Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / char / ipmi / ipmi_si_intf.c
blobeea23a3b966ef1c317a948685cf95bc476081b55
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_si.c
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6 * BT).
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
10 * source@mvista.com
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
22 #define pr_fmt(fmt) "ipmi_si: " fmt
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include "ipmi_si_sm.h"
44 #include <linux/string.h>
45 #include <linux/ctype.h>
47 /* Measure times between events in the driver. */
48 #undef DEBUG_TIMING
50 /* Call every 10 ms. */
51 #define SI_TIMEOUT_TIME_USEC 10000
52 #define SI_USEC_PER_JIFFY (1000000/HZ)
53 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
55 short timeout */
57 enum si_intf_state {
58 SI_NORMAL,
59 SI_GETTING_FLAGS,
60 SI_GETTING_EVENTS,
61 SI_CLEARING_FLAGS,
62 SI_GETTING_MESSAGES,
63 SI_CHECKING_ENABLES,
64 SI_SETTING_ENABLES
65 /* FIXME - add watchdog stuff. */
68 /* Some BT-specific defines we need here. */
69 #define IPMI_BT_INTMASK_REG 2
70 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
71 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
73 /* 'invalid' to allow a firmware-specified interface to be disabled */
74 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
76 static bool initialized;
79 * Indexes into stats[] in smi_info below.
81 enum si_stat_indexes {
83 * Number of times the driver requested a timer while an operation
84 * was in progress.
86 SI_STAT_short_timeouts = 0,
89 * Number of times the driver requested a timer while nothing was in
90 * progress.
92 SI_STAT_long_timeouts,
94 /* Number of times the interface was idle while being polled. */
95 SI_STAT_idles,
97 /* Number of interrupts the driver handled. */
98 SI_STAT_interrupts,
100 /* Number of time the driver got an ATTN from the hardware. */
101 SI_STAT_attentions,
103 /* Number of times the driver requested flags from the hardware. */
104 SI_STAT_flag_fetches,
106 /* Number of times the hardware didn't follow the state machine. */
107 SI_STAT_hosed_count,
109 /* Number of completed messages. */
110 SI_STAT_complete_transactions,
112 /* Number of IPMI events received from the hardware. */
113 SI_STAT_events,
115 /* Number of watchdog pretimeouts. */
116 SI_STAT_watchdog_pretimeouts,
118 /* Number of asynchronous messages received. */
119 SI_STAT_incoming_messages,
122 /* This *must* remain last, add new values above this. */
123 SI_NUM_STATS
126 struct smi_info {
127 int si_num;
128 struct ipmi_smi *intf;
129 struct si_sm_data *si_sm;
130 const struct si_sm_handlers *handlers;
131 spinlock_t si_lock;
132 struct ipmi_smi_msg *waiting_msg;
133 struct ipmi_smi_msg *curr_msg;
134 enum si_intf_state si_state;
137 * Used to handle the various types of I/O that can occur with
138 * IPMI
140 struct si_sm_io io;
143 * Per-OEM handler, called from handle_flags(). Returns 1
144 * when handle_flags() needs to be re-run or 0 indicating it
145 * set si_state itself.
147 int (*oem_data_avail_handler)(struct smi_info *smi_info);
150 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
151 * is set to hold the flags until we are done handling everything
152 * from the flags.
154 #define RECEIVE_MSG_AVAIL 0x01
155 #define EVENT_MSG_BUFFER_FULL 0x02
156 #define WDT_PRE_TIMEOUT_INT 0x08
157 #define OEM0_DATA_AVAIL 0x20
158 #define OEM1_DATA_AVAIL 0x40
159 #define OEM2_DATA_AVAIL 0x80
160 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
161 OEM1_DATA_AVAIL | \
162 OEM2_DATA_AVAIL)
163 unsigned char msg_flags;
165 /* Does the BMC have an event buffer? */
166 bool has_event_buffer;
169 * If set to true, this will request events the next time the
170 * state machine is idle.
172 atomic_t req_events;
175 * If true, run the state machine to completion on every send
176 * call. Generally used after a panic to make sure stuff goes
177 * out.
179 bool run_to_completion;
181 /* The timer for this si. */
182 struct timer_list si_timer;
184 /* This flag is set, if the timer can be set */
185 bool timer_can_start;
187 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
188 bool timer_running;
190 /* The time (in jiffies) the last timeout occurred at. */
191 unsigned long last_timeout_jiffies;
193 /* Are we waiting for the events, pretimeouts, received msgs? */
194 atomic_t need_watch;
197 * The driver will disable interrupts when it gets into a
198 * situation where it cannot handle messages due to lack of
199 * memory. Once that situation clears up, it will re-enable
200 * interrupts.
202 bool interrupt_disabled;
205 * Does the BMC support events?
207 bool supports_event_msg_buff;
210 * Can we disable interrupts the global enables receive irq
211 * bit? There are currently two forms of brokenness, some
212 * systems cannot disable the bit (which is technically within
213 * the spec but a bad idea) and some systems have the bit
214 * forced to zero even though interrupts work (which is
215 * clearly outside the spec). The next bool tells which form
216 * of brokenness is present.
218 bool cannot_disable_irq;
221 * Some systems are broken and cannot set the irq enable
222 * bit, even if they support interrupts.
224 bool irq_enable_broken;
226 /* Is the driver in maintenance mode? */
227 bool in_maintenance_mode;
230 * Did we get an attention that we did not handle?
232 bool got_attn;
234 /* From the get device id response... */
235 struct ipmi_device_id device_id;
237 /* Have we added the device group to the device? */
238 bool dev_group_added;
240 /* Counters and things for the proc filesystem. */
241 atomic_t stats[SI_NUM_STATS];
243 struct task_struct *thread;
245 struct list_head link;
248 #define smi_inc_stat(smi, stat) \
249 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
250 #define smi_get_stat(smi, stat) \
251 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
253 #define IPMI_MAX_INTFS 4
254 static int force_kipmid[IPMI_MAX_INTFS];
255 static int num_force_kipmid;
257 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
258 static int num_max_busy_us;
260 static bool unload_when_empty = true;
262 static int try_smi_init(struct smi_info *smi);
263 static void cleanup_one_si(struct smi_info *smi_info);
264 static void cleanup_ipmi_si(void);
266 #ifdef DEBUG_TIMING
267 void debug_timestamp(struct smi_info *smi_info, char *msg)
269 struct timespec64 t;
271 ktime_get_ts64(&t);
272 dev_dbg(smi_info->io.dev, "**%s: %lld.%9.9ld\n",
273 msg, t.tv_sec, t.tv_nsec);
275 #else
276 #define debug_timestamp(smi_info, x)
277 #endif
279 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
280 static int register_xaction_notifier(struct notifier_block *nb)
282 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
285 static void deliver_recv_msg(struct smi_info *smi_info,
286 struct ipmi_smi_msg *msg)
288 /* Deliver the message to the upper layer. */
289 ipmi_smi_msg_received(smi_info->intf, msg);
292 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
294 struct ipmi_smi_msg *msg = smi_info->curr_msg;
296 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
297 cCode = IPMI_ERR_UNSPECIFIED;
298 /* else use it as is */
300 /* Make it a response */
301 msg->rsp[0] = msg->data[0] | 4;
302 msg->rsp[1] = msg->data[1];
303 msg->rsp[2] = cCode;
304 msg->rsp_size = 3;
306 smi_info->curr_msg = NULL;
307 deliver_recv_msg(smi_info, msg);
310 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
312 int rv;
314 if (!smi_info->waiting_msg) {
315 smi_info->curr_msg = NULL;
316 rv = SI_SM_IDLE;
317 } else {
318 int err;
320 smi_info->curr_msg = smi_info->waiting_msg;
321 smi_info->waiting_msg = NULL;
322 debug_timestamp(smi_info, "Start2");
323 err = atomic_notifier_call_chain(&xaction_notifier_list,
324 0, smi_info);
325 if (err & NOTIFY_STOP_MASK) {
326 rv = SI_SM_CALL_WITHOUT_DELAY;
327 goto out;
329 err = smi_info->handlers->start_transaction(
330 smi_info->si_sm,
331 smi_info->curr_msg->data,
332 smi_info->curr_msg->data_size);
333 if (err)
334 return_hosed_msg(smi_info, err);
336 rv = SI_SM_CALL_WITHOUT_DELAY;
338 out:
339 return rv;
342 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
344 if (!smi_info->timer_can_start)
345 return;
346 smi_info->last_timeout_jiffies = jiffies;
347 mod_timer(&smi_info->si_timer, new_val);
348 smi_info->timer_running = true;
352 * Start a new message and (re)start the timer and thread.
354 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
355 unsigned int size)
357 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
359 if (smi_info->thread)
360 wake_up_process(smi_info->thread);
362 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
365 static void start_check_enables(struct smi_info *smi_info)
367 unsigned char msg[2];
369 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
370 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
372 start_new_msg(smi_info, msg, 2);
373 smi_info->si_state = SI_CHECKING_ENABLES;
376 static void start_clear_flags(struct smi_info *smi_info)
378 unsigned char msg[3];
380 /* Make sure the watchdog pre-timeout flag is not set at startup. */
381 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
382 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
383 msg[2] = WDT_PRE_TIMEOUT_INT;
385 start_new_msg(smi_info, msg, 3);
386 smi_info->si_state = SI_CLEARING_FLAGS;
389 static void start_getting_msg_queue(struct smi_info *smi_info)
391 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
392 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
393 smi_info->curr_msg->data_size = 2;
395 start_new_msg(smi_info, smi_info->curr_msg->data,
396 smi_info->curr_msg->data_size);
397 smi_info->si_state = SI_GETTING_MESSAGES;
400 static void start_getting_events(struct smi_info *smi_info)
402 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
403 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
404 smi_info->curr_msg->data_size = 2;
406 start_new_msg(smi_info, smi_info->curr_msg->data,
407 smi_info->curr_msg->data_size);
408 smi_info->si_state = SI_GETTING_EVENTS;
412 * When we have a situtaion where we run out of memory and cannot
413 * allocate messages, we just leave them in the BMC and run the system
414 * polled until we can allocate some memory. Once we have some
415 * memory, we will re-enable the interrupt.
417 * Note that we cannot just use disable_irq(), since the interrupt may
418 * be shared.
420 static inline bool disable_si_irq(struct smi_info *smi_info)
422 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
423 smi_info->interrupt_disabled = true;
424 start_check_enables(smi_info);
425 return true;
427 return false;
430 static inline bool enable_si_irq(struct smi_info *smi_info)
432 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
433 smi_info->interrupt_disabled = false;
434 start_check_enables(smi_info);
435 return true;
437 return false;
441 * Allocate a message. If unable to allocate, start the interrupt
442 * disable process and return NULL. If able to allocate but
443 * interrupts are disabled, free the message and return NULL after
444 * starting the interrupt enable process.
446 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
448 struct ipmi_smi_msg *msg;
450 msg = ipmi_alloc_smi_msg();
451 if (!msg) {
452 if (!disable_si_irq(smi_info))
453 smi_info->si_state = SI_NORMAL;
454 } else if (enable_si_irq(smi_info)) {
455 ipmi_free_smi_msg(msg);
456 msg = NULL;
458 return msg;
461 static void handle_flags(struct smi_info *smi_info)
463 retry:
464 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
465 /* Watchdog pre-timeout */
466 smi_inc_stat(smi_info, watchdog_pretimeouts);
468 start_clear_flags(smi_info);
469 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
470 ipmi_smi_watchdog_pretimeout(smi_info->intf);
471 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
472 /* Messages available. */
473 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
474 if (!smi_info->curr_msg)
475 return;
477 start_getting_msg_queue(smi_info);
478 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
479 /* Events available. */
480 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
481 if (!smi_info->curr_msg)
482 return;
484 start_getting_events(smi_info);
485 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
486 smi_info->oem_data_avail_handler) {
487 if (smi_info->oem_data_avail_handler(smi_info))
488 goto retry;
489 } else
490 smi_info->si_state = SI_NORMAL;
494 * Global enables we care about.
496 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
497 IPMI_BMC_EVT_MSG_INTR)
499 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
500 bool *irq_on)
502 u8 enables = 0;
504 if (smi_info->supports_event_msg_buff)
505 enables |= IPMI_BMC_EVT_MSG_BUFF;
507 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
508 smi_info->cannot_disable_irq) &&
509 !smi_info->irq_enable_broken)
510 enables |= IPMI_BMC_RCV_MSG_INTR;
512 if (smi_info->supports_event_msg_buff &&
513 smi_info->io.irq && !smi_info->interrupt_disabled &&
514 !smi_info->irq_enable_broken)
515 enables |= IPMI_BMC_EVT_MSG_INTR;
517 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
519 return enables;
522 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
524 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
526 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
528 if ((bool)irqstate == irq_on)
529 return;
531 if (irq_on)
532 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
533 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
534 else
535 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
538 static void handle_transaction_done(struct smi_info *smi_info)
540 struct ipmi_smi_msg *msg;
542 debug_timestamp(smi_info, "Done");
543 switch (smi_info->si_state) {
544 case SI_NORMAL:
545 if (!smi_info->curr_msg)
546 break;
548 smi_info->curr_msg->rsp_size
549 = smi_info->handlers->get_result(
550 smi_info->si_sm,
551 smi_info->curr_msg->rsp,
552 IPMI_MAX_MSG_LENGTH);
555 * Do this here becase deliver_recv_msg() releases the
556 * lock, and a new message can be put in during the
557 * time the lock is released.
559 msg = smi_info->curr_msg;
560 smi_info->curr_msg = NULL;
561 deliver_recv_msg(smi_info, msg);
562 break;
564 case SI_GETTING_FLAGS:
566 unsigned char msg[4];
567 unsigned int len;
569 /* We got the flags from the SMI, now handle them. */
570 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
571 if (msg[2] != 0) {
572 /* Error fetching flags, just give up for now. */
573 smi_info->si_state = SI_NORMAL;
574 } else if (len < 4) {
576 * Hmm, no flags. That's technically illegal, but
577 * don't use uninitialized data.
579 smi_info->si_state = SI_NORMAL;
580 } else {
581 smi_info->msg_flags = msg[3];
582 handle_flags(smi_info);
584 break;
587 case SI_CLEARING_FLAGS:
589 unsigned char msg[3];
591 /* We cleared the flags. */
592 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
593 if (msg[2] != 0) {
594 /* Error clearing flags */
595 dev_warn_ratelimited(smi_info->io.dev,
596 "Error clearing flags: %2.2x\n", msg[2]);
598 smi_info->si_state = SI_NORMAL;
599 break;
602 case SI_GETTING_EVENTS:
604 smi_info->curr_msg->rsp_size
605 = smi_info->handlers->get_result(
606 smi_info->si_sm,
607 smi_info->curr_msg->rsp,
608 IPMI_MAX_MSG_LENGTH);
611 * Do this here becase deliver_recv_msg() releases the
612 * lock, and a new message can be put in during the
613 * time the lock is released.
615 msg = smi_info->curr_msg;
616 smi_info->curr_msg = NULL;
617 if (msg->rsp[2] != 0) {
618 /* Error getting event, probably done. */
619 msg->done(msg);
621 /* Take off the event flag. */
622 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623 handle_flags(smi_info);
624 } else {
625 smi_inc_stat(smi_info, events);
628 * Do this before we deliver the message
629 * because delivering the message releases the
630 * lock and something else can mess with the
631 * state.
633 handle_flags(smi_info);
635 deliver_recv_msg(smi_info, msg);
637 break;
640 case SI_GETTING_MESSAGES:
642 smi_info->curr_msg->rsp_size
643 = smi_info->handlers->get_result(
644 smi_info->si_sm,
645 smi_info->curr_msg->rsp,
646 IPMI_MAX_MSG_LENGTH);
649 * Do this here becase deliver_recv_msg() releases the
650 * lock, and a new message can be put in during the
651 * time the lock is released.
653 msg = smi_info->curr_msg;
654 smi_info->curr_msg = NULL;
655 if (msg->rsp[2] != 0) {
656 /* Error getting event, probably done. */
657 msg->done(msg);
659 /* Take off the msg flag. */
660 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661 handle_flags(smi_info);
662 } else {
663 smi_inc_stat(smi_info, incoming_messages);
666 * Do this before we deliver the message
667 * because delivering the message releases the
668 * lock and something else can mess with the
669 * state.
671 handle_flags(smi_info);
673 deliver_recv_msg(smi_info, msg);
675 break;
678 case SI_CHECKING_ENABLES:
680 unsigned char msg[4];
681 u8 enables;
682 bool irq_on;
684 /* We got the flags from the SMI, now handle them. */
685 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
686 if (msg[2] != 0) {
687 dev_warn_ratelimited(smi_info->io.dev,
688 "Couldn't get irq info: %x,\n"
689 "Maybe ok, but ipmi might run very slowly.\n",
690 msg[2]);
691 smi_info->si_state = SI_NORMAL;
692 break;
694 enables = current_global_enables(smi_info, 0, &irq_on);
695 if (smi_info->io.si_type == SI_BT)
696 /* BT has its own interrupt enable bit. */
697 check_bt_irq(smi_info, irq_on);
698 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
699 /* Enables are not correct, fix them. */
700 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
701 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
702 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
703 smi_info->handlers->start_transaction(
704 smi_info->si_sm, msg, 3);
705 smi_info->si_state = SI_SETTING_ENABLES;
706 } else if (smi_info->supports_event_msg_buff) {
707 smi_info->curr_msg = ipmi_alloc_smi_msg();
708 if (!smi_info->curr_msg) {
709 smi_info->si_state = SI_NORMAL;
710 break;
712 start_getting_events(smi_info);
713 } else {
714 smi_info->si_state = SI_NORMAL;
716 break;
719 case SI_SETTING_ENABLES:
721 unsigned char msg[4];
723 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
724 if (msg[2] != 0)
725 dev_warn_ratelimited(smi_info->io.dev,
726 "Could not set the global enables: 0x%x.\n",
727 msg[2]);
729 if (smi_info->supports_event_msg_buff) {
730 smi_info->curr_msg = ipmi_alloc_smi_msg();
731 if (!smi_info->curr_msg) {
732 smi_info->si_state = SI_NORMAL;
733 break;
735 start_getting_events(smi_info);
736 } else {
737 smi_info->si_state = SI_NORMAL;
739 break;
745 * Called on timeouts and events. Timeouts should pass the elapsed
746 * time, interrupts should pass in zero. Must be called with
747 * si_lock held and interrupts disabled.
749 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
750 int time)
752 enum si_sm_result si_sm_result;
754 restart:
756 * There used to be a loop here that waited a little while
757 * (around 25us) before giving up. That turned out to be
758 * pointless, the minimum delays I was seeing were in the 300us
759 * range, which is far too long to wait in an interrupt. So
760 * we just run until the state machine tells us something
761 * happened or it needs a delay.
763 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
764 time = 0;
765 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
766 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
768 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
769 smi_inc_stat(smi_info, complete_transactions);
771 handle_transaction_done(smi_info);
772 goto restart;
773 } else if (si_sm_result == SI_SM_HOSED) {
774 smi_inc_stat(smi_info, hosed_count);
777 * Do the before return_hosed_msg, because that
778 * releases the lock.
780 smi_info->si_state = SI_NORMAL;
781 if (smi_info->curr_msg != NULL) {
783 * If we were handling a user message, format
784 * a response to send to the upper layer to
785 * tell it about the error.
787 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
789 goto restart;
793 * We prefer handling attn over new messages. But don't do
794 * this if there is not yet an upper layer to handle anything.
796 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
797 unsigned char msg[2];
799 if (smi_info->si_state != SI_NORMAL) {
801 * We got an ATTN, but we are doing something else.
802 * Handle the ATTN later.
804 smi_info->got_attn = true;
805 } else {
806 smi_info->got_attn = false;
807 smi_inc_stat(smi_info, attentions);
810 * Got a attn, send down a get message flags to see
811 * what's causing it. It would be better to handle
812 * this in the upper layer, but due to the way
813 * interrupts work with the SMI, that's not really
814 * possible.
816 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
817 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
819 start_new_msg(smi_info, msg, 2);
820 smi_info->si_state = SI_GETTING_FLAGS;
821 goto restart;
825 /* If we are currently idle, try to start the next message. */
826 if (si_sm_result == SI_SM_IDLE) {
827 smi_inc_stat(smi_info, idles);
829 si_sm_result = start_next_msg(smi_info);
830 if (si_sm_result != SI_SM_IDLE)
831 goto restart;
834 if ((si_sm_result == SI_SM_IDLE)
835 && (atomic_read(&smi_info->req_events))) {
837 * We are idle and the upper layer requested that I fetch
838 * events, so do so.
840 atomic_set(&smi_info->req_events, 0);
843 * Take this opportunity to check the interrupt and
844 * message enable state for the BMC. The BMC can be
845 * asynchronously reset, and may thus get interrupts
846 * disable and messages disabled.
848 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
849 start_check_enables(smi_info);
850 } else {
851 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
852 if (!smi_info->curr_msg)
853 goto out;
855 start_getting_events(smi_info);
857 goto restart;
860 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
861 /* Ok it if fails, the timer will just go off. */
862 if (del_timer(&smi_info->si_timer))
863 smi_info->timer_running = false;
866 out:
867 return si_sm_result;
870 static void check_start_timer_thread(struct smi_info *smi_info)
872 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
873 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
875 if (smi_info->thread)
876 wake_up_process(smi_info->thread);
878 start_next_msg(smi_info);
879 smi_event_handler(smi_info, 0);
883 static void flush_messages(void *send_info)
885 struct smi_info *smi_info = send_info;
886 enum si_sm_result result;
889 * Currently, this function is called only in run-to-completion
890 * mode. This means we are single-threaded, no need for locks.
892 result = smi_event_handler(smi_info, 0);
893 while (result != SI_SM_IDLE) {
894 udelay(SI_SHORT_TIMEOUT_USEC);
895 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
899 static void sender(void *send_info,
900 struct ipmi_smi_msg *msg)
902 struct smi_info *smi_info = send_info;
903 unsigned long flags;
905 debug_timestamp(smi_info, "Enqueue");
907 if (smi_info->run_to_completion) {
909 * If we are running to completion, start it. Upper
910 * layer will call flush_messages to clear it out.
912 smi_info->waiting_msg = msg;
913 return;
916 spin_lock_irqsave(&smi_info->si_lock, flags);
918 * The following two lines don't need to be under the lock for
919 * the lock's sake, but they do need SMP memory barriers to
920 * avoid getting things out of order. We are already claiming
921 * the lock, anyway, so just do it under the lock to avoid the
922 * ordering problem.
924 BUG_ON(smi_info->waiting_msg);
925 smi_info->waiting_msg = msg;
926 check_start_timer_thread(smi_info);
927 spin_unlock_irqrestore(&smi_info->si_lock, flags);
930 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
932 struct smi_info *smi_info = send_info;
934 smi_info->run_to_completion = i_run_to_completion;
935 if (i_run_to_completion)
936 flush_messages(smi_info);
940 * Use -1 as a special constant to tell that we are spinning in kipmid
941 * looking for something and not delaying between checks
943 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
944 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
945 const struct smi_info *smi_info,
946 ktime_t *busy_until)
948 unsigned int max_busy_us = 0;
950 if (smi_info->si_num < num_max_busy_us)
951 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
952 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
953 *busy_until = IPMI_TIME_NOT_BUSY;
954 else if (*busy_until == IPMI_TIME_NOT_BUSY) {
955 *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
956 } else {
957 if (unlikely(ktime_get() > *busy_until)) {
958 *busy_until = IPMI_TIME_NOT_BUSY;
959 return false;
962 return true;
967 * A busy-waiting loop for speeding up IPMI operation.
969 * Lousy hardware makes this hard. This is only enabled for systems
970 * that are not BT and do not have interrupts. It starts spinning
971 * when an operation is complete or until max_busy tells it to stop
972 * (if that is enabled). See the paragraph on kimid_max_busy_us in
973 * Documentation/driver-api/ipmi.rst for details.
975 static int ipmi_thread(void *data)
977 struct smi_info *smi_info = data;
978 unsigned long flags;
979 enum si_sm_result smi_result;
980 ktime_t busy_until = IPMI_TIME_NOT_BUSY;
982 set_user_nice(current, MAX_NICE);
983 while (!kthread_should_stop()) {
984 int busy_wait;
986 spin_lock_irqsave(&(smi_info->si_lock), flags);
987 smi_result = smi_event_handler(smi_info, 0);
990 * If the driver is doing something, there is a possible
991 * race with the timer. If the timer handler see idle,
992 * and the thread here sees something else, the timer
993 * handler won't restart the timer even though it is
994 * required. So start it here if necessary.
996 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
997 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
999 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1000 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1001 &busy_until);
1002 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1003 ; /* do nothing */
1004 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1006 * In maintenance mode we run as fast as
1007 * possible to allow firmware updates to
1008 * complete as fast as possible, but normally
1009 * don't bang on the scheduler.
1011 if (smi_info->in_maintenance_mode)
1012 schedule();
1013 else
1014 usleep_range(100, 200);
1015 } else if (smi_result == SI_SM_IDLE) {
1016 if (atomic_read(&smi_info->need_watch)) {
1017 schedule_timeout_interruptible(100);
1018 } else {
1019 /* Wait to be woken up when we are needed. */
1020 __set_current_state(TASK_INTERRUPTIBLE);
1021 schedule();
1023 } else {
1024 schedule_timeout_interruptible(1);
1027 return 0;
1031 static void poll(void *send_info)
1033 struct smi_info *smi_info = send_info;
1034 unsigned long flags = 0;
1035 bool run_to_completion = smi_info->run_to_completion;
1038 * Make sure there is some delay in the poll loop so we can
1039 * drive time forward and timeout things.
1041 udelay(10);
1042 if (!run_to_completion)
1043 spin_lock_irqsave(&smi_info->si_lock, flags);
1044 smi_event_handler(smi_info, 10);
1045 if (!run_to_completion)
1046 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1049 static void request_events(void *send_info)
1051 struct smi_info *smi_info = send_info;
1053 if (!smi_info->has_event_buffer)
1054 return;
1056 atomic_set(&smi_info->req_events, 1);
1059 static void set_need_watch(void *send_info, unsigned int watch_mask)
1061 struct smi_info *smi_info = send_info;
1062 unsigned long flags;
1063 int enable;
1065 enable = !!watch_mask;
1067 atomic_set(&smi_info->need_watch, enable);
1068 spin_lock_irqsave(&smi_info->si_lock, flags);
1069 check_start_timer_thread(smi_info);
1070 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1073 static void smi_timeout(struct timer_list *t)
1075 struct smi_info *smi_info = from_timer(smi_info, t, si_timer);
1076 enum si_sm_result smi_result;
1077 unsigned long flags;
1078 unsigned long jiffies_now;
1079 long time_diff;
1080 long timeout;
1082 spin_lock_irqsave(&(smi_info->si_lock), flags);
1083 debug_timestamp(smi_info, "Timer");
1085 jiffies_now = jiffies;
1086 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1087 * SI_USEC_PER_JIFFY);
1088 smi_result = smi_event_handler(smi_info, time_diff);
1090 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1091 /* Running with interrupts, only do long timeouts. */
1092 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093 smi_inc_stat(smi_info, long_timeouts);
1094 goto do_mod_timer;
1098 * If the state machine asks for a short delay, then shorten
1099 * the timer timeout.
1101 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102 smi_inc_stat(smi_info, short_timeouts);
1103 timeout = jiffies + 1;
1104 } else {
1105 smi_inc_stat(smi_info, long_timeouts);
1106 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1109 do_mod_timer:
1110 if (smi_result != SI_SM_IDLE)
1111 smi_mod_timer(smi_info, timeout);
1112 else
1113 smi_info->timer_running = false;
1114 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1117 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1119 struct smi_info *smi_info = data;
1120 unsigned long flags;
1122 if (smi_info->io.si_type == SI_BT)
1123 /* We need to clear the IRQ flag for the BT interface. */
1124 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1125 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1126 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1128 spin_lock_irqsave(&(smi_info->si_lock), flags);
1130 smi_inc_stat(smi_info, interrupts);
1132 debug_timestamp(smi_info, "Interrupt");
1134 smi_event_handler(smi_info, 0);
1135 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1136 return IRQ_HANDLED;
1139 static int smi_start_processing(void *send_info,
1140 struct ipmi_smi *intf)
1142 struct smi_info *new_smi = send_info;
1143 int enable = 0;
1145 new_smi->intf = intf;
1147 /* Set up the timer that drives the interface. */
1148 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1149 new_smi->timer_can_start = true;
1150 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1152 /* Try to claim any interrupts. */
1153 if (new_smi->io.irq_setup) {
1154 new_smi->io.irq_handler_data = new_smi;
1155 new_smi->io.irq_setup(&new_smi->io);
1159 * Check if the user forcefully enabled the daemon.
1161 if (new_smi->si_num < num_force_kipmid)
1162 enable = force_kipmid[new_smi->si_num];
1164 * The BT interface is efficient enough to not need a thread,
1165 * and there is no need for a thread if we have interrupts.
1167 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1168 enable = 1;
1170 if (enable) {
1171 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1172 "kipmi%d", new_smi->si_num);
1173 if (IS_ERR(new_smi->thread)) {
1174 dev_notice(new_smi->io.dev,
1175 "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1176 PTR_ERR(new_smi->thread));
1177 new_smi->thread = NULL;
1181 return 0;
1184 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1186 struct smi_info *smi = send_info;
1188 data->addr_src = smi->io.addr_source;
1189 data->dev = smi->io.dev;
1190 data->addr_info = smi->io.addr_info;
1191 get_device(smi->io.dev);
1193 return 0;
1196 static void set_maintenance_mode(void *send_info, bool enable)
1198 struct smi_info *smi_info = send_info;
1200 if (!enable)
1201 atomic_set(&smi_info->req_events, 0);
1202 smi_info->in_maintenance_mode = enable;
1205 static void shutdown_smi(void *send_info);
1206 static const struct ipmi_smi_handlers handlers = {
1207 .owner = THIS_MODULE,
1208 .start_processing = smi_start_processing,
1209 .shutdown = shutdown_smi,
1210 .get_smi_info = get_smi_info,
1211 .sender = sender,
1212 .request_events = request_events,
1213 .set_need_watch = set_need_watch,
1214 .set_maintenance_mode = set_maintenance_mode,
1215 .set_run_to_completion = set_run_to_completion,
1216 .flush_messages = flush_messages,
1217 .poll = poll,
1220 static LIST_HEAD(smi_infos);
1221 static DEFINE_MUTEX(smi_infos_lock);
1222 static int smi_num; /* Used to sequence the SMIs */
1224 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1226 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1227 MODULE_PARM_DESC(force_kipmid,
1228 "Force the kipmi daemon to be enabled (1) or disabled(0). Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1229 module_param(unload_when_empty, bool, 0);
1230 MODULE_PARM_DESC(unload_when_empty,
1231 "Unload the module if no interfaces are specified or found, default is 1. Setting to 0 is useful for hot add of devices using hotmod.");
1232 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1233 MODULE_PARM_DESC(kipmid_max_busy_us,
1234 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1236 void ipmi_irq_finish_setup(struct si_sm_io *io)
1238 if (io->si_type == SI_BT)
1239 /* Enable the interrupt in the BT interface. */
1240 io->outputb(io, IPMI_BT_INTMASK_REG,
1241 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1244 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1246 if (io->si_type == SI_BT)
1247 /* Disable the interrupt in the BT interface. */
1248 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1251 static void std_irq_cleanup(struct si_sm_io *io)
1253 ipmi_irq_start_cleanup(io);
1254 free_irq(io->irq, io->irq_handler_data);
1257 int ipmi_std_irq_setup(struct si_sm_io *io)
1259 int rv;
1261 if (!io->irq)
1262 return 0;
1264 rv = request_irq(io->irq,
1265 ipmi_si_irq_handler,
1266 IRQF_SHARED,
1267 SI_DEVICE_NAME,
1268 io->irq_handler_data);
1269 if (rv) {
1270 dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1271 SI_DEVICE_NAME, io->irq);
1272 io->irq = 0;
1273 } else {
1274 io->irq_cleanup = std_irq_cleanup;
1275 ipmi_irq_finish_setup(io);
1276 dev_info(io->dev, "Using irq %d\n", io->irq);
1279 return rv;
1282 static int wait_for_msg_done(struct smi_info *smi_info)
1284 enum si_sm_result smi_result;
1286 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1287 for (;;) {
1288 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1289 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1290 schedule_timeout_uninterruptible(1);
1291 smi_result = smi_info->handlers->event(
1292 smi_info->si_sm, jiffies_to_usecs(1));
1293 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1294 smi_result = smi_info->handlers->event(
1295 smi_info->si_sm, 0);
1296 } else
1297 break;
1299 if (smi_result == SI_SM_HOSED)
1301 * We couldn't get the state machine to run, so whatever's at
1302 * the port is probably not an IPMI SMI interface.
1304 return -ENODEV;
1306 return 0;
1309 static int try_get_dev_id(struct smi_info *smi_info)
1311 unsigned char msg[2];
1312 unsigned char *resp;
1313 unsigned long resp_len;
1314 int rv = 0;
1315 unsigned int retry_count = 0;
1317 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1318 if (!resp)
1319 return -ENOMEM;
1322 * Do a Get Device ID command, since it comes back with some
1323 * useful info.
1325 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1326 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1328 retry:
1329 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1331 rv = wait_for_msg_done(smi_info);
1332 if (rv)
1333 goto out;
1335 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1336 resp, IPMI_MAX_MSG_LENGTH);
1338 /* Check and record info from the get device id, in case we need it. */
1339 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1340 resp + 2, resp_len - 2, &smi_info->device_id);
1341 if (rv) {
1342 /* record completion code */
1343 unsigned char cc = *(resp + 2);
1345 if (cc != IPMI_CC_NO_ERROR &&
1346 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1347 dev_warn_ratelimited(smi_info->io.dev,
1348 "BMC returned 0x%2.2x, retry get bmc device id\n",
1349 cc);
1350 goto retry;
1354 out:
1355 kfree(resp);
1356 return rv;
1359 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1361 unsigned char msg[3];
1362 unsigned char *resp;
1363 unsigned long resp_len;
1364 int rv;
1366 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1367 if (!resp)
1368 return -ENOMEM;
1370 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1371 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1372 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1374 rv = wait_for_msg_done(smi_info);
1375 if (rv) {
1376 dev_warn(smi_info->io.dev,
1377 "Error getting response from get global enables command: %d\n",
1378 rv);
1379 goto out;
1382 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1383 resp, IPMI_MAX_MSG_LENGTH);
1385 if (resp_len < 4 ||
1386 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1387 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1388 resp[2] != 0) {
1389 dev_warn(smi_info->io.dev,
1390 "Invalid return from get global enables command: %ld %x %x %x\n",
1391 resp_len, resp[0], resp[1], resp[2]);
1392 rv = -EINVAL;
1393 goto out;
1394 } else {
1395 *enables = resp[3];
1398 out:
1399 kfree(resp);
1400 return rv;
1404 * Returns 1 if it gets an error from the command.
1406 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1408 unsigned char msg[3];
1409 unsigned char *resp;
1410 unsigned long resp_len;
1411 int rv;
1413 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1414 if (!resp)
1415 return -ENOMEM;
1417 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1418 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1419 msg[2] = enables;
1420 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1422 rv = wait_for_msg_done(smi_info);
1423 if (rv) {
1424 dev_warn(smi_info->io.dev,
1425 "Error getting response from set global enables command: %d\n",
1426 rv);
1427 goto out;
1430 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1431 resp, IPMI_MAX_MSG_LENGTH);
1433 if (resp_len < 3 ||
1434 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1435 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1436 dev_warn(smi_info->io.dev,
1437 "Invalid return from set global enables command: %ld %x %x\n",
1438 resp_len, resp[0], resp[1]);
1439 rv = -EINVAL;
1440 goto out;
1443 if (resp[2] != 0)
1444 rv = 1;
1446 out:
1447 kfree(resp);
1448 return rv;
1452 * Some BMCs do not support clearing the receive irq bit in the global
1453 * enables (even if they don't support interrupts on the BMC). Check
1454 * for this and handle it properly.
1456 static void check_clr_rcv_irq(struct smi_info *smi_info)
1458 u8 enables = 0;
1459 int rv;
1461 rv = get_global_enables(smi_info, &enables);
1462 if (!rv) {
1463 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1464 /* Already clear, should work ok. */
1465 return;
1467 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1468 rv = set_global_enables(smi_info, enables);
1471 if (rv < 0) {
1472 dev_err(smi_info->io.dev,
1473 "Cannot check clearing the rcv irq: %d\n", rv);
1474 return;
1477 if (rv) {
1479 * An error when setting the event buffer bit means
1480 * clearing the bit is not supported.
1482 dev_warn(smi_info->io.dev,
1483 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1484 smi_info->cannot_disable_irq = true;
1489 * Some BMCs do not support setting the interrupt bits in the global
1490 * enables even if they support interrupts. Clearly bad, but we can
1491 * compensate.
1493 static void check_set_rcv_irq(struct smi_info *smi_info)
1495 u8 enables = 0;
1496 int rv;
1498 if (!smi_info->io.irq)
1499 return;
1501 rv = get_global_enables(smi_info, &enables);
1502 if (!rv) {
1503 enables |= IPMI_BMC_RCV_MSG_INTR;
1504 rv = set_global_enables(smi_info, enables);
1507 if (rv < 0) {
1508 dev_err(smi_info->io.dev,
1509 "Cannot check setting the rcv irq: %d\n", rv);
1510 return;
1513 if (rv) {
1515 * An error when setting the event buffer bit means
1516 * setting the bit is not supported.
1518 dev_warn(smi_info->io.dev,
1519 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1520 smi_info->cannot_disable_irq = true;
1521 smi_info->irq_enable_broken = true;
1525 static int try_enable_event_buffer(struct smi_info *smi_info)
1527 unsigned char msg[3];
1528 unsigned char *resp;
1529 unsigned long resp_len;
1530 int rv = 0;
1532 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1533 if (!resp)
1534 return -ENOMEM;
1536 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1537 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1538 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1540 rv = wait_for_msg_done(smi_info);
1541 if (rv) {
1542 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1543 goto out;
1546 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1547 resp, IPMI_MAX_MSG_LENGTH);
1549 if (resp_len < 4 ||
1550 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1551 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1552 resp[2] != 0) {
1553 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1554 rv = -EINVAL;
1555 goto out;
1558 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1559 /* buffer is already enabled, nothing to do. */
1560 smi_info->supports_event_msg_buff = true;
1561 goto out;
1564 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1565 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1566 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1567 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1569 rv = wait_for_msg_done(smi_info);
1570 if (rv) {
1571 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1572 goto out;
1575 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1576 resp, IPMI_MAX_MSG_LENGTH);
1578 if (resp_len < 3 ||
1579 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1580 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1581 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1582 rv = -EINVAL;
1583 goto out;
1586 if (resp[2] != 0)
1588 * An error when setting the event buffer bit means
1589 * that the event buffer is not supported.
1591 rv = -ENOENT;
1592 else
1593 smi_info->supports_event_msg_buff = true;
1595 out:
1596 kfree(resp);
1597 return rv;
1600 #define IPMI_SI_ATTR(name) \
1601 static ssize_t name##_show(struct device *dev, \
1602 struct device_attribute *attr, \
1603 char *buf) \
1605 struct smi_info *smi_info = dev_get_drvdata(dev); \
1607 return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name)); \
1609 static DEVICE_ATTR_RO(name)
1611 static ssize_t type_show(struct device *dev,
1612 struct device_attribute *attr,
1613 char *buf)
1615 struct smi_info *smi_info = dev_get_drvdata(dev);
1617 return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_type]);
1619 static DEVICE_ATTR_RO(type);
1621 static ssize_t interrupts_enabled_show(struct device *dev,
1622 struct device_attribute *attr,
1623 char *buf)
1625 struct smi_info *smi_info = dev_get_drvdata(dev);
1626 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1628 return sysfs_emit(buf, "%d\n", enabled);
1630 static DEVICE_ATTR_RO(interrupts_enabled);
1632 IPMI_SI_ATTR(short_timeouts);
1633 IPMI_SI_ATTR(long_timeouts);
1634 IPMI_SI_ATTR(idles);
1635 IPMI_SI_ATTR(interrupts);
1636 IPMI_SI_ATTR(attentions);
1637 IPMI_SI_ATTR(flag_fetches);
1638 IPMI_SI_ATTR(hosed_count);
1639 IPMI_SI_ATTR(complete_transactions);
1640 IPMI_SI_ATTR(events);
1641 IPMI_SI_ATTR(watchdog_pretimeouts);
1642 IPMI_SI_ATTR(incoming_messages);
1644 static ssize_t params_show(struct device *dev,
1645 struct device_attribute *attr,
1646 char *buf)
1648 struct smi_info *smi_info = dev_get_drvdata(dev);
1650 return sysfs_emit(buf,
1651 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1652 si_to_str[smi_info->io.si_type],
1653 addr_space_to_str[smi_info->io.addr_space],
1654 smi_info->io.addr_data,
1655 smi_info->io.regspacing,
1656 smi_info->io.regsize,
1657 smi_info->io.regshift,
1658 smi_info->io.irq,
1659 smi_info->io.slave_addr);
1661 static DEVICE_ATTR_RO(params);
1663 static struct attribute *ipmi_si_dev_attrs[] = {
1664 &dev_attr_type.attr,
1665 &dev_attr_interrupts_enabled.attr,
1666 &dev_attr_short_timeouts.attr,
1667 &dev_attr_long_timeouts.attr,
1668 &dev_attr_idles.attr,
1669 &dev_attr_interrupts.attr,
1670 &dev_attr_attentions.attr,
1671 &dev_attr_flag_fetches.attr,
1672 &dev_attr_hosed_count.attr,
1673 &dev_attr_complete_transactions.attr,
1674 &dev_attr_events.attr,
1675 &dev_attr_watchdog_pretimeouts.attr,
1676 &dev_attr_incoming_messages.attr,
1677 &dev_attr_params.attr,
1678 NULL
1681 static const struct attribute_group ipmi_si_dev_attr_group = {
1682 .attrs = ipmi_si_dev_attrs,
1686 * oem_data_avail_to_receive_msg_avail
1687 * @info - smi_info structure with msg_flags set
1689 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1690 * Returns 1 indicating need to re-run handle_flags().
1692 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1694 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1695 RECEIVE_MSG_AVAIL);
1696 return 1;
1700 * setup_dell_poweredge_oem_data_handler
1701 * @info - smi_info.device_id must be populated
1703 * Systems that match, but have firmware version < 1.40 may assert
1704 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1705 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1706 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1707 * as RECEIVE_MSG_AVAIL instead.
1709 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1710 * assert the OEM[012] bits, and if it did, the driver would have to
1711 * change to handle that properly, we don't actually check for the
1712 * firmware version.
1713 * Device ID = 0x20 BMC on PowerEdge 8G servers
1714 * Device Revision = 0x80
1715 * Firmware Revision1 = 0x01 BMC version 1.40
1716 * Firmware Revision2 = 0x40 BCD encoded
1717 * IPMI Version = 0x51 IPMI 1.5
1718 * Manufacturer ID = A2 02 00 Dell IANA
1720 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1721 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1724 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1725 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1726 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1727 #define DELL_IANA_MFR_ID 0x0002a2
1728 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1730 struct ipmi_device_id *id = &smi_info->device_id;
1731 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1732 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1733 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1734 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1735 smi_info->oem_data_avail_handler =
1736 oem_data_avail_to_receive_msg_avail;
1737 } else if (ipmi_version_major(id) < 1 ||
1738 (ipmi_version_major(id) == 1 &&
1739 ipmi_version_minor(id) < 5)) {
1740 smi_info->oem_data_avail_handler =
1741 oem_data_avail_to_receive_msg_avail;
1746 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1747 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1749 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1751 /* Make it a response */
1752 msg->rsp[0] = msg->data[0] | 4;
1753 msg->rsp[1] = msg->data[1];
1754 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1755 msg->rsp_size = 3;
1756 smi_info->curr_msg = NULL;
1757 deliver_recv_msg(smi_info, msg);
1761 * dell_poweredge_bt_xaction_handler
1762 * @info - smi_info.device_id must be populated
1764 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1765 * not respond to a Get SDR command if the length of the data
1766 * requested is exactly 0x3A, which leads to command timeouts and no
1767 * data returned. This intercepts such commands, and causes userspace
1768 * callers to try again with a different-sized buffer, which succeeds.
1771 #define STORAGE_NETFN 0x0A
1772 #define STORAGE_CMD_GET_SDR 0x23
1773 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1774 unsigned long unused,
1775 void *in)
1777 struct smi_info *smi_info = in;
1778 unsigned char *data = smi_info->curr_msg->data;
1779 unsigned int size = smi_info->curr_msg->data_size;
1780 if (size >= 8 &&
1781 (data[0]>>2) == STORAGE_NETFN &&
1782 data[1] == STORAGE_CMD_GET_SDR &&
1783 data[7] == 0x3A) {
1784 return_hosed_msg_badsize(smi_info);
1785 return NOTIFY_STOP;
1787 return NOTIFY_DONE;
1790 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1791 .notifier_call = dell_poweredge_bt_xaction_handler,
1795 * setup_dell_poweredge_bt_xaction_handler
1796 * @info - smi_info.device_id must be filled in already
1798 * Fills in smi_info.device_id.start_transaction_pre_hook
1799 * when we know what function to use there.
1801 static void
1802 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1804 struct ipmi_device_id *id = &smi_info->device_id;
1805 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1806 smi_info->io.si_type == SI_BT)
1807 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1811 * setup_oem_data_handler
1812 * @info - smi_info.device_id must be filled in already
1814 * Fills in smi_info.device_id.oem_data_available_handler
1815 * when we know what function to use there.
1818 static void setup_oem_data_handler(struct smi_info *smi_info)
1820 setup_dell_poweredge_oem_data_handler(smi_info);
1823 static void setup_xaction_handlers(struct smi_info *smi_info)
1825 setup_dell_poweredge_bt_xaction_handler(smi_info);
1828 static void check_for_broken_irqs(struct smi_info *smi_info)
1830 check_clr_rcv_irq(smi_info);
1831 check_set_rcv_irq(smi_info);
1834 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1836 if (smi_info->thread != NULL) {
1837 kthread_stop(smi_info->thread);
1838 smi_info->thread = NULL;
1841 smi_info->timer_can_start = false;
1842 del_timer_sync(&smi_info->si_timer);
1845 static struct smi_info *find_dup_si(struct smi_info *info)
1847 struct smi_info *e;
1849 list_for_each_entry(e, &smi_infos, link) {
1850 if (e->io.addr_space != info->io.addr_space)
1851 continue;
1852 if (e->io.addr_data == info->io.addr_data) {
1854 * This is a cheap hack, ACPI doesn't have a defined
1855 * slave address but SMBIOS does. Pick it up from
1856 * any source that has it available.
1858 if (info->io.slave_addr && !e->io.slave_addr)
1859 e->io.slave_addr = info->io.slave_addr;
1860 return e;
1864 return NULL;
1867 int ipmi_si_add_smi(struct si_sm_io *io)
1869 int rv = 0;
1870 struct smi_info *new_smi, *dup;
1873 * If the user gave us a hard-coded device at the same
1874 * address, they presumably want us to use it and not what is
1875 * in the firmware.
1877 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1878 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1879 dev_info(io->dev,
1880 "Hard-coded device at this address already exists");
1881 return -ENODEV;
1884 if (!io->io_setup) {
1885 if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1886 io->addr_space == IPMI_IO_ADDR_SPACE) {
1887 io->io_setup = ipmi_si_port_setup;
1888 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1889 io->io_setup = ipmi_si_mem_setup;
1890 } else {
1891 return -EINVAL;
1895 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1896 if (!new_smi)
1897 return -ENOMEM;
1898 spin_lock_init(&new_smi->si_lock);
1900 new_smi->io = *io;
1902 mutex_lock(&smi_infos_lock);
1903 dup = find_dup_si(new_smi);
1904 if (dup) {
1905 if (new_smi->io.addr_source == SI_ACPI &&
1906 dup->io.addr_source == SI_SMBIOS) {
1907 /* We prefer ACPI over SMBIOS. */
1908 dev_info(dup->io.dev,
1909 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1910 si_to_str[new_smi->io.si_type]);
1911 cleanup_one_si(dup);
1912 } else {
1913 dev_info(new_smi->io.dev,
1914 "%s-specified %s state machine: duplicate\n",
1915 ipmi_addr_src_to_str(new_smi->io.addr_source),
1916 si_to_str[new_smi->io.si_type]);
1917 rv = -EBUSY;
1918 kfree(new_smi);
1919 goto out_err;
1923 pr_info("Adding %s-specified %s state machine\n",
1924 ipmi_addr_src_to_str(new_smi->io.addr_source),
1925 si_to_str[new_smi->io.si_type]);
1927 list_add_tail(&new_smi->link, &smi_infos);
1929 if (initialized)
1930 rv = try_smi_init(new_smi);
1931 out_err:
1932 mutex_unlock(&smi_infos_lock);
1933 return rv;
1937 * Try to start up an interface. Must be called with smi_infos_lock
1938 * held, primarily to keep smi_num consistent, we only one to do these
1939 * one at a time.
1941 static int try_smi_init(struct smi_info *new_smi)
1943 int rv = 0;
1944 int i;
1946 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1947 ipmi_addr_src_to_str(new_smi->io.addr_source),
1948 si_to_str[new_smi->io.si_type],
1949 addr_space_to_str[new_smi->io.addr_space],
1950 new_smi->io.addr_data,
1951 new_smi->io.slave_addr, new_smi->io.irq);
1953 switch (new_smi->io.si_type) {
1954 case SI_KCS:
1955 new_smi->handlers = &kcs_smi_handlers;
1956 break;
1958 case SI_SMIC:
1959 new_smi->handlers = &smic_smi_handlers;
1960 break;
1962 case SI_BT:
1963 new_smi->handlers = &bt_smi_handlers;
1964 break;
1966 default:
1967 /* No support for anything else yet. */
1968 rv = -EIO;
1969 goto out_err;
1972 new_smi->si_num = smi_num;
1974 /* Do this early so it's available for logs. */
1975 if (!new_smi->io.dev) {
1976 pr_err("IPMI interface added with no device\n");
1977 rv = -EIO;
1978 goto out_err;
1981 /* Allocate the state machine's data and initialize it. */
1982 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1983 if (!new_smi->si_sm) {
1984 rv = -ENOMEM;
1985 goto out_err;
1987 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1988 &new_smi->io);
1990 /* Now that we know the I/O size, we can set up the I/O. */
1991 rv = new_smi->io.io_setup(&new_smi->io);
1992 if (rv) {
1993 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1994 goto out_err;
1997 /* Do low-level detection first. */
1998 if (new_smi->handlers->detect(new_smi->si_sm)) {
1999 if (new_smi->io.addr_source)
2000 dev_err(new_smi->io.dev,
2001 "Interface detection failed\n");
2002 rv = -ENODEV;
2003 goto out_err;
2007 * Attempt a get device id command. If it fails, we probably
2008 * don't have a BMC here.
2010 rv = try_get_dev_id(new_smi);
2011 if (rv) {
2012 if (new_smi->io.addr_source)
2013 dev_err(new_smi->io.dev,
2014 "There appears to be no BMC at this location\n");
2015 goto out_err;
2018 setup_oem_data_handler(new_smi);
2019 setup_xaction_handlers(new_smi);
2020 check_for_broken_irqs(new_smi);
2022 new_smi->waiting_msg = NULL;
2023 new_smi->curr_msg = NULL;
2024 atomic_set(&new_smi->req_events, 0);
2025 new_smi->run_to_completion = false;
2026 for (i = 0; i < SI_NUM_STATS; i++)
2027 atomic_set(&new_smi->stats[i], 0);
2029 new_smi->interrupt_disabled = true;
2030 atomic_set(&new_smi->need_watch, 0);
2032 rv = try_enable_event_buffer(new_smi);
2033 if (rv == 0)
2034 new_smi->has_event_buffer = true;
2037 * Start clearing the flags before we enable interrupts or the
2038 * timer to avoid racing with the timer.
2040 start_clear_flags(new_smi);
2043 * IRQ is defined to be set when non-zero. req_events will
2044 * cause a global flags check that will enable interrupts.
2046 if (new_smi->io.irq) {
2047 new_smi->interrupt_disabled = false;
2048 atomic_set(&new_smi->req_events, 1);
2051 dev_set_drvdata(new_smi->io.dev, new_smi);
2052 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2053 if (rv) {
2054 dev_err(new_smi->io.dev,
2055 "Unable to add device attributes: error %d\n",
2056 rv);
2057 goto out_err;
2059 new_smi->dev_group_added = true;
2061 rv = ipmi_register_smi(&handlers,
2062 new_smi,
2063 new_smi->io.dev,
2064 new_smi->io.slave_addr);
2065 if (rv) {
2066 dev_err(new_smi->io.dev,
2067 "Unable to register device: error %d\n",
2068 rv);
2069 goto out_err;
2072 /* Don't increment till we know we have succeeded. */
2073 smi_num++;
2075 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2076 si_to_str[new_smi->io.si_type]);
2078 WARN_ON(new_smi->io.dev->init_name != NULL);
2080 out_err:
2081 if (rv && new_smi->io.io_cleanup) {
2082 new_smi->io.io_cleanup(&new_smi->io);
2083 new_smi->io.io_cleanup = NULL;
2086 if (rv && new_smi->si_sm) {
2087 kfree(new_smi->si_sm);
2088 new_smi->si_sm = NULL;
2091 return rv;
2094 static int __init init_ipmi_si(void)
2096 struct smi_info *e;
2097 enum ipmi_addr_src type = SI_INVALID;
2099 if (initialized)
2100 return 0;
2102 ipmi_hardcode_init();
2104 pr_info("IPMI System Interface driver\n");
2106 ipmi_si_platform_init();
2108 ipmi_si_pci_init();
2110 ipmi_si_parisc_init();
2112 /* We prefer devices with interrupts, but in the case of a machine
2113 with multiple BMCs we assume that there will be several instances
2114 of a given type so if we succeed in registering a type then also
2115 try to register everything else of the same type */
2116 mutex_lock(&smi_infos_lock);
2117 list_for_each_entry(e, &smi_infos, link) {
2118 /* Try to register a device if it has an IRQ and we either
2119 haven't successfully registered a device yet or this
2120 device has the same type as one we successfully registered */
2121 if (e->io.irq && (!type || e->io.addr_source == type)) {
2122 if (!try_smi_init(e)) {
2123 type = e->io.addr_source;
2128 /* type will only have been set if we successfully registered an si */
2129 if (type)
2130 goto skip_fallback_noirq;
2132 /* Fall back to the preferred device */
2134 list_for_each_entry(e, &smi_infos, link) {
2135 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2136 if (!try_smi_init(e)) {
2137 type = e->io.addr_source;
2142 skip_fallback_noirq:
2143 initialized = true;
2144 mutex_unlock(&smi_infos_lock);
2146 if (type)
2147 return 0;
2149 mutex_lock(&smi_infos_lock);
2150 if (unload_when_empty && list_empty(&smi_infos)) {
2151 mutex_unlock(&smi_infos_lock);
2152 cleanup_ipmi_si();
2153 pr_warn("Unable to find any System Interface(s)\n");
2154 return -ENODEV;
2155 } else {
2156 mutex_unlock(&smi_infos_lock);
2157 return 0;
2160 module_init(init_ipmi_si);
2162 static void wait_msg_processed(struct smi_info *smi_info)
2164 unsigned long jiffies_now;
2165 long time_diff;
2167 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2168 jiffies_now = jiffies;
2169 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
2170 * SI_USEC_PER_JIFFY);
2171 smi_event_handler(smi_info, time_diff);
2172 schedule_timeout_uninterruptible(1);
2176 static void shutdown_smi(void *send_info)
2178 struct smi_info *smi_info = send_info;
2180 if (smi_info->dev_group_added) {
2181 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2182 smi_info->dev_group_added = false;
2184 if (smi_info->io.dev)
2185 dev_set_drvdata(smi_info->io.dev, NULL);
2188 * Make sure that interrupts, the timer and the thread are
2189 * stopped and will not run again.
2191 smi_info->interrupt_disabled = true;
2192 if (smi_info->io.irq_cleanup) {
2193 smi_info->io.irq_cleanup(&smi_info->io);
2194 smi_info->io.irq_cleanup = NULL;
2196 stop_timer_and_thread(smi_info);
2199 * Wait until we know that we are out of any interrupt
2200 * handlers might have been running before we freed the
2201 * interrupt.
2203 synchronize_rcu();
2206 * Timeouts are stopped, now make sure the interrupts are off
2207 * in the BMC. Note that timers and CPU interrupts are off,
2208 * so no need for locks.
2210 wait_msg_processed(smi_info);
2212 if (smi_info->handlers)
2213 disable_si_irq(smi_info);
2215 wait_msg_processed(smi_info);
2217 if (smi_info->handlers)
2218 smi_info->handlers->cleanup(smi_info->si_sm);
2220 if (smi_info->io.io_cleanup) {
2221 smi_info->io.io_cleanup(&smi_info->io);
2222 smi_info->io.io_cleanup = NULL;
2225 kfree(smi_info->si_sm);
2226 smi_info->si_sm = NULL;
2228 smi_info->intf = NULL;
2232 * Must be called with smi_infos_lock held, to serialize the
2233 * smi_info->intf check.
2235 static void cleanup_one_si(struct smi_info *smi_info)
2237 if (!smi_info)
2238 return;
2240 list_del(&smi_info->link);
2241 ipmi_unregister_smi(smi_info->intf);
2242 kfree(smi_info);
2245 void ipmi_si_remove_by_dev(struct device *dev)
2247 struct smi_info *e;
2249 mutex_lock(&smi_infos_lock);
2250 list_for_each_entry(e, &smi_infos, link) {
2251 if (e->io.dev == dev) {
2252 cleanup_one_si(e);
2253 break;
2256 mutex_unlock(&smi_infos_lock);
2259 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2260 unsigned long addr)
2262 /* remove */
2263 struct smi_info *e, *tmp_e;
2264 struct device *dev = NULL;
2266 mutex_lock(&smi_infos_lock);
2267 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2268 if (e->io.addr_space != addr_space)
2269 continue;
2270 if (e->io.si_type != si_type)
2271 continue;
2272 if (e->io.addr_data == addr) {
2273 dev = get_device(e->io.dev);
2274 cleanup_one_si(e);
2277 mutex_unlock(&smi_infos_lock);
2279 return dev;
2282 static void cleanup_ipmi_si(void)
2284 struct smi_info *e, *tmp_e;
2286 if (!initialized)
2287 return;
2289 ipmi_si_pci_shutdown();
2291 ipmi_si_parisc_shutdown();
2293 ipmi_si_platform_shutdown();
2295 mutex_lock(&smi_infos_lock);
2296 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2297 cleanup_one_si(e);
2298 mutex_unlock(&smi_infos_lock);
2300 ipmi_si_hardcode_exit();
2301 ipmi_si_hotmod_exit();
2303 module_exit(cleanup_ipmi_si);
2305 MODULE_ALIAS("platform:dmi-ipmi-si");
2306 MODULE_LICENSE("GPL");
2307 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2308 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");