Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / block / brd.c
blob292f127cae0abe9f5f8dc8165946ddff9e60f99b
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Ram backed block device driver.
5 * Copyright (C) 2007 Nick Piggin
6 * Copyright (C) 2007 Novell Inc.
8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9 * of their respective owners.
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/pagemap.h>
22 #include <linux/xarray.h>
23 #include <linux/fs.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/debugfs.h>
28 #include <linux/uaccess.h>
31 * Each block ramdisk device has a xarray brd_pages of pages that stores
32 * the pages containing the block device's contents.
34 struct brd_device {
35 int brd_number;
36 struct gendisk *brd_disk;
37 struct list_head brd_list;
40 * Backing store of pages. This is the contents of the block device.
42 struct xarray brd_pages;
43 u64 brd_nr_pages;
47 * Look up and return a brd's page for a given sector.
49 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
51 return xa_load(&brd->brd_pages, sector >> PAGE_SECTORS_SHIFT);
55 * Insert a new page for a given sector, if one does not already exist.
57 static int brd_insert_page(struct brd_device *brd, sector_t sector, gfp_t gfp)
59 pgoff_t idx = sector >> PAGE_SECTORS_SHIFT;
60 struct page *page;
61 int ret = 0;
63 page = brd_lookup_page(brd, sector);
64 if (page)
65 return 0;
67 page = alloc_page(gfp | __GFP_ZERO | __GFP_HIGHMEM);
68 if (!page)
69 return -ENOMEM;
71 xa_lock(&brd->brd_pages);
72 ret = __xa_insert(&brd->brd_pages, idx, page, gfp);
73 if (!ret)
74 brd->brd_nr_pages++;
75 xa_unlock(&brd->brd_pages);
77 if (ret < 0) {
78 __free_page(page);
79 if (ret == -EBUSY)
80 ret = 0;
82 return ret;
86 * Free all backing store pages and xarray. This must only be called when
87 * there are no other users of the device.
89 static void brd_free_pages(struct brd_device *brd)
91 struct page *page;
92 pgoff_t idx;
94 xa_for_each(&brd->brd_pages, idx, page) {
95 __free_page(page);
96 cond_resched();
99 xa_destroy(&brd->brd_pages);
103 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
105 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n,
106 gfp_t gfp)
108 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
109 size_t copy;
110 int ret;
112 copy = min_t(size_t, n, PAGE_SIZE - offset);
113 ret = brd_insert_page(brd, sector, gfp);
114 if (ret)
115 return ret;
116 if (copy < n) {
117 sector += copy >> SECTOR_SHIFT;
118 ret = brd_insert_page(brd, sector, gfp);
120 return ret;
124 * Copy n bytes from src to the brd starting at sector. Does not sleep.
126 static void copy_to_brd(struct brd_device *brd, const void *src,
127 sector_t sector, size_t n)
129 struct page *page;
130 void *dst;
131 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
132 size_t copy;
134 copy = min_t(size_t, n, PAGE_SIZE - offset);
135 page = brd_lookup_page(brd, sector);
136 BUG_ON(!page);
138 dst = kmap_atomic(page);
139 memcpy(dst + offset, src, copy);
140 kunmap_atomic(dst);
142 if (copy < n) {
143 src += copy;
144 sector += copy >> SECTOR_SHIFT;
145 copy = n - copy;
146 page = brd_lookup_page(brd, sector);
147 BUG_ON(!page);
149 dst = kmap_atomic(page);
150 memcpy(dst, src, copy);
151 kunmap_atomic(dst);
156 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
158 static void copy_from_brd(void *dst, struct brd_device *brd,
159 sector_t sector, size_t n)
161 struct page *page;
162 void *src;
163 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
164 size_t copy;
166 copy = min_t(size_t, n, PAGE_SIZE - offset);
167 page = brd_lookup_page(brd, sector);
168 if (page) {
169 src = kmap_atomic(page);
170 memcpy(dst, src + offset, copy);
171 kunmap_atomic(src);
172 } else
173 memset(dst, 0, copy);
175 if (copy < n) {
176 dst += copy;
177 sector += copy >> SECTOR_SHIFT;
178 copy = n - copy;
179 page = brd_lookup_page(brd, sector);
180 if (page) {
181 src = kmap_atomic(page);
182 memcpy(dst, src, copy);
183 kunmap_atomic(src);
184 } else
185 memset(dst, 0, copy);
190 * Process a single bvec of a bio.
192 static int brd_do_bvec(struct brd_device *brd, struct page *page,
193 unsigned int len, unsigned int off, blk_opf_t opf,
194 sector_t sector)
196 void *mem;
197 int err = 0;
199 if (op_is_write(opf)) {
201 * Must use NOIO because we don't want to recurse back into the
202 * block or filesystem layers from page reclaim.
204 gfp_t gfp = opf & REQ_NOWAIT ? GFP_NOWAIT : GFP_NOIO;
206 err = copy_to_brd_setup(brd, sector, len, gfp);
207 if (err)
208 goto out;
211 mem = kmap_atomic(page);
212 if (!op_is_write(opf)) {
213 copy_from_brd(mem + off, brd, sector, len);
214 flush_dcache_page(page);
215 } else {
216 flush_dcache_page(page);
217 copy_to_brd(brd, mem + off, sector, len);
219 kunmap_atomic(mem);
221 out:
222 return err;
225 static void brd_do_discard(struct brd_device *brd, sector_t sector, u32 size)
227 sector_t aligned_sector = (sector + PAGE_SECTORS) & ~PAGE_SECTORS;
228 struct page *page;
230 size -= (aligned_sector - sector) * SECTOR_SIZE;
231 xa_lock(&brd->brd_pages);
232 while (size >= PAGE_SIZE && aligned_sector < rd_size * 2) {
233 page = __xa_erase(&brd->brd_pages, aligned_sector >> PAGE_SECTORS_SHIFT);
234 if (page) {
235 __free_page(page);
236 brd->brd_nr_pages--;
238 aligned_sector += PAGE_SECTORS;
239 size -= PAGE_SIZE;
241 xa_unlock(&brd->brd_pages);
244 static void brd_submit_bio(struct bio *bio)
246 struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
247 sector_t sector = bio->bi_iter.bi_sector;
248 struct bio_vec bvec;
249 struct bvec_iter iter;
251 if (unlikely(op_is_discard(bio->bi_opf))) {
252 brd_do_discard(brd, sector, bio->bi_iter.bi_size);
253 bio_endio(bio);
254 return;
257 bio_for_each_segment(bvec, bio, iter) {
258 unsigned int len = bvec.bv_len;
259 int err;
261 /* Don't support un-aligned buffer */
262 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
263 (len & (SECTOR_SIZE - 1)));
265 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
266 bio->bi_opf, sector);
267 if (err) {
268 if (err == -ENOMEM && bio->bi_opf & REQ_NOWAIT) {
269 bio_wouldblock_error(bio);
270 return;
272 bio_io_error(bio);
273 return;
275 sector += len >> SECTOR_SHIFT;
278 bio_endio(bio);
281 static const struct block_device_operations brd_fops = {
282 .owner = THIS_MODULE,
283 .submit_bio = brd_submit_bio,
287 * And now the modules code and kernel interface.
289 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
290 module_param(rd_nr, int, 0444);
291 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
293 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
294 module_param(rd_size, ulong, 0444);
295 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
297 static int max_part = 1;
298 module_param(max_part, int, 0444);
299 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
301 MODULE_DESCRIPTION("Ram backed block device driver");
302 MODULE_LICENSE("GPL");
303 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
304 MODULE_ALIAS("rd");
306 #ifndef MODULE
307 /* Legacy boot options - nonmodular */
308 static int __init ramdisk_size(char *str)
310 rd_size = simple_strtol(str, NULL, 0);
311 return 1;
313 __setup("ramdisk_size=", ramdisk_size);
314 #endif
317 * The device scheme is derived from loop.c. Keep them in synch where possible
318 * (should share code eventually).
320 static LIST_HEAD(brd_devices);
321 static DEFINE_MUTEX(brd_devices_mutex);
322 static struct dentry *brd_debugfs_dir;
324 static struct brd_device *brd_find_or_alloc_device(int i)
326 struct brd_device *brd;
328 mutex_lock(&brd_devices_mutex);
329 list_for_each_entry(brd, &brd_devices, brd_list) {
330 if (brd->brd_number == i) {
331 mutex_unlock(&brd_devices_mutex);
332 return ERR_PTR(-EEXIST);
336 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
337 if (!brd) {
338 mutex_unlock(&brd_devices_mutex);
339 return ERR_PTR(-ENOMEM);
341 brd->brd_number = i;
342 list_add_tail(&brd->brd_list, &brd_devices);
343 mutex_unlock(&brd_devices_mutex);
344 return brd;
347 static void brd_free_device(struct brd_device *brd)
349 mutex_lock(&brd_devices_mutex);
350 list_del(&brd->brd_list);
351 mutex_unlock(&brd_devices_mutex);
352 kfree(brd);
355 static int brd_alloc(int i)
357 struct brd_device *brd;
358 struct gendisk *disk;
359 char buf[DISK_NAME_LEN];
360 int err = -ENOMEM;
361 struct queue_limits lim = {
363 * This is so fdisk will align partitions on 4k, because of
364 * direct_access API needing 4k alignment, returning a PFN
365 * (This is only a problem on very small devices <= 4M,
366 * otherwise fdisk will align on 1M. Regardless this call
367 * is harmless)
369 .physical_block_size = PAGE_SIZE,
370 .max_hw_discard_sectors = UINT_MAX,
371 .max_discard_segments = 1,
372 .discard_granularity = PAGE_SIZE,
373 .features = BLK_FEAT_SYNCHRONOUS |
374 BLK_FEAT_NOWAIT,
377 brd = brd_find_or_alloc_device(i);
378 if (IS_ERR(brd))
379 return PTR_ERR(brd);
381 xa_init(&brd->brd_pages);
383 snprintf(buf, DISK_NAME_LEN, "ram%d", i);
384 if (!IS_ERR_OR_NULL(brd_debugfs_dir))
385 debugfs_create_u64(buf, 0444, brd_debugfs_dir,
386 &brd->brd_nr_pages);
388 disk = brd->brd_disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
389 if (IS_ERR(disk)) {
390 err = PTR_ERR(disk);
391 goto out_free_dev;
393 disk->major = RAMDISK_MAJOR;
394 disk->first_minor = i * max_part;
395 disk->minors = max_part;
396 disk->fops = &brd_fops;
397 disk->private_data = brd;
398 strscpy(disk->disk_name, buf, DISK_NAME_LEN);
399 set_capacity(disk, rd_size * 2);
401 err = add_disk(disk);
402 if (err)
403 goto out_cleanup_disk;
405 return 0;
407 out_cleanup_disk:
408 put_disk(disk);
409 out_free_dev:
410 brd_free_device(brd);
411 return err;
414 static void brd_probe(dev_t dev)
416 brd_alloc(MINOR(dev) / max_part);
419 static void brd_cleanup(void)
421 struct brd_device *brd, *next;
423 debugfs_remove_recursive(brd_debugfs_dir);
425 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
426 del_gendisk(brd->brd_disk);
427 put_disk(brd->brd_disk);
428 brd_free_pages(brd);
429 brd_free_device(brd);
433 static inline void brd_check_and_reset_par(void)
435 if (unlikely(!max_part))
436 max_part = 1;
439 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
440 * otherwise, it is possiable to get same dev_t when adding partitions.
442 if ((1U << MINORBITS) % max_part != 0)
443 max_part = 1UL << fls(max_part);
445 if (max_part > DISK_MAX_PARTS) {
446 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
447 DISK_MAX_PARTS, DISK_MAX_PARTS);
448 max_part = DISK_MAX_PARTS;
452 static int __init brd_init(void)
454 int err, i;
457 * brd module now has a feature to instantiate underlying device
458 * structure on-demand, provided that there is an access dev node.
460 * (1) if rd_nr is specified, create that many upfront. else
461 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
462 * (2) User can further extend brd devices by create dev node themselves
463 * and have kernel automatically instantiate actual device
464 * on-demand. Example:
465 * mknod /path/devnod_name b 1 X # 1 is the rd major
466 * fdisk -l /path/devnod_name
467 * If (X / max_part) was not already created it will be created
468 * dynamically.
471 brd_check_and_reset_par();
473 brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
475 if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
476 err = -EIO;
477 goto out_free;
480 for (i = 0; i < rd_nr; i++)
481 brd_alloc(i);
483 pr_info("brd: module loaded\n");
484 return 0;
486 out_free:
487 brd_cleanup();
489 pr_info("brd: module NOT loaded !!!\n");
490 return err;
493 static void __exit brd_exit(void)
496 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
497 brd_cleanup();
499 pr_info("brd: module unloaded\n");
502 module_init(brd_init);
503 module_exit(brd_exit);