Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / bluetooth / btintel.c
blobd496cf2c34111fc7f90aa1dcb9f6a2cfd9a5cd13
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
4 * Bluetooth support for Intel devices
6 * Copyright (C) 2015 Intel Corporation
7 */
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <linux/acpi.h>
13 #include <acpi/acpi_bus.h>
14 #include <linux/unaligned.h>
15 #include <linux/efi.h>
17 #include <net/bluetooth/bluetooth.h>
18 #include <net/bluetooth/hci_core.h>
20 #include "btintel.h"
22 #define VERSION "0.1"
24 #define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
25 #define RSA_HEADER_LEN 644
26 #define CSS_HEADER_OFFSET 8
27 #define ECDSA_OFFSET 644
28 #define ECDSA_HEADER_LEN 320
30 #define BTINTEL_EFI_DSBR L"UefiCnvCommonDSBR"
32 enum {
33 DSM_SET_WDISABLE2_DELAY = 1,
34 DSM_SET_RESET_METHOD = 3,
37 #define CMD_WRITE_BOOT_PARAMS 0xfc0e
38 struct cmd_write_boot_params {
39 __le32 boot_addr;
40 u8 fw_build_num;
41 u8 fw_build_ww;
42 u8 fw_build_yy;
43 } __packed;
45 static struct {
46 const char *driver_name;
47 u8 hw_variant;
48 u32 fw_build_num;
49 } coredump_info;
51 static const guid_t btintel_guid_dsm =
52 GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
53 0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
55 int btintel_check_bdaddr(struct hci_dev *hdev)
57 struct hci_rp_read_bd_addr *bda;
58 struct sk_buff *skb;
60 skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
61 HCI_INIT_TIMEOUT);
62 if (IS_ERR(skb)) {
63 int err = PTR_ERR(skb);
64 bt_dev_err(hdev, "Reading Intel device address failed (%d)",
65 err);
66 return err;
69 if (skb->len != sizeof(*bda)) {
70 bt_dev_err(hdev, "Intel device address length mismatch");
71 kfree_skb(skb);
72 return -EIO;
75 bda = (struct hci_rp_read_bd_addr *)skb->data;
77 /* For some Intel based controllers, the default Bluetooth device
78 * address 00:03:19:9E:8B:00 can be found. These controllers are
79 * fully operational, but have the danger of duplicate addresses
80 * and that in turn can cause problems with Bluetooth operation.
82 if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
83 bt_dev_err(hdev, "Found Intel default device address (%pMR)",
84 &bda->bdaddr);
85 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
88 kfree_skb(skb);
90 return 0;
92 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
94 int btintel_enter_mfg(struct hci_dev *hdev)
96 static const u8 param[] = { 0x01, 0x00 };
97 struct sk_buff *skb;
99 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
100 if (IS_ERR(skb)) {
101 bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
102 PTR_ERR(skb));
103 return PTR_ERR(skb);
105 kfree_skb(skb);
107 return 0;
109 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
111 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
113 u8 param[] = { 0x00, 0x00 };
114 struct sk_buff *skb;
116 /* The 2nd command parameter specifies the manufacturing exit method:
117 * 0x00: Just disable the manufacturing mode (0x00).
118 * 0x01: Disable manufacturing mode and reset with patches deactivated.
119 * 0x02: Disable manufacturing mode and reset with patches activated.
121 if (reset)
122 param[1] |= patched ? 0x02 : 0x01;
124 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
125 if (IS_ERR(skb)) {
126 bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
127 PTR_ERR(skb));
128 return PTR_ERR(skb);
130 kfree_skb(skb);
132 return 0;
134 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
136 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
138 struct sk_buff *skb;
139 int err;
141 skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
142 if (IS_ERR(skb)) {
143 err = PTR_ERR(skb);
144 bt_dev_err(hdev, "Changing Intel device address failed (%d)",
145 err);
146 return err;
148 kfree_skb(skb);
150 return 0;
152 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
154 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
156 u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
157 struct sk_buff *skb;
158 int err;
160 if (debug)
161 mask[1] |= 0x62;
163 skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
164 if (IS_ERR(skb)) {
165 err = PTR_ERR(skb);
166 bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
167 return err;
169 kfree_skb(skb);
171 return 0;
174 int btintel_set_diag(struct hci_dev *hdev, bool enable)
176 struct sk_buff *skb;
177 u8 param[3];
178 int err;
180 if (enable) {
181 param[0] = 0x03;
182 param[1] = 0x03;
183 param[2] = 0x03;
184 } else {
185 param[0] = 0x00;
186 param[1] = 0x00;
187 param[2] = 0x00;
190 skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
191 if (IS_ERR(skb)) {
192 err = PTR_ERR(skb);
193 if (err == -ENODATA)
194 goto done;
195 bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
196 err);
197 return err;
199 kfree_skb(skb);
201 done:
202 btintel_set_event_mask(hdev, enable);
203 return 0;
205 EXPORT_SYMBOL_GPL(btintel_set_diag);
207 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
209 int err, ret;
211 err = btintel_enter_mfg(hdev);
212 if (err)
213 return err;
215 ret = btintel_set_diag(hdev, enable);
217 err = btintel_exit_mfg(hdev, false, false);
218 if (err)
219 return err;
221 return ret;
224 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
226 int ret;
228 /* Legacy ROM device needs to be in the manufacturer mode to apply
229 * diagnostic setting
231 * This flag is set after reading the Intel version.
233 if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
234 ret = btintel_set_diag_mfg(hdev, enable);
235 else
236 ret = btintel_set_diag(hdev, enable);
238 return ret;
241 void btintel_hw_error(struct hci_dev *hdev, u8 code)
243 struct sk_buff *skb;
244 u8 type = 0x00;
246 bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
248 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
249 if (IS_ERR(skb)) {
250 bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
251 PTR_ERR(skb));
252 return;
254 kfree_skb(skb);
256 skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
257 if (IS_ERR(skb)) {
258 bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
259 PTR_ERR(skb));
260 return;
263 if (skb->len != 13) {
264 bt_dev_err(hdev, "Exception info size mismatch");
265 kfree_skb(skb);
266 return;
269 bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
271 kfree_skb(skb);
273 EXPORT_SYMBOL_GPL(btintel_hw_error);
275 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
277 const char *variant;
279 /* The hardware platform number has a fixed value of 0x37 and
280 * for now only accept this single value.
282 if (ver->hw_platform != 0x37) {
283 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
284 ver->hw_platform);
285 return -EINVAL;
288 /* Check for supported iBT hardware variants of this firmware
289 * loading method.
291 * This check has been put in place to ensure correct forward
292 * compatibility options when newer hardware variants come along.
294 switch (ver->hw_variant) {
295 case 0x07: /* WP - Legacy ROM */
296 case 0x08: /* StP - Legacy ROM */
297 case 0x0b: /* SfP */
298 case 0x0c: /* WsP */
299 case 0x11: /* JfP */
300 case 0x12: /* ThP */
301 case 0x13: /* HrP */
302 case 0x14: /* CcP */
303 break;
304 default:
305 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
306 ver->hw_variant);
307 return -EINVAL;
310 switch (ver->fw_variant) {
311 case 0x01:
312 variant = "Legacy ROM 2.5";
313 break;
314 case 0x06:
315 variant = "Bootloader";
316 break;
317 case 0x22:
318 variant = "Legacy ROM 2.x";
319 break;
320 case 0x23:
321 variant = "Firmware";
322 break;
323 default:
324 bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
325 return -EINVAL;
328 coredump_info.hw_variant = ver->hw_variant;
329 coredump_info.fw_build_num = ver->fw_build_num;
331 bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
332 variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
333 ver->fw_build_num, ver->fw_build_ww,
334 2000 + ver->fw_build_yy);
336 return 0;
338 EXPORT_SYMBOL_GPL(btintel_version_info);
340 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
341 const void *param)
343 while (plen > 0) {
344 struct sk_buff *skb;
345 u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
347 cmd_param[0] = fragment_type;
348 memcpy(cmd_param + 1, param, fragment_len);
350 skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
351 cmd_param, HCI_INIT_TIMEOUT);
352 if (IS_ERR(skb))
353 return PTR_ERR(skb);
355 kfree_skb(skb);
357 plen -= fragment_len;
358 param += fragment_len;
361 return 0;
364 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
366 const struct firmware *fw;
367 struct sk_buff *skb;
368 const u8 *fw_ptr;
369 int err;
371 err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
372 if (err < 0) {
373 bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
374 ddc_name, err);
375 return err;
378 bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
380 fw_ptr = fw->data;
382 /* DDC file contains one or more DDC structure which has
383 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
385 while (fw->size > fw_ptr - fw->data) {
386 u8 cmd_plen = fw_ptr[0] + sizeof(u8);
388 skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
389 HCI_INIT_TIMEOUT);
390 if (IS_ERR(skb)) {
391 bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
392 PTR_ERR(skb));
393 release_firmware(fw);
394 return PTR_ERR(skb);
397 fw_ptr += cmd_plen;
398 kfree_skb(skb);
401 release_firmware(fw);
403 bt_dev_info(hdev, "Applying Intel DDC parameters completed");
405 return 0;
407 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
409 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
411 int err, ret;
413 err = btintel_enter_mfg(hdev);
414 if (err)
415 return err;
417 ret = btintel_set_event_mask(hdev, debug);
419 err = btintel_exit_mfg(hdev, false, false);
420 if (err)
421 return err;
423 return ret;
425 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
427 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
429 struct sk_buff *skb;
431 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
432 if (IS_ERR(skb)) {
433 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
434 PTR_ERR(skb));
435 return PTR_ERR(skb);
438 if (!skb || skb->len != sizeof(*ver)) {
439 bt_dev_err(hdev, "Intel version event size mismatch");
440 kfree_skb(skb);
441 return -EILSEQ;
444 memcpy(ver, skb->data, sizeof(*ver));
446 kfree_skb(skb);
448 return 0;
450 EXPORT_SYMBOL_GPL(btintel_read_version);
452 int btintel_version_info_tlv(struct hci_dev *hdev,
453 struct intel_version_tlv *version)
455 const char *variant;
457 /* The hardware platform number has a fixed value of 0x37 and
458 * for now only accept this single value.
460 if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
461 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
462 INTEL_HW_PLATFORM(version->cnvi_bt));
463 return -EINVAL;
466 /* Check for supported iBT hardware variants of this firmware
467 * loading method.
469 * This check has been put in place to ensure correct forward
470 * compatibility options when newer hardware variants come along.
472 switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
473 case 0x17: /* TyP */
474 case 0x18: /* Slr */
475 case 0x19: /* Slr-F */
476 case 0x1b: /* Mgr */
477 case 0x1c: /* Gale Peak (GaP) */
478 case 0x1d: /* BlazarU (BzrU) */
479 case 0x1e: /* BlazarI (Bzr) */
480 break;
481 default:
482 bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
483 INTEL_HW_VARIANT(version->cnvi_bt));
484 return -EINVAL;
487 switch (version->img_type) {
488 case BTINTEL_IMG_BOOTLOADER:
489 variant = "Bootloader";
490 /* It is required that every single firmware fragment is acknowledged
491 * with a command complete event. If the boot parameters indicate
492 * that this bootloader does not send them, then abort the setup.
494 if (version->limited_cce != 0x00) {
495 bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
496 version->limited_cce);
497 return -EINVAL;
500 /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
501 if (version->sbe_type > 0x01) {
502 bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
503 version->sbe_type);
504 return -EINVAL;
507 bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
508 bt_dev_info(hdev, "Secure boot is %s",
509 version->secure_boot ? "enabled" : "disabled");
510 bt_dev_info(hdev, "OTP lock is %s",
511 version->otp_lock ? "enabled" : "disabled");
512 bt_dev_info(hdev, "API lock is %s",
513 version->api_lock ? "enabled" : "disabled");
514 bt_dev_info(hdev, "Debug lock is %s",
515 version->debug_lock ? "enabled" : "disabled");
516 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
517 version->min_fw_build_nn, version->min_fw_build_cw,
518 2000 + version->min_fw_build_yy);
519 break;
520 case BTINTEL_IMG_IML:
521 variant = "Intermediate loader";
522 break;
523 case BTINTEL_IMG_OP:
524 variant = "Firmware";
525 break;
526 default:
527 bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
528 return -EINVAL;
531 coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
532 coredump_info.fw_build_num = version->build_num;
534 bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
535 2000 + (version->timestamp >> 8), version->timestamp & 0xff,
536 version->build_type, version->build_num);
537 if (version->img_type == BTINTEL_IMG_OP)
538 bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1);
540 return 0;
542 EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
544 int btintel_parse_version_tlv(struct hci_dev *hdev,
545 struct intel_version_tlv *version,
546 struct sk_buff *skb)
548 /* Consume Command Complete Status field */
549 skb_pull(skb, 1);
551 /* Event parameters contatin multiple TLVs. Read each of them
552 * and only keep the required data. Also, it use existing legacy
553 * version field like hw_platform, hw_variant, and fw_variant
554 * to keep the existing setup flow
556 while (skb->len) {
557 struct intel_tlv *tlv;
559 /* Make sure skb has a minimum length of the header */
560 if (skb->len < sizeof(*tlv))
561 return -EINVAL;
563 tlv = (struct intel_tlv *)skb->data;
565 /* Make sure skb has a enough data */
566 if (skb->len < tlv->len + sizeof(*tlv))
567 return -EINVAL;
569 switch (tlv->type) {
570 case INTEL_TLV_CNVI_TOP:
571 version->cnvi_top = get_unaligned_le32(tlv->val);
572 break;
573 case INTEL_TLV_CNVR_TOP:
574 version->cnvr_top = get_unaligned_le32(tlv->val);
575 break;
576 case INTEL_TLV_CNVI_BT:
577 version->cnvi_bt = get_unaligned_le32(tlv->val);
578 break;
579 case INTEL_TLV_CNVR_BT:
580 version->cnvr_bt = get_unaligned_le32(tlv->val);
581 break;
582 case INTEL_TLV_DEV_REV_ID:
583 version->dev_rev_id = get_unaligned_le16(tlv->val);
584 break;
585 case INTEL_TLV_IMAGE_TYPE:
586 version->img_type = tlv->val[0];
587 break;
588 case INTEL_TLV_TIME_STAMP:
589 /* If image type is Operational firmware (0x03), then
590 * running FW Calendar Week and Year information can
591 * be extracted from Timestamp information
593 version->min_fw_build_cw = tlv->val[0];
594 version->min_fw_build_yy = tlv->val[1];
595 version->timestamp = get_unaligned_le16(tlv->val);
596 break;
597 case INTEL_TLV_BUILD_TYPE:
598 version->build_type = tlv->val[0];
599 break;
600 case INTEL_TLV_BUILD_NUM:
601 /* If image type is Operational firmware (0x03), then
602 * running FW build number can be extracted from the
603 * Build information
605 version->min_fw_build_nn = tlv->val[0];
606 version->build_num = get_unaligned_le32(tlv->val);
607 break;
608 case INTEL_TLV_SECURE_BOOT:
609 version->secure_boot = tlv->val[0];
610 break;
611 case INTEL_TLV_OTP_LOCK:
612 version->otp_lock = tlv->val[0];
613 break;
614 case INTEL_TLV_API_LOCK:
615 version->api_lock = tlv->val[0];
616 break;
617 case INTEL_TLV_DEBUG_LOCK:
618 version->debug_lock = tlv->val[0];
619 break;
620 case INTEL_TLV_MIN_FW:
621 version->min_fw_build_nn = tlv->val[0];
622 version->min_fw_build_cw = tlv->val[1];
623 version->min_fw_build_yy = tlv->val[2];
624 break;
625 case INTEL_TLV_LIMITED_CCE:
626 version->limited_cce = tlv->val[0];
627 break;
628 case INTEL_TLV_SBE_TYPE:
629 version->sbe_type = tlv->val[0];
630 break;
631 case INTEL_TLV_OTP_BDADDR:
632 memcpy(&version->otp_bd_addr, tlv->val,
633 sizeof(bdaddr_t));
634 break;
635 case INTEL_TLV_GIT_SHA1:
636 version->git_sha1 = get_unaligned_le32(tlv->val);
637 break;
638 case INTEL_TLV_FW_ID:
639 snprintf(version->fw_id, sizeof(version->fw_id),
640 "%s", tlv->val);
641 break;
642 default:
643 /* Ignore rest of information */
644 break;
646 /* consume the current tlv and move to next*/
647 skb_pull(skb, tlv->len + sizeof(*tlv));
650 return 0;
652 EXPORT_SYMBOL_GPL(btintel_parse_version_tlv);
654 static int btintel_read_version_tlv(struct hci_dev *hdev,
655 struct intel_version_tlv *version)
657 struct sk_buff *skb;
658 const u8 param[1] = { 0xFF };
660 if (!version)
661 return -EINVAL;
663 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
664 if (IS_ERR(skb)) {
665 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
666 PTR_ERR(skb));
667 return PTR_ERR(skb);
670 if (skb->data[0]) {
671 bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
672 skb->data[0]);
673 kfree_skb(skb);
674 return -EIO;
677 btintel_parse_version_tlv(hdev, version, skb);
679 kfree_skb(skb);
680 return 0;
683 /* ------- REGMAP IBT SUPPORT ------- */
685 #define IBT_REG_MODE_8BIT 0x00
686 #define IBT_REG_MODE_16BIT 0x01
687 #define IBT_REG_MODE_32BIT 0x02
689 struct regmap_ibt_context {
690 struct hci_dev *hdev;
691 __u16 op_write;
692 __u16 op_read;
695 struct ibt_cp_reg_access {
696 __le32 addr;
697 __u8 mode;
698 __u8 len;
699 __u8 data[];
700 } __packed;
702 struct ibt_rp_reg_access {
703 __u8 status;
704 __le32 addr;
705 __u8 data[];
706 } __packed;
708 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
709 void *val, size_t val_size)
711 struct regmap_ibt_context *ctx = context;
712 struct ibt_cp_reg_access cp;
713 struct ibt_rp_reg_access *rp;
714 struct sk_buff *skb;
715 int err = 0;
717 if (reg_size != sizeof(__le32))
718 return -EINVAL;
720 switch (val_size) {
721 case 1:
722 cp.mode = IBT_REG_MODE_8BIT;
723 break;
724 case 2:
725 cp.mode = IBT_REG_MODE_16BIT;
726 break;
727 case 4:
728 cp.mode = IBT_REG_MODE_32BIT;
729 break;
730 default:
731 return -EINVAL;
734 /* regmap provides a little-endian formatted addr */
735 cp.addr = *(__le32 *)addr;
736 cp.len = val_size;
738 bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
740 skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
741 HCI_CMD_TIMEOUT);
742 if (IS_ERR(skb)) {
743 err = PTR_ERR(skb);
744 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
745 le32_to_cpu(cp.addr), err);
746 return err;
749 if (skb->len != sizeof(*rp) + val_size) {
750 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
751 le32_to_cpu(cp.addr));
752 err = -EINVAL;
753 goto done;
756 rp = (struct ibt_rp_reg_access *)skb->data;
758 if (rp->addr != cp.addr) {
759 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
760 le32_to_cpu(rp->addr));
761 err = -EINVAL;
762 goto done;
765 memcpy(val, rp->data, val_size);
767 done:
768 kfree_skb(skb);
769 return err;
772 static int regmap_ibt_gather_write(void *context,
773 const void *addr, size_t reg_size,
774 const void *val, size_t val_size)
776 struct regmap_ibt_context *ctx = context;
777 struct ibt_cp_reg_access *cp;
778 struct sk_buff *skb;
779 int plen = sizeof(*cp) + val_size;
780 u8 mode;
781 int err = 0;
783 if (reg_size != sizeof(__le32))
784 return -EINVAL;
786 switch (val_size) {
787 case 1:
788 mode = IBT_REG_MODE_8BIT;
789 break;
790 case 2:
791 mode = IBT_REG_MODE_16BIT;
792 break;
793 case 4:
794 mode = IBT_REG_MODE_32BIT;
795 break;
796 default:
797 return -EINVAL;
800 cp = kmalloc(plen, GFP_KERNEL);
801 if (!cp)
802 return -ENOMEM;
804 /* regmap provides a little-endian formatted addr/value */
805 cp->addr = *(__le32 *)addr;
806 cp->mode = mode;
807 cp->len = val_size;
808 memcpy(&cp->data, val, val_size);
810 bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
812 skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
813 if (IS_ERR(skb)) {
814 err = PTR_ERR(skb);
815 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
816 le32_to_cpu(cp->addr), err);
817 goto done;
819 kfree_skb(skb);
821 done:
822 kfree(cp);
823 return err;
826 static int regmap_ibt_write(void *context, const void *data, size_t count)
828 /* data contains register+value, since we only support 32bit addr,
829 * minimum data size is 4 bytes.
831 if (WARN_ONCE(count < 4, "Invalid register access"))
832 return -EINVAL;
834 return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
837 static void regmap_ibt_free_context(void *context)
839 kfree(context);
842 static const struct regmap_bus regmap_ibt = {
843 .read = regmap_ibt_read,
844 .write = regmap_ibt_write,
845 .gather_write = regmap_ibt_gather_write,
846 .free_context = regmap_ibt_free_context,
847 .reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
848 .val_format_endian_default = REGMAP_ENDIAN_LITTLE,
851 /* Config is the same for all register regions */
852 static const struct regmap_config regmap_ibt_cfg = {
853 .name = "btintel_regmap",
854 .reg_bits = 32,
855 .val_bits = 32,
858 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
859 u16 opcode_write)
861 struct regmap_ibt_context *ctx;
863 bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
864 opcode_write);
866 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
867 if (!ctx)
868 return ERR_PTR(-ENOMEM);
870 ctx->op_read = opcode_read;
871 ctx->op_write = opcode_write;
872 ctx->hdev = hdev;
874 return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
876 EXPORT_SYMBOL_GPL(btintel_regmap_init);
878 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
880 struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
881 struct sk_buff *skb;
883 params.boot_param = cpu_to_le32(boot_param);
885 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
886 HCI_INIT_TIMEOUT);
887 if (IS_ERR(skb)) {
888 bt_dev_err(hdev, "Failed to send Intel Reset command");
889 return PTR_ERR(skb);
892 kfree_skb(skb);
894 return 0;
896 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
898 int btintel_read_boot_params(struct hci_dev *hdev,
899 struct intel_boot_params *params)
901 struct sk_buff *skb;
903 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
904 if (IS_ERR(skb)) {
905 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
906 PTR_ERR(skb));
907 return PTR_ERR(skb);
910 if (skb->len != sizeof(*params)) {
911 bt_dev_err(hdev, "Intel boot parameters size mismatch");
912 kfree_skb(skb);
913 return -EILSEQ;
916 memcpy(params, skb->data, sizeof(*params));
918 kfree_skb(skb);
920 if (params->status) {
921 bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
922 params->status);
923 return -bt_to_errno(params->status);
926 bt_dev_info(hdev, "Device revision is %u",
927 le16_to_cpu(params->dev_revid));
929 bt_dev_info(hdev, "Secure boot is %s",
930 params->secure_boot ? "enabled" : "disabled");
932 bt_dev_info(hdev, "OTP lock is %s",
933 params->otp_lock ? "enabled" : "disabled");
935 bt_dev_info(hdev, "API lock is %s",
936 params->api_lock ? "enabled" : "disabled");
938 bt_dev_info(hdev, "Debug lock is %s",
939 params->debug_lock ? "enabled" : "disabled");
941 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
942 params->min_fw_build_nn, params->min_fw_build_cw,
943 2000 + params->min_fw_build_yy);
945 return 0;
947 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
949 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
950 const struct firmware *fw)
952 int err;
954 /* Start the firmware download transaction with the Init fragment
955 * represented by the 128 bytes of CSS header.
957 err = btintel_secure_send(hdev, 0x00, 128, fw->data);
958 if (err < 0) {
959 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
960 goto done;
963 /* Send the 256 bytes of public key information from the firmware
964 * as the PKey fragment.
966 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
967 if (err < 0) {
968 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
969 goto done;
972 /* Send the 256 bytes of signature information from the firmware
973 * as the Sign fragment.
975 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
976 if (err < 0) {
977 bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
978 goto done;
981 done:
982 return err;
985 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
986 const struct firmware *fw)
988 int err;
990 /* Start the firmware download transaction with the Init fragment
991 * represented by the 128 bytes of CSS header.
993 err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
994 if (err < 0) {
995 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
996 return err;
999 /* Send the 96 bytes of public key information from the firmware
1000 * as the PKey fragment.
1002 err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
1003 if (err < 0) {
1004 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
1005 return err;
1008 /* Send the 96 bytes of signature information from the firmware
1009 * as the Sign fragment
1011 err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
1012 if (err < 0) {
1013 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
1014 err);
1015 return err;
1017 return 0;
1020 static int btintel_download_firmware_payload(struct hci_dev *hdev,
1021 const struct firmware *fw,
1022 size_t offset)
1024 int err;
1025 const u8 *fw_ptr;
1026 u32 frag_len;
1028 fw_ptr = fw->data + offset;
1029 frag_len = 0;
1030 err = -EINVAL;
1032 while (fw_ptr - fw->data < fw->size) {
1033 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
1035 frag_len += sizeof(*cmd) + cmd->plen;
1037 /* The parameter length of the secure send command requires
1038 * a 4 byte alignment. It happens so that the firmware file
1039 * contains proper Intel_NOP commands to align the fragments
1040 * as needed.
1042 * Send set of commands with 4 byte alignment from the
1043 * firmware data buffer as a single Data fragment.
1045 if (!(frag_len % 4)) {
1046 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1047 if (err < 0) {
1048 bt_dev_err(hdev,
1049 "Failed to send firmware data (%d)",
1050 err);
1051 goto done;
1054 fw_ptr += frag_len;
1055 frag_len = 0;
1059 done:
1060 return err;
1063 static bool btintel_firmware_version(struct hci_dev *hdev,
1064 u8 num, u8 ww, u8 yy,
1065 const struct firmware *fw,
1066 u32 *boot_addr)
1068 const u8 *fw_ptr;
1070 fw_ptr = fw->data;
1072 while (fw_ptr - fw->data < fw->size) {
1073 struct hci_command_hdr *cmd = (void *)(fw_ptr);
1075 /* Each SKU has a different reset parameter to use in the
1076 * HCI_Intel_Reset command and it is embedded in the firmware
1077 * data. So, instead of using static value per SKU, check
1078 * the firmware data and save it for later use.
1080 if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1081 struct cmd_write_boot_params *params;
1083 params = (void *)(fw_ptr + sizeof(*cmd));
1085 *boot_addr = le32_to_cpu(params->boot_addr);
1087 bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1089 bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1090 params->fw_build_num, params->fw_build_ww,
1091 params->fw_build_yy);
1093 return (num == params->fw_build_num &&
1094 ww == params->fw_build_ww &&
1095 yy == params->fw_build_yy);
1098 fw_ptr += sizeof(*cmd) + cmd->plen;
1101 return false;
1104 int btintel_download_firmware(struct hci_dev *hdev,
1105 struct intel_version *ver,
1106 const struct firmware *fw,
1107 u32 *boot_param)
1109 int err;
1111 /* SfP and WsP don't seem to update the firmware version on file
1112 * so version checking is currently not possible.
1114 switch (ver->hw_variant) {
1115 case 0x0b: /* SfP */
1116 case 0x0c: /* WsP */
1117 /* Skip version checking */
1118 break;
1119 default:
1121 /* Skip download if firmware has the same version */
1122 if (btintel_firmware_version(hdev, ver->fw_build_num,
1123 ver->fw_build_ww, ver->fw_build_yy,
1124 fw, boot_param)) {
1125 bt_dev_info(hdev, "Firmware already loaded");
1126 /* Return -EALREADY to indicate that the firmware has
1127 * already been loaded.
1129 return -EALREADY;
1133 /* The firmware variant determines if the device is in bootloader
1134 * mode or is running operational firmware. The value 0x06 identifies
1135 * the bootloader and the value 0x23 identifies the operational
1136 * firmware.
1138 * If the firmware version has changed that means it needs to be reset
1139 * to bootloader when operational so the new firmware can be loaded.
1141 if (ver->fw_variant == 0x23)
1142 return -EINVAL;
1144 err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1145 if (err)
1146 return err;
1148 return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1150 EXPORT_SYMBOL_GPL(btintel_download_firmware);
1152 static int btintel_download_fw_tlv(struct hci_dev *hdev,
1153 struct intel_version_tlv *ver,
1154 const struct firmware *fw, u32 *boot_param,
1155 u8 hw_variant, u8 sbe_type)
1157 int err;
1158 u32 css_header_ver;
1160 /* Skip download if firmware has the same version */
1161 if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1162 ver->min_fw_build_cw,
1163 ver->min_fw_build_yy,
1164 fw, boot_param)) {
1165 bt_dev_info(hdev, "Firmware already loaded");
1166 /* Return -EALREADY to indicate that firmware has
1167 * already been loaded.
1169 return -EALREADY;
1172 /* The firmware variant determines if the device is in bootloader
1173 * mode or is running operational firmware. The value 0x01 identifies
1174 * the bootloader and the value 0x03 identifies the operational
1175 * firmware.
1177 * If the firmware version has changed that means it needs to be reset
1178 * to bootloader when operational so the new firmware can be loaded.
1180 if (ver->img_type == BTINTEL_IMG_OP)
1181 return -EINVAL;
1183 /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1184 * only RSA secure boot engine. Hence, the corresponding sfi file will
1185 * have RSA header of 644 bytes followed by Command Buffer.
1187 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1188 * secure boot engine. As a result, the corresponding sfi file will
1189 * have RSA header of 644, ECDSA header of 320 bytes followed by
1190 * Command Buffer.
1192 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1193 * version: RSA(0x00010000) , ECDSA (0x00020000)
1195 css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1196 if (css_header_ver != 0x00010000) {
1197 bt_dev_err(hdev, "Invalid CSS Header version");
1198 return -EINVAL;
1201 if (hw_variant <= 0x14) {
1202 if (sbe_type != 0x00) {
1203 bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1204 hw_variant);
1205 return -EINVAL;
1208 err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1209 if (err)
1210 return err;
1212 err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1213 if (err)
1214 return err;
1215 } else if (hw_variant >= 0x17) {
1216 /* Check if CSS header for ECDSA follows the RSA header */
1217 if (fw->data[ECDSA_OFFSET] != 0x06)
1218 return -EINVAL;
1220 /* Check if the CSS Header version is ECDSA(0x00020000) */
1221 css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1222 if (css_header_ver != 0x00020000) {
1223 bt_dev_err(hdev, "Invalid CSS Header version");
1224 return -EINVAL;
1227 if (sbe_type == 0x00) {
1228 err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1229 if (err)
1230 return err;
1232 err = btintel_download_firmware_payload(hdev, fw,
1233 RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1234 if (err)
1235 return err;
1236 } else if (sbe_type == 0x01) {
1237 err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1238 if (err)
1239 return err;
1241 err = btintel_download_firmware_payload(hdev, fw,
1242 RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1243 if (err)
1244 return err;
1247 return 0;
1250 static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1252 struct intel_reset params;
1253 struct sk_buff *skb;
1255 /* PCIe transport uses shared hardware reset mechanism for recovery
1256 * which gets triggered in pcie *setup* function on error.
1258 if (hdev->bus == HCI_PCI)
1259 return;
1261 /* Send Intel Reset command. This will result in
1262 * re-enumeration of BT controller.
1264 * Intel Reset parameter description:
1265 * reset_type : 0x00 (Soft reset),
1266 * 0x01 (Hard reset)
1267 * patch_enable : 0x00 (Do not enable),
1268 * 0x01 (Enable)
1269 * ddc_reload : 0x00 (Do not reload),
1270 * 0x01 (Reload)
1271 * boot_option: 0x00 (Current image),
1272 * 0x01 (Specified boot address)
1273 * boot_param: Boot address
1277 params.reset_type = 0x01;
1278 params.patch_enable = 0x01;
1279 params.ddc_reload = 0x01;
1280 params.boot_option = 0x00;
1281 params.boot_param = cpu_to_le32(0x00000000);
1283 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1284 &params, HCI_INIT_TIMEOUT);
1285 if (IS_ERR(skb)) {
1286 bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1287 PTR_ERR(skb));
1288 return;
1290 bt_dev_info(hdev, "Intel reset sent to retry FW download");
1291 kfree_skb(skb);
1293 /* Current Intel BT controllers(ThP/JfP) hold the USB reset
1294 * lines for 2ms when it receives Intel Reset in bootloader mode.
1295 * Whereas, the upcoming Intel BT controllers will hold USB reset
1296 * for 150ms. To keep the delay generic, 150ms is chosen here.
1298 msleep(150);
1301 static int btintel_read_debug_features(struct hci_dev *hdev,
1302 struct intel_debug_features *features)
1304 struct sk_buff *skb;
1305 u8 page_no = 1;
1307 /* Intel controller supports two pages, each page is of 128-bit
1308 * feature bit mask. And each bit defines specific feature support
1310 skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1311 HCI_INIT_TIMEOUT);
1312 if (IS_ERR(skb)) {
1313 bt_dev_err(hdev, "Reading supported features failed (%ld)",
1314 PTR_ERR(skb));
1315 return PTR_ERR(skb);
1318 if (skb->len != (sizeof(features->page1) + 3)) {
1319 bt_dev_err(hdev, "Supported features event size mismatch");
1320 kfree_skb(skb);
1321 return -EILSEQ;
1324 memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1326 /* Read the supported features page2 if required in future.
1328 kfree_skb(skb);
1329 return 0;
1332 static int btintel_set_debug_features(struct hci_dev *hdev,
1333 const struct intel_debug_features *features)
1335 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1336 0x00, 0x00, 0x00 };
1337 u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1338 u8 trace_enable = 0x02;
1339 struct sk_buff *skb;
1341 if (!features) {
1342 bt_dev_warn(hdev, "Debug features not read");
1343 return -EINVAL;
1346 if (!(features->page1[0] & 0x3f)) {
1347 bt_dev_info(hdev, "Telemetry exception format not supported");
1348 return 0;
1351 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1352 if (IS_ERR(skb)) {
1353 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1354 PTR_ERR(skb));
1355 return PTR_ERR(skb);
1357 kfree_skb(skb);
1359 skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1360 if (IS_ERR(skb)) {
1361 bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1362 PTR_ERR(skb));
1363 return PTR_ERR(skb);
1365 kfree_skb(skb);
1367 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1368 if (IS_ERR(skb)) {
1369 bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1370 PTR_ERR(skb));
1371 return PTR_ERR(skb);
1373 kfree_skb(skb);
1375 bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1376 trace_enable, mask[3]);
1378 return 0;
1381 static int btintel_reset_debug_features(struct hci_dev *hdev,
1382 const struct intel_debug_features *features)
1384 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1385 0x00, 0x00, 0x00 };
1386 u8 trace_enable = 0x00;
1387 struct sk_buff *skb;
1389 if (!features) {
1390 bt_dev_warn(hdev, "Debug features not read");
1391 return -EINVAL;
1394 if (!(features->page1[0] & 0x3f)) {
1395 bt_dev_info(hdev, "Telemetry exception format not supported");
1396 return 0;
1399 /* Should stop the trace before writing ddc event mask. */
1400 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1401 if (IS_ERR(skb)) {
1402 bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1403 PTR_ERR(skb));
1404 return PTR_ERR(skb);
1406 kfree_skb(skb);
1408 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1409 if (IS_ERR(skb)) {
1410 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1411 PTR_ERR(skb));
1412 return PTR_ERR(skb);
1414 kfree_skb(skb);
1416 bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1417 trace_enable, mask[3]);
1419 return 0;
1422 int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1424 struct intel_debug_features features;
1425 int err;
1427 bt_dev_dbg(hdev, "enable %d", enable);
1429 /* Read the Intel supported features and if new exception formats
1430 * supported, need to load the additional DDC config to enable.
1432 err = btintel_read_debug_features(hdev, &features);
1433 if (err)
1434 return err;
1436 /* Set or reset the debug features. */
1437 if (enable)
1438 err = btintel_set_debug_features(hdev, &features);
1439 else
1440 err = btintel_reset_debug_features(hdev, &features);
1442 return err;
1444 EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1446 static void btintel_coredump(struct hci_dev *hdev)
1448 struct sk_buff *skb;
1450 skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
1451 if (IS_ERR(skb)) {
1452 bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
1453 return;
1456 kfree_skb(skb);
1459 static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1461 char buf[80];
1463 snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
1464 coredump_info.hw_variant);
1465 skb_put_data(skb, buf, strlen(buf));
1467 snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
1468 coredump_info.fw_build_num);
1469 skb_put_data(skb, buf, strlen(buf));
1471 snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
1472 skb_put_data(skb, buf, strlen(buf));
1474 snprintf(buf, sizeof(buf), "Vendor: Intel\n");
1475 skb_put_data(skb, buf, strlen(buf));
1478 static int btintel_register_devcoredump_support(struct hci_dev *hdev)
1480 struct intel_debug_features features;
1481 int err;
1483 err = btintel_read_debug_features(hdev, &features);
1484 if (err) {
1485 bt_dev_info(hdev, "Error reading debug features");
1486 return err;
1489 if (!(features.page1[0] & 0x3f)) {
1490 bt_dev_dbg(hdev, "Telemetry exception format not supported");
1491 return -EOPNOTSUPP;
1494 hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
1496 return err;
1499 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1500 struct intel_version *ver)
1502 const struct firmware *fw;
1503 char fwname[64];
1504 int ret;
1506 snprintf(fwname, sizeof(fwname),
1507 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1508 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1509 ver->fw_variant, ver->fw_revision, ver->fw_build_num,
1510 ver->fw_build_ww, ver->fw_build_yy);
1512 ret = request_firmware(&fw, fwname, &hdev->dev);
1513 if (ret < 0) {
1514 if (ret == -EINVAL) {
1515 bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1516 ret);
1517 return NULL;
1520 bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1521 fwname, ret);
1523 /* If the correct firmware patch file is not found, use the
1524 * default firmware patch file instead
1526 snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1527 ver->hw_platform, ver->hw_variant);
1528 if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1529 bt_dev_err(hdev, "failed to open default fw file: %s",
1530 fwname);
1531 return NULL;
1535 bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1537 return fw;
1540 static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1541 const struct firmware *fw,
1542 const u8 **fw_ptr, int *disable_patch)
1544 struct sk_buff *skb;
1545 struct hci_command_hdr *cmd;
1546 const u8 *cmd_param;
1547 struct hci_event_hdr *evt = NULL;
1548 const u8 *evt_param = NULL;
1549 int remain = fw->size - (*fw_ptr - fw->data);
1551 /* The first byte indicates the types of the patch command or event.
1552 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1553 * in the current firmware buffer doesn't start with 0x01 or
1554 * the size of remain buffer is smaller than HCI command header,
1555 * the firmware file is corrupted and it should stop the patching
1556 * process.
1558 if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1559 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1560 return -EINVAL;
1562 (*fw_ptr)++;
1563 remain--;
1565 cmd = (struct hci_command_hdr *)(*fw_ptr);
1566 *fw_ptr += sizeof(*cmd);
1567 remain -= sizeof(*cmd);
1569 /* Ensure that the remain firmware data is long enough than the length
1570 * of command parameter. If not, the firmware file is corrupted.
1572 if (remain < cmd->plen) {
1573 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1574 return -EFAULT;
1577 /* If there is a command that loads a patch in the firmware
1578 * file, then enable the patch upon success, otherwise just
1579 * disable the manufacturer mode, for example patch activation
1580 * is not required when the default firmware patch file is used
1581 * because there are no patch data to load.
1583 if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1584 *disable_patch = 0;
1586 cmd_param = *fw_ptr;
1587 *fw_ptr += cmd->plen;
1588 remain -= cmd->plen;
1590 /* This reads the expected events when the above command is sent to the
1591 * device. Some vendor commands expects more than one events, for
1592 * example command status event followed by vendor specific event.
1593 * For this case, it only keeps the last expected event. so the command
1594 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1595 * last expected event.
1597 while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1598 (*fw_ptr)++;
1599 remain--;
1601 evt = (struct hci_event_hdr *)(*fw_ptr);
1602 *fw_ptr += sizeof(*evt);
1603 remain -= sizeof(*evt);
1605 if (remain < evt->plen) {
1606 bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1607 return -EFAULT;
1610 evt_param = *fw_ptr;
1611 *fw_ptr += evt->plen;
1612 remain -= evt->plen;
1615 /* Every HCI commands in the firmware file has its correspond event.
1616 * If event is not found or remain is smaller than zero, the firmware
1617 * file is corrupted.
1619 if (!evt || !evt_param || remain < 0) {
1620 bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1621 return -EFAULT;
1624 skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1625 cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1626 if (IS_ERR(skb)) {
1627 bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1628 cmd->opcode, PTR_ERR(skb));
1629 return PTR_ERR(skb);
1632 /* It ensures that the returned event matches the event data read from
1633 * the firmware file. At fist, it checks the length and then
1634 * the contents of the event.
1636 if (skb->len != evt->plen) {
1637 bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1638 le16_to_cpu(cmd->opcode));
1639 kfree_skb(skb);
1640 return -EFAULT;
1643 if (memcmp(skb->data, evt_param, evt->plen)) {
1644 bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1645 le16_to_cpu(cmd->opcode));
1646 kfree_skb(skb);
1647 return -EFAULT;
1649 kfree_skb(skb);
1651 return 0;
1654 static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1655 struct intel_version *ver)
1657 const struct firmware *fw;
1658 const u8 *fw_ptr;
1659 int disable_patch, err;
1660 struct intel_version new_ver;
1662 BT_DBG("%s", hdev->name);
1664 /* fw_patch_num indicates the version of patch the device currently
1665 * have. If there is no patch data in the device, it is always 0x00.
1666 * So, if it is other than 0x00, no need to patch the device again.
1668 if (ver->fw_patch_num) {
1669 bt_dev_info(hdev,
1670 "Intel device is already patched. patch num: %02x",
1671 ver->fw_patch_num);
1672 goto complete;
1675 /* Opens the firmware patch file based on the firmware version read
1676 * from the controller. If it fails to open the matching firmware
1677 * patch file, it tries to open the default firmware patch file.
1678 * If no patch file is found, allow the device to operate without
1679 * a patch.
1681 fw = btintel_legacy_rom_get_fw(hdev, ver);
1682 if (!fw)
1683 goto complete;
1684 fw_ptr = fw->data;
1686 /* Enable the manufacturer mode of the controller.
1687 * Only while this mode is enabled, the driver can download the
1688 * firmware patch data and configuration parameters.
1690 err = btintel_enter_mfg(hdev);
1691 if (err) {
1692 release_firmware(fw);
1693 return err;
1696 disable_patch = 1;
1698 /* The firmware data file consists of list of Intel specific HCI
1699 * commands and its expected events. The first byte indicates the
1700 * type of the message, either HCI command or HCI event.
1702 * It reads the command and its expected event from the firmware file,
1703 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1704 * the returned event is compared with the event read from the firmware
1705 * file and it will continue until all the messages are downloaded to
1706 * the controller.
1708 * Once the firmware patching is completed successfully,
1709 * the manufacturer mode is disabled with reset and activating the
1710 * downloaded patch.
1712 * If the firmware patching fails, the manufacturer mode is
1713 * disabled with reset and deactivating the patch.
1715 * If the default patch file is used, no reset is done when disabling
1716 * the manufacturer.
1718 while (fw->size > fw_ptr - fw->data) {
1719 int ret;
1721 ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1722 &disable_patch);
1723 if (ret < 0)
1724 goto exit_mfg_deactivate;
1727 release_firmware(fw);
1729 if (disable_patch)
1730 goto exit_mfg_disable;
1732 /* Patching completed successfully and disable the manufacturer mode
1733 * with reset and activate the downloaded firmware patches.
1735 err = btintel_exit_mfg(hdev, true, true);
1736 if (err)
1737 return err;
1739 /* Need build number for downloaded fw patches in
1740 * every power-on boot
1742 err = btintel_read_version(hdev, &new_ver);
1743 if (err)
1744 return err;
1746 bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1747 new_ver.fw_patch_num);
1749 goto complete;
1751 exit_mfg_disable:
1752 /* Disable the manufacturer mode without reset */
1753 err = btintel_exit_mfg(hdev, false, false);
1754 if (err)
1755 return err;
1757 bt_dev_info(hdev, "Intel firmware patch completed");
1759 goto complete;
1761 exit_mfg_deactivate:
1762 release_firmware(fw);
1764 /* Patching failed. Disable the manufacturer mode with reset and
1765 * deactivate the downloaded firmware patches.
1767 err = btintel_exit_mfg(hdev, true, false);
1768 if (err)
1769 return err;
1771 bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1773 complete:
1774 /* Set the event mask for Intel specific vendor events. This enables
1775 * a few extra events that are useful during general operation.
1777 btintel_set_event_mask_mfg(hdev, false);
1779 btintel_check_bdaddr(hdev);
1781 return 0;
1784 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1786 ktime_t delta, rettime;
1787 unsigned long long duration;
1788 int err;
1790 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1792 bt_dev_info(hdev, "Waiting for firmware download to complete");
1794 err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1795 TASK_INTERRUPTIBLE,
1796 msecs_to_jiffies(msec));
1797 if (err == -EINTR) {
1798 bt_dev_err(hdev, "Firmware loading interrupted");
1799 return err;
1802 if (err) {
1803 bt_dev_err(hdev, "Firmware loading timeout");
1804 return -ETIMEDOUT;
1807 if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1808 bt_dev_err(hdev, "Firmware loading failed");
1809 return -ENOEXEC;
1812 rettime = ktime_get();
1813 delta = ktime_sub(rettime, calltime);
1814 duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1816 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1818 return 0;
1821 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1823 ktime_t delta, rettime;
1824 unsigned long long duration;
1825 int err;
1827 bt_dev_info(hdev, "Waiting for device to boot");
1829 err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1830 TASK_INTERRUPTIBLE,
1831 msecs_to_jiffies(msec));
1832 if (err == -EINTR) {
1833 bt_dev_err(hdev, "Device boot interrupted");
1834 return -EINTR;
1837 if (err) {
1838 bt_dev_err(hdev, "Device boot timeout");
1839 return -ETIMEDOUT;
1842 rettime = ktime_get();
1843 delta = ktime_sub(rettime, calltime);
1844 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1846 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1848 return 0;
1851 static int btintel_boot_wait_d0(struct hci_dev *hdev, ktime_t calltime,
1852 int msec)
1854 ktime_t delta, rettime;
1855 unsigned long long duration;
1856 int err;
1858 bt_dev_info(hdev, "Waiting for device transition to d0");
1860 err = btintel_wait_on_flag_timeout(hdev, INTEL_WAIT_FOR_D0,
1861 TASK_INTERRUPTIBLE,
1862 msecs_to_jiffies(msec));
1863 if (err == -EINTR) {
1864 bt_dev_err(hdev, "Device d0 move interrupted");
1865 return -EINTR;
1868 if (err) {
1869 bt_dev_err(hdev, "Device d0 move timeout");
1870 return -ETIMEDOUT;
1873 rettime = ktime_get();
1874 delta = ktime_sub(rettime, calltime);
1875 duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1877 bt_dev_info(hdev, "Device moved to D0 in %llu usecs", duration);
1879 return 0;
1882 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1884 ktime_t calltime;
1885 int err;
1887 calltime = ktime_get();
1889 btintel_set_flag(hdev, INTEL_BOOTING);
1890 btintel_set_flag(hdev, INTEL_WAIT_FOR_D0);
1892 err = btintel_send_intel_reset(hdev, boot_addr);
1893 if (err) {
1894 bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1895 btintel_reset_to_bootloader(hdev);
1896 return err;
1899 /* The bootloader will not indicate when the device is ready. This
1900 * is done by the operational firmware sending bootup notification.
1902 * Booting into operational firmware should not take longer than
1903 * 5 second. However if that happens, then just fail the setup
1904 * since something went wrong.
1906 err = btintel_boot_wait(hdev, calltime, 5000);
1907 if (err == -ETIMEDOUT) {
1908 btintel_reset_to_bootloader(hdev);
1909 goto exit_error;
1912 if (hdev->bus == HCI_PCI) {
1913 /* In case of PCIe, after receiving bootup event, driver performs
1914 * D0 entry by writing 0 to sleep control register (check
1915 * btintel_pcie_recv_event())
1916 * Firmware acks with alive interrupt indicating host is full ready to
1917 * perform BT operation. Lets wait here till INTEL_WAIT_FOR_D0
1918 * bit is cleared.
1920 calltime = ktime_get();
1921 err = btintel_boot_wait_d0(hdev, calltime, 2000);
1924 exit_error:
1925 return err;
1928 static int btintel_get_fw_name(struct intel_version *ver,
1929 struct intel_boot_params *params,
1930 char *fw_name, size_t len,
1931 const char *suffix)
1933 switch (ver->hw_variant) {
1934 case 0x0b: /* SfP */
1935 case 0x0c: /* WsP */
1936 snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1937 ver->hw_variant,
1938 le16_to_cpu(params->dev_revid),
1939 suffix);
1940 break;
1941 case 0x11: /* JfP */
1942 case 0x12: /* ThP */
1943 case 0x13: /* HrP */
1944 case 0x14: /* CcP */
1945 snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1946 ver->hw_variant,
1947 ver->hw_revision,
1948 ver->fw_revision,
1949 suffix);
1950 break;
1951 default:
1952 return -EINVAL;
1955 return 0;
1958 static int btintel_download_fw(struct hci_dev *hdev,
1959 struct intel_version *ver,
1960 struct intel_boot_params *params,
1961 u32 *boot_param)
1963 const struct firmware *fw;
1964 char fwname[64];
1965 int err;
1966 ktime_t calltime;
1968 if (!ver || !params)
1969 return -EINVAL;
1971 /* The firmware variant determines if the device is in bootloader
1972 * mode or is running operational firmware. The value 0x06 identifies
1973 * the bootloader and the value 0x23 identifies the operational
1974 * firmware.
1976 * When the operational firmware is already present, then only
1977 * the check for valid Bluetooth device address is needed. This
1978 * determines if the device will be added as configured or
1979 * unconfigured controller.
1981 * It is not possible to use the Secure Boot Parameters in this
1982 * case since that command is only available in bootloader mode.
1984 if (ver->fw_variant == 0x23) {
1985 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1986 btintel_check_bdaddr(hdev);
1988 /* SfP and WsP don't seem to update the firmware version on file
1989 * so version checking is currently possible.
1991 switch (ver->hw_variant) {
1992 case 0x0b: /* SfP */
1993 case 0x0c: /* WsP */
1994 return 0;
1997 /* Proceed to download to check if the version matches */
1998 goto download;
2001 /* Read the secure boot parameters to identify the operating
2002 * details of the bootloader.
2004 err = btintel_read_boot_params(hdev, params);
2005 if (err)
2006 return err;
2008 /* It is required that every single firmware fragment is acknowledged
2009 * with a command complete event. If the boot parameters indicate
2010 * that this bootloader does not send them, then abort the setup.
2012 if (params->limited_cce != 0x00) {
2013 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
2014 params->limited_cce);
2015 return -EINVAL;
2018 /* If the OTP has no valid Bluetooth device address, then there will
2019 * also be no valid address for the operational firmware.
2021 if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
2022 bt_dev_info(hdev, "No device address configured");
2023 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2026 download:
2027 /* With this Intel bootloader only the hardware variant and device
2028 * revision information are used to select the right firmware for SfP
2029 * and WsP.
2031 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
2033 * Currently the supported hardware variants are:
2034 * 11 (0x0b) for iBT3.0 (LnP/SfP)
2035 * 12 (0x0c) for iBT3.5 (WsP)
2037 * For ThP/JfP and for future SKU's, the FW name varies based on HW
2038 * variant, HW revision and FW revision, as these are dependent on CNVi
2039 * and RF Combination.
2041 * 17 (0x11) for iBT3.5 (JfP)
2042 * 18 (0x12) for iBT3.5 (ThP)
2044 * The firmware file name for these will be
2045 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
2048 err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
2049 if (err < 0) {
2050 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2051 /* Firmware has already been loaded */
2052 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2053 return 0;
2056 bt_dev_err(hdev, "Unsupported Intel firmware naming");
2057 return -EINVAL;
2060 err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2061 if (err < 0) {
2062 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2063 /* Firmware has already been loaded */
2064 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2065 return 0;
2068 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2069 fwname, err);
2070 return err;
2073 bt_dev_info(hdev, "Found device firmware: %s", fwname);
2075 if (fw->size < 644) {
2076 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2077 fw->size);
2078 err = -EBADF;
2079 goto done;
2082 calltime = ktime_get();
2084 btintel_set_flag(hdev, INTEL_DOWNLOADING);
2086 /* Start firmware downloading and get boot parameter */
2087 err = btintel_download_firmware(hdev, ver, fw, boot_param);
2088 if (err < 0) {
2089 if (err == -EALREADY) {
2090 /* Firmware has already been loaded */
2091 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2092 err = 0;
2093 goto done;
2096 /* When FW download fails, send Intel Reset to retry
2097 * FW download.
2099 btintel_reset_to_bootloader(hdev);
2100 goto done;
2103 /* Before switching the device into operational mode and with that
2104 * booting the loaded firmware, wait for the bootloader notification
2105 * that all fragments have been successfully received.
2107 * When the event processing receives the notification, then the
2108 * INTEL_DOWNLOADING flag will be cleared.
2110 * The firmware loading should not take longer than 5 seconds
2111 * and thus just timeout if that happens and fail the setup
2112 * of this device.
2114 err = btintel_download_wait(hdev, calltime, 5000);
2115 if (err == -ETIMEDOUT)
2116 btintel_reset_to_bootloader(hdev);
2118 done:
2119 release_firmware(fw);
2120 return err;
2123 static int btintel_bootloader_setup(struct hci_dev *hdev,
2124 struct intel_version *ver)
2126 struct intel_version new_ver;
2127 struct intel_boot_params params;
2128 u32 boot_param;
2129 char ddcname[64];
2130 int err;
2132 BT_DBG("%s", hdev->name);
2134 /* Set the default boot parameter to 0x0 and it is updated to
2135 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2136 * command while downloading the firmware.
2138 boot_param = 0x00000000;
2140 btintel_set_flag(hdev, INTEL_BOOTLOADER);
2142 err = btintel_download_fw(hdev, ver, &params, &boot_param);
2143 if (err)
2144 return err;
2146 /* controller is already having an operational firmware */
2147 if (ver->fw_variant == 0x23)
2148 goto finish;
2150 err = btintel_boot(hdev, boot_param);
2151 if (err)
2152 return err;
2154 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2156 err = btintel_get_fw_name(ver, &params, ddcname,
2157 sizeof(ddcname), "ddc");
2159 if (err < 0) {
2160 bt_dev_err(hdev, "Unsupported Intel firmware naming");
2161 } else {
2162 /* Once the device is running in operational mode, it needs to
2163 * apply the device configuration (DDC) parameters.
2165 * The device can work without DDC parameters, so even if it
2166 * fails to load the file, no need to fail the setup.
2168 btintel_load_ddc_config(hdev, ddcname);
2171 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2173 /* Read the Intel version information after loading the FW */
2174 err = btintel_read_version(hdev, &new_ver);
2175 if (err)
2176 return err;
2178 btintel_version_info(hdev, &new_ver);
2180 finish:
2181 /* Set the event mask for Intel specific vendor events. This enables
2182 * a few extra events that are useful during general operation. It
2183 * does not enable any debugging related events.
2185 * The device will function correctly without these events enabled
2186 * and thus no need to fail the setup.
2188 btintel_set_event_mask(hdev, false);
2190 return 0;
2193 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2194 char *fw_name, size_t len,
2195 const char *suffix)
2197 const char *format;
2198 u32 cnvi, cnvr;
2200 cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2201 INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2203 cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2204 INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2206 /* Only Blazar product supports downloading of intermediate loader
2207 * image
2209 if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) {
2210 u8 zero[BTINTEL_FWID_MAXLEN];
2212 if (ver->img_type == BTINTEL_IMG_BOOTLOADER) {
2213 format = "intel/ibt-%04x-%04x-iml.%s";
2214 snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2215 return;
2218 memset(zero, 0, sizeof(zero));
2220 /* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step-fw_id> */
2221 if (memcmp(ver->fw_id, zero, sizeof(zero))) {
2222 format = "intel/ibt-%04x-%04x-%s.%s";
2223 snprintf(fw_name, len, format, cnvi, cnvr,
2224 ver->fw_id, suffix);
2225 return;
2227 /* If firmware id is not present, fallback to legacy naming
2228 * convention
2231 /* Fallback to legacy naming convention for other controllers
2232 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2234 format = "intel/ibt-%04x-%04x.%s";
2235 snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2238 static void btintel_get_iml_tlv(const struct intel_version_tlv *ver,
2239 char *fw_name, size_t len,
2240 const char *suffix)
2242 const char *format;
2243 u32 cnvi, cnvr;
2245 cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2246 INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2248 cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2249 INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2251 format = "intel/ibt-%04x-%04x-iml.%s";
2252 snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2255 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2256 struct intel_version_tlv *ver,
2257 u32 *boot_param)
2259 const struct firmware *fw;
2260 char fwname[128];
2261 int err;
2262 ktime_t calltime;
2264 if (!ver || !boot_param)
2265 return -EINVAL;
2267 /* The firmware variant determines if the device is in bootloader
2268 * mode or is running operational firmware. The value 0x03 identifies
2269 * the bootloader and the value 0x23 identifies the operational
2270 * firmware.
2272 * When the operational firmware is already present, then only
2273 * the check for valid Bluetooth device address is needed. This
2274 * determines if the device will be added as configured or
2275 * unconfigured controller.
2277 * It is not possible to use the Secure Boot Parameters in this
2278 * case since that command is only available in bootloader mode.
2280 if (ver->img_type == BTINTEL_IMG_OP) {
2281 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2282 btintel_check_bdaddr(hdev);
2283 } else {
2285 * Check for valid bd address in boot loader mode. Device
2286 * will be marked as unconfigured if empty bd address is
2287 * found.
2289 if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2290 bt_dev_info(hdev, "No device address configured");
2291 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2295 if (ver->img_type == BTINTEL_IMG_OP) {
2296 /* Controller running OP image. In case of FW downgrade,
2297 * FWID TLV may not be present and driver may attempt to load
2298 * firmware image which doesn't exist. Lets compare the version
2299 * of IML image
2301 if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e)
2302 btintel_get_iml_tlv(ver, fwname, sizeof(fwname), "sfi");
2303 else
2304 btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2305 } else {
2306 btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2309 err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2310 if (err < 0) {
2311 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2312 /* Firmware has already been loaded */
2313 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2314 return 0;
2317 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2318 fwname, err);
2320 return err;
2323 bt_dev_info(hdev, "Found device firmware: %s", fwname);
2325 if (fw->size < 644) {
2326 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2327 fw->size);
2328 err = -EBADF;
2329 goto done;
2332 calltime = ktime_get();
2334 btintel_set_flag(hdev, INTEL_DOWNLOADING);
2336 /* Start firmware downloading and get boot parameter */
2337 err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2338 INTEL_HW_VARIANT(ver->cnvi_bt),
2339 ver->sbe_type);
2340 if (err < 0) {
2341 if (err == -EALREADY) {
2342 /* Firmware has already been loaded */
2343 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2344 err = 0;
2345 goto done;
2348 /* When FW download fails, send Intel Reset to retry
2349 * FW download.
2351 btintel_reset_to_bootloader(hdev);
2352 goto done;
2355 /* Before switching the device into operational mode and with that
2356 * booting the loaded firmware, wait for the bootloader notification
2357 * that all fragments have been successfully received.
2359 * When the event processing receives the notification, then the
2360 * BTUSB_DOWNLOADING flag will be cleared.
2362 * The firmware loading should not take longer than 5 seconds
2363 * and thus just timeout if that happens and fail the setup
2364 * of this device.
2366 err = btintel_download_wait(hdev, calltime, 5000);
2367 if (err == -ETIMEDOUT)
2368 btintel_reset_to_bootloader(hdev);
2370 done:
2371 release_firmware(fw);
2372 return err;
2375 static int btintel_get_codec_config_data(struct hci_dev *hdev,
2376 __u8 link, struct bt_codec *codec,
2377 __u8 *ven_len, __u8 **ven_data)
2379 int err = 0;
2381 if (!ven_data || !ven_len)
2382 return -EINVAL;
2384 *ven_len = 0;
2385 *ven_data = NULL;
2387 if (link != ESCO_LINK) {
2388 bt_dev_err(hdev, "Invalid link type(%u)", link);
2389 return -EINVAL;
2392 *ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2393 if (!*ven_data) {
2394 err = -ENOMEM;
2395 goto error;
2398 /* supports only CVSD and mSBC offload codecs */
2399 switch (codec->id) {
2400 case 0x02:
2401 **ven_data = 0x00;
2402 break;
2403 case 0x05:
2404 **ven_data = 0x01;
2405 break;
2406 default:
2407 err = -EINVAL;
2408 bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2409 goto error;
2411 /* codec and its capabilities are pre-defined to ids
2412 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2413 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2415 *ven_len = sizeof(__u8);
2416 return err;
2418 error:
2419 kfree(*ven_data);
2420 *ven_data = NULL;
2421 return err;
2424 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2426 /* Intel uses 1 as data path id for all the usecases */
2427 *data_path_id = 1;
2428 return 0;
2431 static int btintel_configure_offload(struct hci_dev *hdev)
2433 struct sk_buff *skb;
2434 int err = 0;
2435 struct intel_offload_use_cases *use_cases;
2437 skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2438 if (IS_ERR(skb)) {
2439 bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2440 PTR_ERR(skb));
2441 return PTR_ERR(skb);
2444 if (skb->len < sizeof(*use_cases)) {
2445 err = -EIO;
2446 goto error;
2449 use_cases = (void *)skb->data;
2451 if (use_cases->status) {
2452 err = -bt_to_errno(skb->data[0]);
2453 goto error;
2456 if (use_cases->preset[0] & 0x03) {
2457 hdev->get_data_path_id = btintel_get_data_path_id;
2458 hdev->get_codec_config_data = btintel_get_codec_config_data;
2460 error:
2461 kfree_skb(skb);
2462 return err;
2465 static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
2467 struct sk_buff *skb;
2468 struct hci_ppag_enable_cmd ppag_cmd;
2469 acpi_handle handle;
2470 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
2471 union acpi_object *p, *elements;
2472 u32 domain, mode;
2473 acpi_status status;
2475 /* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
2476 switch (ver->cnvr_top & 0xFFF) {
2477 case 0x504: /* Hrp2 */
2478 case 0x202: /* Jfp2 */
2479 case 0x201: /* Jfp1 */
2480 bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
2481 ver->cnvr_top & 0xFFF);
2482 return;
2485 handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2486 if (!handle) {
2487 bt_dev_info(hdev, "No support for BT device in ACPI firmware");
2488 return;
2491 status = acpi_evaluate_object(handle, "PPAG", NULL, &buffer);
2492 if (ACPI_FAILURE(status)) {
2493 if (status == AE_NOT_FOUND) {
2494 bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
2495 return;
2497 bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
2498 return;
2501 p = buffer.pointer;
2502 if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
2503 bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
2504 p->type, p->package.count);
2505 kfree(buffer.pointer);
2506 return;
2509 elements = p->package.elements;
2511 /* PPAG table is located at element[1] */
2512 p = &elements[1];
2514 domain = (u32)p->package.elements[0].integer.value;
2515 mode = (u32)p->package.elements[1].integer.value;
2516 kfree(buffer.pointer);
2518 if (domain != 0x12) {
2519 bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
2520 return;
2523 /* PPAG mode
2524 * BIT 0 : 0 Disabled in EU
2525 * 1 Enabled in EU
2526 * BIT 1 : 0 Disabled in China
2527 * 1 Enabled in China
2529 mode &= 0x03;
2531 if (!mode) {
2532 bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS");
2533 return;
2536 ppag_cmd.ppag_enable_flags = cpu_to_le32(mode);
2538 skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd),
2539 &ppag_cmd, HCI_CMD_TIMEOUT);
2540 if (IS_ERR(skb)) {
2541 bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
2542 return;
2544 bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", mode);
2545 kfree_skb(skb);
2548 static int btintel_acpi_reset_method(struct hci_dev *hdev)
2550 int ret = 0;
2551 acpi_status status;
2552 union acpi_object *p, *ref;
2553 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2555 status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
2556 if (ACPI_FAILURE(status)) {
2557 bt_dev_err(hdev, "Failed to run _PRR method");
2558 ret = -ENODEV;
2559 return ret;
2561 p = buffer.pointer;
2563 if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
2564 bt_dev_err(hdev, "Invalid arguments");
2565 ret = -EINVAL;
2566 goto exit_on_error;
2569 ref = &p->package.elements[0];
2570 if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
2571 bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
2572 ret = -EINVAL;
2573 goto exit_on_error;
2576 status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
2577 if (ACPI_FAILURE(status)) {
2578 bt_dev_err(hdev, "Failed to run_RST method");
2579 ret = -ENODEV;
2580 goto exit_on_error;
2583 exit_on_error:
2584 kfree(buffer.pointer);
2585 return ret;
2588 static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
2589 struct intel_version_tlv *ver_tlv)
2591 struct btintel_data *data = hci_get_priv(hdev);
2592 acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2593 u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
2594 union acpi_object *obj, argv4;
2595 enum {
2596 RESET_TYPE_WDISABLE2,
2597 RESET_TYPE_VSEC
2600 handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2602 if (!handle) {
2603 bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
2604 return;
2607 if (!acpi_has_method(handle, "_PRR")) {
2608 bt_dev_err(hdev, "No support for _PRR ACPI method");
2609 return;
2612 switch (ver_tlv->cnvi_top & 0xfff) {
2613 case 0x910: /* GalePeak2 */
2614 reset_payload[2] = RESET_TYPE_VSEC;
2615 break;
2616 default:
2617 /* WDISABLE2 is the default reset method */
2618 reset_payload[2] = RESET_TYPE_WDISABLE2;
2620 if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2621 BIT(DSM_SET_WDISABLE2_DELAY))) {
2622 bt_dev_err(hdev, "No dsm support to set reset delay");
2623 return;
2625 argv4.integer.type = ACPI_TYPE_INTEGER;
2626 /* delay required to toggle BT power */
2627 argv4.integer.value = 160;
2628 obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2629 DSM_SET_WDISABLE2_DELAY, &argv4);
2630 if (!obj) {
2631 bt_dev_err(hdev, "Failed to call dsm to set reset delay");
2632 return;
2634 ACPI_FREE(obj);
2637 bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
2639 if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2640 DSM_SET_RESET_METHOD)) {
2641 bt_dev_warn(hdev, "No support for dsm to set reset method");
2642 return;
2644 argv4.buffer.type = ACPI_TYPE_BUFFER;
2645 argv4.buffer.length = sizeof(reset_payload);
2646 argv4.buffer.pointer = reset_payload;
2648 obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2649 DSM_SET_RESET_METHOD, &argv4);
2650 if (!obj) {
2651 bt_dev_err(hdev, "Failed to call dsm to set reset method");
2652 return;
2654 ACPI_FREE(obj);
2655 data->acpi_reset_method = btintel_acpi_reset_method;
2658 #define BTINTEL_ISODATA_HANDLE_BASE 0x900
2660 static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2663 * Distinguish ISO data packets form ACL data packets
2664 * based on their connection handle value range.
2666 if (hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) {
2667 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2669 if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE)
2670 return HCI_ISODATA_PKT;
2673 return hci_skb_pkt_type(skb);
2677 * UefiCnvCommonDSBR UEFI variable provides information from the OEM platforms
2678 * if they have replaced the BRI (Bluetooth Radio Interface) resistor to
2679 * overcome the potential STEP errors on their designs. Based on the
2680 * configauration, bluetooth firmware shall adjust the BRI response line drive
2681 * strength. The below structure represents DSBR data.
2682 * struct {
2683 * u8 header;
2684 * u32 dsbr;
2685 * } __packed;
2687 * header - defines revision number of the structure
2688 * dsbr - defines drive strength BRI response
2689 * bit0
2690 * 0 - instructs bluetooth firmware to use default values
2691 * 1 - instructs bluetooth firmware to override default values
2692 * bit3:1
2693 * Reserved
2694 * bit7:4
2695 * DSBR override values (only if bit0 is set. Default value is 0xF
2696 * bit31:7
2697 * Reserved
2698 * Expected values for dsbr field:
2699 * 1. 0xF1 - indicates that the resistor on board is 33 Ohm
2700 * 2. 0x00 or 0xB1 - indicates that the resistor on board is 10 Ohm
2701 * 3. Non existing UEFI variable or invalid (none of the above) - indicates
2702 * that the resistor on board is 10 Ohm
2703 * Even if uefi variable is not present, driver shall send 0xfc0a command to
2704 * firmware to use default values.
2707 static int btintel_uefi_get_dsbr(u32 *dsbr_var)
2709 struct btintel_dsbr {
2710 u8 header;
2711 u32 dsbr;
2712 } __packed data;
2714 efi_status_t status;
2715 unsigned long data_size = 0;
2716 efi_guid_t guid = EFI_GUID(0xe65d8884, 0xd4af, 0x4b20, 0x8d, 0x03,
2717 0x77, 0x2e, 0xcc, 0x3d, 0xa5, 0x31);
2719 if (!IS_ENABLED(CONFIG_EFI))
2720 return -EOPNOTSUPP;
2722 if (!efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE))
2723 return -EOPNOTSUPP;
2725 status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2726 NULL);
2728 if (status != EFI_BUFFER_TOO_SMALL || !data_size)
2729 return -EIO;
2731 status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2732 &data);
2734 if (status != EFI_SUCCESS)
2735 return -ENXIO;
2737 *dsbr_var = data.dsbr;
2738 return 0;
2741 static int btintel_set_dsbr(struct hci_dev *hdev, struct intel_version_tlv *ver)
2743 struct btintel_dsbr_cmd {
2744 u8 enable;
2745 u8 dsbr;
2746 } __packed;
2748 struct btintel_dsbr_cmd cmd;
2749 struct sk_buff *skb;
2750 u32 dsbr, cnvi;
2751 u8 status;
2752 int err;
2754 cnvi = ver->cnvi_top & 0xfff;
2755 /* DSBR command needs to be sent for,
2756 * 1. BlazarI or BlazarIW + B0 step product in IML image.
2757 * 2. Gale Peak2 or BlazarU in OP image.
2760 switch (cnvi) {
2761 case BTINTEL_CNVI_BLAZARI:
2762 case BTINTEL_CNVI_BLAZARIW:
2763 if (ver->img_type == BTINTEL_IMG_IML &&
2764 INTEL_CNVX_TOP_STEP(ver->cnvi_top) == 0x01)
2765 break;
2766 return 0;
2767 case BTINTEL_CNVI_GAP:
2768 case BTINTEL_CNVI_BLAZARU:
2769 if (ver->img_type == BTINTEL_IMG_OP &&
2770 hdev->bus == HCI_USB)
2771 break;
2772 return 0;
2773 default:
2774 return 0;
2777 dsbr = 0;
2778 err = btintel_uefi_get_dsbr(&dsbr);
2779 if (err < 0)
2780 bt_dev_dbg(hdev, "Error reading efi: %ls (%d)",
2781 BTINTEL_EFI_DSBR, err);
2783 cmd.enable = dsbr & BIT(0);
2784 cmd.dsbr = dsbr >> 4 & 0xF;
2786 bt_dev_info(hdev, "dsbr: enable: 0x%2.2x value: 0x%2.2x", cmd.enable,
2787 cmd.dsbr);
2789 skb = __hci_cmd_sync(hdev, 0xfc0a, sizeof(cmd), &cmd, HCI_CMD_TIMEOUT);
2790 if (IS_ERR(skb))
2791 return -bt_to_errno(PTR_ERR(skb));
2793 status = skb->data[0];
2794 kfree_skb(skb);
2796 if (status)
2797 return -bt_to_errno(status);
2799 return 0;
2802 int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2803 struct intel_version_tlv *ver)
2805 u32 boot_param;
2806 char ddcname[64];
2807 int err;
2808 struct intel_version_tlv new_ver;
2810 bt_dev_dbg(hdev, "");
2812 /* Set the default boot parameter to 0x0 and it is updated to
2813 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2814 * command while downloading the firmware.
2816 boot_param = 0x00000000;
2818 /* In case of PCIe, this function might get called multiple times with
2819 * same hdev instance if there is any error on firmware download.
2820 * Need to clear stale bits of previous firmware download attempt.
2822 for (int i = 0; i < __INTEL_NUM_FLAGS; i++)
2823 btintel_clear_flag(hdev, i);
2825 btintel_set_flag(hdev, INTEL_BOOTLOADER);
2827 err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2828 if (err)
2829 return err;
2831 /* check if controller is already having an operational firmware */
2832 if (ver->img_type == BTINTEL_IMG_OP)
2833 goto finish;
2835 err = btintel_boot(hdev, boot_param);
2836 if (err)
2837 return err;
2839 err = btintel_read_version_tlv(hdev, ver);
2840 if (err)
2841 return err;
2843 /* set drive strength of BRI response */
2844 err = btintel_set_dsbr(hdev, ver);
2845 if (err) {
2846 bt_dev_err(hdev, "Failed to send dsbr command (%d)", err);
2847 return err;
2850 /* If image type returned is BTINTEL_IMG_IML, then controller supports
2851 * intermediate loader image
2853 if (ver->img_type == BTINTEL_IMG_IML) {
2854 err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2855 if (err)
2856 return err;
2858 err = btintel_boot(hdev, boot_param);
2859 if (err)
2860 return err;
2863 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2865 btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2866 /* Once the device is running in operational mode, it needs to
2867 * apply the device configuration (DDC) parameters.
2869 * The device can work without DDC parameters, so even if it
2870 * fails to load the file, no need to fail the setup.
2872 btintel_load_ddc_config(hdev, ddcname);
2874 /* Read supported use cases and set callbacks to fetch datapath id */
2875 btintel_configure_offload(hdev);
2877 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2879 /* Set PPAG feature */
2880 btintel_set_ppag(hdev, ver);
2882 /* Read the Intel version information after loading the FW */
2883 err = btintel_read_version_tlv(hdev, &new_ver);
2884 if (err)
2885 return err;
2887 btintel_version_info_tlv(hdev, &new_ver);
2889 finish:
2890 /* Set the event mask for Intel specific vendor events. This enables
2891 * a few extra events that are useful during general operation. It
2892 * does not enable any debugging related events.
2894 * The device will function correctly without these events enabled
2895 * and thus no need to fail the setup.
2897 btintel_set_event_mask(hdev, false);
2899 return 0;
2901 EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv);
2903 void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2905 switch (hw_variant) {
2906 /* Legacy bootloader devices that supports MSFT Extension */
2907 case 0x11: /* JfP */
2908 case 0x12: /* ThP */
2909 case 0x13: /* HrP */
2910 case 0x14: /* CcP */
2911 /* All Intel new generation controllers support the Microsoft vendor
2912 * extension are using 0xFC1E for VsMsftOpCode.
2914 case 0x17:
2915 case 0x18:
2916 case 0x19:
2917 case 0x1b:
2918 case 0x1c:
2919 case 0x1d:
2920 case 0x1e:
2921 hci_set_msft_opcode(hdev, 0xFC1E);
2922 break;
2923 default:
2924 /* Not supported */
2925 break;
2928 EXPORT_SYMBOL_GPL(btintel_set_msft_opcode);
2930 void btintel_print_fseq_info(struct hci_dev *hdev)
2932 struct sk_buff *skb;
2933 u8 *p;
2934 u32 val;
2935 const char *str;
2937 skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT);
2938 if (IS_ERR(skb)) {
2939 bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)",
2940 PTR_ERR(skb));
2941 return;
2944 if (skb->len < (sizeof(u32) * 16 + 2)) {
2945 bt_dev_dbg(hdev, "Malformed packet of length %u received",
2946 skb->len);
2947 kfree_skb(skb);
2948 return;
2951 p = skb_pull_data(skb, 1);
2952 if (*p) {
2953 bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p);
2954 kfree_skb(skb);
2955 return;
2958 p = skb_pull_data(skb, 1);
2959 switch (*p) {
2960 case 0:
2961 str = "Success";
2962 break;
2963 case 1:
2964 str = "Fatal error";
2965 break;
2966 case 2:
2967 str = "Semaphore acquire error";
2968 break;
2969 default:
2970 str = "Unknown error";
2971 break;
2974 if (*p) {
2975 bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2976 kfree_skb(skb);
2977 return;
2980 bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2982 val = get_unaligned_le32(skb_pull_data(skb, 4));
2983 bt_dev_dbg(hdev, "Reason: 0x%8.8x", val);
2985 val = get_unaligned_le32(skb_pull_data(skb, 4));
2986 bt_dev_dbg(hdev, "Global version: 0x%8.8x", val);
2988 val = get_unaligned_le32(skb_pull_data(skb, 4));
2989 bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val);
2991 p = skb->data;
2992 skb_pull_data(skb, 4);
2993 bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2994 p[2], p[3]);
2996 p = skb->data;
2997 skb_pull_data(skb, 4);
2998 bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2999 p[2], p[3]);
3001 val = get_unaligned_le32(skb_pull_data(skb, 4));
3002 bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val);
3004 val = get_unaligned_le32(skb_pull_data(skb, 4));
3005 bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val);
3007 val = get_unaligned_le32(skb_pull_data(skb, 4));
3008 bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val);
3010 val = get_unaligned_le32(skb_pull_data(skb, 4));
3011 bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val);
3013 val = get_unaligned_le32(skb_pull_data(skb, 4));
3014 bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val);
3016 val = get_unaligned_le32(skb_pull_data(skb, 4));
3017 bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val);
3019 val = get_unaligned_le32(skb_pull_data(skb, 4));
3020 bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val);
3022 val = get_unaligned_le32(skb_pull_data(skb, 4));
3023 bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val);
3025 val = get_unaligned_le32(skb_pull_data(skb, 4));
3026 bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val);
3028 val = get_unaligned_le32(skb_pull_data(skb, 4));
3029 bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val);
3031 val = get_unaligned_le32(skb_pull_data(skb, 4));
3032 bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val);
3034 val = get_unaligned_le32(skb_pull_data(skb, 4));
3035 bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val);
3037 val = get_unaligned_le32(skb_pull_data(skb, 4));
3038 bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val);
3040 kfree_skb(skb);
3042 EXPORT_SYMBOL_GPL(btintel_print_fseq_info);
3044 static int btintel_setup_combined(struct hci_dev *hdev)
3046 const u8 param[1] = { 0xFF };
3047 struct intel_version ver;
3048 struct intel_version_tlv ver_tlv;
3049 struct sk_buff *skb;
3050 int err;
3052 BT_DBG("%s", hdev->name);
3054 /* The some controllers have a bug with the first HCI command sent to it
3055 * returning number of completed commands as zero. This would stall the
3056 * command processing in the Bluetooth core.
3058 * As a workaround, send HCI Reset command first which will reset the
3059 * number of completed commands and allow normal command processing
3060 * from now on.
3062 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
3063 * in the SW_RFKILL ON state as a workaround of fixing LED issue during
3064 * the shutdown() procedure, and once the device is in SW_RFKILL ON
3065 * state, the only way to exit out of it is sending the HCI_Reset
3066 * command.
3068 if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
3069 btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3070 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
3071 HCI_INIT_TIMEOUT);
3072 if (IS_ERR(skb)) {
3073 bt_dev_err(hdev,
3074 "sending initial HCI reset failed (%ld)",
3075 PTR_ERR(skb));
3076 return PTR_ERR(skb);
3078 kfree_skb(skb);
3081 /* Starting from TyP device, the command parameter and response are
3082 * changed even though the OCF for HCI_Intel_Read_Version command
3083 * remains same. The legacy devices can handle even if the
3084 * command has a parameter and returns a correct version information.
3085 * So, it uses new format to support both legacy and new format.
3087 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
3088 if (IS_ERR(skb)) {
3089 bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
3090 PTR_ERR(skb));
3091 return PTR_ERR(skb);
3094 /* Check the status */
3095 if (skb->data[0]) {
3096 bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
3097 skb->data[0]);
3098 err = -EIO;
3099 goto exit_error;
3102 /* Apply the common HCI quirks for Intel device */
3103 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3104 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3105 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
3107 /* Set up the quality report callback for Intel devices */
3108 hdev->set_quality_report = btintel_set_quality_report;
3110 /* For Legacy device, check the HW platform value and size */
3111 if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
3112 bt_dev_dbg(hdev, "Read the legacy Intel version information");
3114 memcpy(&ver, skb->data, sizeof(ver));
3116 /* Display version information */
3117 btintel_version_info(hdev, &ver);
3119 /* Check for supported iBT hardware variants of this firmware
3120 * loading method.
3122 * This check has been put in place to ensure correct forward
3123 * compatibility options when newer hardware variants come
3124 * along.
3126 switch (ver.hw_variant) {
3127 case 0x07: /* WP */
3128 case 0x08: /* StP */
3129 /* Legacy ROM product */
3130 btintel_set_flag(hdev, INTEL_ROM_LEGACY);
3132 /* Apply the device specific HCI quirks
3134 * WBS for SdP - For the Legacy ROM products, only SdP
3135 * supports the WBS. But the version information is not
3136 * enough to use here because the StP2 and SdP have same
3137 * hw_variant and fw_variant. So, this flag is set by
3138 * the transport driver (btusb) based on the HW info
3139 * (idProduct)
3141 if (!btintel_test_flag(hdev,
3142 INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
3143 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3144 &hdev->quirks);
3146 err = btintel_legacy_rom_setup(hdev, &ver);
3147 break;
3148 case 0x0b: /* SfP */
3149 case 0x11: /* JfP */
3150 case 0x12: /* ThP */
3151 case 0x13: /* HrP */
3152 case 0x14: /* CcP */
3153 fallthrough;
3154 case 0x0c: /* WsP */
3155 /* Apply the device specific HCI quirks
3157 * All Legacy bootloader devices support WBS
3159 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3160 &hdev->quirks);
3162 /* These variants don't seem to support LE Coded PHY */
3163 set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3165 /* Setup MSFT Extension support */
3166 btintel_set_msft_opcode(hdev, ver.hw_variant);
3168 err = btintel_bootloader_setup(hdev, &ver);
3169 btintel_register_devcoredump_support(hdev);
3170 break;
3171 default:
3172 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3173 ver.hw_variant);
3174 err = -EINVAL;
3177 hci_set_hw_info(hdev,
3178 "INTEL platform=%u variant=%u revision=%u",
3179 ver.hw_platform, ver.hw_variant,
3180 ver.hw_revision);
3182 goto exit_error;
3185 /* memset ver_tlv to start with clean state as few fields are exclusive
3186 * to bootloader mode and are not populated in operational mode
3188 memset(&ver_tlv, 0, sizeof(ver_tlv));
3189 /* For TLV type device, parse the tlv data */
3190 err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
3191 if (err) {
3192 bt_dev_err(hdev, "Failed to parse TLV version information");
3193 goto exit_error;
3196 if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
3197 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
3198 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
3199 err = -EINVAL;
3200 goto exit_error;
3203 /* Check for supported iBT hardware variants of this firmware
3204 * loading method.
3206 * This check has been put in place to ensure correct forward
3207 * compatibility options when newer hardware variants come
3208 * along.
3210 switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
3211 case 0x11: /* JfP */
3212 case 0x12: /* ThP */
3213 case 0x13: /* HrP */
3214 case 0x14: /* CcP */
3215 /* Some legacy bootloader devices starting from JfP,
3216 * the operational firmware supports both old and TLV based
3217 * HCI_Intel_Read_Version command based on the command
3218 * parameter.
3220 * For upgrading firmware case, the TLV based version cannot
3221 * be used because the firmware filename for legacy bootloader
3222 * is based on the old format.
3224 * Also, it is not easy to convert TLV based version from the
3225 * legacy version format.
3227 * So, as a workaround for those devices, use the legacy
3228 * HCI_Intel_Read_Version to get the version information and
3229 * run the legacy bootloader setup.
3231 err = btintel_read_version(hdev, &ver);
3232 if (err)
3233 break;
3235 /* Apply the device specific HCI quirks
3237 * All Legacy bootloader devices support WBS
3239 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3241 /* These variants don't seem to support LE Coded PHY */
3242 set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3244 /* Setup MSFT Extension support */
3245 btintel_set_msft_opcode(hdev, ver.hw_variant);
3247 err = btintel_bootloader_setup(hdev, &ver);
3248 btintel_register_devcoredump_support(hdev);
3249 break;
3250 case 0x18: /* GfP2 */
3251 case 0x1c: /* GaP */
3252 /* Re-classify packet type for controllers with LE audio */
3253 hdev->classify_pkt_type = btintel_classify_pkt_type;
3254 fallthrough;
3255 case 0x17:
3256 case 0x19:
3257 case 0x1b:
3258 case 0x1d:
3259 case 0x1e:
3260 /* Display version information of TLV type */
3261 btintel_version_info_tlv(hdev, &ver_tlv);
3263 /* Apply the device specific HCI quirks for TLV based devices
3265 * All TLV based devices support WBS
3267 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3269 /* Setup MSFT Extension support */
3270 btintel_set_msft_opcode(hdev,
3271 INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3272 btintel_set_dsm_reset_method(hdev, &ver_tlv);
3274 err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
3275 if (err)
3276 goto exit_error;
3278 btintel_register_devcoredump_support(hdev);
3279 btintel_print_fseq_info(hdev);
3280 break;
3281 default:
3282 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3283 INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3284 err = -EINVAL;
3285 break;
3288 hci_set_hw_info(hdev, "INTEL platform=%u variant=%u",
3289 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt),
3290 INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3292 exit_error:
3293 kfree_skb(skb);
3295 return err;
3298 int btintel_shutdown_combined(struct hci_dev *hdev)
3300 struct sk_buff *skb;
3301 int ret;
3303 /* Send HCI Reset to the controller to stop any BT activity which
3304 * were triggered. This will help to save power and maintain the
3305 * sync b/w Host and controller
3307 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
3308 if (IS_ERR(skb)) {
3309 bt_dev_err(hdev, "HCI reset during shutdown failed");
3310 return PTR_ERR(skb);
3312 kfree_skb(skb);
3315 /* Some platforms have an issue with BT LED when the interface is
3316 * down or BT radio is turned off, which takes 5 seconds to BT LED
3317 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
3318 * device in the RFKILL ON state which turns off the BT LED immediately.
3320 if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3321 skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
3322 if (IS_ERR(skb)) {
3323 ret = PTR_ERR(skb);
3324 bt_dev_err(hdev, "turning off Intel device LED failed");
3325 return ret;
3327 kfree_skb(skb);
3330 return 0;
3332 EXPORT_SYMBOL_GPL(btintel_shutdown_combined);
3334 int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
3336 hdev->manufacturer = 2;
3337 hdev->setup = btintel_setup_combined;
3338 hdev->shutdown = btintel_shutdown_combined;
3339 hdev->hw_error = btintel_hw_error;
3340 hdev->set_diag = btintel_set_diag_combined;
3341 hdev->set_bdaddr = btintel_set_bdaddr;
3343 coredump_info.driver_name = driver_name;
3345 return 0;
3347 EXPORT_SYMBOL_GPL(btintel_configure_setup);
3349 int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
3351 struct intel_tlv *tlv = (void *)&skb->data[5];
3353 /* The first event is always an event type TLV */
3354 if (tlv->type != INTEL_TLV_TYPE_ID)
3355 goto recv_frame;
3357 switch (tlv->val[0]) {
3358 case INTEL_TLV_SYSTEM_EXCEPTION:
3359 case INTEL_TLV_FATAL_EXCEPTION:
3360 case INTEL_TLV_DEBUG_EXCEPTION:
3361 case INTEL_TLV_TEST_EXCEPTION:
3362 /* Generate devcoredump from exception */
3363 if (!hci_devcd_init(hdev, skb->len)) {
3364 hci_devcd_append(hdev, skb_clone(skb, GFP_ATOMIC));
3365 hci_devcd_complete(hdev);
3366 } else {
3367 bt_dev_err(hdev, "Failed to generate devcoredump");
3369 break;
3370 default:
3371 bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
3374 recv_frame:
3375 return hci_recv_frame(hdev, skb);
3377 EXPORT_SYMBOL_GPL(btintel_diagnostics);
3379 int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
3381 struct hci_event_hdr *hdr = (void *)skb->data;
3382 const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
3384 if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
3385 hdr->plen > 0) {
3386 const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
3387 unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
3389 if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
3390 switch (skb->data[2]) {
3391 case 0x02:
3392 /* When switching to the operational firmware
3393 * the device sends a vendor specific event
3394 * indicating that the bootup completed.
3396 btintel_bootup(hdev, ptr, len);
3397 kfree_skb(skb);
3398 return 0;
3399 case 0x06:
3400 /* When the firmware loading completes the
3401 * device sends out a vendor specific event
3402 * indicating the result of the firmware
3403 * loading.
3405 btintel_secure_send_result(hdev, ptr, len);
3406 kfree_skb(skb);
3407 return 0;
3411 /* Handle all diagnostics events separately. May still call
3412 * hci_recv_frame.
3414 if (len >= sizeof(diagnostics_hdr) &&
3415 memcmp(&skb->data[2], diagnostics_hdr,
3416 sizeof(diagnostics_hdr)) == 0) {
3417 return btintel_diagnostics(hdev, skb);
3421 return hci_recv_frame(hdev, skb);
3423 EXPORT_SYMBOL_GPL(btintel_recv_event);
3425 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
3427 const struct intel_bootup *evt = ptr;
3429 if (len != sizeof(*evt))
3430 return;
3432 if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
3433 btintel_wake_up_flag(hdev, INTEL_BOOTING);
3435 EXPORT_SYMBOL_GPL(btintel_bootup);
3437 void btintel_secure_send_result(struct hci_dev *hdev,
3438 const void *ptr, unsigned int len)
3440 const struct intel_secure_send_result *evt = ptr;
3442 if (len != sizeof(*evt))
3443 return;
3445 if (evt->result)
3446 btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
3448 if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
3449 btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
3450 btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
3452 EXPORT_SYMBOL_GPL(btintel_secure_send_result);
3454 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3455 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
3456 MODULE_VERSION(VERSION);
3457 MODULE_LICENSE("GPL");
3458 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
3459 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
3460 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
3461 MODULE_FIRMWARE("intel/ibt-12-16.ddc");