free buffer queue is full.\n",
1112 card->index);
1115 /* Large Buffer Queue is full */
1116 if (stat_r & NS_STAT_LFBQF) {
1117 writel(NS_STAT_LFBQF, card->membase + STAT);
1118 printk("nicstar%d: Large free buffer queue is full.\n",
1119 card->index);
1122 /* Receive Status Queue is full */
1123 if (stat_r & NS_STAT_RSQF) {
1124 writel(NS_STAT_RSQF, card->membase + STAT);
1125 printk("nicstar%d: RSQ full.\n", card->index);
1126 process_rsq(card);
1129 /* Complete CS-PDU received */
1130 if (stat_r & NS_STAT_EOPDU) {
1131 RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1132 process_rsq(card);
1133 writel(NS_STAT_EOPDU, card->membase + STAT);
1136 /* Raw cell received */
1137 if (stat_r & NS_STAT_RAWCF) {
1138 writel(NS_STAT_RAWCF, card->membase + STAT);
1139 #ifndef RCQ_SUPPORT
1140 printk("nicstar%d: Raw cell received and no support yet...\n",
1141 card->index);
1142 #endif /* RCQ_SUPPORT */
1143 /* NOTE: the following procedure may keep a raw cell pending until the
1144 next interrupt. As this preliminary support is only meant to
1145 avoid buffer leakage, this is not an issue. */
1146 while (readl(card->membase + RAWCT) != card->rawch) {
1148 if (ns_rcqe_islast(card->rawcell)) {
1149 struct sk_buff *oldbuf;
1151 oldbuf = card->rcbuf;
1152 card->rcbuf = idr_find(&card->idr,
1153 ns_rcqe_nextbufhandle(card->rawcell));
1154 card->rawch = NS_PRV_DMA(card->rcbuf);
1155 card->rawcell = (struct ns_rcqe *)
1156 card->rcbuf->data;
1157 recycle_rx_buf(card, oldbuf);
1158 } else {
1159 card->rawch += NS_RCQE_SIZE;
1160 card->rawcell++;
1165 /* Small buffer queue is empty */
1166 if (stat_r & NS_STAT_SFBQE) {
1167 int i;
1168 struct sk_buff *sb;
1170 writel(NS_STAT_SFBQE, card->membase + STAT);
1171 printk("nicstar%d: Small free buffer queue empty.\n",
1172 card->index);
1173 for (i = 0; i < card->sbnr.min; i++) {
1174 sb = dev_alloc_skb(NS_SMSKBSIZE);
1175 if (sb == NULL) {
1176 writel(readl(card->membase + CFG) &
1177 ~NS_CFG_EFBIE, card->membase + CFG);
1178 card->efbie = 0;
1179 break;
1181 NS_PRV_BUFTYPE(sb) = BUF_SM;
1182 skb_queue_tail(&card->sbpool.queue, sb);
1183 skb_reserve(sb, NS_AAL0_HEADER);
1184 push_rxbufs(card, sb);
1186 card->sbfqc = i;
1187 process_rsq(card);
1190 /* Large buffer queue empty */
1191 if (stat_r & NS_STAT_LFBQE) {
1192 int i;
1193 struct sk_buff *lb;
1195 writel(NS_STAT_LFBQE, card->membase + STAT);
1196 printk("nicstar%d: Large free buffer queue empty.\n",
1197 card->index);
1198 for (i = 0; i < card->lbnr.min; i++) {
1199 lb = dev_alloc_skb(NS_LGSKBSIZE);
1200 if (lb == NULL) {
1201 writel(readl(card->membase + CFG) &
1202 ~NS_CFG_EFBIE, card->membase + CFG);
1203 card->efbie = 0;
1204 break;
1206 NS_PRV_BUFTYPE(lb) = BUF_LG;
1207 skb_queue_tail(&card->lbpool.queue, lb);
1208 skb_reserve(lb, NS_SMBUFSIZE);
1209 push_rxbufs(card, lb);
1211 card->lbfqc = i;
1212 process_rsq(card);
1215 /* Receive Status Queue is 7/8 full */
1216 if (stat_r & NS_STAT_RSQAF) {
1217 writel(NS_STAT_RSQAF, card->membase + STAT);
1218 RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1219 process_rsq(card);
1222 spin_unlock_irqrestore(&card->int_lock, flags);
1223 PRINTK("nicstar%d: end of interrupt service\n", card->index);
1224 return IRQ_HANDLED;
1227 static int ns_open(struct atm_vcc *vcc)
1229 ns_dev *card;
1230 vc_map *vc;
1231 unsigned long tmpl, modl;
1232 int tcr, tcra; /* target cell rate, and absolute value */
1233 int n = 0; /* Number of entries in the TST. Initialized to remove
1234 the compiler warning. */
1235 u32 u32d[4];
1236 int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
1237 warning. How I wish compilers were clever enough to
1238 tell which variables can truly be used
1239 uninitialized... */
1240 int inuse; /* tx or rx vc already in use by another vcc */
1241 short vpi = vcc->vpi;
1242 int vci = vcc->vci;
1244 card = (ns_dev *) vcc->dev->dev_data;
1245 PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1246 vci);
1247 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1248 PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1249 return -EINVAL;
1252 vc = &(card->vcmap[vpi << card->vcibits | vci]);
1253 vcc->dev_data = vc;
1255 inuse = 0;
1256 if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1257 inuse = 1;
1258 if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1259 inuse += 2;
1260 if (inuse) {
1261 printk("nicstar%d: %s vci already in use.\n", card->index,
1262 inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1263 return -EINVAL;
1266 set_bit(ATM_VF_ADDR, &vcc->flags);
1268 /* NOTE: You are not allowed to modify an open connection's QOS. To change
1269 that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1270 needed to do that. */
1271 if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1272 scq_info *scq;
1274 set_bit(ATM_VF_PARTIAL, &vcc->flags);
1275 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1276 /* Check requested cell rate and availability of SCD */
1277 if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1278 && vcc->qos.txtp.min_pcr == 0) {
1279 PRINTK
1280 ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1281 card->index);
1282 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1283 clear_bit(ATM_VF_ADDR, &vcc->flags);
1284 return -EINVAL;
1287 tcr = atm_pcr_goal(&(vcc->qos.txtp));
1288 tcra = tcr >= 0 ? tcr : -tcr;
1290 PRINTK("nicstar%d: target cell rate = %d.\n",
1291 card->index, vcc->qos.txtp.max_pcr);
1293 tmpl =
1294 (unsigned long)tcra *(unsigned long)
1295 NS_TST_NUM_ENTRIES;
1296 modl = tmpl % card->max_pcr;
1298 n = (int)(tmpl / card->max_pcr);
1299 if (tcr > 0) {
1300 if (modl > 0)
1301 n++;
1302 } else if (tcr == 0) {
1303 if ((n =
1304 (card->tst_free_entries -
1305 NS_TST_RESERVED)) <= 0) {
1306 PRINTK
1307 ("nicstar%d: no CBR bandwidth free.\n",
1308 card->index);
1309 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1310 clear_bit(ATM_VF_ADDR, &vcc->flags);
1311 return -EINVAL;
1315 if (n == 0) {
1316 printk
1317 ("nicstar%d: selected bandwidth < granularity.\n",
1318 card->index);
1319 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1320 clear_bit(ATM_VF_ADDR, &vcc->flags);
1321 return -EINVAL;
1324 if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1325 PRINTK
1326 ("nicstar%d: not enough free CBR bandwidth.\n",
1327 card->index);
1328 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1329 clear_bit(ATM_VF_ADDR, &vcc->flags);
1330 return -EINVAL;
1331 } else
1332 card->tst_free_entries -= n;
1334 XPRINTK("nicstar%d: writing %d tst entries.\n",
1335 card->index, n);
1336 for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1337 if (card->scd2vc[frscdi] == NULL) {
1338 card->scd2vc[frscdi] = vc;
1339 break;
1342 if (frscdi == NS_FRSCD_NUM) {
1343 PRINTK
1344 ("nicstar%d: no SCD available for CBR channel.\n",
1345 card->index);
1346 card->tst_free_entries += n;
1347 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1348 clear_bit(ATM_VF_ADDR, &vcc->flags);
1349 return -EBUSY;
1352 vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1354 scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1355 if (scq == NULL) {
1356 PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1357 card->index);
1358 card->scd2vc[frscdi] = NULL;
1359 card->tst_free_entries += n;
1360 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1361 clear_bit(ATM_VF_ADDR, &vcc->flags);
1362 return -ENOMEM;
1364 vc->scq = scq;
1365 u32d[0] = scq_virt_to_bus(scq, scq->base);
1366 u32d[1] = (u32) 0x00000000;
1367 u32d[2] = (u32) 0xffffffff;
1368 u32d[3] = (u32) 0x00000000;
1369 ns_write_sram(card, vc->cbr_scd, u32d, 4);
1371 fill_tst(card, n, vc);
1372 } else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1373 vc->cbr_scd = 0x00000000;
1374 vc->scq = card->scq0;
1377 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1378 vc->tx = 1;
1379 vc->tx_vcc = vcc;
1380 vc->tbd_count = 0;
1382 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1383 u32 status;
1385 vc->rx = 1;
1386 vc->rx_vcc = vcc;
1387 vc->rx_iov = NULL;
1389 /* Open the connection in hardware */
1390 if (vcc->qos.aal == ATM_AAL5)
1391 status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1392 else /* vcc->qos.aal == ATM_AAL0 */
1393 status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1394 #ifdef RCQ_SUPPORT
1395 status |= NS_RCTE_RAWCELLINTEN;
1396 #endif /* RCQ_SUPPORT */
1397 ns_write_sram(card,
1398 NS_RCT +
1399 (vpi << card->vcibits | vci) *
1400 NS_RCT_ENTRY_SIZE, &status, 1);
1405 set_bit(ATM_VF_READY, &vcc->flags);
1406 return 0;
1409 static void ns_close(struct atm_vcc *vcc)
1411 vc_map *vc;
1412 ns_dev *card;
1413 u32 data;
1414 int i;
1416 vc = vcc->dev_data;
1417 card = vcc->dev->dev_data;
1418 PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1419 (int)vcc->vpi, vcc->vci);
1421 clear_bit(ATM_VF_READY, &vcc->flags);
1423 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1424 u32 addr;
1425 unsigned long flags;
1427 addr =
1428 NS_RCT +
1429 (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1430 spin_lock_irqsave(&card->res_lock, flags);
1431 while (CMD_BUSY(card)) ;
1432 writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1433 card->membase + CMD);
1434 spin_unlock_irqrestore(&card->res_lock, flags);
1436 vc->rx = 0;
1437 if (vc->rx_iov != NULL) {
1438 struct sk_buff *iovb;
1439 u32 stat;
1441 stat = readl(card->membase + STAT);
1442 card->sbfqc = ns_stat_sfbqc_get(stat);
1443 card->lbfqc = ns_stat_lfbqc_get(stat);
1445 PRINTK
1446 ("nicstar%d: closing a VC with pending rx buffers.\n",
1447 card->index);
1448 iovb = vc->rx_iov;
1449 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1450 NS_PRV_IOVCNT(iovb));
1451 NS_PRV_IOVCNT(iovb) = 0;
1452 spin_lock_irqsave(&card->int_lock, flags);
1453 recycle_iov_buf(card, iovb);
1454 spin_unlock_irqrestore(&card->int_lock, flags);
1455 vc->rx_iov = NULL;
1459 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1460 vc->tx = 0;
1463 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1464 unsigned long flags;
1465 ns_scqe *scqep;
1466 scq_info *scq;
1468 scq = vc->scq;
1470 for (;;) {
1471 spin_lock_irqsave(&scq->lock, flags);
1472 scqep = scq->next;
1473 if (scqep == scq->base)
1474 scqep = scq->last;
1475 else
1476 scqep--;
1477 if (scqep == scq->tail) {
1478 spin_unlock_irqrestore(&scq->lock, flags);
1479 break;
1481 /* If the last entry is not a TSR, place one in the SCQ in order to
1482 be able to completely drain it and then close. */
1483 if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1484 ns_scqe tsr;
1485 u32 scdi, scqi;
1486 u32 data;
1487 int index;
1489 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1490 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1491 scqi = scq->next - scq->base;
1492 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1493 tsr.word_3 = 0x00000000;
1494 tsr.word_4 = 0x00000000;
1495 *scq->next = tsr;
1496 index = (int)scqi;
1497 scq->skb[index] = NULL;
1498 if (scq->next == scq->last)
1499 scq->next = scq->base;
1500 else
1501 scq->next++;
1502 data = scq_virt_to_bus(scq, scq->next);
1503 ns_write_sram(card, scq->scd, &data, 1);
1505 spin_unlock_irqrestore(&scq->lock, flags);
1506 schedule();
1509 /* Free all TST entries */
1510 data = NS_TST_OPCODE_VARIABLE;
1511 for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1512 if (card->tste2vc[i] == vc) {
1513 ns_write_sram(card, card->tst_addr + i, &data,
1515 card->tste2vc[i] = NULL;
1516 card->tst_free_entries++;
1520 card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1521 free_scq(card, vc->scq, vcc);
1524 /* remove all references to vcc before deleting it */
1525 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1526 unsigned long flags;
1527 scq_info *scq = card->scq0;
1529 spin_lock_irqsave(&scq->lock, flags);
1531 for (i = 0; i < scq->num_entries; i++) {
1532 if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1533 ATM_SKB(scq->skb[i])->vcc = NULL;
1534 atm_return(vcc, scq->skb[i]->truesize);
1535 PRINTK
1536 ("nicstar: deleted pending vcc mapping\n");
1540 spin_unlock_irqrestore(&scq->lock, flags);
1543 vcc->dev_data = NULL;
1544 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1545 clear_bit(ATM_VF_ADDR, &vcc->flags);
1547 #ifdef RX_DEBUG
1549 u32 stat, cfg;
1550 stat = readl(card->membase + STAT);
1551 cfg = readl(card->membase + CFG);
1552 printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
1553 printk
1554 ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n",
1555 card->tsq.base, card->tsq.next,
1556 card->tsq.last, readl(card->membase + TSQT));
1557 printk
1558 ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n",
1559 card->rsq.base, card->rsq.next,
1560 card->rsq.last, readl(card->membase + RSQT));
1561 printk("Empty free buffer queue interrupt %s \n",
1562 card->efbie ? "enabled" : "disabled");
1563 printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
1564 ns_stat_sfbqc_get(stat), card->sbpool.count,
1565 ns_stat_lfbqc_get(stat), card->lbpool.count);
1566 printk("hbpool.count = %d iovpool.count = %d \n",
1567 card->hbpool.count, card->iovpool.count);
1569 #endif /* RX_DEBUG */
1572 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1574 u32 new_tst;
1575 unsigned long cl;
1576 int e, r;
1577 u32 data;
1579 /* It would be very complicated to keep the two TSTs synchronized while
1580 assuring that writes are only made to the inactive TST. So, for now I
1581 will use only one TST. If problems occur, I will change this again */
1583 new_tst = card->tst_addr;
1585 /* Fill procedure */
1587 for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1588 if (card->tste2vc[e] == NULL)
1589 break;
1591 if (e == NS_TST_NUM_ENTRIES) {
1592 printk("nicstar%d: No free TST entries found. \n", card->index);
1593 return;
1596 r = n;
1597 cl = NS_TST_NUM_ENTRIES;
1598 data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1600 while (r > 0) {
1601 if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1602 card->tste2vc[e] = vc;
1603 ns_write_sram(card, new_tst + e, &data, 1);
1604 cl -= NS_TST_NUM_ENTRIES;
1605 r--;
1608 if (++e == NS_TST_NUM_ENTRIES) {
1609 e = 0;
1611 cl += n;
1614 /* End of fill procedure */
1616 data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1617 ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1618 ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1619 card->tst_addr = new_tst;
1622 static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep)
1624 ns_dev *card;
1625 vc_map *vc;
1626 scq_info *scq;
1627 unsigned long buflen;
1628 ns_scqe scqe;
1629 u32 flags; /* TBD flags, not CPU flags */
1631 card = vcc->dev->dev_data;
1632 TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1633 if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1634 printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1635 card->index);
1636 atomic_inc(&vcc->stats->tx_err);
1637 dev_kfree_skb_any(skb);
1638 return -EINVAL;
1641 if (!vc->tx) {
1642 printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1643 card->index);
1644 atomic_inc(&vcc->stats->tx_err);
1645 dev_kfree_skb_any(skb);
1646 return -EINVAL;
1649 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1650 printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1651 card->index);
1652 atomic_inc(&vcc->stats->tx_err);
1653 dev_kfree_skb_any(skb);
1654 return -EINVAL;
1657 if (skb_shinfo(skb)->nr_frags != 0) {
1658 printk("nicstar%d: No scatter-gather yet.\n", card->index);
1659 atomic_inc(&vcc->stats->tx_err);
1660 dev_kfree_skb_any(skb);
1661 return -EINVAL;
1664 ATM_SKB(skb)->vcc = vcc;
1666 NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1667 skb->len, DMA_TO_DEVICE);
1669 if (vcc->qos.aal == ATM_AAL5) {
1670 buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
1671 flags = NS_TBD_AAL5;
1672 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1673 scqe.word_3 = cpu_to_le32(skb->len);
1674 scqe.word_4 =
1675 ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1676 ATM_SKB(skb)->
1677 atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1678 flags |= NS_TBD_EOPDU;
1679 } else { /* (vcc->qos.aal == ATM_AAL0) */
1681 buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
1682 flags = NS_TBD_AAL0;
1683 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1684 scqe.word_3 = cpu_to_le32(0x00000000);
1685 if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
1686 flags |= NS_TBD_EOPDU;
1687 scqe.word_4 =
1688 cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1689 /* Force the VPI/VCI to be the same as in VCC struct */
1690 scqe.word_4 |=
1691 cpu_to_le32((((u32) vcc->
1692 vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1693 vci) <<
1694 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1697 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1698 scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1699 scq = ((vc_map *) vcc->dev_data)->scq;
1700 } else {
1701 scqe.word_1 =
1702 ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1703 scq = card->scq0;
1706 if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) {
1707 atomic_inc(&vcc->stats->tx_err);
1708 dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len,
1709 DMA_TO_DEVICE);
1710 dev_kfree_skb_any(skb);
1711 return -EIO;
1713 atomic_inc(&vcc->stats->tx);
1715 return 0;
1718 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1720 return _ns_send(vcc, skb, true);
1723 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb)
1725 return _ns_send(vcc, skb, false);
1728 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1729 struct sk_buff *skb, bool may_sleep)
1731 unsigned long flags;
1732 ns_scqe tsr;
1733 u32 scdi, scqi;
1734 int scq_is_vbr;
1735 u32 data;
1736 int index;
1738 spin_lock_irqsave(&scq->lock, flags);
1739 while (scq->tail == scq->next) {
1740 if (!may_sleep) {
1741 spin_unlock_irqrestore(&scq->lock, flags);
1742 printk("nicstar%d: Error pushing TBD.\n", card->index);
1743 return 1;
1746 scq->full = 1;
1747 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1748 scq->tail != scq->next,
1749 scq->lock,
1750 SCQFULL_TIMEOUT);
1752 if (scq->full) {
1753 spin_unlock_irqrestore(&scq->lock, flags);
1754 printk("nicstar%d: Timeout pushing TBD.\n",
1755 card->index);
1756 return 1;
1759 *scq->next = *tbd;
1760 index = (int)(scq->next - scq->base);
1761 scq->skb[index] = skb;
1762 XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1763 card->index, skb, index);
1764 XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1765 card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1766 le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1767 scq->next);
1768 if (scq->next == scq->last)
1769 scq->next = scq->base;
1770 else
1771 scq->next++;
1773 vc->tbd_count++;
1774 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1775 scq->tbd_count++;
1776 scq_is_vbr = 1;
1777 } else
1778 scq_is_vbr = 0;
1780 if (vc->tbd_count >= MAX_TBD_PER_VC
1781 || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1782 int has_run = 0;
1784 while (scq->tail == scq->next) {
1785 if (!may_sleep) {
1786 data = scq_virt_to_bus(scq, scq->next);
1787 ns_write_sram(card, scq->scd, &data, 1);
1788 spin_unlock_irqrestore(&scq->lock, flags);
1789 printk("nicstar%d: Error pushing TSR.\n",
1790 card->index);
1791 return 0;
1794 scq->full = 1;
1795 if (has_run++)
1796 break;
1797 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1798 scq->tail != scq->next,
1799 scq->lock,
1800 SCQFULL_TIMEOUT);
1803 if (!scq->full) {
1804 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1805 if (scq_is_vbr)
1806 scdi = NS_TSR_SCDISVBR;
1807 else
1808 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1809 scqi = scq->next - scq->base;
1810 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1811 tsr.word_3 = 0x00000000;
1812 tsr.word_4 = 0x00000000;
1814 *scq->next = tsr;
1815 index = (int)scqi;
1816 scq->skb[index] = NULL;
1817 XPRINTK
1818 ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1819 card->index, le32_to_cpu(tsr.word_1),
1820 le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1821 le32_to_cpu(tsr.word_4), scq->next);
1822 if (scq->next == scq->last)
1823 scq->next = scq->base;
1824 else
1825 scq->next++;
1826 vc->tbd_count = 0;
1827 scq->tbd_count = 0;
1828 } else
1829 PRINTK("nicstar%d: Timeout pushing TSR.\n",
1830 card->index);
1832 data = scq_virt_to_bus(scq, scq->next);
1833 ns_write_sram(card, scq->scd, &data, 1);
1835 spin_unlock_irqrestore(&scq->lock, flags);
1837 return 0;
1840 static void process_tsq(ns_dev * card)
1842 u32 scdi;
1843 scq_info *scq;
1844 ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1845 int serviced_entries; /* flag indicating at least on entry was serviced */
1847 serviced_entries = 0;
1849 if (card->tsq.next == card->tsq.last)
1850 one_ahead = card->tsq.base;
1851 else
1852 one_ahead = card->tsq.next + 1;
1854 if (one_ahead == card->tsq.last)
1855 two_ahead = card->tsq.base;
1856 else
1857 two_ahead = one_ahead + 1;
1859 while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1860 !ns_tsi_isempty(two_ahead))
1861 /* At most two empty, as stated in the 77201 errata */
1863 serviced_entries = 1;
1865 /* Skip the one or two possible empty entries */
1866 while (ns_tsi_isempty(card->tsq.next)) {
1867 if (card->tsq.next == card->tsq.last)
1868 card->tsq.next = card->tsq.base;
1869 else
1870 card->tsq.next++;
1873 if (!ns_tsi_tmrof(card->tsq.next)) {
1874 scdi = ns_tsi_getscdindex(card->tsq.next);
1875 if (scdi == NS_TSI_SCDISVBR)
1876 scq = card->scq0;
1877 else {
1878 if (card->scd2vc[scdi] == NULL) {
1879 printk
1880 ("nicstar%d: could not find VC from SCD index.\n",
1881 card->index);
1882 ns_tsi_init(card->tsq.next);
1883 return;
1885 scq = card->scd2vc[scdi]->scq;
1887 drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1888 scq->full = 0;
1889 wake_up_interruptible(&(scq->scqfull_waitq));
1892 ns_tsi_init(card->tsq.next);
1893 previous = card->tsq.next;
1894 if (card->tsq.next == card->tsq.last)
1895 card->tsq.next = card->tsq.base;
1896 else
1897 card->tsq.next++;
1899 if (card->tsq.next == card->tsq.last)
1900 one_ahead = card->tsq.base;
1901 else
1902 one_ahead = card->tsq.next + 1;
1904 if (one_ahead == card->tsq.last)
1905 two_ahead = card->tsq.base;
1906 else
1907 two_ahead = one_ahead + 1;
1910 if (serviced_entries)
1911 writel(PTR_DIFF(previous, card->tsq.base),
1912 card->membase + TSQH);
1915 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1917 struct atm_vcc *vcc;
1918 struct sk_buff *skb;
1919 int i;
1920 unsigned long flags;
1922 XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1923 card->index, scq, pos);
1924 if (pos >= scq->num_entries) {
1925 printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1926 return;
1929 spin_lock_irqsave(&scq->lock, flags);
1930 i = (int)(scq->tail - scq->base);
1931 if (++i == scq->num_entries)
1932 i = 0;
1933 while (i != pos) {
1934 skb = scq->skb[i];
1935 XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1936 card->index, skb, i);
1937 if (skb != NULL) {
1938 dma_unmap_single(&card->pcidev->dev,
1939 NS_PRV_DMA(skb),
1940 skb->len,
1941 DMA_TO_DEVICE);
1942 vcc = ATM_SKB(skb)->vcc;
1943 if (vcc && vcc->pop != NULL) {
1944 vcc->pop(vcc, skb);
1945 } else {
1946 dev_kfree_skb_irq(skb);
1948 scq->skb[i] = NULL;
1950 if (++i == scq->num_entries)
1951 i = 0;
1953 scq->tail = scq->base + pos;
1954 spin_unlock_irqrestore(&scq->lock, flags);
1957 static void process_rsq(ns_dev * card)
1959 ns_rsqe *previous;
1961 if (!ns_rsqe_valid(card->rsq.next))
1962 return;
1963 do {
1964 dequeue_rx(card, card->rsq.next);
1965 ns_rsqe_init(card->rsq.next);
1966 previous = card->rsq.next;
1967 if (card->rsq.next == card->rsq.last)
1968 card->rsq.next = card->rsq.base;
1969 else
1970 card->rsq.next++;
1971 } while (ns_rsqe_valid(card->rsq.next));
1972 writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1975 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1977 u32 vpi, vci;
1978 vc_map *vc;
1979 struct sk_buff *iovb;
1980 struct iovec *iov;
1981 struct atm_vcc *vcc;
1982 struct sk_buff *skb;
1983 unsigned short aal5_len;
1984 int len;
1985 u32 stat;
1986 u32 id;
1988 stat = readl(card->membase + STAT);
1989 card->sbfqc = ns_stat_sfbqc_get(stat);
1990 card->lbfqc = ns_stat_lfbqc_get(stat);
1992 id = le32_to_cpu(rsqe->buffer_handle);
1993 skb = idr_remove(&card->idr, id);
1994 if (!skb) {
1995 RXPRINTK(KERN_ERR
1996 "nicstar%d: skb not found!\n", card->index);
1997 return;
1999 dma_sync_single_for_cpu(&card->pcidev->dev,
2000 NS_PRV_DMA(skb),
2001 (NS_PRV_BUFTYPE(skb) == BUF_SM
2002 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2003 DMA_FROM_DEVICE);
2004 dma_unmap_single(&card->pcidev->dev,
2005 NS_PRV_DMA(skb),
2006 (NS_PRV_BUFTYPE(skb) == BUF_SM
2007 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2008 DMA_FROM_DEVICE);
2009 vpi = ns_rsqe_vpi(rsqe);
2010 vci = ns_rsqe_vci(rsqe);
2011 if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2012 printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2013 card->index, vpi, vci);
2014 recycle_rx_buf(card, skb);
2015 return;
2018 vc = &(card->vcmap[vpi << card->vcibits | vci]);
2019 if (!vc->rx) {
2020 RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2021 card->index, vpi, vci);
2022 recycle_rx_buf(card, skb);
2023 return;
2026 vcc = vc->rx_vcc;
2028 if (vcc->qos.aal == ATM_AAL0) {
2029 struct sk_buff *sb;
2030 unsigned char *cell;
2031 int i;
2033 cell = skb->data;
2034 for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2035 sb = dev_alloc_skb(NS_SMSKBSIZE);
2036 if (!sb) {
2037 printk
2038 ("nicstar%d: Can't allocate buffers for aal0.\n",
2039 card->index);
2040 atomic_add(i, &vcc->stats->rx_drop);
2041 break;
2043 if (!atm_charge(vcc, sb->truesize)) {
2044 RXPRINTK
2045 ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2046 card->index);
2047 atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */
2048 dev_kfree_skb_any(sb);
2049 break;
2051 /* Rebuild the header */
2052 *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2053 (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2054 if (i == 1 && ns_rsqe_eopdu(rsqe))
2055 *((u32 *) sb->data) |= 0x00000002;
2056 skb_put(sb, NS_AAL0_HEADER);
2057 memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2058 skb_put(sb, ATM_CELL_PAYLOAD);
2059 ATM_SKB(sb)->vcc = vcc;
2060 __net_timestamp(sb);
2061 vcc->push(vcc, sb);
2062 atomic_inc(&vcc->stats->rx);
2063 cell += ATM_CELL_PAYLOAD;
2066 recycle_rx_buf(card, skb);
2067 return;
2070 /* To reach this point, the AAL layer can only be AAL5 */
2072 if ((iovb = vc->rx_iov) == NULL) {
2073 iovb = skb_dequeue(&(card->iovpool.queue));
2074 if (iovb == NULL) { /* No buffers in the queue */
2075 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2076 if (iovb == NULL) {
2077 printk("nicstar%d: Out of iovec buffers.\n",
2078 card->index);
2079 atomic_inc(&vcc->stats->rx_drop);
2080 recycle_rx_buf(card, skb);
2081 return;
2083 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2084 } else if (--card->iovpool.count < card->iovnr.min) {
2085 struct sk_buff *new_iovb;
2086 if ((new_iovb =
2087 alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2088 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2089 skb_queue_tail(&card->iovpool.queue, new_iovb);
2090 card->iovpool.count++;
2093 vc->rx_iov = iovb;
2094 NS_PRV_IOVCNT(iovb) = 0;
2095 iovb->len = 0;
2096 iovb->data = iovb->head;
2097 skb_reset_tail_pointer(iovb);
2098 /* IMPORTANT: a pointer to the sk_buff containing the small or large
2099 buffer is stored as iovec base, NOT a pointer to the
2100 small or large buffer itself. */
2101 } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2102 printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2103 atomic_inc(&vcc->stats->rx_err);
2104 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2105 NS_MAX_IOVECS);
2106 NS_PRV_IOVCNT(iovb) = 0;
2107 iovb->len = 0;
2108 iovb->data = iovb->head;
2109 skb_reset_tail_pointer(iovb);
2111 iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2112 iov->iov_base = (void *)skb;
2113 iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2114 iovb->len += iov->iov_len;
2116 #ifdef EXTRA_DEBUG
2117 if (NS_PRV_IOVCNT(iovb) == 1) {
2118 if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2119 printk
2120 ("nicstar%d: Expected a small buffer, and this is not one.\n",
2121 card->index);
2122 which_list(card, skb);
2123 atomic_inc(&vcc->stats->rx_err);
2124 recycle_rx_buf(card, skb);
2125 vc->rx_iov = NULL;
2126 recycle_iov_buf(card, iovb);
2127 return;
2129 } else { /* NS_PRV_IOVCNT(iovb) >= 2 */
2131 if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2132 printk
2133 ("nicstar%d: Expected a large buffer, and this is not one.\n",
2134 card->index);
2135 which_list(card, skb);
2136 atomic_inc(&vcc->stats->rx_err);
2137 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2138 NS_PRV_IOVCNT(iovb));
2139 vc->rx_iov = NULL;
2140 recycle_iov_buf(card, iovb);
2141 return;
2144 #endif /* EXTRA_DEBUG */
2146 if (ns_rsqe_eopdu(rsqe)) {
2147 /* This works correctly regardless of the endianness of the host */
2148 unsigned char *L1L2 = (unsigned char *)
2149 (skb->data + iov->iov_len - 6);
2150 aal5_len = L1L2[0] << 8 | L1L2[1];
2151 len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2152 if (ns_rsqe_crcerr(rsqe) ||
2153 len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2154 printk("nicstar%d: AAL5 CRC error", card->index);
2155 if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2156 printk(" - PDU size mismatch.\n");
2157 else
2158 printk(".\n");
2159 atomic_inc(&vcc->stats->rx_err);
2160 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2161 NS_PRV_IOVCNT(iovb));
2162 vc->rx_iov = NULL;
2163 recycle_iov_buf(card, iovb);
2164 return;
2167 /* By this point we (hopefully) have a complete SDU without errors. */
2169 if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */
2170 /* skb points to a small buffer */
2171 if (!atm_charge(vcc, skb->truesize)) {
2172 push_rxbufs(card, skb);
2173 atomic_inc(&vcc->stats->rx_drop);
2174 } else {
2175 skb_put(skb, len);
2176 dequeue_sm_buf(card, skb);
2177 ATM_SKB(skb)->vcc = vcc;
2178 __net_timestamp(skb);
2179 vcc->push(vcc, skb);
2180 atomic_inc(&vcc->stats->rx);
2182 } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */
2183 struct sk_buff *sb;
2185 sb = (struct sk_buff *)(iov - 1)->iov_base;
2186 /* skb points to a large buffer */
2188 if (len <= NS_SMBUFSIZE) {
2189 if (!atm_charge(vcc, sb->truesize)) {
2190 push_rxbufs(card, sb);
2191 atomic_inc(&vcc->stats->rx_drop);
2192 } else {
2193 skb_put(sb, len);
2194 dequeue_sm_buf(card, sb);
2195 ATM_SKB(sb)->vcc = vcc;
2196 __net_timestamp(sb);
2197 vcc->push(vcc, sb);
2198 atomic_inc(&vcc->stats->rx);
2201 push_rxbufs(card, skb);
2203 } else { /* len > NS_SMBUFSIZE, the usual case */
2205 if (!atm_charge(vcc, skb->truesize)) {
2206 push_rxbufs(card, skb);
2207 atomic_inc(&vcc->stats->rx_drop);
2208 } else {
2209 dequeue_lg_buf(card, skb);
2210 skb_push(skb, NS_SMBUFSIZE);
2211 skb_copy_from_linear_data(sb, skb->data,
2212 NS_SMBUFSIZE);
2213 skb_put(skb, len - NS_SMBUFSIZE);
2214 ATM_SKB(skb)->vcc = vcc;
2215 __net_timestamp(skb);
2216 vcc->push(vcc, skb);
2217 atomic_inc(&vcc->stats->rx);
2220 push_rxbufs(card, sb);
2224 } else { /* Must push a huge buffer */
2226 struct sk_buff *hb, *sb, *lb;
2227 int remaining, tocopy;
2228 int j;
2230 hb = skb_dequeue(&(card->hbpool.queue));
2231 if (hb == NULL) { /* No buffers in the queue */
2233 hb = dev_alloc_skb(NS_HBUFSIZE);
2234 if (hb == NULL) {
2235 printk
2236 ("nicstar%d: Out of huge buffers.\n",
2237 card->index);
2238 atomic_inc(&vcc->stats->rx_drop);
2239 recycle_iovec_rx_bufs(card,
2240 (struct iovec *)
2241 iovb->data,
2242 NS_PRV_IOVCNT(iovb));
2243 vc->rx_iov = NULL;
2244 recycle_iov_buf(card, iovb);
2245 return;
2246 } else if (card->hbpool.count < card->hbnr.min) {
2247 struct sk_buff *new_hb;
2248 if ((new_hb =
2249 dev_alloc_skb(NS_HBUFSIZE)) !=
2250 NULL) {
2251 skb_queue_tail(&card->hbpool.
2252 queue, new_hb);
2253 card->hbpool.count++;
2256 NS_PRV_BUFTYPE(hb) = BUF_NONE;
2257 } else if (--card->hbpool.count < card->hbnr.min) {
2258 struct sk_buff *new_hb;
2259 if ((new_hb =
2260 dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2261 NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2262 skb_queue_tail(&card->hbpool.queue,
2263 new_hb);
2264 card->hbpool.count++;
2266 if (card->hbpool.count < card->hbnr.min) {
2267 if ((new_hb =
2268 dev_alloc_skb(NS_HBUFSIZE)) !=
2269 NULL) {
2270 NS_PRV_BUFTYPE(new_hb) =
2271 BUF_NONE;
2272 skb_queue_tail(&card->hbpool.
2273 queue, new_hb);
2274 card->hbpool.count++;
2279 iov = (struct iovec *)iovb->data;
2281 if (!atm_charge(vcc, hb->truesize)) {
2282 recycle_iovec_rx_bufs(card, iov,
2283 NS_PRV_IOVCNT(iovb));
2284 if (card->hbpool.count < card->hbnr.max) {
2285 skb_queue_tail(&card->hbpool.queue, hb);
2286 card->hbpool.count++;
2287 } else
2288 dev_kfree_skb_any(hb);
2289 atomic_inc(&vcc->stats->rx_drop);
2290 } else {
2291 /* Copy the small buffer to the huge buffer */
2292 sb = (struct sk_buff *)iov->iov_base;
2293 skb_copy_from_linear_data(sb, hb->data,
2294 iov->iov_len);
2295 skb_put(hb, iov->iov_len);
2296 remaining = len - iov->iov_len;
2297 iov++;
2298 /* Free the small buffer */
2299 push_rxbufs(card, sb);
2301 /* Copy all large buffers to the huge buffer and free them */
2302 for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2303 lb = (struct sk_buff *)iov->iov_base;
2304 tocopy =
2305 min_t(int, remaining, iov->iov_len);
2306 skb_copy_from_linear_data(lb,
2307 skb_tail_pointer
2308 (hb), tocopy);
2309 skb_put(hb, tocopy);
2310 iov++;
2311 remaining -= tocopy;
2312 push_rxbufs(card, lb);
2314 #ifdef EXTRA_DEBUG
2315 if (remaining != 0 || hb->len != len)
2316 printk
2317 ("nicstar%d: Huge buffer len mismatch.\n",
2318 card->index);
2319 #endif /* EXTRA_DEBUG */
2320 ATM_SKB(hb)->vcc = vcc;
2321 __net_timestamp(hb);
2322 vcc->push(vcc, hb);
2323 atomic_inc(&vcc->stats->rx);
2327 vc->rx_iov = NULL;
2328 recycle_iov_buf(card, iovb);
2333 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2335 if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2336 printk("nicstar%d: What kind of rx buffer is this?\n",
2337 card->index);
2338 dev_kfree_skb_any(skb);
2339 } else
2340 push_rxbufs(card, skb);
2343 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2345 while (count-- > 0)
2346 recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2349 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2351 if (card->iovpool.count < card->iovnr.max) {
2352 skb_queue_tail(&card->iovpool.queue, iovb);
2353 card->iovpool.count++;
2354 } else
2355 dev_kfree_skb_any(iovb);
2358 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2360 skb_unlink(sb, &card->sbpool.queue);
2361 if (card->sbfqc < card->sbnr.init) {
2362 struct sk_buff *new_sb;
2363 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2364 NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2365 skb_queue_tail(&card->sbpool.queue, new_sb);
2366 skb_reserve(new_sb, NS_AAL0_HEADER);
2367 push_rxbufs(card, new_sb);
2370 if (card->sbfqc < card->sbnr.init)
2372 struct sk_buff *new_sb;
2373 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2374 NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2375 skb_queue_tail(&card->sbpool.queue, new_sb);
2376 skb_reserve(new_sb, NS_AAL0_HEADER);
2377 push_rxbufs(card, new_sb);
2382 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2384 skb_unlink(lb, &card->lbpool.queue);
2385 if (card->lbfqc < card->lbnr.init) {
2386 struct sk_buff *new_lb;
2387 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2388 NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2389 skb_queue_tail(&card->lbpool.queue, new_lb);
2390 skb_reserve(new_lb, NS_SMBUFSIZE);
2391 push_rxbufs(card, new_lb);
2394 if (card->lbfqc < card->lbnr.init)
2396 struct sk_buff *new_lb;
2397 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2398 NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2399 skb_queue_tail(&card->lbpool.queue, new_lb);
2400 skb_reserve(new_lb, NS_SMBUFSIZE);
2401 push_rxbufs(card, new_lb);
2406 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2408 u32 stat;
2409 ns_dev *card;
2410 int left;
2412 left = (int)*pos;
2413 card = (ns_dev *) dev->dev_data;
2414 stat = readl(card->membase + STAT);
2415 if (!left--)
2416 return sprintf(page, "Pool count min init max \n");
2417 if (!left--)
2418 return sprintf(page, "Small %5d %5d %5d %5d \n",
2419 ns_stat_sfbqc_get(stat), card->sbnr.min,
2420 card->sbnr.init, card->sbnr.max);
2421 if (!left--)
2422 return sprintf(page, "Large %5d %5d %5d %5d \n",
2423 ns_stat_lfbqc_get(stat), card->lbnr.min,
2424 card->lbnr.init, card->lbnr.max);
2425 if (!left--)
2426 return sprintf(page, "Huge %5d %5d %5d %5d \n",
2427 card->hbpool.count, card->hbnr.min,
2428 card->hbnr.init, card->hbnr.max);
2429 if (!left--)
2430 return sprintf(page, "Iovec %5d %5d %5d %5d \n",
2431 card->iovpool.count, card->iovnr.min,
2432 card->iovnr.init, card->iovnr.max);
2433 if (!left--) {
2434 int retval;
2435 retval =
2436 sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2437 card->intcnt = 0;
2438 return retval;
2440 #if 0
2441 /* Dump 25.6 Mbps PHY registers */
2442 /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2443 here just in case it's needed for debugging. */
2444 if (card->max_pcr == ATM_25_PCR && !left--) {
2445 u32 phy_regs[4];
2446 u32 i;
2448 for (i = 0; i < 4; i++) {
2449 while (CMD_BUSY(card)) ;
2450 writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2451 card->membase + CMD);
2452 while (CMD_BUSY(card)) ;
2453 phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2456 return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2457 phy_regs[0], phy_regs[1], phy_regs[2],
2458 phy_regs[3]);
2460 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2461 #if 0
2462 /* Dump TST */
2463 if (left-- < NS_TST_NUM_ENTRIES) {
2464 if (card->tste2vc[left + 1] == NULL)
2465 return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2466 else
2467 return sprintf(page, "%5d - %d %d \n", left + 1,
2468 card->tste2vc[left + 1]->tx_vcc->vpi,
2469 card->tste2vc[left + 1]->tx_vcc->vci);
2471 #endif /* 0 */
2472 return 0;
2475 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2477 ns_dev *card;
2478 pool_levels pl;
2479 long btype;
2480 unsigned long flags;
2482 card = dev->dev_data;
2483 switch (cmd) {
2484 case NS_GETPSTAT:
2485 if (get_user
2486 (pl.buftype, &((pool_levels __user *) arg)->buftype))
2487 return -EFAULT;
2488 switch (pl.buftype) {
2489 case NS_BUFTYPE_SMALL:
2490 pl.count =
2491 ns_stat_sfbqc_get(readl(card->membase + STAT));
2492 pl.level.min = card->sbnr.min;
2493 pl.level.init = card->sbnr.init;
2494 pl.level.max = card->sbnr.max;
2495 break;
2497 case NS_BUFTYPE_LARGE:
2498 pl.count =
2499 ns_stat_lfbqc_get(readl(card->membase + STAT));
2500 pl.level.min = card->lbnr.min;
2501 pl.level.init = card->lbnr.init;
2502 pl.level.max = card->lbnr.max;
2503 break;
2505 case NS_BUFTYPE_HUGE:
2506 pl.count = card->hbpool.count;
2507 pl.level.min = card->hbnr.min;
2508 pl.level.init = card->hbnr.init;
2509 pl.level.max = card->hbnr.max;
2510 break;
2512 case NS_BUFTYPE_IOVEC:
2513 pl.count = card->iovpool.count;
2514 pl.level.min = card->iovnr.min;
2515 pl.level.init = card->iovnr.init;
2516 pl.level.max = card->iovnr.max;
2517 break;
2519 default:
2520 return -ENOIOCTLCMD;
2523 if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2524 return (sizeof(pl));
2525 else
2526 return -EFAULT;
2528 case NS_SETBUFLEV:
2529 if (!capable(CAP_NET_ADMIN))
2530 return -EPERM;
2531 if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2532 return -EFAULT;
2533 if (pl.level.min >= pl.level.init
2534 || pl.level.init >= pl.level.max)
2535 return -EINVAL;
2536 if (pl.level.min == 0)
2537 return -EINVAL;
2538 switch (pl.buftype) {
2539 case NS_BUFTYPE_SMALL:
2540 if (pl.level.max > TOP_SB)
2541 return -EINVAL;
2542 card->sbnr.min = pl.level.min;
2543 card->sbnr.init = pl.level.init;
2544 card->sbnr.max = pl.level.max;
2545 break;
2547 case NS_BUFTYPE_LARGE:
2548 if (pl.level.max > TOP_LB)
2549 return -EINVAL;
2550 card->lbnr.min = pl.level.min;
2551 card->lbnr.init = pl.level.init;
2552 card->lbnr.max = pl.level.max;
2553 break;
2555 case NS_BUFTYPE_HUGE:
2556 if (pl.level.max > TOP_HB)
2557 return -EINVAL;
2558 card->hbnr.min = pl.level.min;
2559 card->hbnr.init = pl.level.init;
2560 card->hbnr.max = pl.level.max;
2561 break;
2563 case NS_BUFTYPE_IOVEC:
2564 if (pl.level.max > TOP_IOVB)
2565 return -EINVAL;
2566 card->iovnr.min = pl.level.min;
2567 card->iovnr.init = pl.level.init;
2568 card->iovnr.max = pl.level.max;
2569 break;
2571 default:
2572 return -EINVAL;
2575 return 0;
2577 case NS_ADJBUFLEV:
2578 if (!capable(CAP_NET_ADMIN))
2579 return -EPERM;
2580 btype = (long)arg; /* a long is the same size as a pointer or bigger */
2581 switch (btype) {
2582 case NS_BUFTYPE_SMALL:
2583 while (card->sbfqc < card->sbnr.init) {
2584 struct sk_buff *sb;
2586 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2587 if (sb == NULL)
2588 return -ENOMEM;
2589 NS_PRV_BUFTYPE(sb) = BUF_SM;
2590 skb_queue_tail(&card->sbpool.queue, sb);
2591 skb_reserve(sb, NS_AAL0_HEADER);
2592 push_rxbufs(card, sb);
2594 break;
2596 case NS_BUFTYPE_LARGE:
2597 while (card->lbfqc < card->lbnr.init) {
2598 struct sk_buff *lb;
2600 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2601 if (lb == NULL)
2602 return -ENOMEM;
2603 NS_PRV_BUFTYPE(lb) = BUF_LG;
2604 skb_queue_tail(&card->lbpool.queue, lb);
2605 skb_reserve(lb, NS_SMBUFSIZE);
2606 push_rxbufs(card, lb);
2608 break;
2610 case NS_BUFTYPE_HUGE:
2611 while (card->hbpool.count > card->hbnr.init) {
2612 struct sk_buff *hb;
2614 spin_lock_irqsave(&card->int_lock, flags);
2615 hb = skb_dequeue(&card->hbpool.queue);
2616 card->hbpool.count--;
2617 spin_unlock_irqrestore(&card->int_lock, flags);
2618 if (hb == NULL)
2619 printk
2620 ("nicstar%d: huge buffer count inconsistent.\n",
2621 card->index);
2622 else
2623 dev_kfree_skb_any(hb);
2626 while (card->hbpool.count < card->hbnr.init) {
2627 struct sk_buff *hb;
2629 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2630 if (hb == NULL)
2631 return -ENOMEM;
2632 NS_PRV_BUFTYPE(hb) = BUF_NONE;
2633 spin_lock_irqsave(&card->int_lock, flags);
2634 skb_queue_tail(&card->hbpool.queue, hb);
2635 card->hbpool.count++;
2636 spin_unlock_irqrestore(&card->int_lock, flags);
2638 break;
2640 case NS_BUFTYPE_IOVEC:
2641 while (card->iovpool.count > card->iovnr.init) {
2642 struct sk_buff *iovb;
2644 spin_lock_irqsave(&card->int_lock, flags);
2645 iovb = skb_dequeue(&card->iovpool.queue);
2646 card->iovpool.count--;
2647 spin_unlock_irqrestore(&card->int_lock, flags);
2648 if (iovb == NULL)
2649 printk
2650 ("nicstar%d: iovec buffer count inconsistent.\n",
2651 card->index);
2652 else
2653 dev_kfree_skb_any(iovb);
2656 while (card->iovpool.count < card->iovnr.init) {
2657 struct sk_buff *iovb;
2659 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2660 if (iovb == NULL)
2661 return -ENOMEM;
2662 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2663 spin_lock_irqsave(&card->int_lock, flags);
2664 skb_queue_tail(&card->iovpool.queue, iovb);
2665 card->iovpool.count++;
2666 spin_unlock_irqrestore(&card->int_lock, flags);
2668 break;
2670 default:
2671 return -EINVAL;
2674 return 0;
2676 default:
2677 if (dev->phy && dev->phy->ioctl) {
2678 return dev->phy->ioctl(dev, cmd, arg);
2679 } else {
2680 printk("nicstar%d: %s == NULL \n", card->index,
2681 dev->phy ? "dev->phy->ioctl" : "dev->phy");
2682 return -ENOIOCTLCMD;
2687 #ifdef EXTRA_DEBUG
2688 static void which_list(ns_dev * card, struct sk_buff *skb)
2690 printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2692 #endif /* EXTRA_DEBUG */
2694 static void ns_poll(struct timer_list *unused)
2696 int i;
2697 ns_dev *card;
2698 unsigned long flags;
2699 u32 stat_r, stat_w;
2701 PRINTK("nicstar: Entering ns_poll().\n");
2702 for (i = 0; i < num_cards; i++) {
2703 card = cards[i];
2704 if (!spin_trylock_irqsave(&card->int_lock, flags)) {
2705 /* Probably it isn't worth spinning */
2706 continue;
2709 stat_w = 0;
2710 stat_r = readl(card->membase + STAT);
2711 if (stat_r & NS_STAT_TSIF)
2712 stat_w |= NS_STAT_TSIF;
2713 if (stat_r & NS_STAT_EOPDU)
2714 stat_w |= NS_STAT_EOPDU;
2716 process_tsq(card);
2717 process_rsq(card);
2719 writel(stat_w, card->membase + STAT);
2720 spin_unlock_irqrestore(&card->int_lock, flags);
2722 mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2723 PRINTK("nicstar: Leaving ns_poll().\n");
2726 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2727 unsigned long addr)
2729 ns_dev *card;
2730 unsigned long flags;
2732 card = dev->dev_data;
2733 spin_lock_irqsave(&card->res_lock, flags);
2734 while (CMD_BUSY(card)) ;
2735 writel((u32) value, card->membase + DR0);
2736 writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2737 card->membase + CMD);
2738 spin_unlock_irqrestore(&card->res_lock, flags);
2741 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2743 ns_dev *card;
2744 unsigned long flags;
2745 u32 data;
2747 card = dev->dev_data;
2748 spin_lock_irqsave(&card->res_lock, flags);
2749 while (CMD_BUSY(card)) ;
2750 writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2751 card->membase + CMD);
2752 while (CMD_BUSY(card)) ;
2753 data = readl(card->membase + DR0) & 0x000000FF;
2754 spin_unlock_irqrestore(&card->res_lock, flags);
2755 return (unsigned char)data;
2758 module_init(nicstar_init);
2759 module_exit(nicstar_cleanup);