Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / base / cacheinfo.c
blob609935ad5091570839e9b5824e360f7701964f96
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cacheinfo support - processor cache information via sysfs
5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6 * Author: Sudeep Holla <sudeep.holla@arm.com>
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx) \
29 (per_cpu_cacheinfo(cpu) + (idx))
31 /* Set if no cache information is found in DT/ACPI. */
32 static bool use_arch_info;
34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
36 return ci_cacheinfo(cpu);
39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
40 struct cacheinfo *sib_leaf)
43 * For non DT/ACPI systems, assume unique level 1 caches,
44 * system-wide shared caches for all other levels.
46 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
47 use_arch_info)
48 return (this_leaf->level != 1) && (sib_leaf->level != 1);
50 if ((sib_leaf->attributes & CACHE_ID) &&
51 (this_leaf->attributes & CACHE_ID))
52 return sib_leaf->id == this_leaf->id;
54 return sib_leaf->fw_token == this_leaf->fw_token;
57 bool last_level_cache_is_valid(unsigned int cpu)
59 struct cacheinfo *llc;
61 if (!cache_leaves(cpu))
62 return false;
64 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
66 return (llc->attributes & CACHE_ID) || !!llc->fw_token;
70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
72 struct cacheinfo *llc_x, *llc_y;
74 if (!last_level_cache_is_valid(cpu_x) ||
75 !last_level_cache_is_valid(cpu_y))
76 return false;
78 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
79 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
81 return cache_leaves_are_shared(llc_x, llc_y);
84 #ifdef CONFIG_OF
86 static bool of_check_cache_nodes(struct device_node *np);
88 /* OF properties to query for a given cache type */
89 struct cache_type_info {
90 const char *size_prop;
91 const char *line_size_props[2];
92 const char *nr_sets_prop;
95 static const struct cache_type_info cache_type_info[] = {
97 .size_prop = "cache-size",
98 .line_size_props = { "cache-line-size",
99 "cache-block-size", },
100 .nr_sets_prop = "cache-sets",
101 }, {
102 .size_prop = "i-cache-size",
103 .line_size_props = { "i-cache-line-size",
104 "i-cache-block-size", },
105 .nr_sets_prop = "i-cache-sets",
106 }, {
107 .size_prop = "d-cache-size",
108 .line_size_props = { "d-cache-line-size",
109 "d-cache-block-size", },
110 .nr_sets_prop = "d-cache-sets",
114 static inline int get_cacheinfo_idx(enum cache_type type)
116 if (type == CACHE_TYPE_UNIFIED)
117 return 0;
118 return type;
121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
123 const char *propname;
124 int ct_idx;
126 ct_idx = get_cacheinfo_idx(this_leaf->type);
127 propname = cache_type_info[ct_idx].size_prop;
129 of_property_read_u32(np, propname, &this_leaf->size);
132 /* not cache_line_size() because that's a macro in include/linux/cache.h */
133 static void cache_get_line_size(struct cacheinfo *this_leaf,
134 struct device_node *np)
136 int i, lim, ct_idx;
138 ct_idx = get_cacheinfo_idx(this_leaf->type);
139 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
141 for (i = 0; i < lim; i++) {
142 int ret;
143 u32 line_size;
144 const char *propname;
146 propname = cache_type_info[ct_idx].line_size_props[i];
147 ret = of_property_read_u32(np, propname, &line_size);
148 if (!ret) {
149 this_leaf->coherency_line_size = line_size;
150 break;
155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
157 const char *propname;
158 int ct_idx;
160 ct_idx = get_cacheinfo_idx(this_leaf->type);
161 propname = cache_type_info[ct_idx].nr_sets_prop;
163 of_property_read_u32(np, propname, &this_leaf->number_of_sets);
166 static void cache_associativity(struct cacheinfo *this_leaf)
168 unsigned int line_size = this_leaf->coherency_line_size;
169 unsigned int nr_sets = this_leaf->number_of_sets;
170 unsigned int size = this_leaf->size;
173 * If the cache is fully associative, there is no need to
174 * check the other properties.
176 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
177 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
180 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
181 struct device_node *np)
183 return of_property_read_bool(np, "cache-unified");
186 static void cache_of_set_props(struct cacheinfo *this_leaf,
187 struct device_node *np)
190 * init_cache_level must setup the cache level correctly
191 * overriding the architecturally specified levels, so
192 * if type is NONE at this stage, it should be unified
194 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
195 cache_node_is_unified(this_leaf, np))
196 this_leaf->type = CACHE_TYPE_UNIFIED;
197 cache_size(this_leaf, np);
198 cache_get_line_size(this_leaf, np);
199 cache_nr_sets(this_leaf, np);
200 cache_associativity(this_leaf);
203 static int cache_setup_of_node(unsigned int cpu)
205 struct cacheinfo *this_leaf;
206 unsigned int index = 0;
208 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
209 if (!np) {
210 pr_err("Failed to find cpu%d device node\n", cpu);
211 return -ENOENT;
214 if (!of_check_cache_nodes(np)) {
215 return -ENOENT;
218 while (index < cache_leaves(cpu)) {
219 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
220 if (this_leaf->level != 1) {
221 struct device_node *prev __free(device_node) = np;
222 np = of_find_next_cache_node(np);
223 if (!np)
224 break;
226 cache_of_set_props(this_leaf, np);
227 this_leaf->fw_token = np;
228 index++;
231 if (index != cache_leaves(cpu)) /* not all OF nodes populated */
232 return -ENOENT;
234 return 0;
237 static bool of_check_cache_nodes(struct device_node *np)
239 if (of_property_present(np, "cache-size") ||
240 of_property_present(np, "i-cache-size") ||
241 of_property_present(np, "d-cache-size") ||
242 of_property_present(np, "cache-unified"))
243 return true;
245 struct device_node *next __free(device_node) = of_find_next_cache_node(np);
246 if (next) {
247 return true;
250 return false;
253 static int of_count_cache_leaves(struct device_node *np)
255 unsigned int leaves = 0;
257 if (of_property_present(np, "cache-size"))
258 ++leaves;
259 if (of_property_present(np, "i-cache-size"))
260 ++leaves;
261 if (of_property_present(np, "d-cache-size"))
262 ++leaves;
264 if (!leaves) {
265 /* The '[i-|d-|]cache-size' property is required, but
266 * if absent, fallback on the 'cache-unified' property.
268 if (of_property_read_bool(np, "cache-unified"))
269 return 1;
270 else
271 return 2;
274 return leaves;
277 int init_of_cache_level(unsigned int cpu)
279 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
280 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
281 unsigned int levels = 0, leaves, level;
283 if (!of_check_cache_nodes(np)) {
284 return -ENOENT;
287 leaves = of_count_cache_leaves(np);
288 if (leaves > 0)
289 levels = 1;
291 while (1) {
292 struct device_node *prev __free(device_node) = np;
293 np = of_find_next_cache_node(np);
294 if (!np)
295 break;
297 if (!of_device_is_compatible(np, "cache"))
298 return -EINVAL;
299 if (of_property_read_u32(np, "cache-level", &level))
300 return -EINVAL;
301 if (level <= levels)
302 return -EINVAL;
304 leaves += of_count_cache_leaves(np);
305 levels = level;
308 this_cpu_ci->num_levels = levels;
309 this_cpu_ci->num_leaves = leaves;
311 return 0;
314 #else
315 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
316 int init_of_cache_level(unsigned int cpu) { return 0; }
317 #endif
319 int __weak cache_setup_acpi(unsigned int cpu)
321 return -ENOTSUPP;
324 unsigned int coherency_max_size;
326 static int cache_setup_properties(unsigned int cpu)
328 int ret = 0;
330 if (of_have_populated_dt())
331 ret = cache_setup_of_node(cpu);
332 else if (!acpi_disabled)
333 ret = cache_setup_acpi(cpu);
335 // Assume there is no cache information available in DT/ACPI from now.
336 if (ret && use_arch_cache_info())
337 use_arch_info = true;
339 return ret;
342 static int cache_shared_cpu_map_setup(unsigned int cpu)
344 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
345 struct cacheinfo *this_leaf, *sib_leaf;
346 unsigned int index, sib_index;
347 int ret = 0;
349 if (this_cpu_ci->cpu_map_populated)
350 return 0;
353 * skip setting up cache properties if LLC is valid, just need
354 * to update the shared cpu_map if the cache attributes were
355 * populated early before all the cpus are brought online
357 if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
358 ret = cache_setup_properties(cpu);
359 if (ret)
360 return ret;
363 for (index = 0; index < cache_leaves(cpu); index++) {
364 unsigned int i;
366 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
368 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
369 for_each_online_cpu(i) {
370 if (i == cpu || !per_cpu_cacheinfo(i))
371 continue;/* skip if itself or no cacheinfo */
372 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
373 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
376 * Comparing cache IDs only makes sense if the leaves
377 * belong to the same cache level of same type. Skip
378 * the check if level and type do not match.
380 if (sib_leaf->level != this_leaf->level ||
381 sib_leaf->type != this_leaf->type)
382 continue;
384 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
385 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
386 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
387 break;
391 /* record the maximum cache line size */
392 if (this_leaf->coherency_line_size > coherency_max_size)
393 coherency_max_size = this_leaf->coherency_line_size;
396 /* shared_cpu_map is now populated for the cpu */
397 this_cpu_ci->cpu_map_populated = true;
398 return 0;
401 static void cache_shared_cpu_map_remove(unsigned int cpu)
403 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
404 struct cacheinfo *this_leaf, *sib_leaf;
405 unsigned int sibling, index, sib_index;
407 for (index = 0; index < cache_leaves(cpu); index++) {
408 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
409 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
410 if (sibling == cpu || !per_cpu_cacheinfo(sibling))
411 continue;/* skip if itself or no cacheinfo */
413 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
414 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
417 * Comparing cache IDs only makes sense if the leaves
418 * belong to the same cache level of same type. Skip
419 * the check if level and type do not match.
421 if (sib_leaf->level != this_leaf->level ||
422 sib_leaf->type != this_leaf->type)
423 continue;
425 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
426 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
427 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
428 break;
434 /* cpu is no longer populated in the shared map */
435 this_cpu_ci->cpu_map_populated = false;
438 static void free_cache_attributes(unsigned int cpu)
440 if (!per_cpu_cacheinfo(cpu))
441 return;
443 cache_shared_cpu_map_remove(cpu);
446 int __weak early_cache_level(unsigned int cpu)
448 return -ENOENT;
451 int __weak init_cache_level(unsigned int cpu)
453 return -ENOENT;
456 int __weak populate_cache_leaves(unsigned int cpu)
458 return -ENOENT;
461 static inline
462 int allocate_cache_info(int cpu)
464 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
465 sizeof(struct cacheinfo), GFP_ATOMIC);
466 if (!per_cpu_cacheinfo(cpu)) {
467 cache_leaves(cpu) = 0;
468 return -ENOMEM;
471 return 0;
474 int fetch_cache_info(unsigned int cpu)
476 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
477 unsigned int levels = 0, split_levels = 0;
478 int ret;
480 if (acpi_disabled) {
481 ret = init_of_cache_level(cpu);
482 } else {
483 ret = acpi_get_cache_info(cpu, &levels, &split_levels);
484 if (!ret) {
485 this_cpu_ci->num_levels = levels;
487 * This assumes that:
488 * - there cannot be any split caches (data/instruction)
489 * above a unified cache
490 * - data/instruction caches come by pair
492 this_cpu_ci->num_leaves = levels + split_levels;
496 if (ret || !cache_leaves(cpu)) {
497 ret = early_cache_level(cpu);
498 if (ret)
499 return ret;
501 if (!cache_leaves(cpu))
502 return -ENOENT;
504 this_cpu_ci->early_ci_levels = true;
507 return allocate_cache_info(cpu);
510 static inline int init_level_allocate_ci(unsigned int cpu)
512 unsigned int early_leaves = cache_leaves(cpu);
514 /* Since early initialization/allocation of the cacheinfo is allowed
515 * via fetch_cache_info() and this also gets called as CPU hotplug
516 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
517 * as it will happen only once (the cacheinfo memory is never freed).
518 * Just populate the cacheinfo. However, if the cacheinfo has been
519 * allocated early through the arch-specific early_cache_level() call,
520 * there is a chance the info is wrong (this can happen on arm64). In
521 * that case, call init_cache_level() anyway to give the arch-specific
522 * code a chance to make things right.
524 if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
525 return 0;
527 if (init_cache_level(cpu) || !cache_leaves(cpu))
528 return -ENOENT;
531 * Now that we have properly initialized the cache level info, make
532 * sure we don't try to do that again the next time we are called
533 * (e.g. as CPU hotplug callbacks).
535 ci_cacheinfo(cpu)->early_ci_levels = false;
537 if (cache_leaves(cpu) <= early_leaves)
538 return 0;
540 kfree(per_cpu_cacheinfo(cpu));
541 return allocate_cache_info(cpu);
544 int detect_cache_attributes(unsigned int cpu)
546 int ret;
548 ret = init_level_allocate_ci(cpu);
549 if (ret)
550 return ret;
553 * If LLC is valid the cache leaves were already populated so just go to
554 * update the cpu map.
556 if (!last_level_cache_is_valid(cpu)) {
558 * populate_cache_leaves() may completely setup the cache leaves and
559 * shared_cpu_map or it may leave it partially setup.
561 ret = populate_cache_leaves(cpu);
562 if (ret)
563 goto free_ci;
567 * For systems using DT for cache hierarchy, fw_token
568 * and shared_cpu_map will be set up here only if they are
569 * not populated already
571 ret = cache_shared_cpu_map_setup(cpu);
572 if (ret) {
573 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
574 goto free_ci;
577 return 0;
579 free_ci:
580 free_cache_attributes(cpu);
581 return ret;
584 /* pointer to cpuX/cache device */
585 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
586 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
588 static cpumask_t cache_dev_map;
590 /* pointer to array of devices for cpuX/cache/indexY */
591 static DEFINE_PER_CPU(struct device **, ci_index_dev);
592 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
593 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
595 #define show_one(file_name, object) \
596 static ssize_t file_name##_show(struct device *dev, \
597 struct device_attribute *attr, char *buf) \
599 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
600 return sysfs_emit(buf, "%u\n", this_leaf->object); \
603 show_one(id, id);
604 show_one(level, level);
605 show_one(coherency_line_size, coherency_line_size);
606 show_one(number_of_sets, number_of_sets);
607 show_one(physical_line_partition, physical_line_partition);
608 show_one(ways_of_associativity, ways_of_associativity);
610 static ssize_t size_show(struct device *dev,
611 struct device_attribute *attr, char *buf)
613 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
615 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
618 static ssize_t shared_cpu_map_show(struct device *dev,
619 struct device_attribute *attr, char *buf)
621 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
622 const struct cpumask *mask = &this_leaf->shared_cpu_map;
624 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
627 static ssize_t shared_cpu_list_show(struct device *dev,
628 struct device_attribute *attr, char *buf)
630 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
631 const struct cpumask *mask = &this_leaf->shared_cpu_map;
633 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
636 static ssize_t type_show(struct device *dev,
637 struct device_attribute *attr, char *buf)
639 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
640 const char *output;
642 switch (this_leaf->type) {
643 case CACHE_TYPE_DATA:
644 output = "Data";
645 break;
646 case CACHE_TYPE_INST:
647 output = "Instruction";
648 break;
649 case CACHE_TYPE_UNIFIED:
650 output = "Unified";
651 break;
652 default:
653 return -EINVAL;
656 return sysfs_emit(buf, "%s\n", output);
659 static ssize_t allocation_policy_show(struct device *dev,
660 struct device_attribute *attr, char *buf)
662 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
663 unsigned int ci_attr = this_leaf->attributes;
664 const char *output;
666 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
667 output = "ReadWriteAllocate";
668 else if (ci_attr & CACHE_READ_ALLOCATE)
669 output = "ReadAllocate";
670 else if (ci_attr & CACHE_WRITE_ALLOCATE)
671 output = "WriteAllocate";
672 else
673 return 0;
675 return sysfs_emit(buf, "%s\n", output);
678 static ssize_t write_policy_show(struct device *dev,
679 struct device_attribute *attr, char *buf)
681 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
682 unsigned int ci_attr = this_leaf->attributes;
683 int n = 0;
685 if (ci_attr & CACHE_WRITE_THROUGH)
686 n = sysfs_emit(buf, "WriteThrough\n");
687 else if (ci_attr & CACHE_WRITE_BACK)
688 n = sysfs_emit(buf, "WriteBack\n");
689 return n;
692 static DEVICE_ATTR_RO(id);
693 static DEVICE_ATTR_RO(level);
694 static DEVICE_ATTR_RO(type);
695 static DEVICE_ATTR_RO(coherency_line_size);
696 static DEVICE_ATTR_RO(ways_of_associativity);
697 static DEVICE_ATTR_RO(number_of_sets);
698 static DEVICE_ATTR_RO(size);
699 static DEVICE_ATTR_RO(allocation_policy);
700 static DEVICE_ATTR_RO(write_policy);
701 static DEVICE_ATTR_RO(shared_cpu_map);
702 static DEVICE_ATTR_RO(shared_cpu_list);
703 static DEVICE_ATTR_RO(physical_line_partition);
705 static struct attribute *cache_default_attrs[] = {
706 &dev_attr_id.attr,
707 &dev_attr_type.attr,
708 &dev_attr_level.attr,
709 &dev_attr_shared_cpu_map.attr,
710 &dev_attr_shared_cpu_list.attr,
711 &dev_attr_coherency_line_size.attr,
712 &dev_attr_ways_of_associativity.attr,
713 &dev_attr_number_of_sets.attr,
714 &dev_attr_size.attr,
715 &dev_attr_allocation_policy.attr,
716 &dev_attr_write_policy.attr,
717 &dev_attr_physical_line_partition.attr,
718 NULL
721 static umode_t
722 cache_default_attrs_is_visible(struct kobject *kobj,
723 struct attribute *attr, int unused)
725 struct device *dev = kobj_to_dev(kobj);
726 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
727 const struct cpumask *mask = &this_leaf->shared_cpu_map;
728 umode_t mode = attr->mode;
730 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
731 return mode;
732 if ((attr == &dev_attr_type.attr) && this_leaf->type)
733 return mode;
734 if ((attr == &dev_attr_level.attr) && this_leaf->level)
735 return mode;
736 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
737 return mode;
738 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
739 return mode;
740 if ((attr == &dev_attr_coherency_line_size.attr) &&
741 this_leaf->coherency_line_size)
742 return mode;
743 if ((attr == &dev_attr_ways_of_associativity.attr) &&
744 this_leaf->size) /* allow 0 = full associativity */
745 return mode;
746 if ((attr == &dev_attr_number_of_sets.attr) &&
747 this_leaf->number_of_sets)
748 return mode;
749 if ((attr == &dev_attr_size.attr) && this_leaf->size)
750 return mode;
751 if ((attr == &dev_attr_write_policy.attr) &&
752 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
753 return mode;
754 if ((attr == &dev_attr_allocation_policy.attr) &&
755 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
756 return mode;
757 if ((attr == &dev_attr_physical_line_partition.attr) &&
758 this_leaf->physical_line_partition)
759 return mode;
761 return 0;
764 static const struct attribute_group cache_default_group = {
765 .attrs = cache_default_attrs,
766 .is_visible = cache_default_attrs_is_visible,
769 static const struct attribute_group *cache_default_groups[] = {
770 &cache_default_group,
771 NULL,
774 static const struct attribute_group *cache_private_groups[] = {
775 &cache_default_group,
776 NULL, /* Place holder for private group */
777 NULL,
780 const struct attribute_group *
781 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
783 return NULL;
786 static const struct attribute_group **
787 cache_get_attribute_groups(struct cacheinfo *this_leaf)
789 const struct attribute_group *priv_group =
790 cache_get_priv_group(this_leaf);
792 if (!priv_group)
793 return cache_default_groups;
795 if (!cache_private_groups[1])
796 cache_private_groups[1] = priv_group;
798 return cache_private_groups;
801 /* Add/Remove cache interface for CPU device */
802 static void cpu_cache_sysfs_exit(unsigned int cpu)
804 int i;
805 struct device *ci_dev;
807 if (per_cpu_index_dev(cpu)) {
808 for (i = 0; i < cache_leaves(cpu); i++) {
809 ci_dev = per_cache_index_dev(cpu, i);
810 if (!ci_dev)
811 continue;
812 device_unregister(ci_dev);
814 kfree(per_cpu_index_dev(cpu));
815 per_cpu_index_dev(cpu) = NULL;
817 device_unregister(per_cpu_cache_dev(cpu));
818 per_cpu_cache_dev(cpu) = NULL;
821 static int cpu_cache_sysfs_init(unsigned int cpu)
823 struct device *dev = get_cpu_device(cpu);
825 if (per_cpu_cacheinfo(cpu) == NULL)
826 return -ENOENT;
828 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
829 if (IS_ERR(per_cpu_cache_dev(cpu)))
830 return PTR_ERR(per_cpu_cache_dev(cpu));
832 /* Allocate all required memory */
833 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
834 sizeof(struct device *), GFP_KERNEL);
835 if (unlikely(per_cpu_index_dev(cpu) == NULL))
836 goto err_out;
838 return 0;
840 err_out:
841 cpu_cache_sysfs_exit(cpu);
842 return -ENOMEM;
845 static int cache_add_dev(unsigned int cpu)
847 unsigned int i;
848 int rc;
849 struct device *ci_dev, *parent;
850 struct cacheinfo *this_leaf;
851 const struct attribute_group **cache_groups;
853 rc = cpu_cache_sysfs_init(cpu);
854 if (unlikely(rc < 0))
855 return rc;
857 parent = per_cpu_cache_dev(cpu);
858 for (i = 0; i < cache_leaves(cpu); i++) {
859 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
860 if (this_leaf->disable_sysfs)
861 continue;
862 if (this_leaf->type == CACHE_TYPE_NOCACHE)
863 break;
864 cache_groups = cache_get_attribute_groups(this_leaf);
865 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
866 "index%1u", i);
867 if (IS_ERR(ci_dev)) {
868 rc = PTR_ERR(ci_dev);
869 goto err;
871 per_cache_index_dev(cpu, i) = ci_dev;
873 cpumask_set_cpu(cpu, &cache_dev_map);
875 return 0;
876 err:
877 cpu_cache_sysfs_exit(cpu);
878 return rc;
881 static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu,
882 cpumask_t **map)
884 struct cacheinfo *llc, *sib_llc;
885 unsigned int sibling;
887 if (!last_level_cache_is_valid(cpu))
888 return 0;
890 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
892 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
893 return 0;
895 if (online) {
896 *map = &llc->shared_cpu_map;
897 return cpumask_weight(*map);
900 /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */
901 for_each_cpu(sibling, &llc->shared_cpu_map) {
902 if (sibling == cpu || !last_level_cache_is_valid(sibling))
903 continue;
904 sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1);
905 *map = &sib_llc->shared_cpu_map;
906 return cpumask_weight(*map);
909 return 0;
913 * Calculate the size of the per-CPU data cache slice. This can be
914 * used to estimate the size of the data cache slice that can be used
915 * by one CPU under ideal circumstances. UNIFIED caches are counted
916 * in addition to DATA caches. So, please consider code cache usage
917 * when use the result.
919 * Because the cache inclusive/non-inclusive information isn't
920 * available, we just use the size of the per-CPU slice of LLC to make
921 * the result more predictable across architectures.
923 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
925 struct cpu_cacheinfo *ci;
926 struct cacheinfo *llc;
927 unsigned int nr_shared;
929 if (!last_level_cache_is_valid(cpu))
930 return;
932 ci = ci_cacheinfo(cpu);
933 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
935 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
936 return;
938 nr_shared = cpumask_weight(&llc->shared_cpu_map);
939 if (nr_shared)
940 ci->per_cpu_data_slice_size = llc->size / nr_shared;
943 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu,
944 cpumask_t *cpu_map)
946 unsigned int icpu;
948 for_each_cpu(icpu, cpu_map) {
949 if (!cpu_online && icpu == cpu)
950 continue;
951 update_per_cpu_data_slice_size_cpu(icpu);
952 setup_pcp_cacheinfo(icpu);
956 static int cacheinfo_cpu_online(unsigned int cpu)
958 int rc = detect_cache_attributes(cpu);
959 cpumask_t *cpu_map;
961 if (rc)
962 return rc;
963 rc = cache_add_dev(cpu);
964 if (rc)
965 goto err;
966 if (cpu_map_shared_cache(true, cpu, &cpu_map))
967 update_per_cpu_data_slice_size(true, cpu, cpu_map);
968 return 0;
969 err:
970 free_cache_attributes(cpu);
971 return rc;
974 static int cacheinfo_cpu_pre_down(unsigned int cpu)
976 cpumask_t *cpu_map;
977 unsigned int nr_shared;
979 nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map);
980 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
981 cpu_cache_sysfs_exit(cpu);
983 free_cache_attributes(cpu);
984 if (nr_shared > 1)
985 update_per_cpu_data_slice_size(false, cpu, cpu_map);
986 return 0;
989 static int __init cacheinfo_sysfs_init(void)
991 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
992 "base/cacheinfo:online",
993 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
995 device_initcall(cacheinfo_sysfs_init);