1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 1993 by Theodore Ts'o.
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
40 /* Possible states of device */
48 struct loop_func_table
;
55 char lo_file_name
[LO_NAME_SIZE
];
57 struct file
* lo_backing_file
;
58 struct block_device
*lo_device
;
64 spinlock_t lo_work_lock
;
65 struct workqueue_struct
*workqueue
;
66 struct work_struct rootcg_work
;
67 struct list_head rootcg_cmd_list
;
68 struct list_head idle_worker_list
;
69 struct rb_root worker_tree
;
70 struct timer_list timer
;
74 struct request_queue
*lo_queue
;
75 struct blk_mq_tag_set tag_set
;
76 struct gendisk
*lo_disk
;
77 struct mutex lo_mutex
;
82 struct list_head list_entry
;
83 bool use_aio
; /* use AIO interface to handle I/O */
84 atomic_t ref
; /* only for aio */
88 struct cgroup_subsys_state
*blkcg_css
;
89 struct cgroup_subsys_state
*memcg_css
;
92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93 #define LOOP_DEFAULT_HW_Q_DEPTH 128
95 static DEFINE_IDR(loop_index_idr
);
96 static DEFINE_MUTEX(loop_ctl_mutex
);
97 static DEFINE_MUTEX(loop_validate_mutex
);
100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
102 * @lo: struct loop_device
103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
105 * Returns 0 on success, -EINTR otherwise.
107 * Since loop_validate_file() traverses on other "struct loop_device" if
108 * is_loop_device() is true, we need a global lock for serializing concurrent
109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
111 static int loop_global_lock_killable(struct loop_device
*lo
, bool global
)
116 err
= mutex_lock_killable(&loop_validate_mutex
);
120 err
= mutex_lock_killable(&lo
->lo_mutex
);
122 mutex_unlock(&loop_validate_mutex
);
127 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
129 * @lo: struct loop_device
130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
132 static void loop_global_unlock(struct loop_device
*lo
, bool global
)
134 mutex_unlock(&lo
->lo_mutex
);
136 mutex_unlock(&loop_validate_mutex
);
140 static int part_shift
;
142 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
146 /* Compute loopsize in bytes */
147 loopsize
= i_size_read(file
->f_mapping
->host
);
150 /* offset is beyond i_size, weird but possible */
154 if (sizelimit
> 0 && sizelimit
< loopsize
)
155 loopsize
= sizelimit
;
157 * Unfortunately, if we want to do I/O on the device,
158 * the number of 512-byte sectors has to fit into a sector_t.
160 return loopsize
>> 9;
163 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
165 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
169 * We support direct I/O only if lo_offset is aligned with the logical I/O size
170 * of backing device, and the logical block size of loop is bigger than that of
171 * the backing device.
173 static bool lo_bdev_can_use_dio(struct loop_device
*lo
,
174 struct block_device
*backing_bdev
)
176 unsigned int sb_bsize
= bdev_logical_block_size(backing_bdev
);
178 if (queue_logical_block_size(lo
->lo_queue
) < sb_bsize
)
180 if (lo
->lo_offset
& (sb_bsize
- 1))
185 static void __loop_update_dio(struct loop_device
*lo
, bool dio
)
187 struct file
*file
= lo
->lo_backing_file
;
188 struct inode
*inode
= file
->f_mapping
->host
;
189 struct block_device
*backing_bdev
= NULL
;
192 if (S_ISBLK(inode
->i_mode
))
193 backing_bdev
= I_BDEV(inode
);
194 else if (inode
->i_sb
->s_bdev
)
195 backing_bdev
= inode
->i_sb
->s_bdev
;
197 use_dio
= dio
&& (file
->f_mode
& FMODE_CAN_ODIRECT
) &&
198 (!backing_bdev
|| lo_bdev_can_use_dio(lo
, backing_bdev
));
200 if (lo
->use_dio
== use_dio
)
203 /* flush dirty pages before changing direct IO */
207 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209 * will get updated by ioctl(LOOP_GET_STATUS)
211 if (lo
->lo_state
== Lo_bound
)
212 blk_mq_freeze_queue(lo
->lo_queue
);
213 lo
->use_dio
= use_dio
;
215 lo
->lo_flags
|= LO_FLAGS_DIRECT_IO
;
217 lo
->lo_flags
&= ~LO_FLAGS_DIRECT_IO
;
218 if (lo
->lo_state
== Lo_bound
)
219 blk_mq_unfreeze_queue(lo
->lo_queue
);
223 * loop_set_size() - sets device size and notifies userspace
224 * @lo: struct loop_device to set the size for
225 * @size: new size of the loop device
227 * Callers must validate that the size passed into this function fits into
228 * a sector_t, eg using loop_validate_size()
230 static void loop_set_size(struct loop_device
*lo
, loff_t size
)
232 if (!set_capacity_and_notify(lo
->lo_disk
, size
))
233 kobject_uevent(&disk_to_dev(lo
->lo_disk
)->kobj
, KOBJ_CHANGE
);
236 static int lo_write_bvec(struct file
*file
, struct bio_vec
*bvec
, loff_t
*ppos
)
241 iov_iter_bvec(&i
, ITER_SOURCE
, bvec
, 1, bvec
->bv_len
);
243 bw
= vfs_iter_write(file
, &i
, ppos
, 0);
245 if (likely(bw
== bvec
->bv_len
))
248 printk_ratelimited(KERN_ERR
249 "loop: Write error at byte offset %llu, length %i.\n",
250 (unsigned long long)*ppos
, bvec
->bv_len
);
256 static int lo_write_simple(struct loop_device
*lo
, struct request
*rq
,
260 struct req_iterator iter
;
263 rq_for_each_segment(bvec
, rq
, iter
) {
264 ret
= lo_write_bvec(lo
->lo_backing_file
, &bvec
, &pos
);
273 static int lo_read_simple(struct loop_device
*lo
, struct request
*rq
,
277 struct req_iterator iter
;
281 rq_for_each_segment(bvec
, rq
, iter
) {
282 iov_iter_bvec(&i
, ITER_DEST
, &bvec
, 1, bvec
.bv_len
);
283 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
287 flush_dcache_page(bvec
.bv_page
);
289 if (len
!= bvec
.bv_len
) {
292 __rq_for_each_bio(bio
, rq
)
302 static void loop_clear_limits(struct loop_device
*lo
, int mode
)
304 struct queue_limits lim
= queue_limits_start_update(lo
->lo_queue
);
306 if (mode
& FALLOC_FL_ZERO_RANGE
)
307 lim
.max_write_zeroes_sectors
= 0;
309 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
310 lim
.max_hw_discard_sectors
= 0;
311 lim
.discard_granularity
= 0;
314 queue_limits_commit_update(lo
->lo_queue
, &lim
);
317 static int lo_fallocate(struct loop_device
*lo
, struct request
*rq
, loff_t pos
,
321 * We use fallocate to manipulate the space mappings used by the image
322 * a.k.a. discard/zerorange.
324 struct file
*file
= lo
->lo_backing_file
;
327 mode
|= FALLOC_FL_KEEP_SIZE
;
329 if (!bdev_max_discard_sectors(lo
->lo_device
))
332 ret
= file
->f_op
->fallocate(file
, mode
, pos
, blk_rq_bytes(rq
));
333 if (unlikely(ret
&& ret
!= -EINVAL
&& ret
!= -EOPNOTSUPP
))
337 * We initially configure the limits in a hope that fallocate is
338 * supported and clear them here if that turns out not to be true.
340 if (unlikely(ret
== -EOPNOTSUPP
))
341 loop_clear_limits(lo
, mode
);
346 static int lo_req_flush(struct loop_device
*lo
, struct request
*rq
)
348 int ret
= vfs_fsync(lo
->lo_backing_file
, 0);
349 if (unlikely(ret
&& ret
!= -EINVAL
))
355 static void lo_complete_rq(struct request
*rq
)
357 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
358 blk_status_t ret
= BLK_STS_OK
;
360 if (!cmd
->use_aio
|| cmd
->ret
< 0 || cmd
->ret
== blk_rq_bytes(rq
) ||
361 req_op(rq
) != REQ_OP_READ
) {
363 ret
= errno_to_blk_status(cmd
->ret
);
368 * Short READ - if we got some data, advance our request and
369 * retry it. If we got no data, end the rest with EIO.
372 blk_update_request(rq
, BLK_STS_OK
, cmd
->ret
);
374 blk_mq_requeue_request(rq
, true);
377 struct bio
*bio
= rq
->bio
;
386 blk_mq_end_request(rq
, ret
);
390 static void lo_rw_aio_do_completion(struct loop_cmd
*cmd
)
392 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
394 if (!atomic_dec_and_test(&cmd
->ref
))
398 if (likely(!blk_should_fake_timeout(rq
->q
)))
399 blk_mq_complete_request(rq
);
402 static void lo_rw_aio_complete(struct kiocb
*iocb
, long ret
)
404 struct loop_cmd
*cmd
= container_of(iocb
, struct loop_cmd
, iocb
);
407 lo_rw_aio_do_completion(cmd
);
410 static int lo_rw_aio(struct loop_device
*lo
, struct loop_cmd
*cmd
,
413 struct iov_iter iter
;
414 struct req_iterator rq_iter
;
415 struct bio_vec
*bvec
;
416 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
417 struct bio
*bio
= rq
->bio
;
418 struct file
*file
= lo
->lo_backing_file
;
424 rq_for_each_bvec(tmp
, rq
, rq_iter
)
427 if (rq
->bio
!= rq
->biotail
) {
429 bvec
= kmalloc_array(nr_bvec
, sizeof(struct bio_vec
),
436 * The bios of the request may be started from the middle of
437 * the 'bvec' because of bio splitting, so we can't directly
438 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
439 * API will take care of all details for us.
441 rq_for_each_bvec(tmp
, rq
, rq_iter
) {
449 * Same here, this bio may be started from the middle of the
450 * 'bvec' because of bio splitting, so offset from the bvec
451 * must be passed to iov iterator
453 offset
= bio
->bi_iter
.bi_bvec_done
;
454 bvec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
456 atomic_set(&cmd
->ref
, 2);
458 iov_iter_bvec(&iter
, rw
, bvec
, nr_bvec
, blk_rq_bytes(rq
));
459 iter
.iov_offset
= offset
;
461 cmd
->iocb
.ki_pos
= pos
;
462 cmd
->iocb
.ki_filp
= file
;
463 cmd
->iocb
.ki_complete
= lo_rw_aio_complete
;
464 cmd
->iocb
.ki_flags
= IOCB_DIRECT
;
465 cmd
->iocb
.ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
467 if (rw
== ITER_SOURCE
)
468 ret
= file
->f_op
->write_iter(&cmd
->iocb
, &iter
);
470 ret
= file
->f_op
->read_iter(&cmd
->iocb
, &iter
);
472 lo_rw_aio_do_completion(cmd
);
474 if (ret
!= -EIOCBQUEUED
)
475 lo_rw_aio_complete(&cmd
->iocb
, ret
);
479 static int do_req_filebacked(struct loop_device
*lo
, struct request
*rq
)
481 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
482 loff_t pos
= ((loff_t
) blk_rq_pos(rq
) << 9) + lo
->lo_offset
;
485 * lo_write_simple and lo_read_simple should have been covered
486 * by io submit style function like lo_rw_aio(), one blocker
487 * is that lo_read_simple() need to call flush_dcache_page after
488 * the page is written from kernel, and it isn't easy to handle
489 * this in io submit style function which submits all segments
490 * of the req at one time. And direct read IO doesn't need to
491 * run flush_dcache_page().
493 switch (req_op(rq
)) {
495 return lo_req_flush(lo
, rq
);
496 case REQ_OP_WRITE_ZEROES
:
498 * If the caller doesn't want deallocation, call zeroout to
499 * write zeroes the range. Otherwise, punch them out.
501 return lo_fallocate(lo
, rq
, pos
,
502 (rq
->cmd_flags
& REQ_NOUNMAP
) ?
503 FALLOC_FL_ZERO_RANGE
:
504 FALLOC_FL_PUNCH_HOLE
);
506 return lo_fallocate(lo
, rq
, pos
, FALLOC_FL_PUNCH_HOLE
);
509 return lo_rw_aio(lo
, cmd
, pos
, ITER_SOURCE
);
511 return lo_write_simple(lo
, rq
, pos
);
514 return lo_rw_aio(lo
, cmd
, pos
, ITER_DEST
);
516 return lo_read_simple(lo
, rq
, pos
);
523 static inline void loop_update_dio(struct loop_device
*lo
)
525 __loop_update_dio(lo
, (lo
->lo_backing_file
->f_flags
& O_DIRECT
) |
529 static void loop_reread_partitions(struct loop_device
*lo
)
533 mutex_lock(&lo
->lo_disk
->open_mutex
);
534 rc
= bdev_disk_changed(lo
->lo_disk
, false);
535 mutex_unlock(&lo
->lo_disk
->open_mutex
);
537 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
538 __func__
, lo
->lo_number
, lo
->lo_file_name
, rc
);
541 static inline int is_loop_device(struct file
*file
)
543 struct inode
*i
= file
->f_mapping
->host
;
545 return i
&& S_ISBLK(i
->i_mode
) && imajor(i
) == LOOP_MAJOR
;
548 static int loop_validate_file(struct file
*file
, struct block_device
*bdev
)
550 struct inode
*inode
= file
->f_mapping
->host
;
551 struct file
*f
= file
;
553 /* Avoid recursion */
554 while (is_loop_device(f
)) {
555 struct loop_device
*l
;
557 lockdep_assert_held(&loop_validate_mutex
);
558 if (f
->f_mapping
->host
->i_rdev
== bdev
->bd_dev
)
561 l
= I_BDEV(f
->f_mapping
->host
)->bd_disk
->private_data
;
562 if (l
->lo_state
!= Lo_bound
)
564 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
566 f
= l
->lo_backing_file
;
568 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
574 * loop_change_fd switched the backing store of a loopback device to
575 * a new file. This is useful for operating system installers to free up
576 * the original file and in High Availability environments to switch to
577 * an alternative location for the content in case of server meltdown.
578 * This can only work if the loop device is used read-only, and if the
579 * new backing store is the same size and type as the old backing store.
581 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
584 struct file
*file
= fget(arg
);
585 struct file
*old_file
;
593 /* suppress uevents while reconfiguring the device */
594 dev_set_uevent_suppress(disk_to_dev(lo
->lo_disk
), 1);
596 is_loop
= is_loop_device(file
);
597 error
= loop_global_lock_killable(lo
, is_loop
);
601 if (lo
->lo_state
!= Lo_bound
)
604 /* the loop device has to be read-only */
606 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
609 error
= loop_validate_file(file
, bdev
);
613 old_file
= lo
->lo_backing_file
;
617 /* size of the new backing store needs to be the same */
618 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
622 disk_force_media_change(lo
->lo_disk
);
623 blk_mq_freeze_queue(lo
->lo_queue
);
624 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
625 lo
->lo_backing_file
= file
;
626 lo
->old_gfp_mask
= mapping_gfp_mask(file
->f_mapping
);
627 mapping_set_gfp_mask(file
->f_mapping
,
628 lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
630 blk_mq_unfreeze_queue(lo
->lo_queue
);
631 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
632 loop_global_unlock(lo
, is_loop
);
635 * Flush loop_validate_file() before fput(), for l->lo_backing_file
636 * might be pointing at old_file which might be the last reference.
639 mutex_lock(&loop_validate_mutex
);
640 mutex_unlock(&loop_validate_mutex
);
643 * We must drop file reference outside of lo_mutex as dropping
644 * the file ref can take open_mutex which creates circular locking
649 loop_reread_partitions(lo
);
653 /* enable and uncork uevent now that we are done */
654 dev_set_uevent_suppress(disk_to_dev(lo
->lo_disk
), 0);
658 loop_global_unlock(lo
, is_loop
);
664 /* loop sysfs attributes */
666 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
667 ssize_t (*callback
)(struct loop_device
*, char *))
669 struct gendisk
*disk
= dev_to_disk(dev
);
670 struct loop_device
*lo
= disk
->private_data
;
672 return callback(lo
, page
);
675 #define LOOP_ATTR_RO(_name) \
676 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
677 static ssize_t loop_attr_do_show_##_name(struct device *d, \
678 struct device_attribute *attr, char *b) \
680 return loop_attr_show(d, b, loop_attr_##_name##_show); \
682 static struct device_attribute loop_attr_##_name = \
683 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
685 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
690 spin_lock_irq(&lo
->lo_lock
);
691 if (lo
->lo_backing_file
)
692 p
= file_path(lo
->lo_backing_file
, buf
, PAGE_SIZE
- 1);
693 spin_unlock_irq(&lo
->lo_lock
);
695 if (IS_ERR_OR_NULL(p
))
699 memmove(buf
, p
, ret
);
707 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
709 return sysfs_emit(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
712 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
714 return sysfs_emit(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
717 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
719 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
721 return sysfs_emit(buf
, "%s\n", autoclear
? "1" : "0");
724 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
726 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
728 return sysfs_emit(buf
, "%s\n", partscan
? "1" : "0");
731 static ssize_t
loop_attr_dio_show(struct loop_device
*lo
, char *buf
)
733 int dio
= (lo
->lo_flags
& LO_FLAGS_DIRECT_IO
);
735 return sysfs_emit(buf
, "%s\n", dio
? "1" : "0");
738 LOOP_ATTR_RO(backing_file
);
739 LOOP_ATTR_RO(offset
);
740 LOOP_ATTR_RO(sizelimit
);
741 LOOP_ATTR_RO(autoclear
);
742 LOOP_ATTR_RO(partscan
);
745 static struct attribute
*loop_attrs
[] = {
746 &loop_attr_backing_file
.attr
,
747 &loop_attr_offset
.attr
,
748 &loop_attr_sizelimit
.attr
,
749 &loop_attr_autoclear
.attr
,
750 &loop_attr_partscan
.attr
,
755 static struct attribute_group loop_attribute_group
= {
760 static void loop_sysfs_init(struct loop_device
*lo
)
762 lo
->sysfs_inited
= !sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
763 &loop_attribute_group
);
766 static void loop_sysfs_exit(struct loop_device
*lo
)
768 if (lo
->sysfs_inited
)
769 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
770 &loop_attribute_group
);
773 static void loop_get_discard_config(struct loop_device
*lo
,
774 u32
*granularity
, u32
*max_discard_sectors
)
776 struct file
*file
= lo
->lo_backing_file
;
777 struct inode
*inode
= file
->f_mapping
->host
;
781 * If the backing device is a block device, mirror its zeroing
782 * capability. Set the discard sectors to the block device's zeroing
783 * capabilities because loop discards result in blkdev_issue_zeroout(),
784 * not blkdev_issue_discard(). This maintains consistent behavior with
785 * file-backed loop devices: discarded regions read back as zero.
787 if (S_ISBLK(inode
->i_mode
)) {
788 struct block_device
*bdev
= I_BDEV(inode
);
790 *max_discard_sectors
= bdev_write_zeroes_sectors(bdev
);
791 *granularity
= bdev_discard_granularity(bdev
);
794 * We use punch hole to reclaim the free space used by the
795 * image a.k.a. discard.
797 } else if (file
->f_op
->fallocate
&& !vfs_statfs(&file
->f_path
, &sbuf
)) {
798 *max_discard_sectors
= UINT_MAX
>> 9;
799 *granularity
= sbuf
.f_bsize
;
804 struct rb_node rb_node
;
805 struct work_struct work
;
806 struct list_head cmd_list
;
807 struct list_head idle_list
;
808 struct loop_device
*lo
;
809 struct cgroup_subsys_state
*blkcg_css
;
810 unsigned long last_ran_at
;
813 static void loop_workfn(struct work_struct
*work
);
815 #ifdef CONFIG_BLK_CGROUP
816 static inline int queue_on_root_worker(struct cgroup_subsys_state
*css
)
818 return !css
|| css
== blkcg_root_css
;
821 static inline int queue_on_root_worker(struct cgroup_subsys_state
*css
)
827 static void loop_queue_work(struct loop_device
*lo
, struct loop_cmd
*cmd
)
829 struct rb_node
**node
, *parent
= NULL
;
830 struct loop_worker
*cur_worker
, *worker
= NULL
;
831 struct work_struct
*work
;
832 struct list_head
*cmd_list
;
834 spin_lock_irq(&lo
->lo_work_lock
);
836 if (queue_on_root_worker(cmd
->blkcg_css
))
839 node
= &lo
->worker_tree
.rb_node
;
843 cur_worker
= container_of(*node
, struct loop_worker
, rb_node
);
844 if (cur_worker
->blkcg_css
== cmd
->blkcg_css
) {
847 } else if ((long)cur_worker
->blkcg_css
< (long)cmd
->blkcg_css
) {
848 node
= &(*node
)->rb_left
;
850 node
= &(*node
)->rb_right
;
856 worker
= kzalloc(sizeof(struct loop_worker
), GFP_NOWAIT
| __GFP_NOWARN
);
858 * In the event we cannot allocate a worker, just queue on the
859 * rootcg worker and issue the I/O as the rootcg
862 cmd
->blkcg_css
= NULL
;
864 css_put(cmd
->memcg_css
);
865 cmd
->memcg_css
= NULL
;
869 worker
->blkcg_css
= cmd
->blkcg_css
;
870 css_get(worker
->blkcg_css
);
871 INIT_WORK(&worker
->work
, loop_workfn
);
872 INIT_LIST_HEAD(&worker
->cmd_list
);
873 INIT_LIST_HEAD(&worker
->idle_list
);
875 rb_link_node(&worker
->rb_node
, parent
, node
);
876 rb_insert_color(&worker
->rb_node
, &lo
->worker_tree
);
880 * We need to remove from the idle list here while
881 * holding the lock so that the idle timer doesn't
884 if (!list_empty(&worker
->idle_list
))
885 list_del_init(&worker
->idle_list
);
886 work
= &worker
->work
;
887 cmd_list
= &worker
->cmd_list
;
889 work
= &lo
->rootcg_work
;
890 cmd_list
= &lo
->rootcg_cmd_list
;
892 list_add_tail(&cmd
->list_entry
, cmd_list
);
893 queue_work(lo
->workqueue
, work
);
894 spin_unlock_irq(&lo
->lo_work_lock
);
897 static void loop_set_timer(struct loop_device
*lo
)
899 timer_reduce(&lo
->timer
, jiffies
+ LOOP_IDLE_WORKER_TIMEOUT
);
902 static void loop_free_idle_workers(struct loop_device
*lo
, bool delete_all
)
904 struct loop_worker
*pos
, *worker
;
906 spin_lock_irq(&lo
->lo_work_lock
);
907 list_for_each_entry_safe(worker
, pos
, &lo
->idle_worker_list
,
910 time_is_after_jiffies(worker
->last_ran_at
+
911 LOOP_IDLE_WORKER_TIMEOUT
))
913 list_del(&worker
->idle_list
);
914 rb_erase(&worker
->rb_node
, &lo
->worker_tree
);
915 css_put(worker
->blkcg_css
);
918 if (!list_empty(&lo
->idle_worker_list
))
920 spin_unlock_irq(&lo
->lo_work_lock
);
923 static void loop_free_idle_workers_timer(struct timer_list
*timer
)
925 struct loop_device
*lo
= container_of(timer
, struct loop_device
, timer
);
927 return loop_free_idle_workers(lo
, false);
931 * loop_set_status_from_info - configure device from loop_info
932 * @lo: struct loop_device to configure
933 * @info: struct loop_info64 to configure the device with
935 * Configures the loop device parameters according to the passed
936 * in loop_info64 configuration.
939 loop_set_status_from_info(struct loop_device
*lo
,
940 const struct loop_info64
*info
)
942 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
945 switch (info
->lo_encrypt_type
) {
949 pr_warn("support for the xor transformation has been removed.\n");
951 case LO_CRYPT_CRYPTOAPI
:
952 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
958 /* Avoid assigning overflow values */
959 if (info
->lo_offset
> LLONG_MAX
|| info
->lo_sizelimit
> LLONG_MAX
)
962 lo
->lo_offset
= info
->lo_offset
;
963 lo
->lo_sizelimit
= info
->lo_sizelimit
;
965 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
966 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
967 lo
->lo_flags
= info
->lo_flags
;
971 static unsigned int loop_default_blocksize(struct loop_device
*lo
,
972 struct block_device
*backing_bdev
)
974 /* In case of direct I/O, match underlying block size */
975 if ((lo
->lo_backing_file
->f_flags
& O_DIRECT
) && backing_bdev
)
976 return bdev_logical_block_size(backing_bdev
);
980 static int loop_reconfigure_limits(struct loop_device
*lo
, unsigned int bsize
)
982 struct file
*file
= lo
->lo_backing_file
;
983 struct inode
*inode
= file
->f_mapping
->host
;
984 struct block_device
*backing_bdev
= NULL
;
985 struct queue_limits lim
;
986 u32 granularity
= 0, max_discard_sectors
= 0;
988 if (S_ISBLK(inode
->i_mode
))
989 backing_bdev
= I_BDEV(inode
);
990 else if (inode
->i_sb
->s_bdev
)
991 backing_bdev
= inode
->i_sb
->s_bdev
;
994 bsize
= loop_default_blocksize(lo
, backing_bdev
);
996 loop_get_discard_config(lo
, &granularity
, &max_discard_sectors
);
998 lim
= queue_limits_start_update(lo
->lo_queue
);
999 lim
.logical_block_size
= bsize
;
1000 lim
.physical_block_size
= bsize
;
1002 lim
.features
&= ~(BLK_FEAT_WRITE_CACHE
| BLK_FEAT_ROTATIONAL
);
1003 if (file
->f_op
->fsync
&& !(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
1004 lim
.features
|= BLK_FEAT_WRITE_CACHE
;
1005 if (backing_bdev
&& !bdev_nonrot(backing_bdev
))
1006 lim
.features
|= BLK_FEAT_ROTATIONAL
;
1007 lim
.max_hw_discard_sectors
= max_discard_sectors
;
1008 lim
.max_write_zeroes_sectors
= max_discard_sectors
;
1009 if (max_discard_sectors
)
1010 lim
.discard_granularity
= granularity
;
1012 lim
.discard_granularity
= 0;
1013 return queue_limits_commit_update(lo
->lo_queue
, &lim
);
1016 static int loop_configure(struct loop_device
*lo
, blk_mode_t mode
,
1017 struct block_device
*bdev
,
1018 const struct loop_config
*config
)
1020 struct file
*file
= fget(config
->fd
);
1021 struct address_space
*mapping
;
1029 is_loop
= is_loop_device(file
);
1031 /* This is safe, since we have a reference from open(). */
1032 __module_get(THIS_MODULE
);
1035 * If we don't hold exclusive handle for the device, upgrade to it
1036 * here to avoid changing device under exclusive owner.
1038 if (!(mode
& BLK_OPEN_EXCL
)) {
1039 error
= bd_prepare_to_claim(bdev
, loop_configure
, NULL
);
1044 error
= loop_global_lock_killable(lo
, is_loop
);
1049 if (lo
->lo_state
!= Lo_unbound
)
1052 error
= loop_validate_file(file
, bdev
);
1056 mapping
= file
->f_mapping
;
1058 if ((config
->info
.lo_flags
& ~LOOP_CONFIGURE_SETTABLE_FLAGS
) != 0) {
1063 error
= loop_set_status_from_info(lo
, &config
->info
);
1067 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& BLK_OPEN_WRITE
) ||
1068 !file
->f_op
->write_iter
)
1069 lo
->lo_flags
|= LO_FLAGS_READ_ONLY
;
1071 if (!lo
->workqueue
) {
1072 lo
->workqueue
= alloc_workqueue("loop%d",
1073 WQ_UNBOUND
| WQ_FREEZABLE
,
1075 if (!lo
->workqueue
) {
1081 /* suppress uevents while reconfiguring the device */
1082 dev_set_uevent_suppress(disk_to_dev(lo
->lo_disk
), 1);
1084 disk_force_media_change(lo
->lo_disk
);
1085 set_disk_ro(lo
->lo_disk
, (lo
->lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
1087 lo
->use_dio
= lo
->lo_flags
& LO_FLAGS_DIRECT_IO
;
1088 lo
->lo_device
= bdev
;
1089 lo
->lo_backing_file
= file
;
1090 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
1091 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
1093 error
= loop_reconfigure_limits(lo
, config
->block_size
);
1097 loop_update_dio(lo
);
1098 loop_sysfs_init(lo
);
1100 size
= get_loop_size(lo
, file
);
1101 loop_set_size(lo
, size
);
1103 /* Order wrt reading lo_state in loop_validate_file(). */
1106 lo
->lo_state
= Lo_bound
;
1108 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1109 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
1111 clear_bit(GD_SUPPRESS_PART_SCAN
, &lo
->lo_disk
->state
);
1113 /* enable and uncork uevent now that we are done */
1114 dev_set_uevent_suppress(disk_to_dev(lo
->lo_disk
), 0);
1116 loop_global_unlock(lo
, is_loop
);
1118 loop_reread_partitions(lo
);
1120 if (!(mode
& BLK_OPEN_EXCL
))
1121 bd_abort_claiming(bdev
, loop_configure
);
1126 loop_global_unlock(lo
, is_loop
);
1128 if (!(mode
& BLK_OPEN_EXCL
))
1129 bd_abort_claiming(bdev
, loop_configure
);
1132 /* This is safe: open() is still holding a reference. */
1133 module_put(THIS_MODULE
);
1137 static void __loop_clr_fd(struct loop_device
*lo
)
1139 struct queue_limits lim
;
1141 gfp_t gfp
= lo
->old_gfp_mask
;
1143 spin_lock_irq(&lo
->lo_lock
);
1144 filp
= lo
->lo_backing_file
;
1145 lo
->lo_backing_file
= NULL
;
1146 spin_unlock_irq(&lo
->lo_lock
);
1148 lo
->lo_device
= NULL
;
1150 lo
->lo_sizelimit
= 0;
1151 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1153 /* reset the block size to the default */
1154 lim
= queue_limits_start_update(lo
->lo_queue
);
1155 lim
.logical_block_size
= SECTOR_SIZE
;
1156 lim
.physical_block_size
= SECTOR_SIZE
;
1157 lim
.io_min
= SECTOR_SIZE
;
1158 queue_limits_commit_update(lo
->lo_queue
, &lim
);
1160 invalidate_disk(lo
->lo_disk
);
1161 loop_sysfs_exit(lo
);
1162 /* let user-space know about this change */
1163 kobject_uevent(&disk_to_dev(lo
->lo_disk
)->kobj
, KOBJ_CHANGE
);
1164 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1165 /* This is safe: open() is still holding a reference. */
1166 module_put(THIS_MODULE
);
1168 disk_force_media_change(lo
->lo_disk
);
1170 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
) {
1174 * open_mutex has been held already in release path, so don't
1175 * acquire it if this function is called in such case.
1177 * If the reread partition isn't from release path, lo_refcnt
1178 * must be at least one and it can only become zero when the
1179 * current holder is released.
1181 err
= bdev_disk_changed(lo
->lo_disk
, false);
1183 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1184 __func__
, lo
->lo_number
, err
);
1185 /* Device is gone, no point in returning error */
1189 * lo->lo_state is set to Lo_unbound here after above partscan has
1190 * finished. There cannot be anybody else entering __loop_clr_fd() as
1191 * Lo_rundown state protects us from all the other places trying to
1192 * change the 'lo' device.
1196 set_bit(GD_SUPPRESS_PART_SCAN
, &lo
->lo_disk
->state
);
1197 mutex_lock(&lo
->lo_mutex
);
1198 lo
->lo_state
= Lo_unbound
;
1199 mutex_unlock(&lo
->lo_mutex
);
1202 * Need not hold lo_mutex to fput backing file. Calling fput holding
1203 * lo_mutex triggers a circular lock dependency possibility warning as
1204 * fput can take open_mutex which is usually taken before lo_mutex.
1209 static int loop_clr_fd(struct loop_device
*lo
)
1214 * Since lo_ioctl() is called without locks held, it is possible that
1215 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1217 * Therefore, use global lock when setting Lo_rundown state in order to
1218 * make sure that loop_validate_file() will fail if the "struct file"
1219 * which loop_configure()/loop_change_fd() found via fget() was this
1222 err
= loop_global_lock_killable(lo
, true);
1225 if (lo
->lo_state
!= Lo_bound
) {
1226 loop_global_unlock(lo
, true);
1230 * Mark the device for removing the backing device on last close.
1231 * If we are the only opener, also switch the state to roundown here to
1232 * prevent new openers from coming in.
1235 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1236 if (disk_openers(lo
->lo_disk
) == 1)
1237 lo
->lo_state
= Lo_rundown
;
1238 loop_global_unlock(lo
, true);
1244 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1248 bool partscan
= false;
1249 bool size_changed
= false;
1251 err
= mutex_lock_killable(&lo
->lo_mutex
);
1254 if (lo
->lo_state
!= Lo_bound
) {
1259 if (lo
->lo_offset
!= info
->lo_offset
||
1260 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1261 size_changed
= true;
1262 sync_blockdev(lo
->lo_device
);
1263 invalidate_bdev(lo
->lo_device
);
1266 /* I/O need to be drained during transfer transition */
1267 blk_mq_freeze_queue(lo
->lo_queue
);
1269 prev_lo_flags
= lo
->lo_flags
;
1271 err
= loop_set_status_from_info(lo
, info
);
1275 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1276 lo
->lo_flags
&= LOOP_SET_STATUS_SETTABLE_FLAGS
;
1277 /* For those flags, use the previous values instead */
1278 lo
->lo_flags
|= prev_lo_flags
& ~LOOP_SET_STATUS_SETTABLE_FLAGS
;
1279 /* For flags that can't be cleared, use previous values too */
1280 lo
->lo_flags
|= prev_lo_flags
& ~LOOP_SET_STATUS_CLEARABLE_FLAGS
;
1283 loff_t new_size
= get_size(lo
->lo_offset
, lo
->lo_sizelimit
,
1284 lo
->lo_backing_file
);
1285 loop_set_size(lo
, new_size
);
1288 /* update dio if lo_offset or transfer is changed */
1289 __loop_update_dio(lo
, lo
->use_dio
);
1292 blk_mq_unfreeze_queue(lo
->lo_queue
);
1294 if (!err
&& (lo
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1295 !(prev_lo_flags
& LO_FLAGS_PARTSCAN
)) {
1296 clear_bit(GD_SUPPRESS_PART_SCAN
, &lo
->lo_disk
->state
);
1300 mutex_unlock(&lo
->lo_mutex
);
1302 loop_reread_partitions(lo
);
1308 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1314 ret
= mutex_lock_killable(&lo
->lo_mutex
);
1317 if (lo
->lo_state
!= Lo_bound
) {
1318 mutex_unlock(&lo
->lo_mutex
);
1322 memset(info
, 0, sizeof(*info
));
1323 info
->lo_number
= lo
->lo_number
;
1324 info
->lo_offset
= lo
->lo_offset
;
1325 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1326 info
->lo_flags
= lo
->lo_flags
;
1327 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1329 /* Drop lo_mutex while we call into the filesystem. */
1330 path
= lo
->lo_backing_file
->f_path
;
1332 mutex_unlock(&lo
->lo_mutex
);
1333 ret
= vfs_getattr(&path
, &stat
, STATX_INO
, AT_STATX_SYNC_AS_STAT
);
1335 info
->lo_device
= huge_encode_dev(stat
.dev
);
1336 info
->lo_inode
= stat
.ino
;
1337 info
->lo_rdevice
= huge_encode_dev(stat
.rdev
);
1344 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1346 memset(info64
, 0, sizeof(*info64
));
1347 info64
->lo_number
= info
->lo_number
;
1348 info64
->lo_device
= info
->lo_device
;
1349 info64
->lo_inode
= info
->lo_inode
;
1350 info64
->lo_rdevice
= info
->lo_rdevice
;
1351 info64
->lo_offset
= info
->lo_offset
;
1352 info64
->lo_sizelimit
= 0;
1353 info64
->lo_flags
= info
->lo_flags
;
1354 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1358 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1360 memset(info
, 0, sizeof(*info
));
1361 info
->lo_number
= info64
->lo_number
;
1362 info
->lo_device
= info64
->lo_device
;
1363 info
->lo_inode
= info64
->lo_inode
;
1364 info
->lo_rdevice
= info64
->lo_rdevice
;
1365 info
->lo_offset
= info64
->lo_offset
;
1366 info
->lo_flags
= info64
->lo_flags
;
1367 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1369 /* error in case values were truncated */
1370 if (info
->lo_device
!= info64
->lo_device
||
1371 info
->lo_rdevice
!= info64
->lo_rdevice
||
1372 info
->lo_inode
!= info64
->lo_inode
||
1373 info
->lo_offset
!= info64
->lo_offset
)
1380 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1382 struct loop_info info
;
1383 struct loop_info64 info64
;
1385 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1387 loop_info64_from_old(&info
, &info64
);
1388 return loop_set_status(lo
, &info64
);
1392 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1394 struct loop_info64 info64
;
1396 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1398 return loop_set_status(lo
, &info64
);
1402 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1403 struct loop_info info
;
1404 struct loop_info64 info64
;
1409 err
= loop_get_status(lo
, &info64
);
1411 err
= loop_info64_to_old(&info64
, &info
);
1412 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1419 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1420 struct loop_info64 info64
;
1425 err
= loop_get_status(lo
, &info64
);
1426 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1432 static int loop_set_capacity(struct loop_device
*lo
)
1436 if (unlikely(lo
->lo_state
!= Lo_bound
))
1439 size
= get_loop_size(lo
, lo
->lo_backing_file
);
1440 loop_set_size(lo
, size
);
1445 static int loop_set_dio(struct loop_device
*lo
, unsigned long arg
)
1448 if (lo
->lo_state
!= Lo_bound
)
1451 __loop_update_dio(lo
, !!arg
);
1452 if (lo
->use_dio
== !!arg
)
1459 static int loop_set_block_size(struct loop_device
*lo
, unsigned long arg
)
1463 if (lo
->lo_state
!= Lo_bound
)
1466 if (lo
->lo_queue
->limits
.logical_block_size
== arg
)
1469 sync_blockdev(lo
->lo_device
);
1470 invalidate_bdev(lo
->lo_device
);
1472 blk_mq_freeze_queue(lo
->lo_queue
);
1473 err
= loop_reconfigure_limits(lo
, arg
);
1474 loop_update_dio(lo
);
1475 blk_mq_unfreeze_queue(lo
->lo_queue
);
1480 static int lo_simple_ioctl(struct loop_device
*lo
, unsigned int cmd
,
1485 err
= mutex_lock_killable(&lo
->lo_mutex
);
1489 case LOOP_SET_CAPACITY
:
1490 err
= loop_set_capacity(lo
);
1492 case LOOP_SET_DIRECT_IO
:
1493 err
= loop_set_dio(lo
, arg
);
1495 case LOOP_SET_BLOCK_SIZE
:
1496 err
= loop_set_block_size(lo
, arg
);
1501 mutex_unlock(&lo
->lo_mutex
);
1505 static int lo_ioctl(struct block_device
*bdev
, blk_mode_t mode
,
1506 unsigned int cmd
, unsigned long arg
)
1508 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1509 void __user
*argp
= (void __user
*) arg
;
1515 * Legacy case - pass in a zeroed out struct loop_config with
1516 * only the file descriptor set , which corresponds with the
1517 * default parameters we'd have used otherwise.
1519 struct loop_config config
;
1521 memset(&config
, 0, sizeof(config
));
1524 return loop_configure(lo
, mode
, bdev
, &config
);
1526 case LOOP_CONFIGURE
: {
1527 struct loop_config config
;
1529 if (copy_from_user(&config
, argp
, sizeof(config
)))
1532 return loop_configure(lo
, mode
, bdev
, &config
);
1534 case LOOP_CHANGE_FD
:
1535 return loop_change_fd(lo
, bdev
, arg
);
1537 return loop_clr_fd(lo
);
1538 case LOOP_SET_STATUS
:
1540 if ((mode
& BLK_OPEN_WRITE
) || capable(CAP_SYS_ADMIN
))
1541 err
= loop_set_status_old(lo
, argp
);
1543 case LOOP_GET_STATUS
:
1544 return loop_get_status_old(lo
, argp
);
1545 case LOOP_SET_STATUS64
:
1547 if ((mode
& BLK_OPEN_WRITE
) || capable(CAP_SYS_ADMIN
))
1548 err
= loop_set_status64(lo
, argp
);
1550 case LOOP_GET_STATUS64
:
1551 return loop_get_status64(lo
, argp
);
1552 case LOOP_SET_CAPACITY
:
1553 case LOOP_SET_DIRECT_IO
:
1554 case LOOP_SET_BLOCK_SIZE
:
1555 if (!(mode
& BLK_OPEN_WRITE
) && !capable(CAP_SYS_ADMIN
))
1559 err
= lo_simple_ioctl(lo
, cmd
, arg
);
1566 #ifdef CONFIG_COMPAT
1567 struct compat_loop_info
{
1568 compat_int_t lo_number
; /* ioctl r/o */
1569 compat_dev_t lo_device
; /* ioctl r/o */
1570 compat_ulong_t lo_inode
; /* ioctl r/o */
1571 compat_dev_t lo_rdevice
; /* ioctl r/o */
1572 compat_int_t lo_offset
;
1573 compat_int_t lo_encrypt_type
; /* obsolete, ignored */
1574 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1575 compat_int_t lo_flags
; /* ioctl r/o */
1576 char lo_name
[LO_NAME_SIZE
];
1577 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1578 compat_ulong_t lo_init
[2];
1583 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1584 * - noinlined to reduce stack space usage in main part of driver
1587 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1588 struct loop_info64
*info64
)
1590 struct compat_loop_info info
;
1592 if (copy_from_user(&info
, arg
, sizeof(info
)))
1595 memset(info64
, 0, sizeof(*info64
));
1596 info64
->lo_number
= info
.lo_number
;
1597 info64
->lo_device
= info
.lo_device
;
1598 info64
->lo_inode
= info
.lo_inode
;
1599 info64
->lo_rdevice
= info
.lo_rdevice
;
1600 info64
->lo_offset
= info
.lo_offset
;
1601 info64
->lo_sizelimit
= 0;
1602 info64
->lo_flags
= info
.lo_flags
;
1603 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1608 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1609 * - noinlined to reduce stack space usage in main part of driver
1612 loop_info64_to_compat(const struct loop_info64
*info64
,
1613 struct compat_loop_info __user
*arg
)
1615 struct compat_loop_info info
;
1617 memset(&info
, 0, sizeof(info
));
1618 info
.lo_number
= info64
->lo_number
;
1619 info
.lo_device
= info64
->lo_device
;
1620 info
.lo_inode
= info64
->lo_inode
;
1621 info
.lo_rdevice
= info64
->lo_rdevice
;
1622 info
.lo_offset
= info64
->lo_offset
;
1623 info
.lo_flags
= info64
->lo_flags
;
1624 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1626 /* error in case values were truncated */
1627 if (info
.lo_device
!= info64
->lo_device
||
1628 info
.lo_rdevice
!= info64
->lo_rdevice
||
1629 info
.lo_inode
!= info64
->lo_inode
||
1630 info
.lo_offset
!= info64
->lo_offset
)
1633 if (copy_to_user(arg
, &info
, sizeof(info
)))
1639 loop_set_status_compat(struct loop_device
*lo
,
1640 const struct compat_loop_info __user
*arg
)
1642 struct loop_info64 info64
;
1645 ret
= loop_info64_from_compat(arg
, &info64
);
1648 return loop_set_status(lo
, &info64
);
1652 loop_get_status_compat(struct loop_device
*lo
,
1653 struct compat_loop_info __user
*arg
)
1655 struct loop_info64 info64
;
1660 err
= loop_get_status(lo
, &info64
);
1662 err
= loop_info64_to_compat(&info64
, arg
);
1666 static int lo_compat_ioctl(struct block_device
*bdev
, blk_mode_t mode
,
1667 unsigned int cmd
, unsigned long arg
)
1669 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1673 case LOOP_SET_STATUS
:
1674 err
= loop_set_status_compat(lo
,
1675 (const struct compat_loop_info __user
*)arg
);
1677 case LOOP_GET_STATUS
:
1678 err
= loop_get_status_compat(lo
,
1679 (struct compat_loop_info __user
*)arg
);
1681 case LOOP_SET_CAPACITY
:
1683 case LOOP_GET_STATUS64
:
1684 case LOOP_SET_STATUS64
:
1685 case LOOP_CONFIGURE
:
1686 arg
= (unsigned long) compat_ptr(arg
);
1689 case LOOP_CHANGE_FD
:
1690 case LOOP_SET_BLOCK_SIZE
:
1691 case LOOP_SET_DIRECT_IO
:
1692 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1702 static int lo_open(struct gendisk
*disk
, blk_mode_t mode
)
1704 struct loop_device
*lo
= disk
->private_data
;
1707 err
= mutex_lock_killable(&lo
->lo_mutex
);
1711 if (lo
->lo_state
== Lo_deleting
|| lo
->lo_state
== Lo_rundown
)
1713 mutex_unlock(&lo
->lo_mutex
);
1717 static void lo_release(struct gendisk
*disk
)
1719 struct loop_device
*lo
= disk
->private_data
;
1720 bool need_clear
= false;
1722 if (disk_openers(disk
) > 0)
1725 * Clear the backing device information if this is the last close of
1726 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1730 mutex_lock(&lo
->lo_mutex
);
1731 if (lo
->lo_state
== Lo_bound
&& (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1732 lo
->lo_state
= Lo_rundown
;
1734 need_clear
= (lo
->lo_state
== Lo_rundown
);
1735 mutex_unlock(&lo
->lo_mutex
);
1741 static void lo_free_disk(struct gendisk
*disk
)
1743 struct loop_device
*lo
= disk
->private_data
;
1746 destroy_workqueue(lo
->workqueue
);
1747 loop_free_idle_workers(lo
, true);
1748 timer_shutdown_sync(&lo
->timer
);
1749 mutex_destroy(&lo
->lo_mutex
);
1753 static const struct block_device_operations lo_fops
= {
1754 .owner
= THIS_MODULE
,
1756 .release
= lo_release
,
1758 #ifdef CONFIG_COMPAT
1759 .compat_ioctl
= lo_compat_ioctl
,
1761 .free_disk
= lo_free_disk
,
1765 * And now the modules code and kernel interface.
1769 * If max_loop is specified, create that many devices upfront.
1770 * This also becomes a hard limit. If max_loop is not specified,
1771 * the default isn't a hard limit (as before commit 85c50197716c
1772 * changed the default value from 0 for max_loop=0 reasons), just
1773 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1774 * init time. Loop devices can be requested on-demand with the
1775 * /dev/loop-control interface, or be instantiated by accessing
1776 * a 'dead' device node.
1778 static int max_loop
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
1780 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1781 static bool max_loop_specified
;
1783 static int max_loop_param_set_int(const char *val
,
1784 const struct kernel_param
*kp
)
1788 ret
= param_set_int(val
, kp
);
1792 max_loop_specified
= true;
1796 static const struct kernel_param_ops max_loop_param_ops
= {
1797 .set
= max_loop_param_set_int
,
1798 .get
= param_get_int
,
1801 module_param_cb(max_loop
, &max_loop_param_ops
, &max_loop
, 0444);
1802 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1804 module_param(max_loop
, int, 0444);
1805 MODULE_PARM_DESC(max_loop
, "Initial number of loop devices");
1808 module_param(max_part
, int, 0444);
1809 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1811 static int hw_queue_depth
= LOOP_DEFAULT_HW_Q_DEPTH
;
1813 static int loop_set_hw_queue_depth(const char *s
, const struct kernel_param
*p
)
1817 ret
= kstrtoint(s
, 0, &qd
);
1822 hw_queue_depth
= qd
;
1826 static const struct kernel_param_ops loop_hw_qdepth_param_ops
= {
1827 .set
= loop_set_hw_queue_depth
,
1828 .get
= param_get_int
,
1831 device_param_cb(hw_queue_depth
, &loop_hw_qdepth_param_ops
, &hw_queue_depth
, 0444);
1832 MODULE_PARM_DESC(hw_queue_depth
, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH
));
1834 MODULE_DESCRIPTION("Loopback device support");
1835 MODULE_LICENSE("GPL");
1836 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1838 static blk_status_t
loop_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1839 const struct blk_mq_queue_data
*bd
)
1841 struct request
*rq
= bd
->rq
;
1842 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1843 struct loop_device
*lo
= rq
->q
->queuedata
;
1845 blk_mq_start_request(rq
);
1847 if (lo
->lo_state
!= Lo_bound
)
1848 return BLK_STS_IOERR
;
1850 switch (req_op(rq
)) {
1852 case REQ_OP_DISCARD
:
1853 case REQ_OP_WRITE_ZEROES
:
1854 cmd
->use_aio
= false;
1857 cmd
->use_aio
= lo
->use_dio
;
1861 /* always use the first bio's css */
1862 cmd
->blkcg_css
= NULL
;
1863 cmd
->memcg_css
= NULL
;
1864 #ifdef CONFIG_BLK_CGROUP
1866 cmd
->blkcg_css
= bio_blkcg_css(rq
->bio
);
1868 if (cmd
->blkcg_css
) {
1870 cgroup_get_e_css(cmd
->blkcg_css
->cgroup
,
1871 &memory_cgrp_subsys
);
1876 loop_queue_work(lo
, cmd
);
1881 static void loop_handle_cmd(struct loop_cmd
*cmd
)
1883 struct cgroup_subsys_state
*cmd_blkcg_css
= cmd
->blkcg_css
;
1884 struct cgroup_subsys_state
*cmd_memcg_css
= cmd
->memcg_css
;
1885 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
1886 const bool write
= op_is_write(req_op(rq
));
1887 struct loop_device
*lo
= rq
->q
->queuedata
;
1889 struct mem_cgroup
*old_memcg
= NULL
;
1890 const bool use_aio
= cmd
->use_aio
;
1892 if (write
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)) {
1898 kthread_associate_blkcg(cmd_blkcg_css
);
1900 old_memcg
= set_active_memcg(
1901 mem_cgroup_from_css(cmd_memcg_css
));
1904 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1905 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1906 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1907 * not yet been completed.
1909 ret
= do_req_filebacked(lo
, rq
);
1912 kthread_associate_blkcg(NULL
);
1914 if (cmd_memcg_css
) {
1915 set_active_memcg(old_memcg
);
1916 css_put(cmd_memcg_css
);
1919 /* complete non-aio request */
1920 if (!use_aio
|| ret
) {
1921 if (ret
== -EOPNOTSUPP
)
1924 cmd
->ret
= ret
? -EIO
: 0;
1925 if (likely(!blk_should_fake_timeout(rq
->q
)))
1926 blk_mq_complete_request(rq
);
1930 static void loop_process_work(struct loop_worker
*worker
,
1931 struct list_head
*cmd_list
, struct loop_device
*lo
)
1933 int orig_flags
= current
->flags
;
1934 struct loop_cmd
*cmd
;
1936 current
->flags
|= PF_LOCAL_THROTTLE
| PF_MEMALLOC_NOIO
;
1937 spin_lock_irq(&lo
->lo_work_lock
);
1938 while (!list_empty(cmd_list
)) {
1940 cmd_list
->next
, struct loop_cmd
, list_entry
);
1941 list_del(cmd_list
->next
);
1942 spin_unlock_irq(&lo
->lo_work_lock
);
1944 loop_handle_cmd(cmd
);
1947 spin_lock_irq(&lo
->lo_work_lock
);
1951 * We only add to the idle list if there are no pending cmds
1952 * *and* the worker will not run again which ensures that it
1953 * is safe to free any worker on the idle list
1955 if (worker
&& !work_pending(&worker
->work
)) {
1956 worker
->last_ran_at
= jiffies
;
1957 list_add_tail(&worker
->idle_list
, &lo
->idle_worker_list
);
1960 spin_unlock_irq(&lo
->lo_work_lock
);
1961 current
->flags
= orig_flags
;
1964 static void loop_workfn(struct work_struct
*work
)
1966 struct loop_worker
*worker
=
1967 container_of(work
, struct loop_worker
, work
);
1968 loop_process_work(worker
, &worker
->cmd_list
, worker
->lo
);
1971 static void loop_rootcg_workfn(struct work_struct
*work
)
1973 struct loop_device
*lo
=
1974 container_of(work
, struct loop_device
, rootcg_work
);
1975 loop_process_work(NULL
, &lo
->rootcg_cmd_list
, lo
);
1978 static const struct blk_mq_ops loop_mq_ops
= {
1979 .queue_rq
= loop_queue_rq
,
1980 .complete
= lo_complete_rq
,
1983 static int loop_add(int i
)
1985 struct queue_limits lim
= {
1987 * Random number picked from the historic block max_sectors cap.
1989 .max_hw_sectors
= 2560u,
1991 struct loop_device
*lo
;
1992 struct gendisk
*disk
;
1996 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1999 lo
->worker_tree
= RB_ROOT
;
2000 INIT_LIST_HEAD(&lo
->idle_worker_list
);
2001 timer_setup(&lo
->timer
, loop_free_idle_workers_timer
, TIMER_DEFERRABLE
);
2002 lo
->lo_state
= Lo_unbound
;
2004 err
= mutex_lock_killable(&loop_ctl_mutex
);
2008 /* allocate id, if @id >= 0, we're requesting that specific id */
2010 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
2014 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
2016 mutex_unlock(&loop_ctl_mutex
);
2021 lo
->tag_set
.ops
= &loop_mq_ops
;
2022 lo
->tag_set
.nr_hw_queues
= 1;
2023 lo
->tag_set
.queue_depth
= hw_queue_depth
;
2024 lo
->tag_set
.numa_node
= NUMA_NO_NODE
;
2025 lo
->tag_set
.cmd_size
= sizeof(struct loop_cmd
);
2026 lo
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_STACKING
|
2027 BLK_MQ_F_NO_SCHED_BY_DEFAULT
;
2028 lo
->tag_set
.driver_data
= lo
;
2030 err
= blk_mq_alloc_tag_set(&lo
->tag_set
);
2034 disk
= lo
->lo_disk
= blk_mq_alloc_disk(&lo
->tag_set
, &lim
, lo
);
2036 err
= PTR_ERR(disk
);
2037 goto out_cleanup_tags
;
2039 lo
->lo_queue
= lo
->lo_disk
->queue
;
2042 * Disable partition scanning by default. The in-kernel partition
2043 * scanning can be requested individually per-device during its
2044 * setup. Userspace can always add and remove partitions from all
2045 * devices. The needed partition minors are allocated from the
2046 * extended minor space, the main loop device numbers will continue
2047 * to match the loop minors, regardless of the number of partitions
2050 * If max_part is given, partition scanning is globally enabled for
2051 * all loop devices. The minors for the main loop devices will be
2052 * multiples of max_part.
2054 * Note: Global-for-all-devices, set-only-at-init, read-only module
2055 * parameteters like 'max_loop' and 'max_part' make things needlessly
2056 * complicated, are too static, inflexible and may surprise
2057 * userspace tools. Parameters like this in general should be avoided.
2060 set_bit(GD_SUPPRESS_PART_SCAN
, &disk
->state
);
2061 mutex_init(&lo
->lo_mutex
);
2063 spin_lock_init(&lo
->lo_lock
);
2064 spin_lock_init(&lo
->lo_work_lock
);
2065 INIT_WORK(&lo
->rootcg_work
, loop_rootcg_workfn
);
2066 INIT_LIST_HEAD(&lo
->rootcg_cmd_list
);
2067 disk
->major
= LOOP_MAJOR
;
2068 disk
->first_minor
= i
<< part_shift
;
2069 disk
->minors
= 1 << part_shift
;
2070 disk
->fops
= &lo_fops
;
2071 disk
->private_data
= lo
;
2072 disk
->queue
= lo
->lo_queue
;
2073 disk
->events
= DISK_EVENT_MEDIA_CHANGE
;
2074 disk
->event_flags
= DISK_EVENT_FLAG_UEVENT
;
2075 sprintf(disk
->disk_name
, "loop%d", i
);
2076 /* Make this loop device reachable from pathname. */
2077 err
= add_disk(disk
);
2079 goto out_cleanup_disk
;
2081 /* Show this loop device. */
2082 mutex_lock(&loop_ctl_mutex
);
2083 lo
->idr_visible
= true;
2084 mutex_unlock(&loop_ctl_mutex
);
2091 blk_mq_free_tag_set(&lo
->tag_set
);
2093 mutex_lock(&loop_ctl_mutex
);
2094 idr_remove(&loop_index_idr
, i
);
2095 mutex_unlock(&loop_ctl_mutex
);
2102 static void loop_remove(struct loop_device
*lo
)
2104 /* Make this loop device unreachable from pathname. */
2105 del_gendisk(lo
->lo_disk
);
2106 blk_mq_free_tag_set(&lo
->tag_set
);
2108 mutex_lock(&loop_ctl_mutex
);
2109 idr_remove(&loop_index_idr
, lo
->lo_number
);
2110 mutex_unlock(&loop_ctl_mutex
);
2112 put_disk(lo
->lo_disk
);
2115 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2116 static void loop_probe(dev_t dev
)
2118 int idx
= MINOR(dev
) >> part_shift
;
2120 if (max_loop_specified
&& max_loop
&& idx
>= max_loop
)
2125 #define loop_probe NULL
2126 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2128 static int loop_control_remove(int idx
)
2130 struct loop_device
*lo
;
2134 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2138 /* Hide this loop device for serialization. */
2139 ret
= mutex_lock_killable(&loop_ctl_mutex
);
2142 lo
= idr_find(&loop_index_idr
, idx
);
2143 if (!lo
|| !lo
->idr_visible
)
2146 lo
->idr_visible
= false;
2147 mutex_unlock(&loop_ctl_mutex
);
2151 /* Check whether this loop device can be removed. */
2152 ret
= mutex_lock_killable(&lo
->lo_mutex
);
2155 if (lo
->lo_state
!= Lo_unbound
|| disk_openers(lo
->lo_disk
) > 0) {
2156 mutex_unlock(&lo
->lo_mutex
);
2160 /* Mark this loop device as no more bound, but not quite unbound yet */
2161 lo
->lo_state
= Lo_deleting
;
2162 mutex_unlock(&lo
->lo_mutex
);
2168 /* Show this loop device again. */
2169 mutex_lock(&loop_ctl_mutex
);
2170 lo
->idr_visible
= true;
2171 mutex_unlock(&loop_ctl_mutex
);
2175 static int loop_control_get_free(int idx
)
2177 struct loop_device
*lo
;
2180 ret
= mutex_lock_killable(&loop_ctl_mutex
);
2183 idr_for_each_entry(&loop_index_idr
, lo
, id
) {
2184 /* Hitting a race results in creating a new loop device which is harmless. */
2185 if (lo
->idr_visible
&& data_race(lo
->lo_state
) == Lo_unbound
)
2188 mutex_unlock(&loop_ctl_mutex
);
2189 return loop_add(-1);
2191 mutex_unlock(&loop_ctl_mutex
);
2195 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
2200 return loop_add(parm
);
2201 case LOOP_CTL_REMOVE
:
2202 return loop_control_remove(parm
);
2203 case LOOP_CTL_GET_FREE
:
2204 return loop_control_get_free(parm
);
2210 static const struct file_operations loop_ctl_fops
= {
2211 .open
= nonseekable_open
,
2212 .unlocked_ioctl
= loop_control_ioctl
,
2213 .compat_ioctl
= loop_control_ioctl
,
2214 .owner
= THIS_MODULE
,
2215 .llseek
= noop_llseek
,
2218 static struct miscdevice loop_misc
= {
2219 .minor
= LOOP_CTRL_MINOR
,
2220 .name
= "loop-control",
2221 .fops
= &loop_ctl_fops
,
2224 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
2225 MODULE_ALIAS("devname:loop-control");
2227 static int __init
loop_init(void)
2234 part_shift
= fls(max_part
);
2237 * Adjust max_part according to part_shift as it is exported
2238 * to user space so that user can decide correct minor number
2239 * if [s]he want to create more devices.
2241 * Note that -1 is required because partition 0 is reserved
2242 * for the whole disk.
2244 max_part
= (1UL << part_shift
) - 1;
2247 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
2252 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
2257 err
= misc_register(&loop_misc
);
2262 if (__register_blkdev(LOOP_MAJOR
, "loop", loop_probe
)) {
2267 /* pre-create number of devices given by config or max_loop */
2268 for (i
= 0; i
< max_loop
; i
++)
2271 printk(KERN_INFO
"loop: module loaded\n");
2275 misc_deregister(&loop_misc
);
2280 static void __exit
loop_exit(void)
2282 struct loop_device
*lo
;
2285 unregister_blkdev(LOOP_MAJOR
, "loop");
2286 misc_deregister(&loop_misc
);
2289 * There is no need to use loop_ctl_mutex here, for nobody else can
2290 * access loop_index_idr when this module is unloading (unless forced
2291 * module unloading is requested). If this is not a clean unloading,
2292 * we have no means to avoid kernel crash.
2294 idr_for_each_entry(&loop_index_idr
, lo
, id
)
2297 idr_destroy(&loop_index_idr
);
2300 module_init(loop_init
);
2301 module_exit(loop_exit
);
2304 static int __init
max_loop_setup(char *str
)
2306 max_loop
= simple_strtol(str
, NULL
, 0);
2307 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2308 max_loop_specified
= true;
2313 __setup("max_loop=", max_loop_setup
);