1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
3 * Bluetooth HCI driver for Broadcom 4377/4378/4387/4388 devices attached via PCIe
5 * Copyright (C) The Asahi Linux Contributors
8 #include <linux/async.h>
9 #include <linux/bitfield.h>
10 #include <linux/completion.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmi.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/msi.h>
17 #include <linux/pci.h>
18 #include <linux/printk.h>
20 #include <linux/unaligned.h>
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
32 #define BCM4377_DEVICE_ID 0x5fa0
33 #define BCM4378_DEVICE_ID 0x5f69
34 #define BCM4387_DEVICE_ID 0x5f71
35 #define BCM4388_DEVICE_ID 0x5f72
37 #define BCM4377_TIMEOUT msecs_to_jiffies(1000)
38 #define BCM4377_BOOT_TIMEOUT msecs_to_jiffies(5000)
41 * These devices only support DMA transactions inside a 32bit window
42 * (possibly to avoid 64 bit arithmetic). The window size cannot exceed
43 * 0xffffffff but is always aligned down to the previous 0x200 byte boundary
44 * which effectively limits the window to [start, start+0xfffffe00].
45 * We just limit the DMA window to [0, 0xfffffe00] to make sure we don't
46 * run into this limitation.
48 #define BCM4377_DMA_MASK 0xfffffe00
50 #define BCM4377_PCIECFG_BAR0_WINDOW1 0x80
51 #define BCM4377_PCIECFG_BAR0_WINDOW2 0x70
52 #define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1 0x74
53 #define BCM4377_PCIECFG_BAR0_CORE2_WINDOW2 0x78
54 #define BCM4377_PCIECFG_BAR2_WINDOW 0x84
56 #define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT 0x18011000
57 #define BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT 0x19000000
59 #define BCM4377_PCIECFG_SUBSYSTEM_CTRL 0x88
61 #define BCM4377_BAR0_FW_DOORBELL 0x140
62 #define BCM4377_BAR0_RTI_CONTROL 0x144
64 #define BCM4377_BAR0_SLEEP_CONTROL 0x150
65 #define BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE 0
66 #define BCM4377_BAR0_SLEEP_CONTROL_AWAKE 2
67 #define BCM4377_BAR0_SLEEP_CONTROL_QUIESCE 3
69 #define BCM4377_BAR0_DOORBELL 0x174
70 #define BCM4377_BAR0_DOORBELL_VALUE GENMASK(31, 16)
71 #define BCM4377_BAR0_DOORBELL_IDX GENMASK(15, 8)
72 #define BCM4377_BAR0_DOORBELL_RING BIT(5)
74 #define BCM4377_BAR0_HOST_WINDOW_LO 0x590
75 #define BCM4377_BAR0_HOST_WINDOW_HI 0x594
76 #define BCM4377_BAR0_HOST_WINDOW_SIZE 0x598
78 #define BCM4377_BAR2_BOOTSTAGE 0x200454
80 #define BCM4377_BAR2_FW_LO 0x200478
81 #define BCM4377_BAR2_FW_HI 0x20047c
82 #define BCM4377_BAR2_FW_SIZE 0x200480
84 #define BCM4377_BAR2_CONTEXT_ADDR_LO 0x20048c
85 #define BCM4377_BAR2_CONTEXT_ADDR_HI 0x200450
87 #define BCM4377_BAR2_RTI_STATUS 0x20045c
88 #define BCM4377_BAR2_RTI_WINDOW_LO 0x200494
89 #define BCM4377_BAR2_RTI_WINDOW_HI 0x200498
90 #define BCM4377_BAR2_RTI_WINDOW_SIZE 0x20049c
92 #define BCM4377_OTP_SIZE 0xe0
93 #define BCM4377_OTP_SYS_VENDOR 0x15
94 #define BCM4377_OTP_CIS 0x80
95 #define BCM4377_OTP_VENDOR_HDR 0x00000008
96 #define BCM4377_OTP_MAX_PARAM_LEN 16
98 #define BCM4377_N_TRANSFER_RINGS 9
99 #define BCM4377_N_COMPLETION_RINGS 6
101 #define BCM4377_MAX_RING_SIZE 256
103 #define BCM4377_MSGID_GENERATION GENMASK(15, 8)
104 #define BCM4377_MSGID_ID GENMASK(7, 0)
106 #define BCM4377_RING_N_ENTRIES 128
108 #define BCM4377_CONTROL_MSG_SIZE 0x34
109 #define BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE (4 * 0xff)
111 #define MAX_ACL_PAYLOAD_SIZE (HCI_MAX_FRAME_SIZE + HCI_ACL_HDR_SIZE)
112 #define MAX_SCO_PAYLOAD_SIZE (HCI_MAX_SCO_SIZE + HCI_SCO_HDR_SIZE)
113 #define MAX_EVENT_PAYLOAD_SIZE (HCI_MAX_EVENT_SIZE + HCI_EVENT_HDR_SIZE)
115 enum bcm4377_otp_params_type
{
116 BCM4377_OTP_BOARD_PARAMS
,
117 BCM4377_OTP_CHIP_PARAMS
120 enum bcm4377_transfer_ring_id
{
121 BCM4377_XFER_RING_CONTROL
= 0,
122 BCM4377_XFER_RING_HCI_H2D
= 1,
123 BCM4377_XFER_RING_HCI_D2H
= 2,
124 BCM4377_XFER_RING_SCO_H2D
= 3,
125 BCM4377_XFER_RING_SCO_D2H
= 4,
126 BCM4377_XFER_RING_ACL_H2D
= 5,
127 BCM4377_XFER_RING_ACL_D2H
= 6,
130 enum bcm4377_completion_ring_id
{
131 BCM4377_ACK_RING_CONTROL
= 0,
132 BCM4377_ACK_RING_HCI_ACL
= 1,
133 BCM4377_EVENT_RING_HCI_ACL
= 2,
134 BCM4377_ACK_RING_SCO
= 3,
135 BCM4377_EVENT_RING_SCO
= 4,
138 enum bcm4377_doorbell
{
139 BCM4377_DOORBELL_CONTROL
= 0,
140 BCM4377_DOORBELL_HCI_H2D
= 1,
141 BCM4377_DOORBELL_HCI_D2H
= 2,
142 BCM4377_DOORBELL_ACL_H2D
= 3,
143 BCM4377_DOORBELL_ACL_D2H
= 4,
144 BCM4377_DOORBELL_SCO
= 6,
148 * Transfer ring entry
150 * flags: Flags to indicate if the payload is appended or mapped
151 * len: Payload length
152 * payload: Optional payload DMA address
153 * id: Message id to recognize the answer in the completion ring entry
155 struct bcm4377_xfer_ring_entry
{
156 #define BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED BIT(0)
157 #define BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER BIT(1)
165 static_assert(sizeof(struct bcm4377_xfer_ring_entry
) == 0x10);
168 * Completion ring entry
170 * flags: Flags to indicate if the payload is appended or mapped. If the payload
171 * is mapped it can be found in the buffer of the corresponding transfer
173 * ring_id: Transfer ring ID which required this message
174 * msg_id: Message ID specified in transfer ring entry
175 * len: Payload length
177 struct bcm4377_completion_ring_entry
{
185 static_assert(sizeof(struct bcm4377_completion_ring_entry
) == 0x10);
187 enum bcm4377_control_message_type
{
188 BCM4377_CONTROL_MSG_CREATE_XFER_RING
= 1,
189 BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING
= 2,
190 BCM4377_CONTROL_MSG_DESTROY_XFER_RING
= 3,
191 BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING
= 4,
195 * Control message used to create a completion ring
197 * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING
198 * header_size: Unknown, but probably reserved space in front of the entry
199 * footer_size: Number of 32 bit words reserved for payloads after the entry
200 * id/id_again: Completion ring index
201 * ring_iova: DMA address of the ring buffer
202 * n_elements: Number of elements inside the ring buffer
203 * msi: MSI index, doesn't work for all rings though and should be zero
204 * intmod_delay: Unknown delay
205 * intmod_bytes: Unknown
207 struct bcm4377_create_completion_ring_msg
{
225 static_assert(sizeof(struct bcm4377_create_completion_ring_msg
) ==
226 BCM4377_CONTROL_MSG_SIZE
);
229 * Control ring message used to destroy a completion ring
231 * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING
232 * ring_id: Completion ring to be destroyed
234 struct bcm4377_destroy_completion_ring_msg
{
240 static_assert(sizeof(struct bcm4377_destroy_completion_ring_msg
) ==
241 BCM4377_CONTROL_MSG_SIZE
);
244 * Control message used to create a transfer ring
246 * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_XFER_RING
247 * header_size: Number of 32 bit words reserved for unknown content before the
249 * footer_size: Number of 32 bit words reserved for payloads after the entry
250 * ring_id/ring_id_again: Transfer ring index
251 * ring_iova: DMA address of the ring buffer
252 * n_elements: Number of elements inside the ring buffer
253 * completion_ring_id: Completion ring index for acknowledgements and events
254 * doorbell: Doorbell index used to notify device of new entries
255 * flags: Transfer ring flags
256 * - virtual: set if there is no associated shared memory and only the
257 * corresponding completion ring is used
258 * - sync: only set for the SCO rings
260 struct bcm4377_create_transfer_ring_msg
{
266 __le16 ring_id_again
;
270 __le16 completion_ring_id
;
272 #define BCM4377_XFER_RING_FLAG_VIRTUAL BIT(7)
273 #define BCM4377_XFER_RING_FLAG_SYNC BIT(8)
277 static_assert(sizeof(struct bcm4377_create_transfer_ring_msg
) ==
278 BCM4377_CONTROL_MSG_SIZE
);
281 * Control ring message used to destroy a transfer ring
283 * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_XFER_RING
284 * ring_id: Transfer ring to be destroyed
286 struct bcm4377_destroy_transfer_ring_msg
{
292 static_assert(sizeof(struct bcm4377_destroy_transfer_ring_msg
) ==
293 BCM4377_CONTROL_MSG_SIZE
);
296 * "Converged IPC" context struct used to make the device aware of all other
297 * shared memory structures. A pointer to this structure is configured inside a
300 * version: Protocol version, must be 2.
301 * size: Size of this structure, must be 0x68.
302 * enabled_caps: Enabled capabilities. Unknown bitfield but should be 2.
303 * peripheral_info_addr: DMA address for a 0x20 buffer to which the device will
304 * write unknown contents
305 * {completion,xfer}_ring_{tails,heads}_addr: DMA pointers to ring heads/tails
306 * n_completion_rings: Number of completion rings, the firmware only works if
307 * this is set to BCM4377_N_COMPLETION_RINGS.
308 * n_xfer_rings: Number of transfer rings, the firmware only works if
309 * this is set to BCM4377_N_TRANSFER_RINGS.
310 * control_completion_ring_addr: Control completion ring buffer DMA address
311 * control_xfer_ring_addr: Control transfer ring buffer DMA address
312 * control_xfer_ring_n_entries: Number of control transfer ring entries
313 * control_completion_ring_n_entries: Number of control completion ring entries
314 * control_xfer_ring_doorbell: Control transfer ring doorbell
315 * control_completion_ring_doorbell: Control completion ring doorbell,
316 * must be set to 0xffff
317 * control_xfer_ring_msi: Control completion ring MSI index, must be 0
318 * control_completion_ring_msi: Control completion ring MSI index, must be 0.
319 * control_xfer_ring_header_size: Number of 32 bit words reserved in front of
320 * every control transfer ring entry
321 * control_xfer_ring_footer_size: Number of 32 bit words reserved after every
322 * control transfer ring entry
323 * control_completion_ring_header_size: Number of 32 bit words reserved in front
324 * of every control completion ring entry
325 * control_completion_ring_footer_size: Number of 32 bit words reserved after
326 * every control completion ring entry
327 * scratch_pad: Optional scratch pad DMA address
328 * scratch_pad_size: Scratch pad size
330 struct bcm4377_context
{
335 __le64 peripheral_info_addr
;
337 /* ring heads and tails */
338 __le64 completion_ring_heads_addr
;
339 __le64 xfer_ring_tails_addr
;
340 __le64 completion_ring_tails_addr
;
341 __le64 xfer_ring_heads_addr
;
342 __le16 n_completion_rings
;
345 /* control ring configuration */
346 __le64 control_completion_ring_addr
;
347 __le64 control_xfer_ring_addr
;
348 __le16 control_xfer_ring_n_entries
;
349 __le16 control_completion_ring_n_entries
;
350 __le16 control_xfer_ring_doorbell
;
351 __le16 control_completion_ring_doorbell
;
352 __le16 control_xfer_ring_msi
;
353 __le16 control_completion_ring_msi
;
354 u8 control_xfer_ring_header_size
;
355 u8 control_xfer_ring_footer_size
;
356 u8 control_completion_ring_header_size
;
357 u8 control_completion_ring_footer_size
;
363 __le32 scratch_pad_size
;
367 static_assert(sizeof(struct bcm4377_context
) == 0x68);
369 #define BCM4378_CALIBRATION_CHUNK_SIZE 0xe6
370 struct bcm4378_hci_send_calibration_cmd
{
373 u8 data
[BCM4378_CALIBRATION_CHUNK_SIZE
];
376 #define BCM4378_PTB_CHUNK_SIZE 0xcf
377 struct bcm4378_hci_send_ptb_cmd
{
379 u8 data
[BCM4378_PTB_CHUNK_SIZE
];
383 * Shared memory structure used to store the ring head and tail pointers.
385 struct bcm4377_ring_state
{
386 __le16 completion_ring_head
[BCM4377_N_COMPLETION_RINGS
];
387 __le16 completion_ring_tail
[BCM4377_N_COMPLETION_RINGS
];
388 __le16 xfer_ring_head
[BCM4377_N_TRANSFER_RINGS
];
389 __le16 xfer_ring_tail
[BCM4377_N_TRANSFER_RINGS
];
393 * A transfer ring can be used in two configurations:
394 * 1) Send control or HCI messages to the device which are then acknowledged
395 * in the corresponding completion ring
396 * 2) Receiving HCI frames from the devices. In this case the transfer ring
397 * itself contains empty messages that are acknowledged once data is
398 * available from the device. If the payloads fit inside the footers
399 * of the completion ring the transfer ring can be configured to be
400 * virtual such that it has no ring buffer.
402 * ring_id: ring index hardcoded in the firmware
403 * doorbell: doorbell index to notify device of new entries
404 * payload_size: optional in-place payload size
405 * mapped_payload_size: optional out-of-place payload size
406 * completion_ring: index of corresponding completion ring
407 * n_entries: number of entries inside this ring
408 * generation: ring generation; incremented on hci_open to detect stale messages
409 * sync: set to true for SCO rings
410 * virtual: set to true if this ring has no entries and is just required to
411 * setup a corresponding completion ring for device->host messages
412 * d2h_buffers_only: set to true if this ring is only used to provide large
413 * buffers used by device->host messages in the completion
415 * allow_wait: allow to wait for messages to be acknowledged
416 * enabled: true once the ring has been created and can be used
417 * ring: ring buffer for entries (struct bcm4377_xfer_ring_entry)
418 * ring_dma: DMA address for ring entry buffer
419 * payloads: payload buffer for mapped_payload_size payloads
420 * payloads_dma:DMA address for payload buffer
421 * events: pointer to array of completions if waiting is allowed
422 * msgids: bitmap to keep track of used message ids
423 * lock: Spinlock to protect access to ring structurs used in the irq handler
425 struct bcm4377_transfer_ring
{
426 enum bcm4377_transfer_ring_id ring_id
;
427 enum bcm4377_doorbell doorbell
;
429 size_t mapped_payload_size
;
436 bool d2h_buffers_only
;
444 dma_addr_t payloads_dma
;
446 struct completion
**events
;
447 DECLARE_BITMAP(msgids
, BCM4377_MAX_RING_SIZE
);
452 * A completion ring can be either used to either acknowledge messages sent in
453 * the corresponding transfer ring or to receive messages associated with the
454 * transfer ring. When used to receive messages the transfer ring either
455 * has no ring buffer and is only advanced ("virtual transfer ring") or it
456 * only contains empty DMA buffers to be used for the payloads.
458 * ring_id: completion ring id, hardcoded in firmware
459 * payload_size: optional payload size after each entry
460 * delay: unknown delay
461 * n_entries: number of entries in this ring
462 * enabled: true once the ring has been created and can be used
463 * ring: ring buffer for entries (struct bcm4377_completion_ring_entry)
464 * ring_dma: DMA address of ring buffer
465 * transfer_rings: bitmap of corresponding transfer ring ids
467 struct bcm4377_completion_ring
{
468 enum bcm4377_completion_ring_id ring_id
;
477 unsigned long transfer_rings
;
483 * Chip-specific configuration struct
485 * id: Chip id (e.g. 0x4377 for BCM4377)
486 * otp_offset: Offset to the start of the OTP inside BAR0
487 * bar0_window1: Backplane address mapped to the first window in BAR0
488 * bar0_window2: Backplane address mapped to the second window in BAR0
489 * bar0_core2_window2: Optional backplane address mapped to the second core's
490 * second window in BAR0
491 * has_bar0_core2_window2: Set to true if this chip requires the second core's
492 * second window to be configured
493 * bar2_offset: Offset to the start of the variables in BAR2
494 * clear_pciecfg_subsystem_ctrl_bit19: Set to true if bit 19 in the
495 * vendor-specific subsystem control
496 * register has to be cleared
497 * disable_aspm: Set to true if ASPM must be disabled due to hardware errata
498 * broken_ext_scan: Set to true if the chip erroneously claims to support
500 * broken_mws_transport_config: Set to true if the chip erroneously claims to
501 * support MWS Transport Configuration
502 * broken_le_ext_adv_report_phy: Set to true if this chip stuffs flags inside
503 * reserved bits of Primary/Secondary_PHY inside
504 * LE Extended Advertising Report events which
506 * send_calibration: Optional callback to send calibration data
507 * send_ptb: Callback to send "PTB" regulatory/calibration data
516 u32 bar0_core2_window2
;
519 unsigned long has_bar0_core2_window2
: 1;
520 unsigned long clear_pciecfg_subsystem_ctrl_bit19
: 1;
521 unsigned long disable_aspm
: 1;
522 unsigned long broken_ext_scan
: 1;
523 unsigned long broken_mws_transport_config
: 1;
524 unsigned long broken_le_coded
: 1;
525 unsigned long broken_le_ext_adv_report_phy
: 1;
527 int (*send_calibration
)(struct bcm4377_data
*bcm4377
);
528 int (*send_ptb
)(struct bcm4377_data
*bcm4377
,
529 const struct firmware
*fw
);
532 static const struct bcm4377_hw bcm4377_hw_variants
[];
533 static const struct dmi_system_id bcm4377_dmi_board_table
[];
536 * Private struct associated with each device containing global state
538 * pdev: Pointer to associated struct pci_dev
539 * hdev: Pointer to associated strucy hci_dev
540 * bar0: iomem pointing to BAR0
541 * bar1: iomem pointing to BAR2
542 * bootstage: Current value of the bootstage
543 * rti_status: Current "RTI" status value
544 * hw: Pointer to chip-specific struct bcm4377_hw
545 * taurus_cal_blob: "Taurus" calibration blob used for some chips
546 * taurus_cal_size: "Taurus" calibration blob size
547 * taurus_beamforming_cal_blob: "Taurus" beamforming calibration blob used for
549 * taurus_beamforming_cal_size: "Taurus" beamforming calibration blob size
550 * stepping: Chip stepping read from OTP; used for firmware selection
551 * vendor: Antenna vendor read from OTP; used for firmware selection
552 * board_type: Board type from FDT or DMI match; used for firmware selection
553 * event: Event for changed bootstage or rti_status; used for booting firmware
554 * ctx: "Converged IPC" context
555 * ctx_dma: "Converged IPC" context DMA address
556 * ring_state: Shared memory buffer containing ring head and tail indexes
557 * ring_state_dma: DMA address for ring_state
558 * {control,hci_acl,sco}_ack_ring: Completion rings used to acknowledge messages
559 * {hci_acl,sco}_event_ring: Completion rings used for device->host messages
560 * control_h2d_ring: Transfer ring used for control messages
561 * {hci,sco,acl}_h2d_ring: Transfer ring used to transfer HCI frames
562 * {hci,sco,acl}_d2h_ring: Transfer ring used to receive HCI frames in the
563 * corresponding completion ring
565 struct bcm4377_data
{
566 struct pci_dev
*pdev
;
567 struct hci_dev
*hdev
;
575 const struct bcm4377_hw
*hw
;
577 const void *taurus_cal_blob
;
579 const void *taurus_beamforming_cal_blob
;
580 int taurus_beamforming_cal_size
;
582 char stepping
[BCM4377_OTP_MAX_PARAM_LEN
];
583 char vendor
[BCM4377_OTP_MAX_PARAM_LEN
];
584 const char *board_type
;
586 struct completion event
;
588 struct bcm4377_context
*ctx
;
591 struct bcm4377_ring_state
*ring_state
;
592 dma_addr_t ring_state_dma
;
595 * The HCI and ACL rings have to be merged because this structure is
596 * hardcoded in the firmware.
598 struct bcm4377_completion_ring control_ack_ring
;
599 struct bcm4377_completion_ring hci_acl_ack_ring
;
600 struct bcm4377_completion_ring hci_acl_event_ring
;
601 struct bcm4377_completion_ring sco_ack_ring
;
602 struct bcm4377_completion_ring sco_event_ring
;
604 struct bcm4377_transfer_ring control_h2d_ring
;
605 struct bcm4377_transfer_ring hci_h2d_ring
;
606 struct bcm4377_transfer_ring hci_d2h_ring
;
607 struct bcm4377_transfer_ring sco_h2d_ring
;
608 struct bcm4377_transfer_ring sco_d2h_ring
;
609 struct bcm4377_transfer_ring acl_h2d_ring
;
610 struct bcm4377_transfer_ring acl_d2h_ring
;
613 static void bcm4377_ring_doorbell(struct bcm4377_data
*bcm4377
, u8 doorbell
,
618 db
|= FIELD_PREP(BCM4377_BAR0_DOORBELL_VALUE
, val
);
619 db
|= FIELD_PREP(BCM4377_BAR0_DOORBELL_IDX
, doorbell
);
620 db
|= BCM4377_BAR0_DOORBELL_RING
;
622 dev_dbg(&bcm4377
->pdev
->dev
, "write %d to doorbell #%d (0x%x)\n", val
,
624 iowrite32(db
, bcm4377
->bar0
+ BCM4377_BAR0_DOORBELL
);
627 static int bcm4377_extract_msgid(struct bcm4377_data
*bcm4377
,
628 struct bcm4377_transfer_ring
*ring
,
629 u16 raw_msgid
, u8
*msgid
)
631 u8 generation
= FIELD_GET(BCM4377_MSGID_GENERATION
, raw_msgid
);
632 *msgid
= FIELD_GET(BCM4377_MSGID_ID
, raw_msgid
);
634 if (generation
!= ring
->generation
) {
637 "invalid message generation %d should be %d in entry for ring %d\n",
638 generation
, ring
->generation
, ring
->ring_id
);
642 if (*msgid
>= ring
->n_entries
) {
643 dev_warn(&bcm4377
->pdev
->dev
,
644 "invalid message id in entry for ring %d: %d > %d\n",
645 ring
->ring_id
, *msgid
, ring
->n_entries
);
652 static void bcm4377_handle_event(struct bcm4377_data
*bcm4377
,
653 struct bcm4377_transfer_ring
*ring
,
654 u16 raw_msgid
, u8 entry_flags
, u8 type
,
655 void *payload
, size_t len
)
662 spin_lock_irqsave(&ring
->lock
, flags
);
663 if (!ring
->enabled
) {
664 dev_warn(&bcm4377
->pdev
->dev
,
665 "event for disabled transfer ring %d\n",
670 if (ring
->d2h_buffers_only
&&
671 entry_flags
& BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED
) {
672 if (bcm4377_extract_msgid(bcm4377
, ring
, raw_msgid
, &msgid
))
675 if (len
> ring
->mapped_payload_size
) {
678 "invalid payload len in event for ring %d: %zu > %zu\n",
679 ring
->ring_id
, len
, ring
->mapped_payload_size
);
683 payload
= ring
->payloads
+ msgid
* ring
->mapped_payload_size
;
686 skb
= bt_skb_alloc(len
, GFP_ATOMIC
);
690 memcpy(skb_put(skb
, len
), payload
, len
);
691 hci_skb_pkt_type(skb
) = type
;
692 hci_recv_frame(bcm4377
->hdev
, skb
);
695 head
= le16_to_cpu(bcm4377
->ring_state
->xfer_ring_head
[ring
->ring_id
]);
696 head
= (head
+ 1) % ring
->n_entries
;
697 bcm4377
->ring_state
->xfer_ring_head
[ring
->ring_id
] = cpu_to_le16(head
);
699 bcm4377_ring_doorbell(bcm4377
, ring
->doorbell
, head
);
701 spin_unlock_irqrestore(&ring
->lock
, flags
);
704 static void bcm4377_handle_ack(struct bcm4377_data
*bcm4377
,
705 struct bcm4377_transfer_ring
*ring
,
711 spin_lock_irqsave(&ring
->lock
, flags
);
713 if (bcm4377_extract_msgid(bcm4377
, ring
, raw_msgid
, &msgid
))
716 if (!test_bit(msgid
, ring
->msgids
)) {
719 "invalid message id in ack for ring %d: %d is not used\n",
720 ring
->ring_id
, msgid
);
724 if (ring
->allow_wait
&& ring
->events
[msgid
]) {
725 complete(ring
->events
[msgid
]);
726 ring
->events
[msgid
] = NULL
;
729 bitmap_release_region(ring
->msgids
, msgid
, 0);
732 spin_unlock_irqrestore(&ring
->lock
, flags
);
735 static void bcm4377_handle_completion(struct bcm4377_data
*bcm4377
,
736 struct bcm4377_completion_ring
*ring
,
739 struct bcm4377_completion_ring_entry
*entry
;
740 u16 msg_id
, transfer_ring
;
741 size_t entry_size
, data_len
;
744 if (pos
>= ring
->n_entries
) {
745 dev_warn(&bcm4377
->pdev
->dev
,
746 "invalid offset %d for completion ring %d\n", pos
,
751 entry_size
= sizeof(*entry
) + ring
->payload_size
;
752 entry
= ring
->ring
+ pos
* entry_size
;
753 data
= ring
->ring
+ pos
* entry_size
+ sizeof(*entry
);
754 data_len
= le32_to_cpu(entry
->len
);
755 msg_id
= le16_to_cpu(entry
->msg_id
);
756 transfer_ring
= le16_to_cpu(entry
->ring_id
);
758 if ((ring
->transfer_rings
& BIT(transfer_ring
)) == 0) {
761 "invalid entry at offset %d for transfer ring %d in completion ring %d\n",
762 pos
, transfer_ring
, ring
->ring_id
);
766 dev_dbg(&bcm4377
->pdev
->dev
,
767 "entry in completion ring %d for transfer ring %d with msg_id %d\n",
768 ring
->ring_id
, transfer_ring
, msg_id
);
770 switch (transfer_ring
) {
771 case BCM4377_XFER_RING_CONTROL
:
772 bcm4377_handle_ack(bcm4377
, &bcm4377
->control_h2d_ring
, msg_id
);
774 case BCM4377_XFER_RING_HCI_H2D
:
775 bcm4377_handle_ack(bcm4377
, &bcm4377
->hci_h2d_ring
, msg_id
);
777 case BCM4377_XFER_RING_SCO_H2D
:
778 bcm4377_handle_ack(bcm4377
, &bcm4377
->sco_h2d_ring
, msg_id
);
780 case BCM4377_XFER_RING_ACL_H2D
:
781 bcm4377_handle_ack(bcm4377
, &bcm4377
->acl_h2d_ring
, msg_id
);
784 case BCM4377_XFER_RING_HCI_D2H
:
785 bcm4377_handle_event(bcm4377
, &bcm4377
->hci_d2h_ring
, msg_id
,
786 entry
->flags
, HCI_EVENT_PKT
, data
,
789 case BCM4377_XFER_RING_SCO_D2H
:
790 bcm4377_handle_event(bcm4377
, &bcm4377
->sco_d2h_ring
, msg_id
,
791 entry
->flags
, HCI_SCODATA_PKT
, data
,
794 case BCM4377_XFER_RING_ACL_D2H
:
795 bcm4377_handle_event(bcm4377
, &bcm4377
->acl_d2h_ring
, msg_id
,
796 entry
->flags
, HCI_ACLDATA_PKT
, data
,
803 "entry in completion ring %d for unknown transfer ring %d with msg_id %d\n",
804 ring
->ring_id
, transfer_ring
, msg_id
);
808 static void bcm4377_poll_completion_ring(struct bcm4377_data
*bcm4377
,
809 struct bcm4377_completion_ring
*ring
)
812 __le16
*heads
= bcm4377
->ring_state
->completion_ring_head
;
813 __le16
*tails
= bcm4377
->ring_state
->completion_ring_tail
;
818 tail
= le16_to_cpu(tails
[ring
->ring_id
]);
819 dev_dbg(&bcm4377
->pdev
->dev
,
820 "completion ring #%d: head: %d, tail: %d\n", ring
->ring_id
,
821 le16_to_cpu(heads
[ring
->ring_id
]), tail
);
823 while (tail
!= le16_to_cpu(READ_ONCE(heads
[ring
->ring_id
]))) {
825 * ensure the CPU doesn't speculate through the comparison.
826 * otherwise it might already read the (empty) queue entry
827 * before the updated head has been loaded and checked.
831 bcm4377_handle_completion(bcm4377
, ring
, tail
);
833 tail
= (tail
+ 1) % ring
->n_entries
;
834 tails
[ring
->ring_id
] = cpu_to_le16(tail
);
838 static irqreturn_t
bcm4377_irq(int irq
, void *data
)
840 struct bcm4377_data
*bcm4377
= data
;
841 u32 bootstage
, rti_status
;
843 bootstage
= ioread32(bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_BOOTSTAGE
);
844 rti_status
= ioread32(bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_RTI_STATUS
);
846 if (bootstage
!= bcm4377
->bootstage
||
847 rti_status
!= bcm4377
->rti_status
) {
848 dev_dbg(&bcm4377
->pdev
->dev
,
849 "bootstage = %d -> %d, rti state = %d -> %d\n",
850 bcm4377
->bootstage
, bootstage
, bcm4377
->rti_status
,
852 complete(&bcm4377
->event
);
853 bcm4377
->bootstage
= bootstage
;
854 bcm4377
->rti_status
= rti_status
;
858 dev_err(&bcm4377
->pdev
->dev
, "RTI status is %d\n", rti_status
);
860 bcm4377_poll_completion_ring(bcm4377
, &bcm4377
->control_ack_ring
);
861 bcm4377_poll_completion_ring(bcm4377
, &bcm4377
->hci_acl_event_ring
);
862 bcm4377_poll_completion_ring(bcm4377
, &bcm4377
->hci_acl_ack_ring
);
863 bcm4377_poll_completion_ring(bcm4377
, &bcm4377
->sco_ack_ring
);
864 bcm4377_poll_completion_ring(bcm4377
, &bcm4377
->sco_event_ring
);
869 static int bcm4377_enqueue(struct bcm4377_data
*bcm4377
,
870 struct bcm4377_transfer_ring
*ring
, void *data
,
871 size_t len
, bool wait
)
874 struct bcm4377_xfer_ring_entry
*entry
;
877 u16 head
, tail
, new_head
;
880 DECLARE_COMPLETION_ONSTACK(event
);
882 if (len
> ring
->payload_size
&& len
> ring
->mapped_payload_size
) {
885 "payload len %zu is too large for ring %d (max is %zu or %zu)\n",
886 len
, ring
->ring_id
, ring
->payload_size
,
887 ring
->mapped_payload_size
);
890 if (wait
&& !ring
->allow_wait
)
895 spin_lock_irqsave(&ring
->lock
, flags
);
897 head
= le16_to_cpu(bcm4377
->ring_state
->xfer_ring_head
[ring
->ring_id
]);
898 tail
= le16_to_cpu(bcm4377
->ring_state
->xfer_ring_tail
[ring
->ring_id
]);
900 new_head
= (head
+ 1) % ring
->n_entries
;
902 if (new_head
== tail
) {
903 dev_warn(&bcm4377
->pdev
->dev
,
904 "can't send message because ring %d is full\n",
910 msgid
= bitmap_find_free_region(ring
->msgids
, ring
->n_entries
, 0);
912 dev_warn(&bcm4377
->pdev
->dev
,
913 "can't find message id for ring %d\n", ring
->ring_id
);
918 raw_msgid
= FIELD_PREP(BCM4377_MSGID_GENERATION
, ring
->generation
);
919 raw_msgid
|= FIELD_PREP(BCM4377_MSGID_ID
, msgid
);
921 offset
= head
* (sizeof(*entry
) + ring
->payload_size
);
922 entry
= ring
->ring
+ offset
;
924 memset(entry
, 0, sizeof(*entry
));
925 entry
->id
= cpu_to_le16(raw_msgid
);
926 entry
->len
= cpu_to_le16(len
);
928 if (len
<= ring
->payload_size
) {
929 entry
->flags
= BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER
;
930 payload
= ring
->ring
+ offset
+ sizeof(*entry
);
932 entry
->flags
= BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED
;
933 entry
->payload
= cpu_to_le64(ring
->payloads_dma
+
934 msgid
* ring
->mapped_payload_size
);
935 payload
= ring
->payloads
+ msgid
* ring
->mapped_payload_size
;
938 memcpy(payload
, data
, len
);
941 ring
->events
[msgid
] = &event
;
944 * The 4377 chips stop responding to any commands as soon as they
945 * have been idle for a while. Poking the sleep control register here
946 * makes them come alive again.
948 iowrite32(BCM4377_BAR0_SLEEP_CONTROL_AWAKE
,
949 bcm4377
->bar0
+ BCM4377_BAR0_SLEEP_CONTROL
);
951 dev_dbg(&bcm4377
->pdev
->dev
,
952 "updating head for transfer queue #%d to %d\n", ring
->ring_id
,
954 bcm4377
->ring_state
->xfer_ring_head
[ring
->ring_id
] =
955 cpu_to_le16(new_head
);
958 bcm4377_ring_doorbell(bcm4377
, ring
->doorbell
, new_head
);
962 spin_unlock_irqrestore(&ring
->lock
, flags
);
964 if (ret
== 0 && wait
) {
965 ret
= wait_for_completion_interruptible_timeout(
966 &event
, BCM4377_TIMEOUT
);
972 spin_lock_irqsave(&ring
->lock
, flags
);
973 ring
->events
[msgid
] = NULL
;
974 spin_unlock_irqrestore(&ring
->lock
, flags
);
980 static int bcm4377_create_completion_ring(struct bcm4377_data
*bcm4377
,
981 struct bcm4377_completion_ring
*ring
)
983 struct bcm4377_create_completion_ring_msg msg
;
987 dev_warn(&bcm4377
->pdev
->dev
,
988 "completion ring %d already enabled\n", ring
->ring_id
);
992 memset(ring
->ring
, 0,
993 ring
->n_entries
* (sizeof(struct bcm4377_completion_ring_entry
) +
994 ring
->payload_size
));
995 memset(&msg
, 0, sizeof(msg
));
996 msg
.msg_type
= BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING
;
997 msg
.id
= cpu_to_le16(ring
->ring_id
);
998 msg
.id_again
= cpu_to_le16(ring
->ring_id
);
999 msg
.ring_iova
= cpu_to_le64(ring
->ring_dma
);
1000 msg
.n_elements
= cpu_to_le16(ring
->n_entries
);
1001 msg
.intmod_bytes
= cpu_to_le32(0xffffffff);
1002 msg
.unk
= cpu_to_le32(0xffffffff);
1003 msg
.intmod_delay
= cpu_to_le16(ring
->delay
);
1004 msg
.footer_size
= ring
->payload_size
/ 4;
1006 ret
= bcm4377_enqueue(bcm4377
, &bcm4377
->control_h2d_ring
, &msg
,
1009 ring
->enabled
= true;
1014 static int bcm4377_destroy_completion_ring(struct bcm4377_data
*bcm4377
,
1015 struct bcm4377_completion_ring
*ring
)
1017 struct bcm4377_destroy_completion_ring_msg msg
;
1020 memset(&msg
, 0, sizeof(msg
));
1021 msg
.msg_type
= BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING
;
1022 msg
.ring_id
= cpu_to_le16(ring
->ring_id
);
1024 ret
= bcm4377_enqueue(bcm4377
, &bcm4377
->control_h2d_ring
, &msg
,
1027 dev_warn(&bcm4377
->pdev
->dev
,
1028 "failed to destroy completion ring %d\n",
1031 ring
->enabled
= false;
1035 static int bcm4377_create_transfer_ring(struct bcm4377_data
*bcm4377
,
1036 struct bcm4377_transfer_ring
*ring
)
1038 struct bcm4377_create_transfer_ring_msg msg
;
1041 unsigned long spinlock_flags
;
1044 flags
|= BCM4377_XFER_RING_FLAG_VIRTUAL
;
1046 flags
|= BCM4377_XFER_RING_FLAG_SYNC
;
1048 spin_lock_irqsave(&ring
->lock
, spinlock_flags
);
1049 memset(&msg
, 0, sizeof(msg
));
1050 msg
.msg_type
= BCM4377_CONTROL_MSG_CREATE_XFER_RING
;
1051 msg
.ring_id
= cpu_to_le16(ring
->ring_id
);
1052 msg
.ring_id_again
= cpu_to_le16(ring
->ring_id
);
1053 msg
.ring_iova
= cpu_to_le64(ring
->ring_dma
);
1054 msg
.n_elements
= cpu_to_le16(ring
->n_entries
);
1055 msg
.completion_ring_id
= cpu_to_le16(ring
->completion_ring
);
1056 msg
.doorbell
= cpu_to_le16(ring
->doorbell
);
1057 msg
.flags
= cpu_to_le16(flags
);
1058 msg
.footer_size
= ring
->payload_size
/ 4;
1060 bcm4377
->ring_state
->xfer_ring_head
[ring
->ring_id
] = 0;
1061 bcm4377
->ring_state
->xfer_ring_tail
[ring
->ring_id
] = 0;
1063 spin_unlock_irqrestore(&ring
->lock
, spinlock_flags
);
1065 ret
= bcm4377_enqueue(bcm4377
, &bcm4377
->control_h2d_ring
, &msg
,
1068 spin_lock_irqsave(&ring
->lock
, spinlock_flags
);
1070 if (ring
->d2h_buffers_only
) {
1071 for (i
= 0; i
< ring
->n_entries
; ++i
) {
1072 struct bcm4377_xfer_ring_entry
*entry
=
1073 ring
->ring
+ i
* sizeof(*entry
);
1074 u16 raw_msgid
= FIELD_PREP(BCM4377_MSGID_GENERATION
,
1076 raw_msgid
|= FIELD_PREP(BCM4377_MSGID_ID
, i
);
1078 memset(entry
, 0, sizeof(*entry
));
1079 entry
->id
= cpu_to_le16(raw_msgid
);
1080 entry
->len
= cpu_to_le16(ring
->mapped_payload_size
);
1081 entry
->flags
= BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED
;
1083 cpu_to_le64(ring
->payloads_dma
+
1084 i
* ring
->mapped_payload_size
);
1089 * send some messages if this is a device->host ring to allow the device
1090 * to reply by acknowledging them in the completion ring
1092 if (ring
->virtual || ring
->d2h_buffers_only
) {
1093 bcm4377
->ring_state
->xfer_ring_head
[ring
->ring_id
] =
1095 bcm4377_ring_doorbell(bcm4377
, ring
->doorbell
, 0xf);
1098 ring
->enabled
= true;
1099 spin_unlock_irqrestore(&ring
->lock
, spinlock_flags
);
1104 static int bcm4377_destroy_transfer_ring(struct bcm4377_data
*bcm4377
,
1105 struct bcm4377_transfer_ring
*ring
)
1107 struct bcm4377_destroy_transfer_ring_msg msg
;
1110 memset(&msg
, 0, sizeof(msg
));
1111 msg
.msg_type
= BCM4377_CONTROL_MSG_DESTROY_XFER_RING
;
1112 msg
.ring_id
= cpu_to_le16(ring
->ring_id
);
1114 ret
= bcm4377_enqueue(bcm4377
, &bcm4377
->control_h2d_ring
, &msg
,
1117 dev_warn(&bcm4377
->pdev
->dev
,
1118 "failed to destroy transfer ring %d\n", ring
->ring_id
);
1120 ring
->enabled
= false;
1124 static int __bcm4378_send_calibration_chunk(struct bcm4377_data
*bcm4377
,
1125 const void *data
, size_t data_len
,
1128 struct bcm4378_hci_send_calibration_cmd cmd
;
1129 struct sk_buff
*skb
;
1131 if (data_len
> sizeof(cmd
.data
))
1134 memset(&cmd
, 0, sizeof(cmd
));
1136 cmd
.blocks_left
= cpu_to_le16(blocks_left
);
1137 memcpy(cmd
.data
, data
, data_len
);
1139 skb
= __hci_cmd_sync(bcm4377
->hdev
, 0xfd97, sizeof(cmd
), &cmd
,
1142 return PTR_ERR(skb
);
1148 static int __bcm4378_send_calibration(struct bcm4377_data
*bcm4377
,
1149 const void *data
, size_t data_size
)
1152 size_t i
, left
, transfer_len
;
1154 DIV_ROUND_UP(data_size
, (size_t)BCM4378_CALIBRATION_CHUNK_SIZE
);
1157 dev_err(&bcm4377
->pdev
->dev
,
1158 "no calibration data available.\n");
1162 for (i
= 0, left
= data_size
; i
< blocks
; ++i
, left
-= transfer_len
) {
1164 min_t(size_t, left
, BCM4378_CALIBRATION_CHUNK_SIZE
);
1166 ret
= __bcm4378_send_calibration_chunk(
1167 bcm4377
, data
+ i
* BCM4378_CALIBRATION_CHUNK_SIZE
,
1168 transfer_len
, blocks
- i
- 1);
1170 dev_err(&bcm4377
->pdev
->dev
,
1171 "send calibration chunk failed with %d\n", ret
);
1179 static int bcm4378_send_calibration(struct bcm4377_data
*bcm4377
)
1181 if ((strcmp(bcm4377
->stepping
, "b1") == 0) ||
1182 strcmp(bcm4377
->stepping
, "b3") == 0)
1183 return __bcm4378_send_calibration(
1184 bcm4377
, bcm4377
->taurus_beamforming_cal_blob
,
1185 bcm4377
->taurus_beamforming_cal_size
);
1187 return __bcm4378_send_calibration(bcm4377
,
1188 bcm4377
->taurus_cal_blob
,
1189 bcm4377
->taurus_cal_size
);
1192 static int bcm4387_send_calibration(struct bcm4377_data
*bcm4377
)
1194 if (strcmp(bcm4377
->stepping
, "c2") == 0)
1195 return __bcm4378_send_calibration(
1196 bcm4377
, bcm4377
->taurus_beamforming_cal_blob
,
1197 bcm4377
->taurus_beamforming_cal_size
);
1199 return __bcm4378_send_calibration(bcm4377
,
1200 bcm4377
->taurus_cal_blob
,
1201 bcm4377
->taurus_cal_size
);
1204 static int bcm4388_send_calibration(struct bcm4377_data
*bcm4377
)
1206 /* BCM4388 always uses beamforming */
1207 return __bcm4378_send_calibration(
1208 bcm4377
, bcm4377
->taurus_beamforming_cal_blob
,
1209 bcm4377
->taurus_beamforming_cal_size
);
1212 static const struct firmware
*bcm4377_request_blob(struct bcm4377_data
*bcm4377
,
1215 const struct firmware
*fw
;
1216 char name0
[64], name1
[64];
1219 snprintf(name0
, sizeof(name0
), "brcm/brcmbt%04x%s-%s-%s.%s",
1220 bcm4377
->hw
->id
, bcm4377
->stepping
, bcm4377
->board_type
,
1221 bcm4377
->vendor
, suffix
);
1222 snprintf(name1
, sizeof(name1
), "brcm/brcmbt%04x%s-%s.%s",
1223 bcm4377
->hw
->id
, bcm4377
->stepping
, bcm4377
->board_type
,
1225 dev_dbg(&bcm4377
->pdev
->dev
, "Trying to load firmware: '%s' or '%s'\n",
1228 ret
= firmware_request_nowarn(&fw
, name0
, &bcm4377
->pdev
->dev
);
1231 ret
= firmware_request_nowarn(&fw
, name1
, &bcm4377
->pdev
->dev
);
1235 dev_err(&bcm4377
->pdev
->dev
,
1236 "Unable to load firmware; tried '%s' and '%s'\n", name0
, name1
);
1240 static int bcm4377_send_ptb(struct bcm4377_data
*bcm4377
,
1241 const struct firmware
*fw
)
1243 struct sk_buff
*skb
;
1245 skb
= __hci_cmd_sync(bcm4377
->hdev
, 0xfd98, fw
->size
, fw
->data
,
1248 * This command seems to always fail on more recent firmware versions
1249 * (even in traces taken from the macOS driver). It's unclear why this
1250 * happens but because the PTB file contains calibration and/or
1251 * regulatory data and may be required on older firmware we still try to
1252 * send it here just in case and just ignore if it fails.
1259 static int bcm4378_send_ptb_chunk(struct bcm4377_data
*bcm4377
,
1260 const void *data
, size_t data_len
,
1263 struct bcm4378_hci_send_ptb_cmd cmd
;
1264 struct sk_buff
*skb
;
1266 if (data_len
> BCM4378_PTB_CHUNK_SIZE
)
1269 memset(&cmd
, 0, sizeof(cmd
));
1270 cmd
.blocks_left
= cpu_to_le16(blocks_left
);
1271 memcpy(cmd
.data
, data
, data_len
);
1273 skb
= __hci_cmd_sync(bcm4377
->hdev
, 0xfe0d, sizeof(cmd
), &cmd
,
1276 return PTR_ERR(skb
);
1282 static int bcm4378_send_ptb(struct bcm4377_data
*bcm4377
,
1283 const struct firmware
*fw
)
1285 size_t chunks
= DIV_ROUND_UP(fw
->size
, (size_t)BCM4378_PTB_CHUNK_SIZE
);
1286 size_t i
, left
, transfer_len
;
1289 for (i
= 0, left
= fw
->size
; i
< chunks
; ++i
, left
-= transfer_len
) {
1290 transfer_len
= min_t(size_t, left
, BCM4378_PTB_CHUNK_SIZE
);
1292 dev_dbg(&bcm4377
->pdev
->dev
, "sending ptb chunk %zu/%zu\n",
1294 ret
= bcm4378_send_ptb_chunk(
1295 bcm4377
, fw
->data
+ i
* BCM4378_PTB_CHUNK_SIZE
,
1296 transfer_len
, chunks
- i
- 1);
1298 dev_err(&bcm4377
->pdev
->dev
,
1299 "sending ptb chunk %zu failed (%d)", i
, ret
);
1307 static int bcm4377_hci_open(struct hci_dev
*hdev
)
1309 struct bcm4377_data
*bcm4377
= hci_get_drvdata(hdev
);
1312 dev_dbg(&bcm4377
->pdev
->dev
, "creating rings\n");
1314 ret
= bcm4377_create_completion_ring(bcm4377
,
1315 &bcm4377
->hci_acl_ack_ring
);
1318 ret
= bcm4377_create_completion_ring(bcm4377
,
1319 &bcm4377
->hci_acl_event_ring
);
1321 goto destroy_hci_acl_ack
;
1322 ret
= bcm4377_create_completion_ring(bcm4377
, &bcm4377
->sco_ack_ring
);
1324 goto destroy_hci_acl_event
;
1325 ret
= bcm4377_create_completion_ring(bcm4377
, &bcm4377
->sco_event_ring
);
1327 goto destroy_sco_ack
;
1328 dev_dbg(&bcm4377
->pdev
->dev
,
1329 "all completion rings successfully created!\n");
1331 ret
= bcm4377_create_transfer_ring(bcm4377
, &bcm4377
->hci_h2d_ring
);
1333 goto destroy_sco_event
;
1334 ret
= bcm4377_create_transfer_ring(bcm4377
, &bcm4377
->hci_d2h_ring
);
1336 goto destroy_hci_h2d
;
1337 ret
= bcm4377_create_transfer_ring(bcm4377
, &bcm4377
->sco_h2d_ring
);
1339 goto destroy_hci_d2h
;
1340 ret
= bcm4377_create_transfer_ring(bcm4377
, &bcm4377
->sco_d2h_ring
);
1342 goto destroy_sco_h2d
;
1343 ret
= bcm4377_create_transfer_ring(bcm4377
, &bcm4377
->acl_h2d_ring
);
1345 goto destroy_sco_d2h
;
1346 ret
= bcm4377_create_transfer_ring(bcm4377
, &bcm4377
->acl_d2h_ring
);
1348 goto destroy_acl_h2d
;
1349 dev_dbg(&bcm4377
->pdev
->dev
,
1350 "all transfer rings successfully created!\n");
1355 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->acl_h2d_ring
);
1357 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->sco_d2h_ring
);
1359 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->sco_h2d_ring
);
1361 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->hci_h2d_ring
);
1363 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->hci_d2h_ring
);
1365 bcm4377_destroy_completion_ring(bcm4377
, &bcm4377
->sco_event_ring
);
1367 bcm4377_destroy_completion_ring(bcm4377
, &bcm4377
->sco_ack_ring
);
1368 destroy_hci_acl_event
:
1369 bcm4377_destroy_completion_ring(bcm4377
, &bcm4377
->hci_acl_event_ring
);
1370 destroy_hci_acl_ack
:
1371 bcm4377_destroy_completion_ring(bcm4377
, &bcm4377
->hci_acl_ack_ring
);
1373 dev_err(&bcm4377
->pdev
->dev
, "Creating rings failed with %d\n", ret
);
1377 static int bcm4377_hci_close(struct hci_dev
*hdev
)
1379 struct bcm4377_data
*bcm4377
= hci_get_drvdata(hdev
);
1381 dev_dbg(&bcm4377
->pdev
->dev
, "destroying rings in hci_close\n");
1383 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->acl_d2h_ring
);
1384 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->acl_h2d_ring
);
1385 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->sco_d2h_ring
);
1386 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->sco_h2d_ring
);
1387 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->hci_d2h_ring
);
1388 bcm4377_destroy_transfer_ring(bcm4377
, &bcm4377
->hci_h2d_ring
);
1390 bcm4377_destroy_completion_ring(bcm4377
, &bcm4377
->sco_event_ring
);
1391 bcm4377_destroy_completion_ring(bcm4377
, &bcm4377
->sco_ack_ring
);
1392 bcm4377_destroy_completion_ring(bcm4377
, &bcm4377
->hci_acl_event_ring
);
1393 bcm4377_destroy_completion_ring(bcm4377
, &bcm4377
->hci_acl_ack_ring
);
1398 static bool bcm4377_is_valid_bdaddr(struct bcm4377_data
*bcm4377
,
1401 if (addr
->b
[0] != 0x93)
1403 if (addr
->b
[1] != 0x76)
1405 if (addr
->b
[2] != 0x00)
1407 if (addr
->b
[4] != (bcm4377
->hw
->id
& 0xff))
1409 if (addr
->b
[5] != (bcm4377
->hw
->id
>> 8))
1414 static int bcm4377_check_bdaddr(struct bcm4377_data
*bcm4377
)
1416 struct hci_rp_read_bd_addr
*bda
;
1417 struct sk_buff
*skb
;
1419 skb
= __hci_cmd_sync(bcm4377
->hdev
, HCI_OP_READ_BD_ADDR
, 0, NULL
,
1422 int err
= PTR_ERR(skb
);
1424 dev_err(&bcm4377
->pdev
->dev
, "HCI_OP_READ_BD_ADDR failed (%d)",
1429 if (skb
->len
!= sizeof(*bda
)) {
1430 dev_err(&bcm4377
->pdev
->dev
,
1431 "HCI_OP_READ_BD_ADDR reply length invalid");
1436 bda
= (struct hci_rp_read_bd_addr
*)skb
->data
;
1437 if (!bcm4377_is_valid_bdaddr(bcm4377
, &bda
->bdaddr
))
1438 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY
, &bcm4377
->hdev
->quirks
);
1444 static int bcm4377_hci_setup(struct hci_dev
*hdev
)
1446 struct bcm4377_data
*bcm4377
= hci_get_drvdata(hdev
);
1447 const struct firmware
*fw
;
1450 if (bcm4377
->hw
->send_calibration
) {
1451 ret
= bcm4377
->hw
->send_calibration(bcm4377
);
1456 fw
= bcm4377_request_blob(bcm4377
, "ptb");
1458 dev_err(&bcm4377
->pdev
->dev
, "failed to load PTB data");
1462 ret
= bcm4377
->hw
->send_ptb(bcm4377
, fw
);
1463 release_firmware(fw
);
1467 return bcm4377_check_bdaddr(bcm4377
);
1470 static int bcm4377_hci_send_frame(struct hci_dev
*hdev
, struct sk_buff
*skb
)
1472 struct bcm4377_data
*bcm4377
= hci_get_drvdata(hdev
);
1473 struct bcm4377_transfer_ring
*ring
;
1476 switch (hci_skb_pkt_type(skb
)) {
1477 case HCI_COMMAND_PKT
:
1478 hdev
->stat
.cmd_tx
++;
1479 ring
= &bcm4377
->hci_h2d_ring
;
1482 case HCI_ACLDATA_PKT
:
1483 hdev
->stat
.acl_tx
++;
1484 ring
= &bcm4377
->acl_h2d_ring
;
1487 case HCI_SCODATA_PKT
:
1488 hdev
->stat
.sco_tx
++;
1489 ring
= &bcm4377
->sco_h2d_ring
;
1496 ret
= bcm4377_enqueue(bcm4377
, ring
, skb
->data
, skb
->len
, false);
1498 hdev
->stat
.err_tx
++;
1502 hdev
->stat
.byte_tx
+= skb
->len
;
1507 static int bcm4377_hci_set_bdaddr(struct hci_dev
*hdev
, const bdaddr_t
*bdaddr
)
1509 struct bcm4377_data
*bcm4377
= hci_get_drvdata(hdev
);
1510 struct sk_buff
*skb
;
1513 skb
= __hci_cmd_sync(hdev
, 0xfc01, 6, bdaddr
, HCI_INIT_TIMEOUT
);
1516 dev_err(&bcm4377
->pdev
->dev
,
1517 "Change address command failed (%d)", err
);
1525 static int bcm4377_alloc_transfer_ring(struct bcm4377_data
*bcm4377
,
1526 struct bcm4377_transfer_ring
*ring
)
1530 spin_lock_init(&ring
->lock
);
1531 ring
->payload_size
= ALIGN(ring
->payload_size
, 4);
1532 ring
->mapped_payload_size
= ALIGN(ring
->mapped_payload_size
, 4);
1534 if (ring
->payload_size
> BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE
)
1536 if (ring
->n_entries
> BCM4377_MAX_RING_SIZE
)
1538 if (ring
->virtual && ring
->allow_wait
)
1541 if (ring
->d2h_buffers_only
) {
1544 if (ring
->payload_size
)
1546 if (!ring
->mapped_payload_size
)
1553 ring
->payload_size
+ sizeof(struct bcm4377_xfer_ring_entry
);
1554 ring
->ring
= dmam_alloc_coherent(&bcm4377
->pdev
->dev
,
1555 ring
->n_entries
* entry_size
,
1556 &ring
->ring_dma
, GFP_KERNEL
);
1560 if (ring
->allow_wait
) {
1561 ring
->events
= devm_kcalloc(&bcm4377
->pdev
->dev
,
1563 sizeof(*ring
->events
), GFP_KERNEL
);
1568 if (ring
->mapped_payload_size
) {
1569 ring
->payloads
= dmam_alloc_coherent(
1570 &bcm4377
->pdev
->dev
,
1571 ring
->n_entries
* ring
->mapped_payload_size
,
1572 &ring
->payloads_dma
, GFP_KERNEL
);
1573 if (!ring
->payloads
)
1580 static int bcm4377_alloc_completion_ring(struct bcm4377_data
*bcm4377
,
1581 struct bcm4377_completion_ring
*ring
)
1585 ring
->payload_size
= ALIGN(ring
->payload_size
, 4);
1586 if (ring
->payload_size
> BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE
)
1588 if (ring
->n_entries
> BCM4377_MAX_RING_SIZE
)
1591 entry_size
= ring
->payload_size
+
1592 sizeof(struct bcm4377_completion_ring_entry
);
1594 ring
->ring
= dmam_alloc_coherent(&bcm4377
->pdev
->dev
,
1595 ring
->n_entries
* entry_size
,
1596 &ring
->ring_dma
, GFP_KERNEL
);
1602 static int bcm4377_init_context(struct bcm4377_data
*bcm4377
)
1604 struct device
*dev
= &bcm4377
->pdev
->dev
;
1605 dma_addr_t peripheral_info_dma
;
1607 bcm4377
->ctx
= dmam_alloc_coherent(dev
, sizeof(*bcm4377
->ctx
),
1608 &bcm4377
->ctx_dma
, GFP_KERNEL
);
1611 memset(bcm4377
->ctx
, 0, sizeof(*bcm4377
->ctx
));
1613 bcm4377
->ring_state
=
1614 dmam_alloc_coherent(dev
, sizeof(*bcm4377
->ring_state
),
1615 &bcm4377
->ring_state_dma
, GFP_KERNEL
);
1616 if (!bcm4377
->ring_state
)
1618 memset(bcm4377
->ring_state
, 0, sizeof(*bcm4377
->ring_state
));
1620 bcm4377
->ctx
->version
= cpu_to_le16(1);
1621 bcm4377
->ctx
->size
= cpu_to_le16(sizeof(*bcm4377
->ctx
));
1622 bcm4377
->ctx
->enabled_caps
= cpu_to_le32(2);
1625 * The BT device will write 0x20 bytes of data to this buffer but
1626 * the exact contents are unknown. It only needs to exist for BT
1627 * to work such that we can just allocate and then ignore it.
1629 if (!dmam_alloc_coherent(&bcm4377
->pdev
->dev
, 0x20,
1630 &peripheral_info_dma
, GFP_KERNEL
))
1632 bcm4377
->ctx
->peripheral_info_addr
= cpu_to_le64(peripheral_info_dma
);
1634 bcm4377
->ctx
->xfer_ring_heads_addr
= cpu_to_le64(
1635 bcm4377
->ring_state_dma
+
1636 offsetof(struct bcm4377_ring_state
, xfer_ring_head
));
1637 bcm4377
->ctx
->xfer_ring_tails_addr
= cpu_to_le64(
1638 bcm4377
->ring_state_dma
+
1639 offsetof(struct bcm4377_ring_state
, xfer_ring_tail
));
1640 bcm4377
->ctx
->completion_ring_heads_addr
= cpu_to_le64(
1641 bcm4377
->ring_state_dma
+
1642 offsetof(struct bcm4377_ring_state
, completion_ring_head
));
1643 bcm4377
->ctx
->completion_ring_tails_addr
= cpu_to_le64(
1644 bcm4377
->ring_state_dma
+
1645 offsetof(struct bcm4377_ring_state
, completion_ring_tail
));
1647 bcm4377
->ctx
->n_completion_rings
=
1648 cpu_to_le16(BCM4377_N_COMPLETION_RINGS
);
1649 bcm4377
->ctx
->n_xfer_rings
= cpu_to_le16(BCM4377_N_TRANSFER_RINGS
);
1651 bcm4377
->ctx
->control_completion_ring_addr
=
1652 cpu_to_le64(bcm4377
->control_ack_ring
.ring_dma
);
1653 bcm4377
->ctx
->control_completion_ring_n_entries
=
1654 cpu_to_le16(bcm4377
->control_ack_ring
.n_entries
);
1655 bcm4377
->ctx
->control_completion_ring_doorbell
= cpu_to_le16(0xffff);
1656 bcm4377
->ctx
->control_completion_ring_msi
= 0;
1657 bcm4377
->ctx
->control_completion_ring_header_size
= 0;
1658 bcm4377
->ctx
->control_completion_ring_footer_size
= 0;
1660 bcm4377
->ctx
->control_xfer_ring_addr
=
1661 cpu_to_le64(bcm4377
->control_h2d_ring
.ring_dma
);
1662 bcm4377
->ctx
->control_xfer_ring_n_entries
=
1663 cpu_to_le16(bcm4377
->control_h2d_ring
.n_entries
);
1664 bcm4377
->ctx
->control_xfer_ring_doorbell
=
1665 cpu_to_le16(bcm4377
->control_h2d_ring
.doorbell
);
1666 bcm4377
->ctx
->control_xfer_ring_msi
= 0;
1667 bcm4377
->ctx
->control_xfer_ring_header_size
= 0;
1668 bcm4377
->ctx
->control_xfer_ring_footer_size
=
1669 bcm4377
->control_h2d_ring
.payload_size
/ 4;
1671 dev_dbg(&bcm4377
->pdev
->dev
, "context initialized at IOVA %pad",
1677 static int bcm4377_prepare_rings(struct bcm4377_data
*bcm4377
)
1682 * Even though many of these settings appear to be configurable
1683 * when sending the "create ring" messages most of these are
1684 * actually hardcoded in some (and quite possibly all) firmware versions
1685 * and changing them on the host has no effect.
1686 * Specifically, this applies to at least the doorbells, the transfer
1687 * and completion ring ids and their mapping (e.g. both HCI and ACL
1688 * entries will always be queued in completion rings 1 and 2 no matter
1689 * what we configure here).
1691 bcm4377
->control_ack_ring
.ring_id
= BCM4377_ACK_RING_CONTROL
;
1692 bcm4377
->control_ack_ring
.n_entries
= 32;
1693 bcm4377
->control_ack_ring
.transfer_rings
=
1694 BIT(BCM4377_XFER_RING_CONTROL
);
1696 bcm4377
->hci_acl_ack_ring
.ring_id
= BCM4377_ACK_RING_HCI_ACL
;
1697 bcm4377
->hci_acl_ack_ring
.n_entries
= 2 * BCM4377_RING_N_ENTRIES
;
1698 bcm4377
->hci_acl_ack_ring
.transfer_rings
=
1699 BIT(BCM4377_XFER_RING_HCI_H2D
) | BIT(BCM4377_XFER_RING_ACL_H2D
);
1700 bcm4377
->hci_acl_ack_ring
.delay
= 1000;
1703 * A payload size of MAX_EVENT_PAYLOAD_SIZE is enough here since large
1704 * ACL packets will be transmitted inside buffers mapped via
1705 * acl_d2h_ring anyway.
1707 bcm4377
->hci_acl_event_ring
.ring_id
= BCM4377_EVENT_RING_HCI_ACL
;
1708 bcm4377
->hci_acl_event_ring
.payload_size
= MAX_EVENT_PAYLOAD_SIZE
;
1709 bcm4377
->hci_acl_event_ring
.n_entries
= 2 * BCM4377_RING_N_ENTRIES
;
1710 bcm4377
->hci_acl_event_ring
.transfer_rings
=
1711 BIT(BCM4377_XFER_RING_HCI_D2H
) | BIT(BCM4377_XFER_RING_ACL_D2H
);
1712 bcm4377
->hci_acl_event_ring
.delay
= 1000;
1714 bcm4377
->sco_ack_ring
.ring_id
= BCM4377_ACK_RING_SCO
;
1715 bcm4377
->sco_ack_ring
.n_entries
= BCM4377_RING_N_ENTRIES
;
1716 bcm4377
->sco_ack_ring
.transfer_rings
= BIT(BCM4377_XFER_RING_SCO_H2D
);
1718 bcm4377
->sco_event_ring
.ring_id
= BCM4377_EVENT_RING_SCO
;
1719 bcm4377
->sco_event_ring
.payload_size
= MAX_SCO_PAYLOAD_SIZE
;
1720 bcm4377
->sco_event_ring
.n_entries
= BCM4377_RING_N_ENTRIES
;
1721 bcm4377
->sco_event_ring
.transfer_rings
= BIT(BCM4377_XFER_RING_SCO_D2H
);
1723 bcm4377
->control_h2d_ring
.ring_id
= BCM4377_XFER_RING_CONTROL
;
1724 bcm4377
->control_h2d_ring
.doorbell
= BCM4377_DOORBELL_CONTROL
;
1725 bcm4377
->control_h2d_ring
.payload_size
= BCM4377_CONTROL_MSG_SIZE
;
1726 bcm4377
->control_h2d_ring
.completion_ring
= BCM4377_ACK_RING_CONTROL
;
1727 bcm4377
->control_h2d_ring
.allow_wait
= true;
1728 bcm4377
->control_h2d_ring
.n_entries
= BCM4377_RING_N_ENTRIES
;
1730 bcm4377
->hci_h2d_ring
.ring_id
= BCM4377_XFER_RING_HCI_H2D
;
1731 bcm4377
->hci_h2d_ring
.doorbell
= BCM4377_DOORBELL_HCI_H2D
;
1732 bcm4377
->hci_h2d_ring
.payload_size
= MAX_EVENT_PAYLOAD_SIZE
;
1733 bcm4377
->hci_h2d_ring
.completion_ring
= BCM4377_ACK_RING_HCI_ACL
;
1734 bcm4377
->hci_h2d_ring
.n_entries
= BCM4377_RING_N_ENTRIES
;
1736 bcm4377
->hci_d2h_ring
.ring_id
= BCM4377_XFER_RING_HCI_D2H
;
1737 bcm4377
->hci_d2h_ring
.doorbell
= BCM4377_DOORBELL_HCI_D2H
;
1738 bcm4377
->hci_d2h_ring
.completion_ring
= BCM4377_EVENT_RING_HCI_ACL
;
1739 bcm4377
->hci_d2h_ring
.virtual = true;
1740 bcm4377
->hci_d2h_ring
.n_entries
= BCM4377_RING_N_ENTRIES
;
1742 bcm4377
->sco_h2d_ring
.ring_id
= BCM4377_XFER_RING_SCO_H2D
;
1743 bcm4377
->sco_h2d_ring
.doorbell
= BCM4377_DOORBELL_SCO
;
1744 bcm4377
->sco_h2d_ring
.payload_size
= MAX_SCO_PAYLOAD_SIZE
;
1745 bcm4377
->sco_h2d_ring
.completion_ring
= BCM4377_ACK_RING_SCO
;
1746 bcm4377
->sco_h2d_ring
.sync
= true;
1747 bcm4377
->sco_h2d_ring
.n_entries
= BCM4377_RING_N_ENTRIES
;
1749 bcm4377
->sco_d2h_ring
.ring_id
= BCM4377_XFER_RING_SCO_D2H
;
1750 bcm4377
->sco_d2h_ring
.doorbell
= BCM4377_DOORBELL_SCO
;
1751 bcm4377
->sco_d2h_ring
.completion_ring
= BCM4377_EVENT_RING_SCO
;
1752 bcm4377
->sco_d2h_ring
.virtual = true;
1753 bcm4377
->sco_d2h_ring
.sync
= true;
1754 bcm4377
->sco_d2h_ring
.n_entries
= BCM4377_RING_N_ENTRIES
;
1757 * This ring has to use mapped_payload_size because the largest ACL
1758 * packet doesn't fit inside the largest possible footer
1760 bcm4377
->acl_h2d_ring
.ring_id
= BCM4377_XFER_RING_ACL_H2D
;
1761 bcm4377
->acl_h2d_ring
.doorbell
= BCM4377_DOORBELL_ACL_H2D
;
1762 bcm4377
->acl_h2d_ring
.mapped_payload_size
= MAX_ACL_PAYLOAD_SIZE
;
1763 bcm4377
->acl_h2d_ring
.completion_ring
= BCM4377_ACK_RING_HCI_ACL
;
1764 bcm4377
->acl_h2d_ring
.n_entries
= BCM4377_RING_N_ENTRIES
;
1767 * This ring only contains empty buffers to be used by incoming
1768 * ACL packets that do not fit inside the footer of hci_acl_event_ring
1770 bcm4377
->acl_d2h_ring
.ring_id
= BCM4377_XFER_RING_ACL_D2H
;
1771 bcm4377
->acl_d2h_ring
.doorbell
= BCM4377_DOORBELL_ACL_D2H
;
1772 bcm4377
->acl_d2h_ring
.completion_ring
= BCM4377_EVENT_RING_HCI_ACL
;
1773 bcm4377
->acl_d2h_ring
.d2h_buffers_only
= true;
1774 bcm4377
->acl_d2h_ring
.mapped_payload_size
= MAX_ACL_PAYLOAD_SIZE
;
1775 bcm4377
->acl_d2h_ring
.n_entries
= BCM4377_RING_N_ENTRIES
;
1778 * no need for any cleanup since this is only called from _probe
1779 * and only devres-managed allocations are used
1781 ret
= bcm4377_alloc_transfer_ring(bcm4377
, &bcm4377
->control_h2d_ring
);
1784 ret
= bcm4377_alloc_transfer_ring(bcm4377
, &bcm4377
->hci_h2d_ring
);
1787 ret
= bcm4377_alloc_transfer_ring(bcm4377
, &bcm4377
->hci_d2h_ring
);
1790 ret
= bcm4377_alloc_transfer_ring(bcm4377
, &bcm4377
->sco_h2d_ring
);
1793 ret
= bcm4377_alloc_transfer_ring(bcm4377
, &bcm4377
->sco_d2h_ring
);
1796 ret
= bcm4377_alloc_transfer_ring(bcm4377
, &bcm4377
->acl_h2d_ring
);
1799 ret
= bcm4377_alloc_transfer_ring(bcm4377
, &bcm4377
->acl_d2h_ring
);
1803 ret
= bcm4377_alloc_completion_ring(bcm4377
,
1804 &bcm4377
->control_ack_ring
);
1807 ret
= bcm4377_alloc_completion_ring(bcm4377
,
1808 &bcm4377
->hci_acl_ack_ring
);
1811 ret
= bcm4377_alloc_completion_ring(bcm4377
,
1812 &bcm4377
->hci_acl_event_ring
);
1815 ret
= bcm4377_alloc_completion_ring(bcm4377
, &bcm4377
->sco_ack_ring
);
1818 ret
= bcm4377_alloc_completion_ring(bcm4377
, &bcm4377
->sco_event_ring
);
1822 dev_dbg(&bcm4377
->pdev
->dev
, "all rings allocated and prepared\n");
1827 static int bcm4377_boot(struct bcm4377_data
*bcm4377
)
1829 const struct firmware
*fw
;
1833 u32 bootstage
, rti_status
;
1835 bootstage
= ioread32(bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_BOOTSTAGE
);
1836 rti_status
= ioread32(bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_RTI_STATUS
);
1838 if (bootstage
!= 0) {
1839 dev_err(&bcm4377
->pdev
->dev
, "bootstage is %d and not 0\n",
1844 if (rti_status
!= 0) {
1845 dev_err(&bcm4377
->pdev
->dev
, "RTI status is %d and not 0\n",
1850 fw
= bcm4377_request_blob(bcm4377
, "bin");
1852 dev_err(&bcm4377
->pdev
->dev
, "Failed to load firmware\n");
1856 bfr
= dma_alloc_coherent(&bcm4377
->pdev
->dev
, fw
->size
, &fw_dma
,
1860 goto out_release_fw
;
1863 memcpy(bfr
, fw
->data
, fw
->size
);
1865 iowrite32(0, bcm4377
->bar0
+ BCM4377_BAR0_HOST_WINDOW_LO
);
1866 iowrite32(0, bcm4377
->bar0
+ BCM4377_BAR0_HOST_WINDOW_HI
);
1867 iowrite32(BCM4377_DMA_MASK
,
1868 bcm4377
->bar0
+ BCM4377_BAR0_HOST_WINDOW_SIZE
);
1870 iowrite32(lower_32_bits(fw_dma
),
1871 bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_FW_LO
);
1872 iowrite32(upper_32_bits(fw_dma
),
1873 bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_FW_HI
);
1875 bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_FW_SIZE
);
1876 iowrite32(0, bcm4377
->bar0
+ BCM4377_BAR0_FW_DOORBELL
);
1878 dev_dbg(&bcm4377
->pdev
->dev
, "waiting for firmware to boot\n");
1880 ret
= wait_for_completion_interruptible_timeout(&bcm4377
->event
,
1881 BCM4377_BOOT_TIMEOUT
);
1885 } else if (ret
< 0) {
1889 if (bcm4377
->bootstage
!= 2) {
1890 dev_err(&bcm4377
->pdev
->dev
, "boostage %d != 2\n",
1891 bcm4377
->bootstage
);
1896 dev_dbg(&bcm4377
->pdev
->dev
, "firmware has booted (stage = %x)\n",
1897 bcm4377
->bootstage
);
1901 dma_free_coherent(&bcm4377
->pdev
->dev
, fw
->size
, bfr
, fw_dma
);
1903 release_firmware(fw
);
1907 static int bcm4377_setup_rti(struct bcm4377_data
*bcm4377
)
1911 dev_dbg(&bcm4377
->pdev
->dev
, "starting RTI\n");
1912 iowrite32(1, bcm4377
->bar0
+ BCM4377_BAR0_RTI_CONTROL
);
1914 ret
= wait_for_completion_interruptible_timeout(&bcm4377
->event
,
1917 dev_err(&bcm4377
->pdev
->dev
,
1918 "timed out while waiting for RTI to transition to state 1");
1920 } else if (ret
< 0) {
1924 if (bcm4377
->rti_status
!= 1) {
1925 dev_err(&bcm4377
->pdev
->dev
, "RTI did not ack state 1 (%d)\n",
1926 bcm4377
->rti_status
);
1929 dev_dbg(&bcm4377
->pdev
->dev
, "RTI is in state 1\n");
1931 /* allow access to the entire IOVA space again */
1932 iowrite32(0, bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_RTI_WINDOW_LO
);
1933 iowrite32(0, bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_RTI_WINDOW_HI
);
1934 iowrite32(BCM4377_DMA_MASK
,
1935 bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_RTI_WINDOW_SIZE
);
1937 /* setup "Converged IPC" context */
1938 iowrite32(lower_32_bits(bcm4377
->ctx_dma
),
1939 bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_CONTEXT_ADDR_LO
);
1940 iowrite32(upper_32_bits(bcm4377
->ctx_dma
),
1941 bcm4377
->bar2
+ bcm4377
->hw
->bar2_offset
+ BCM4377_BAR2_CONTEXT_ADDR_HI
);
1942 iowrite32(2, bcm4377
->bar0
+ BCM4377_BAR0_RTI_CONTROL
);
1944 ret
= wait_for_completion_interruptible_timeout(&bcm4377
->event
,
1947 dev_err(&bcm4377
->pdev
->dev
,
1948 "timed out while waiting for RTI to transition to state 2");
1950 } else if (ret
< 0) {
1954 if (bcm4377
->rti_status
!= 2) {
1955 dev_err(&bcm4377
->pdev
->dev
, "RTI did not ack state 2 (%d)\n",
1956 bcm4377
->rti_status
);
1960 dev_dbg(&bcm4377
->pdev
->dev
,
1961 "RTI is in state 2; control ring is ready\n");
1962 bcm4377
->control_ack_ring
.enabled
= true;
1967 static int bcm4377_parse_otp_board_params(struct bcm4377_data
*bcm4377
,
1968 char tag
, const char *val
, size_t len
)
1972 if (len
>= sizeof(bcm4377
->vendor
))
1975 strscpy(bcm4377
->vendor
, val
, len
+ 1);
1979 static int bcm4377_parse_otp_chip_params(struct bcm4377_data
*bcm4377
, char tag
,
1980 const char *val
, size_t len
)
1986 if (len
>= sizeof(bcm4377
->stepping
))
1990 bcm4377
->stepping
[idx
] = tolower(val
[idx
]);
1991 if (val
[idx
] == '\0')
1998 bcm4377
->stepping
[idx
] = '\0';
2002 static int bcm4377_parse_otp_str(struct bcm4377_data
*bcm4377
, const u8
*str
,
2003 enum bcm4377_otp_params_type type
)
2008 p
= skip_spaces(str
);
2014 if (*p
++ != '=') /* implicit NUL check */
2017 /* *p might be NUL here, if so end == p and len == 0 */
2018 end
= strchrnul(p
, ' ');
2021 /* leave 1 byte for NUL in destination string */
2022 if (len
> (BCM4377_OTP_MAX_PARAM_LEN
- 1))
2026 case BCM4377_OTP_BOARD_PARAMS
:
2027 ret
= bcm4377_parse_otp_board_params(bcm4377
, tag
, p
,
2030 case BCM4377_OTP_CHIP_PARAMS
:
2031 ret
= bcm4377_parse_otp_chip_params(bcm4377
, tag
, p
,
2042 /* Skip to next arg, if any */
2043 p
= skip_spaces(end
);
2049 static int bcm4377_parse_otp_sys_vendor(struct bcm4377_data
*bcm4377
, u8
*otp
,
2053 const char *chip_params
;
2054 const char *board_params
;
2057 /* 4-byte header and two empty strings */
2061 if (get_unaligned_le32(otp
) != BCM4377_OTP_VENDOR_HDR
)
2064 chip_params
= &otp
[idx
];
2066 /* Skip first string, including terminator */
2067 idx
+= strnlen(chip_params
, size
- idx
) + 1;
2071 board_params
= &otp
[idx
];
2073 /* Skip to terminator of second string */
2074 idx
+= strnlen(board_params
, size
- idx
);
2078 /* At this point both strings are guaranteed NUL-terminated */
2079 dev_dbg(&bcm4377
->pdev
->dev
,
2080 "OTP: chip_params='%s' board_params='%s'\n", chip_params
,
2083 ret
= bcm4377_parse_otp_str(bcm4377
, chip_params
,
2084 BCM4377_OTP_CHIP_PARAMS
);
2088 ret
= bcm4377_parse_otp_str(bcm4377
, board_params
,
2089 BCM4377_OTP_BOARD_PARAMS
);
2093 if (!bcm4377
->stepping
[0] || !bcm4377
->vendor
[0])
2096 dev_dbg(&bcm4377
->pdev
->dev
, "OTP: stepping=%s, vendor=%s\n",
2097 bcm4377
->stepping
, bcm4377
->vendor
);
2101 static int bcm4377_parse_otp(struct bcm4377_data
*bcm4377
)
2107 otp
= kzalloc(BCM4377_OTP_SIZE
, GFP_KERNEL
);
2111 for (i
= 0; i
< BCM4377_OTP_SIZE
; ++i
)
2112 otp
[i
] = ioread8(bcm4377
->bar0
+ bcm4377
->hw
->otp_offset
+ i
);
2115 while (i
< (BCM4377_OTP_SIZE
- 1)) {
2117 u8 length
= otp
[i
+ 1];
2122 if ((i
+ 2 + length
) > BCM4377_OTP_SIZE
)
2126 case BCM4377_OTP_SYS_VENDOR
:
2127 dev_dbg(&bcm4377
->pdev
->dev
,
2128 "OTP @ 0x%x (%d): SYS_VENDOR", i
, length
);
2129 ret
= bcm4377_parse_otp_sys_vendor(bcm4377
, &otp
[i
+ 2],
2132 case BCM4377_OTP_CIS
:
2133 dev_dbg(&bcm4377
->pdev
->dev
, "OTP @ 0x%x (%d): CIS", i
,
2137 dev_dbg(&bcm4377
->pdev
->dev
, "OTP @ 0x%x (%d): unknown",
2149 static int bcm4377_init_cfg(struct bcm4377_data
*bcm4377
)
2154 ret
= pci_write_config_dword(bcm4377
->pdev
,
2155 BCM4377_PCIECFG_BAR0_WINDOW1
,
2156 bcm4377
->hw
->bar0_window1
);
2160 ret
= pci_write_config_dword(bcm4377
->pdev
,
2161 BCM4377_PCIECFG_BAR0_WINDOW2
,
2162 bcm4377
->hw
->bar0_window2
);
2166 ret
= pci_write_config_dword(
2167 bcm4377
->pdev
, BCM4377_PCIECFG_BAR0_CORE2_WINDOW1
,
2168 BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT
);
2172 if (bcm4377
->hw
->has_bar0_core2_window2
) {
2173 ret
= pci_write_config_dword(bcm4377
->pdev
,
2174 BCM4377_PCIECFG_BAR0_CORE2_WINDOW2
,
2175 bcm4377
->hw
->bar0_core2_window2
);
2180 ret
= pci_write_config_dword(bcm4377
->pdev
, BCM4377_PCIECFG_BAR2_WINDOW
,
2181 BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT
);
2185 ret
= pci_read_config_dword(bcm4377
->pdev
,
2186 BCM4377_PCIECFG_SUBSYSTEM_CTRL
, &ctrl
);
2190 if (bcm4377
->hw
->clear_pciecfg_subsystem_ctrl_bit19
)
2194 return pci_write_config_dword(bcm4377
->pdev
,
2195 BCM4377_PCIECFG_SUBSYSTEM_CTRL
, ctrl
);
2198 static int bcm4377_probe_dmi(struct bcm4377_data
*bcm4377
)
2200 const struct dmi_system_id
*board_type_dmi_id
;
2202 board_type_dmi_id
= dmi_first_match(bcm4377_dmi_board_table
);
2203 if (board_type_dmi_id
&& board_type_dmi_id
->driver_data
) {
2204 bcm4377
->board_type
= board_type_dmi_id
->driver_data
;
2205 dev_dbg(&bcm4377
->pdev
->dev
,
2206 "found board type via DMI match: %s\n",
2207 bcm4377
->board_type
);
2213 static int bcm4377_probe_of(struct bcm4377_data
*bcm4377
)
2215 struct device_node
*np
= bcm4377
->pdev
->dev
.of_node
;
2221 ret
= of_property_read_string(np
, "brcm,board-type",
2222 &bcm4377
->board_type
);
2224 dev_err(&bcm4377
->pdev
->dev
, "no brcm,board-type property\n");
2228 bcm4377
->taurus_beamforming_cal_blob
=
2229 of_get_property(np
, "brcm,taurus-bf-cal-blob",
2230 &bcm4377
->taurus_beamforming_cal_size
);
2231 if (!bcm4377
->taurus_beamforming_cal_blob
) {
2232 dev_err(&bcm4377
->pdev
->dev
,
2233 "no brcm,taurus-bf-cal-blob property\n");
2236 bcm4377
->taurus_cal_blob
= of_get_property(np
, "brcm,taurus-cal-blob",
2237 &bcm4377
->taurus_cal_size
);
2238 if (!bcm4377
->taurus_cal_blob
) {
2239 dev_err(&bcm4377
->pdev
->dev
,
2240 "no brcm,taurus-cal-blob property\n");
2247 static void bcm4377_disable_aspm(struct bcm4377_data
*bcm4377
)
2249 pci_disable_link_state(bcm4377
->pdev
,
2250 PCIE_LINK_STATE_L0S
| PCIE_LINK_STATE_L1
);
2253 * pci_disable_link_state can fail if either CONFIG_PCIEASPM is disabled
2254 * or if the BIOS hasn't handed over control to us. We must *always*
2255 * disable ASPM for this device due to hardware errata though.
2257 pcie_capability_clear_word(bcm4377
->pdev
, PCI_EXP_LNKCTL
,
2258 PCI_EXP_LNKCTL_ASPMC
);
2261 static void bcm4377_pci_free_irq_vectors(void *data
)
2263 pci_free_irq_vectors(data
);
2266 static void bcm4377_hci_free_dev(void *data
)
2271 static void bcm4377_hci_unregister_dev(void *data
)
2273 hci_unregister_dev(data
);
2276 static int bcm4377_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2278 struct bcm4377_data
*bcm4377
;
2279 struct hci_dev
*hdev
;
2282 ret
= dma_set_mask_and_coherent(&pdev
->dev
, BCM4377_DMA_MASK
);
2286 bcm4377
= devm_kzalloc(&pdev
->dev
, sizeof(*bcm4377
), GFP_KERNEL
);
2290 bcm4377
->pdev
= pdev
;
2291 bcm4377
->hw
= &bcm4377_hw_variants
[id
->driver_data
];
2292 init_completion(&bcm4377
->event
);
2294 ret
= bcm4377_prepare_rings(bcm4377
);
2298 ret
= bcm4377_init_context(bcm4377
);
2302 ret
= bcm4377_probe_dmi(bcm4377
);
2305 ret
= bcm4377_probe_of(bcm4377
);
2308 if (!bcm4377
->board_type
) {
2309 dev_err(&pdev
->dev
, "unable to determine board type\n");
2313 if (bcm4377
->hw
->disable_aspm
)
2314 bcm4377_disable_aspm(bcm4377
);
2316 ret
= pci_reset_function_locked(pdev
);
2320 "function level reset failed with %d; trying to continue anyway\n",
2324 * If this number is too low and we try to access any BAR too
2325 * early the device will crash. Experiments have shown that
2326 * approximately 50 msec is the minimum amount we have to wait.
2327 * Let's double that to be safe.
2331 ret
= pcim_enable_device(pdev
);
2334 pci_set_master(pdev
);
2336 ret
= bcm4377_init_cfg(bcm4377
);
2340 bcm4377
->bar0
= pcim_iomap(pdev
, 0, 0);
2343 bcm4377
->bar2
= pcim_iomap(pdev
, 2, 0);
2347 ret
= bcm4377_parse_otp(bcm4377
);
2349 dev_err(&pdev
->dev
, "Reading OTP failed with %d\n", ret
);
2354 * Legacy interrupts result in an IRQ storm because we don't know where
2355 * the interrupt mask and status registers for these chips are.
2356 * MSIs are acked automatically instead.
2358 ret
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_MSI
);
2361 ret
= devm_add_action_or_reset(&pdev
->dev
, bcm4377_pci_free_irq_vectors
,
2366 irq
= pci_irq_vector(pdev
, 0);
2370 ret
= devm_request_irq(&pdev
->dev
, irq
, bcm4377_irq
, 0, "bcm4377",
2375 hdev
= hci_alloc_dev();
2378 ret
= devm_add_action_or_reset(&pdev
->dev
, bcm4377_hci_free_dev
, hdev
);
2382 bcm4377
->hdev
= hdev
;
2384 hdev
->bus
= HCI_PCI
;
2385 hdev
->open
= bcm4377_hci_open
;
2386 hdev
->close
= bcm4377_hci_close
;
2387 hdev
->send
= bcm4377_hci_send_frame
;
2388 hdev
->set_bdaddr
= bcm4377_hci_set_bdaddr
;
2389 hdev
->setup
= bcm4377_hci_setup
;
2391 if (bcm4377
->hw
->broken_mws_transport_config
)
2392 set_bit(HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG
, &hdev
->quirks
);
2393 if (bcm4377
->hw
->broken_ext_scan
)
2394 set_bit(HCI_QUIRK_BROKEN_EXT_SCAN
, &hdev
->quirks
);
2395 if (bcm4377
->hw
->broken_le_coded
)
2396 set_bit(HCI_QUIRK_BROKEN_LE_CODED
, &hdev
->quirks
);
2397 if (bcm4377
->hw
->broken_le_ext_adv_report_phy
)
2398 set_bit(HCI_QUIRK_FIXUP_LE_EXT_ADV_REPORT_PHY
, &hdev
->quirks
);
2400 pci_set_drvdata(pdev
, bcm4377
);
2401 hci_set_drvdata(hdev
, bcm4377
);
2402 SET_HCIDEV_DEV(hdev
, &pdev
->dev
);
2404 ret
= bcm4377_boot(bcm4377
);
2408 ret
= bcm4377_setup_rti(bcm4377
);
2412 ret
= hci_register_dev(hdev
);
2415 return devm_add_action_or_reset(&pdev
->dev
, bcm4377_hci_unregister_dev
,
2419 static int bcm4377_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2421 struct bcm4377_data
*bcm4377
= pci_get_drvdata(pdev
);
2424 ret
= hci_suspend_dev(bcm4377
->hdev
);
2428 iowrite32(BCM4377_BAR0_SLEEP_CONTROL_QUIESCE
,
2429 bcm4377
->bar0
+ BCM4377_BAR0_SLEEP_CONTROL
);
2434 static int bcm4377_resume(struct pci_dev
*pdev
)
2436 struct bcm4377_data
*bcm4377
= pci_get_drvdata(pdev
);
2438 iowrite32(BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE
,
2439 bcm4377
->bar0
+ BCM4377_BAR0_SLEEP_CONTROL
);
2441 return hci_resume_dev(bcm4377
->hdev
);
2444 static const struct dmi_system_id bcm4377_dmi_board_table
[] = {
2447 DMI_MATCH(DMI_BOARD_VENDOR
, "Apple Inc."),
2448 DMI_MATCH(DMI_PRODUCT_NAME
, "MacBookAir9,1"),
2450 .driver_data
= "apple,formosa",
2454 DMI_MATCH(DMI_BOARD_VENDOR
, "Apple Inc."),
2455 DMI_MATCH(DMI_PRODUCT_NAME
, "MacBookPro15,4"),
2457 .driver_data
= "apple,formosa",
2461 DMI_MATCH(DMI_BOARD_VENDOR
, "Apple Inc."),
2462 DMI_MATCH(DMI_PRODUCT_NAME
, "MacBookPro16,3"),
2464 .driver_data
= "apple,formosa",
2469 static const struct bcm4377_hw bcm4377_hw_variants
[] = {
2472 .otp_offset
= 0x4120,
2473 .bar0_window1
= 0x1800b000,
2474 .bar0_window2
= 0x1810c000,
2475 .disable_aspm
= true,
2476 .broken_ext_scan
= true,
2477 .send_ptb
= bcm4377_send_ptb
,
2482 .otp_offset
= 0x4120,
2483 .bar0_window1
= 0x18002000,
2484 .bar0_window2
= 0x1810a000,
2485 .bar0_core2_window2
= 0x18107000,
2486 .has_bar0_core2_window2
= true,
2487 .broken_mws_transport_config
= true,
2488 .broken_le_coded
= true,
2489 .send_calibration
= bcm4378_send_calibration
,
2490 .send_ptb
= bcm4378_send_ptb
,
2495 .otp_offset
= 0x413c,
2496 .bar0_window1
= 0x18002000,
2497 .bar0_window2
= 0x18109000,
2498 .bar0_core2_window2
= 0x18106000,
2499 .has_bar0_core2_window2
= true,
2500 .clear_pciecfg_subsystem_ctrl_bit19
= true,
2501 .broken_mws_transport_config
= true,
2502 .broken_le_coded
= true,
2503 .broken_le_ext_adv_report_phy
= true,
2504 .send_calibration
= bcm4387_send_calibration
,
2505 .send_ptb
= bcm4378_send_ptb
,
2510 .otp_offset
= 0x415c,
2511 .bar2_offset
= 0x200000,
2512 .bar0_window1
= 0x18002000,
2513 .bar0_window2
= 0x18109000,
2514 .bar0_core2_window2
= 0x18106000,
2515 .has_bar0_core2_window2
= true,
2516 .broken_mws_transport_config
= true,
2517 .broken_le_coded
= true,
2518 .broken_le_ext_adv_report_phy
= true,
2519 .send_calibration
= bcm4388_send_calibration
,
2520 .send_ptb
= bcm4378_send_ptb
,
2524 #define BCM4377_DEVID_ENTRY(id) \
2526 PCI_VENDOR_ID_BROADCOM, BCM##id##_DEVICE_ID, PCI_ANY_ID, \
2527 PCI_ANY_ID, PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, \
2531 static const struct pci_device_id bcm4377_devid_table
[] = {
2532 BCM4377_DEVID_ENTRY(4377),
2533 BCM4377_DEVID_ENTRY(4378),
2534 BCM4377_DEVID_ENTRY(4387),
2535 BCM4377_DEVID_ENTRY(4388),
2538 MODULE_DEVICE_TABLE(pci
, bcm4377_devid_table
);
2540 static struct pci_driver bcm4377_pci_driver
= {
2541 .name
= "hci_bcm4377",
2542 .id_table
= bcm4377_devid_table
,
2543 .probe
= bcm4377_probe
,
2544 .suspend
= bcm4377_suspend
,
2545 .resume
= bcm4377_resume
,
2547 module_pci_driver(bcm4377_pci_driver
);
2549 MODULE_AUTHOR("Sven Peter <sven@svenpeter.dev>");
2550 MODULE_DESCRIPTION("Bluetooth support for Broadcom 4377/4378/4387/4388 devices");
2551 MODULE_LICENSE("Dual MIT/GPL");
2552 MODULE_FIRMWARE("brcm/brcmbt4377*.bin");
2553 MODULE_FIRMWARE("brcm/brcmbt4377*.ptb");
2554 MODULE_FIRMWARE("brcm/brcmbt4378*.bin");
2555 MODULE_FIRMWARE("brcm/brcmbt4378*.ptb");
2556 MODULE_FIRMWARE("brcm/brcmbt4387*.bin");
2557 MODULE_FIRMWARE("brcm/brcmbt4387*.ptb");
2558 MODULE_FIRMWARE("brcm/brcmbt4388*.bin");
2559 MODULE_FIRMWARE("brcm/brcmbt4388*.ptb");