Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / char / random.c
blob23ee76bbb4aa728274bf9980a60b863216d88797
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
15 * - Sysctl interface.
17 * The high level overview is that there is one input pool, into which
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <linux/sched/isolation.h>
57 #include <crypto/chacha.h>
58 #include <crypto/blake2s.h>
59 #ifdef CONFIG_VDSO_GETRANDOM
60 #include <vdso/getrandom.h>
61 #include <vdso/datapage.h>
62 #include <vdso/vsyscall.h>
63 #endif
64 #include <asm/archrandom.h>
65 #include <asm/processor.h>
66 #include <asm/irq.h>
67 #include <asm/irq_regs.h>
68 #include <asm/io.h>
70 /*********************************************************************
72 * Initialization and readiness waiting.
74 * Much of the RNG infrastructure is devoted to various dependencies
75 * being able to wait until the RNG has collected enough entropy and
76 * is ready for safe consumption.
78 *********************************************************************/
81 * crng_init is protected by base_crng->lock, and only increases
82 * its value (from empty->early->ready).
84 static enum {
85 CRNG_EMPTY = 0, /* Little to no entropy collected */
86 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
87 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
88 } crng_init __read_mostly = CRNG_EMPTY;
89 static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
90 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
91 /* Various types of waiters for crng_init->CRNG_READY transition. */
92 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
93 static struct fasync_struct *fasync;
94 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
96 /* Control how we warn userspace. */
97 static struct ratelimit_state urandom_warning =
98 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
99 static int ratelimit_disable __read_mostly =
100 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
101 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
102 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
105 * Returns whether or not the input pool has been seeded and thus guaranteed
106 * to supply cryptographically secure random numbers. This applies to: the
107 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
108 * u16,u32,u64,long} family of functions.
110 * Returns: true if the input pool has been seeded.
111 * false if the input pool has not been seeded.
113 bool rng_is_initialized(void)
115 return crng_ready();
117 EXPORT_SYMBOL(rng_is_initialized);
119 static void __cold crng_set_ready(struct work_struct *work)
121 static_branch_enable(&crng_is_ready);
124 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
125 static void try_to_generate_entropy(void);
128 * Wait for the input pool to be seeded and thus guaranteed to supply
129 * cryptographically secure random numbers. This applies to: the /dev/urandom
130 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
131 * long} family of functions. Using any of these functions without first
132 * calling this function forfeits the guarantee of security.
134 * Returns: 0 if the input pool has been seeded.
135 * -ERESTARTSYS if the function was interrupted by a signal.
137 int wait_for_random_bytes(void)
139 while (!crng_ready()) {
140 int ret;
142 try_to_generate_entropy();
143 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
144 if (ret)
145 return ret > 0 ? 0 : ret;
147 return 0;
149 EXPORT_SYMBOL(wait_for_random_bytes);
152 * Add a callback function that will be invoked when the crng is initialised,
153 * or immediately if it already has been. Only use this is you are absolutely
154 * sure it is required. Most users should instead be able to test
155 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
157 int __cold execute_with_initialized_rng(struct notifier_block *nb)
159 unsigned long flags;
160 int ret = 0;
162 spin_lock_irqsave(&random_ready_notifier.lock, flags);
163 if (crng_ready())
164 nb->notifier_call(nb, 0, NULL);
165 else
166 ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
167 spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
168 return ret;
171 #define warn_unseeded_randomness() \
172 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
173 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
174 __func__, (void *)_RET_IP_, crng_init)
177 /*********************************************************************
179 * Fast key erasure RNG, the "crng".
181 * These functions expand entropy from the entropy extractor into
182 * long streams for external consumption using the "fast key erasure"
183 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
185 * There are a few exported interfaces for use by other drivers:
187 * void get_random_bytes(void *buf, size_t len)
188 * u8 get_random_u8()
189 * u16 get_random_u16()
190 * u32 get_random_u32()
191 * u32 get_random_u32_below(u32 ceil)
192 * u32 get_random_u32_above(u32 floor)
193 * u32 get_random_u32_inclusive(u32 floor, u32 ceil)
194 * u64 get_random_u64()
195 * unsigned long get_random_long()
197 * These interfaces will return the requested number of random bytes
198 * into the given buffer or as a return value. This is equivalent to
199 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
200 * functions may be higher performance for one-off random integers,
201 * because they do a bit of buffering and do not invoke reseeding
202 * until the buffer is emptied.
204 *********************************************************************/
206 enum {
207 CRNG_RESEED_START_INTERVAL = HZ,
208 CRNG_RESEED_INTERVAL = 60 * HZ
211 static struct {
212 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
213 unsigned long generation;
214 spinlock_t lock;
215 } base_crng = {
216 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
219 struct crng {
220 u8 key[CHACHA_KEY_SIZE];
221 unsigned long generation;
222 local_lock_t lock;
225 static DEFINE_PER_CPU(struct crng, crngs) = {
226 .generation = ULONG_MAX,
227 .lock = INIT_LOCAL_LOCK(crngs.lock),
231 * Return the interval until the next reseeding, which is normally
232 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
233 * proportional to the uptime.
235 static unsigned int crng_reseed_interval(void)
237 static bool early_boot = true;
239 if (unlikely(READ_ONCE(early_boot))) {
240 time64_t uptime = ktime_get_seconds();
241 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
242 WRITE_ONCE(early_boot, false);
243 else
244 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
245 (unsigned int)uptime / 2 * HZ);
247 return CRNG_RESEED_INTERVAL;
250 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
251 static void extract_entropy(void *buf, size_t len);
253 /* This extracts a new crng key from the input pool. */
254 static void crng_reseed(struct work_struct *work)
256 static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
257 unsigned long flags;
258 unsigned long next_gen;
259 u8 key[CHACHA_KEY_SIZE];
261 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
262 if (likely(system_unbound_wq))
263 queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
265 extract_entropy(key, sizeof(key));
268 * We copy the new key into the base_crng, overwriting the old one,
269 * and update the generation counter. We avoid hitting ULONG_MAX,
270 * because the per-cpu crngs are initialized to ULONG_MAX, so this
271 * forces new CPUs that come online to always initialize.
273 spin_lock_irqsave(&base_crng.lock, flags);
274 memcpy(base_crng.key, key, sizeof(base_crng.key));
275 next_gen = base_crng.generation + 1;
276 if (next_gen == ULONG_MAX)
277 ++next_gen;
278 WRITE_ONCE(base_crng.generation, next_gen);
279 #ifdef CONFIG_VDSO_GETRANDOM
280 /* base_crng.generation's invalid value is ULONG_MAX, while
281 * _vdso_rng_data.generation's invalid value is 0, so add one to the
282 * former to arrive at the latter. Use smp_store_release so that this
283 * is ordered with the write above to base_crng.generation. Pairs with
284 * the smp_rmb() before the syscall in the vDSO code.
286 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit
287 * operations are not supported on those architectures. This is safe
288 * because base_crng.generation is a 32-bit value. On big-endian
289 * architectures it will be stored in the upper 32 bits, but that's okay
290 * because the vDSO side only checks whether the value changed, without
291 * actually using or interpreting the value.
293 smp_store_release((unsigned long *)&__arch_get_k_vdso_rng_data()->generation, next_gen + 1);
294 #endif
295 if (!static_branch_likely(&crng_is_ready))
296 crng_init = CRNG_READY;
297 spin_unlock_irqrestore(&base_crng.lock, flags);
298 memzero_explicit(key, sizeof(key));
302 * This generates a ChaCha block using the provided key, and then
303 * immediately overwrites that key with half the block. It returns
304 * the resultant ChaCha state to the user, along with the second
305 * half of the block containing 32 bytes of random data that may
306 * be used; random_data_len may not be greater than 32.
308 * The returned ChaCha state contains within it a copy of the old
309 * key value, at index 4, so the state should always be zeroed out
310 * immediately after using in order to maintain forward secrecy.
311 * If the state cannot be erased in a timely manner, then it is
312 * safer to set the random_data parameter to &chacha_state[4] so
313 * that this function overwrites it before returning.
315 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
316 u32 chacha_state[CHACHA_STATE_WORDS],
317 u8 *random_data, size_t random_data_len)
319 u8 first_block[CHACHA_BLOCK_SIZE];
321 BUG_ON(random_data_len > 32);
323 chacha_init_consts(chacha_state);
324 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
325 memset(&chacha_state[12], 0, sizeof(u32) * 4);
326 chacha20_block(chacha_state, first_block);
328 memcpy(key, first_block, CHACHA_KEY_SIZE);
329 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
330 memzero_explicit(first_block, sizeof(first_block));
334 * This function returns a ChaCha state that you may use for generating
335 * random data. It also returns up to 32 bytes on its own of random data
336 * that may be used; random_data_len may not be greater than 32.
338 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
339 u8 *random_data, size_t random_data_len)
341 unsigned long flags;
342 struct crng *crng;
344 BUG_ON(random_data_len > 32);
347 * For the fast path, we check whether we're ready, unlocked first, and
348 * then re-check once locked later. In the case where we're really not
349 * ready, we do fast key erasure with the base_crng directly, extracting
350 * when crng_init is CRNG_EMPTY.
352 if (!crng_ready()) {
353 bool ready;
355 spin_lock_irqsave(&base_crng.lock, flags);
356 ready = crng_ready();
357 if (!ready) {
358 if (crng_init == CRNG_EMPTY)
359 extract_entropy(base_crng.key, sizeof(base_crng.key));
360 crng_fast_key_erasure(base_crng.key, chacha_state,
361 random_data, random_data_len);
363 spin_unlock_irqrestore(&base_crng.lock, flags);
364 if (!ready)
365 return;
368 local_lock_irqsave(&crngs.lock, flags);
369 crng = raw_cpu_ptr(&crngs);
372 * If our per-cpu crng is older than the base_crng, then it means
373 * somebody reseeded the base_crng. In that case, we do fast key
374 * erasure on the base_crng, and use its output as the new key
375 * for our per-cpu crng. This brings us up to date with base_crng.
377 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
378 spin_lock(&base_crng.lock);
379 crng_fast_key_erasure(base_crng.key, chacha_state,
380 crng->key, sizeof(crng->key));
381 crng->generation = base_crng.generation;
382 spin_unlock(&base_crng.lock);
386 * Finally, when we've made it this far, our per-cpu crng has an up
387 * to date key, and we can do fast key erasure with it to produce
388 * some random data and a ChaCha state for the caller. All other
389 * branches of this function are "unlikely", so most of the time we
390 * should wind up here immediately.
392 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
393 local_unlock_irqrestore(&crngs.lock, flags);
396 static void _get_random_bytes(void *buf, size_t len)
398 u32 chacha_state[CHACHA_STATE_WORDS];
399 u8 tmp[CHACHA_BLOCK_SIZE];
400 size_t first_block_len;
402 if (!len)
403 return;
405 first_block_len = min_t(size_t, 32, len);
406 crng_make_state(chacha_state, buf, first_block_len);
407 len -= first_block_len;
408 buf += first_block_len;
410 while (len) {
411 if (len < CHACHA_BLOCK_SIZE) {
412 chacha20_block(chacha_state, tmp);
413 memcpy(buf, tmp, len);
414 memzero_explicit(tmp, sizeof(tmp));
415 break;
418 chacha20_block(chacha_state, buf);
419 if (unlikely(chacha_state[12] == 0))
420 ++chacha_state[13];
421 len -= CHACHA_BLOCK_SIZE;
422 buf += CHACHA_BLOCK_SIZE;
425 memzero_explicit(chacha_state, sizeof(chacha_state));
429 * This returns random bytes in arbitrary quantities. The quality of the
430 * random bytes is good as /dev/urandom. In order to ensure that the
431 * randomness provided by this function is okay, the function
432 * wait_for_random_bytes() should be called and return 0 at least once
433 * at any point prior.
435 void get_random_bytes(void *buf, size_t len)
437 warn_unseeded_randomness();
438 _get_random_bytes(buf, len);
440 EXPORT_SYMBOL(get_random_bytes);
442 static ssize_t get_random_bytes_user(struct iov_iter *iter)
444 u32 chacha_state[CHACHA_STATE_WORDS];
445 u8 block[CHACHA_BLOCK_SIZE];
446 size_t ret = 0, copied;
448 if (unlikely(!iov_iter_count(iter)))
449 return 0;
452 * Immediately overwrite the ChaCha key at index 4 with random
453 * bytes, in case userspace causes copy_to_iter() below to sleep
454 * forever, so that we still retain forward secrecy in that case.
456 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
458 * However, if we're doing a read of len <= 32, we don't need to
459 * use chacha_state after, so we can simply return those bytes to
460 * the user directly.
462 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
463 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
464 goto out_zero_chacha;
467 for (;;) {
468 chacha20_block(chacha_state, block);
469 if (unlikely(chacha_state[12] == 0))
470 ++chacha_state[13];
472 copied = copy_to_iter(block, sizeof(block), iter);
473 ret += copied;
474 if (!iov_iter_count(iter) || copied != sizeof(block))
475 break;
477 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
478 if (ret % PAGE_SIZE == 0) {
479 if (signal_pending(current))
480 break;
481 cond_resched();
485 memzero_explicit(block, sizeof(block));
486 out_zero_chacha:
487 memzero_explicit(chacha_state, sizeof(chacha_state));
488 return ret ? ret : -EFAULT;
492 * Batched entropy returns random integers. The quality of the random
493 * number is good as /dev/urandom. In order to ensure that the randomness
494 * provided by this function is okay, the function wait_for_random_bytes()
495 * should be called and return 0 at least once at any point prior.
498 #define DEFINE_BATCHED_ENTROPY(type) \
499 struct batch_ ##type { \
500 /* \
501 * We make this 1.5x a ChaCha block, so that we get the \
502 * remaining 32 bytes from fast key erasure, plus one full \
503 * block from the detached ChaCha state. We can increase \
504 * the size of this later if needed so long as we keep the \
505 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
506 */ \
507 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
508 local_lock_t lock; \
509 unsigned long generation; \
510 unsigned int position; \
511 }; \
513 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
514 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
515 .position = UINT_MAX \
516 }; \
518 type get_random_ ##type(void) \
520 type ret; \
521 unsigned long flags; \
522 struct batch_ ##type *batch; \
523 unsigned long next_gen; \
525 warn_unseeded_randomness(); \
527 if (!crng_ready()) { \
528 _get_random_bytes(&ret, sizeof(ret)); \
529 return ret; \
532 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
533 batch = raw_cpu_ptr(&batched_entropy_##type); \
535 next_gen = READ_ONCE(base_crng.generation); \
536 if (batch->position >= ARRAY_SIZE(batch->entropy) || \
537 next_gen != batch->generation) { \
538 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
539 batch->position = 0; \
540 batch->generation = next_gen; \
543 ret = batch->entropy[batch->position]; \
544 batch->entropy[batch->position] = 0; \
545 ++batch->position; \
546 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
547 return ret; \
549 EXPORT_SYMBOL(get_random_ ##type);
551 DEFINE_BATCHED_ENTROPY(u8)
552 DEFINE_BATCHED_ENTROPY(u16)
553 DEFINE_BATCHED_ENTROPY(u32)
554 DEFINE_BATCHED_ENTROPY(u64)
556 u32 __get_random_u32_below(u32 ceil)
559 * This is the slow path for variable ceil. It is still fast, most of
560 * the time, by doing traditional reciprocal multiplication and
561 * opportunistically comparing the lower half to ceil itself, before
562 * falling back to computing a larger bound, and then rejecting samples
563 * whose lower half would indicate a range indivisible by ceil. The use
564 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
565 * in 32-bits.
567 u32 rand = get_random_u32();
568 u64 mult;
571 * This function is technically undefined for ceil == 0, and in fact
572 * for the non-underscored constant version in the header, we build bug
573 * on that. But for the non-constant case, it's convenient to have that
574 * evaluate to being a straight call to get_random_u32(), so that
575 * get_random_u32_inclusive() can work over its whole range without
576 * undefined behavior.
578 if (unlikely(!ceil))
579 return rand;
581 mult = (u64)ceil * rand;
582 if (unlikely((u32)mult < ceil)) {
583 u32 bound = -ceil % ceil;
584 while (unlikely((u32)mult < bound))
585 mult = (u64)ceil * get_random_u32();
587 return mult >> 32;
589 EXPORT_SYMBOL(__get_random_u32_below);
591 #ifdef CONFIG_SMP
593 * This function is called when the CPU is coming up, with entry
594 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
596 int __cold random_prepare_cpu(unsigned int cpu)
599 * When the cpu comes back online, immediately invalidate both
600 * the per-cpu crng and all batches, so that we serve fresh
601 * randomness.
603 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
604 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
605 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
606 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
607 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
608 return 0;
610 #endif
613 /**********************************************************************
615 * Entropy accumulation and extraction routines.
617 * Callers may add entropy via:
619 * static void mix_pool_bytes(const void *buf, size_t len)
621 * After which, if added entropy should be credited:
623 * static void credit_init_bits(size_t bits)
625 * Finally, extract entropy via:
627 * static void extract_entropy(void *buf, size_t len)
629 **********************************************************************/
631 enum {
632 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
633 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
634 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
637 static struct {
638 struct blake2s_state hash;
639 spinlock_t lock;
640 unsigned int init_bits;
641 } input_pool = {
642 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
643 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
644 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
645 .hash.outlen = BLAKE2S_HASH_SIZE,
646 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
649 static void _mix_pool_bytes(const void *buf, size_t len)
651 blake2s_update(&input_pool.hash, buf, len);
655 * This function adds bytes into the input pool. It does not
656 * update the initialization bit counter; the caller should call
657 * credit_init_bits if this is appropriate.
659 static void mix_pool_bytes(const void *buf, size_t len)
661 unsigned long flags;
663 spin_lock_irqsave(&input_pool.lock, flags);
664 _mix_pool_bytes(buf, len);
665 spin_unlock_irqrestore(&input_pool.lock, flags);
669 * This is an HKDF-like construction for using the hashed collected entropy
670 * as a PRF key, that's then expanded block-by-block.
672 static void extract_entropy(void *buf, size_t len)
674 unsigned long flags;
675 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
676 struct {
677 unsigned long rdseed[32 / sizeof(long)];
678 size_t counter;
679 } block;
680 size_t i, longs;
682 for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
683 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
684 if (longs) {
685 i += longs;
686 continue;
688 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
689 if (longs) {
690 i += longs;
691 continue;
693 block.rdseed[i++] = random_get_entropy();
696 spin_lock_irqsave(&input_pool.lock, flags);
698 /* seed = HASHPRF(last_key, entropy_input) */
699 blake2s_final(&input_pool.hash, seed);
701 /* next_key = HASHPRF(seed, RDSEED || 0) */
702 block.counter = 0;
703 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
704 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
706 spin_unlock_irqrestore(&input_pool.lock, flags);
707 memzero_explicit(next_key, sizeof(next_key));
709 while (len) {
710 i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
711 /* output = HASHPRF(seed, RDSEED || ++counter) */
712 ++block.counter;
713 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
714 len -= i;
715 buf += i;
718 memzero_explicit(seed, sizeof(seed));
719 memzero_explicit(&block, sizeof(block));
722 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
724 static void __cold _credit_init_bits(size_t bits)
726 static DECLARE_WORK(set_ready, crng_set_ready);
727 unsigned int new, orig, add;
728 unsigned long flags;
730 if (!bits)
731 return;
733 add = min_t(size_t, bits, POOL_BITS);
735 orig = READ_ONCE(input_pool.init_bits);
736 do {
737 new = min_t(unsigned int, POOL_BITS, orig + add);
738 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
740 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
741 crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
742 if (static_key_initialized && system_unbound_wq)
743 queue_work(system_unbound_wq, &set_ready);
744 atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
745 #ifdef CONFIG_VDSO_GETRANDOM
746 WRITE_ONCE(__arch_get_k_vdso_rng_data()->is_ready, true);
747 #endif
748 wake_up_interruptible(&crng_init_wait);
749 kill_fasync(&fasync, SIGIO, POLL_IN);
750 pr_notice("crng init done\n");
751 if (urandom_warning.missed)
752 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
753 urandom_warning.missed);
754 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
755 spin_lock_irqsave(&base_crng.lock, flags);
756 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
757 if (crng_init == CRNG_EMPTY) {
758 extract_entropy(base_crng.key, sizeof(base_crng.key));
759 crng_init = CRNG_EARLY;
761 spin_unlock_irqrestore(&base_crng.lock, flags);
766 /**********************************************************************
768 * Entropy collection routines.
770 * The following exported functions are used for pushing entropy into
771 * the above entropy accumulation routines:
773 * void add_device_randomness(const void *buf, size_t len);
774 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
775 * void add_bootloader_randomness(const void *buf, size_t len);
776 * void add_vmfork_randomness(const void *unique_vm_id, size_t len);
777 * void add_interrupt_randomness(int irq);
778 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
779 * void add_disk_randomness(struct gendisk *disk);
781 * add_device_randomness() adds data to the input pool that
782 * is likely to differ between two devices (or possibly even per boot).
783 * This would be things like MAC addresses or serial numbers, or the
784 * read-out of the RTC. This does *not* credit any actual entropy to
785 * the pool, but it initializes the pool to different values for devices
786 * that might otherwise be identical and have very little entropy
787 * available to them (particularly common in the embedded world).
789 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
790 * entropy as specified by the caller. If the entropy pool is full it will
791 * block until more entropy is needed.
793 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
794 * and device tree, and credits its input depending on whether or not the
795 * command line option 'random.trust_bootloader'.
797 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
798 * representing the current instance of a VM to the pool, without crediting,
799 * and then force-reseeds the crng so that it takes effect immediately.
801 * add_interrupt_randomness() uses the interrupt timing as random
802 * inputs to the entropy pool. Using the cycle counters and the irq source
803 * as inputs, it feeds the input pool roughly once a second or after 64
804 * interrupts, crediting 1 bit of entropy for whichever comes first.
806 * add_input_randomness() uses the input layer interrupt timing, as well
807 * as the event type information from the hardware.
809 * add_disk_randomness() uses what amounts to the seek time of block
810 * layer request events, on a per-disk_devt basis, as input to the
811 * entropy pool. Note that high-speed solid state drives with very low
812 * seek times do not make for good sources of entropy, as their seek
813 * times are usually fairly consistent.
815 * The last two routines try to estimate how many bits of entropy
816 * to credit. They do this by keeping track of the first and second
817 * order deltas of the event timings.
819 **********************************************************************/
821 static bool trust_cpu __initdata = true;
822 static bool trust_bootloader __initdata = true;
823 static int __init parse_trust_cpu(char *arg)
825 return kstrtobool(arg, &trust_cpu);
827 static int __init parse_trust_bootloader(char *arg)
829 return kstrtobool(arg, &trust_bootloader);
831 early_param("random.trust_cpu", parse_trust_cpu);
832 early_param("random.trust_bootloader", parse_trust_bootloader);
834 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
836 unsigned long flags, entropy = random_get_entropy();
839 * Encode a representation of how long the system has been suspended,
840 * in a way that is distinct from prior system suspends.
842 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
844 spin_lock_irqsave(&input_pool.lock, flags);
845 _mix_pool_bytes(&action, sizeof(action));
846 _mix_pool_bytes(stamps, sizeof(stamps));
847 _mix_pool_bytes(&entropy, sizeof(entropy));
848 spin_unlock_irqrestore(&input_pool.lock, flags);
850 if (crng_ready() && (action == PM_RESTORE_PREPARE ||
851 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
852 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
853 crng_reseed(NULL);
854 pr_notice("crng reseeded on system resumption\n");
856 return 0;
859 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
862 * This is called extremely early, before time keeping functionality is
863 * available, but arch randomness is. Interrupts are not yet enabled.
865 void __init random_init_early(const char *command_line)
867 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
868 size_t i, longs, arch_bits;
870 #if defined(LATENT_ENTROPY_PLUGIN)
871 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
872 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
873 #endif
875 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
876 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
877 if (longs) {
878 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
879 i += longs;
880 continue;
882 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
883 if (longs) {
884 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
885 i += longs;
886 continue;
888 arch_bits -= sizeof(*entropy) * 8;
889 ++i;
892 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
893 _mix_pool_bytes(command_line, strlen(command_line));
895 /* Reseed if already seeded by earlier phases. */
896 if (crng_ready())
897 crng_reseed(NULL);
898 else if (trust_cpu)
899 _credit_init_bits(arch_bits);
903 * This is called a little bit after the prior function, and now there is
904 * access to timestamps counters. Interrupts are not yet enabled.
906 void __init random_init(void)
908 unsigned long entropy = random_get_entropy();
909 ktime_t now = ktime_get_real();
911 _mix_pool_bytes(&now, sizeof(now));
912 _mix_pool_bytes(&entropy, sizeof(entropy));
913 add_latent_entropy();
916 * If we were initialized by the cpu or bootloader before jump labels
917 * or workqueues are initialized, then we should enable the static
918 * branch here, where it's guaranteed that these have been initialized.
920 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
921 crng_set_ready(NULL);
923 /* Reseed if already seeded by earlier phases. */
924 if (crng_ready())
925 crng_reseed(NULL);
927 WARN_ON(register_pm_notifier(&pm_notifier));
929 WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
930 "entropy collection will consequently suffer.");
934 * Add device- or boot-specific data to the input pool to help
935 * initialize it.
937 * None of this adds any entropy; it is meant to avoid the problem of
938 * the entropy pool having similar initial state across largely
939 * identical devices.
941 void add_device_randomness(const void *buf, size_t len)
943 unsigned long entropy = random_get_entropy();
944 unsigned long flags;
946 spin_lock_irqsave(&input_pool.lock, flags);
947 _mix_pool_bytes(&entropy, sizeof(entropy));
948 _mix_pool_bytes(buf, len);
949 spin_unlock_irqrestore(&input_pool.lock, flags);
951 EXPORT_SYMBOL(add_device_randomness);
954 * Interface for in-kernel drivers of true hardware RNGs. Those devices
955 * may produce endless random bits, so this function will sleep for
956 * some amount of time after, if the sleep_after parameter is true.
958 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
960 mix_pool_bytes(buf, len);
961 credit_init_bits(entropy);
964 * Throttle writing to once every reseed interval, unless we're not yet
965 * initialized or no entropy is credited.
967 if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
968 schedule_timeout_interruptible(crng_reseed_interval());
970 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
973 * Handle random seed passed by bootloader, and credit it depending
974 * on the command line option 'random.trust_bootloader'.
976 void __init add_bootloader_randomness(const void *buf, size_t len)
978 mix_pool_bytes(buf, len);
979 if (trust_bootloader)
980 credit_init_bits(len * 8);
983 #if IS_ENABLED(CONFIG_VMGENID)
984 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
987 * Handle a new unique VM ID, which is unique, not secret, so we
988 * don't credit it, but we do immediately force a reseed after so
989 * that it's used by the crng posthaste.
991 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
993 add_device_randomness(unique_vm_id, len);
994 if (crng_ready()) {
995 crng_reseed(NULL);
996 pr_notice("crng reseeded due to virtual machine fork\n");
998 blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1000 #if IS_MODULE(CONFIG_VMGENID)
1001 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1002 #endif
1004 int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1006 return blocking_notifier_chain_register(&vmfork_chain, nb);
1008 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1010 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
1012 return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1014 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1015 #endif
1017 struct fast_pool {
1018 unsigned long pool[4];
1019 unsigned long last;
1020 unsigned int count;
1021 struct timer_list mix;
1024 static void mix_interrupt_randomness(struct timer_list *work);
1026 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1027 #ifdef CONFIG_64BIT
1028 #define FASTMIX_PERM SIPHASH_PERMUTATION
1029 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1030 #else
1031 #define FASTMIX_PERM HSIPHASH_PERMUTATION
1032 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1033 #endif
1034 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1038 * This is [Half]SipHash-1-x, starting from an empty key. Because
1039 * the key is fixed, it assumes that its inputs are non-malicious,
1040 * and therefore this has no security on its own. s represents the
1041 * four-word SipHash state, while v represents a two-word input.
1043 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1045 s[3] ^= v1;
1046 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1047 s[0] ^= v1;
1048 s[3] ^= v2;
1049 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1050 s[0] ^= v2;
1053 #ifdef CONFIG_SMP
1055 * This function is called when the CPU has just come online, with
1056 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1058 int __cold random_online_cpu(unsigned int cpu)
1061 * During CPU shutdown and before CPU onlining, add_interrupt_
1062 * randomness() may schedule mix_interrupt_randomness(), and
1063 * set the MIX_INFLIGHT flag. However, because the worker can
1064 * be scheduled on a different CPU during this period, that
1065 * flag will never be cleared. For that reason, we zero out
1066 * the flag here, which runs just after workqueues are onlined
1067 * for the CPU again. This also has the effect of setting the
1068 * irq randomness count to zero so that new accumulated irqs
1069 * are fresh.
1071 per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1072 return 0;
1074 #endif
1076 static void mix_interrupt_randomness(struct timer_list *work)
1078 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1080 * The size of the copied stack pool is explicitly 2 longs so that we
1081 * only ever ingest half of the siphash output each time, retaining
1082 * the other half as the next "key" that carries over. The entropy is
1083 * supposed to be sufficiently dispersed between bits so on average
1084 * we don't wind up "losing" some.
1086 unsigned long pool[2];
1087 unsigned int count;
1089 /* Check to see if we're running on the wrong CPU due to hotplug. */
1090 local_irq_disable();
1091 if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1092 local_irq_enable();
1093 return;
1097 * Copy the pool to the stack so that the mixer always has a
1098 * consistent view, before we reenable irqs again.
1100 memcpy(pool, fast_pool->pool, sizeof(pool));
1101 count = fast_pool->count;
1102 fast_pool->count = 0;
1103 fast_pool->last = jiffies;
1104 local_irq_enable();
1106 mix_pool_bytes(pool, sizeof(pool));
1107 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1109 memzero_explicit(pool, sizeof(pool));
1112 void add_interrupt_randomness(int irq)
1114 enum { MIX_INFLIGHT = 1U << 31 };
1115 unsigned long entropy = random_get_entropy();
1116 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1117 struct pt_regs *regs = get_irq_regs();
1118 unsigned int new_count;
1120 fast_mix(fast_pool->pool, entropy,
1121 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1122 new_count = ++fast_pool->count;
1124 if (new_count & MIX_INFLIGHT)
1125 return;
1127 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1128 return;
1130 fast_pool->count |= MIX_INFLIGHT;
1131 if (!timer_pending(&fast_pool->mix)) {
1132 fast_pool->mix.expires = jiffies;
1133 add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1136 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1138 /* There is one of these per entropy source */
1139 struct timer_rand_state {
1140 unsigned long last_time;
1141 long last_delta, last_delta2;
1145 * This function adds entropy to the entropy "pool" by using timing
1146 * delays. It uses the timer_rand_state structure to make an estimate
1147 * of how many bits of entropy this call has added to the pool. The
1148 * value "num" is also added to the pool; it should somehow describe
1149 * the type of event that just happened.
1151 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1153 unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1154 long delta, delta2, delta3;
1155 unsigned int bits;
1158 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1159 * sometime after, so mix into the fast pool.
1161 if (in_hardirq()) {
1162 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1163 } else {
1164 spin_lock_irqsave(&input_pool.lock, flags);
1165 _mix_pool_bytes(&entropy, sizeof(entropy));
1166 _mix_pool_bytes(&num, sizeof(num));
1167 spin_unlock_irqrestore(&input_pool.lock, flags);
1170 if (crng_ready())
1171 return;
1174 * Calculate number of bits of randomness we probably added.
1175 * We take into account the first, second and third-order deltas
1176 * in order to make our estimate.
1178 delta = now - READ_ONCE(state->last_time);
1179 WRITE_ONCE(state->last_time, now);
1181 delta2 = delta - READ_ONCE(state->last_delta);
1182 WRITE_ONCE(state->last_delta, delta);
1184 delta3 = delta2 - READ_ONCE(state->last_delta2);
1185 WRITE_ONCE(state->last_delta2, delta2);
1187 if (delta < 0)
1188 delta = -delta;
1189 if (delta2 < 0)
1190 delta2 = -delta2;
1191 if (delta3 < 0)
1192 delta3 = -delta3;
1193 if (delta > delta2)
1194 delta = delta2;
1195 if (delta > delta3)
1196 delta = delta3;
1199 * delta is now minimum absolute delta. Round down by 1 bit
1200 * on general principles, and limit entropy estimate to 11 bits.
1202 bits = min(fls(delta >> 1), 11);
1205 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1206 * will run after this, which uses a different crediting scheme of 1 bit
1207 * per every 64 interrupts. In order to let that function do accounting
1208 * close to the one in this function, we credit a full 64/64 bit per bit,
1209 * and then subtract one to account for the extra one added.
1211 if (in_hardirq())
1212 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1213 else
1214 _credit_init_bits(bits);
1217 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1219 static unsigned char last_value;
1220 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1222 /* Ignore autorepeat and the like. */
1223 if (value == last_value)
1224 return;
1226 last_value = value;
1227 add_timer_randomness(&input_timer_state,
1228 (type << 4) ^ code ^ (code >> 4) ^ value);
1230 EXPORT_SYMBOL_GPL(add_input_randomness);
1232 #ifdef CONFIG_BLOCK
1233 void add_disk_randomness(struct gendisk *disk)
1235 if (!disk || !disk->random)
1236 return;
1237 /* First major is 1, so we get >= 0x200 here. */
1238 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1240 EXPORT_SYMBOL_GPL(add_disk_randomness);
1242 void __cold rand_initialize_disk(struct gendisk *disk)
1244 struct timer_rand_state *state;
1247 * If kzalloc returns null, we just won't use that entropy
1248 * source.
1250 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1251 if (state) {
1252 state->last_time = INITIAL_JIFFIES;
1253 disk->random = state;
1256 #endif
1258 struct entropy_timer_state {
1259 unsigned long entropy;
1260 struct timer_list timer;
1261 atomic_t samples;
1262 unsigned int samples_per_bit;
1266 * Each time the timer fires, we expect that we got an unpredictable jump in
1267 * the cycle counter. Even if the timer is running on another CPU, the timer
1268 * activity will be touching the stack of the CPU that is generating entropy.
1270 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1271 * scheduled away, since that just makes the load more complex, but we do not
1272 * want the timer to keep ticking unless the entropy loop is running.
1274 * So the re-arming always happens in the entropy loop itself.
1276 static void __cold entropy_timer(struct timer_list *timer)
1278 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1279 unsigned long entropy = random_get_entropy();
1281 mix_pool_bytes(&entropy, sizeof(entropy));
1282 if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1283 credit_init_bits(1);
1287 * If we have an actual cycle counter, see if we can generate enough entropy
1288 * with timing noise.
1290 static void __cold try_to_generate_entropy(void)
1292 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1293 u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1294 struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1295 unsigned int i, num_different = 0;
1296 unsigned long last = random_get_entropy();
1297 int cpu = -1;
1299 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1300 stack->entropy = random_get_entropy();
1301 if (stack->entropy != last)
1302 ++num_different;
1303 last = stack->entropy;
1305 stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1306 if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1307 return;
1309 atomic_set(&stack->samples, 0);
1310 timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1311 while (!crng_ready() && !signal_pending(current)) {
1313 * Check !timer_pending() and then ensure that any previous callback has finished
1314 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1316 if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1317 struct cpumask timer_cpus;
1318 unsigned int num_cpus;
1321 * Preemption must be disabled here, both to read the current CPU number
1322 * and to avoid scheduling a timer on a dead CPU.
1324 preempt_disable();
1326 /* Only schedule callbacks on timer CPUs that are online. */
1327 cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1328 num_cpus = cpumask_weight(&timer_cpus);
1329 /* In very bizarre case of misconfiguration, fallback to all online. */
1330 if (unlikely(num_cpus == 0)) {
1331 timer_cpus = *cpu_online_mask;
1332 num_cpus = cpumask_weight(&timer_cpus);
1335 /* Basic CPU round-robin, which avoids the current CPU. */
1336 do {
1337 cpu = cpumask_next(cpu, &timer_cpus);
1338 if (cpu >= nr_cpu_ids)
1339 cpu = cpumask_first(&timer_cpus);
1340 } while (cpu == smp_processor_id() && num_cpus > 1);
1342 /* Expiring the timer at `jiffies` means it's the next tick. */
1343 stack->timer.expires = jiffies;
1345 add_timer_on(&stack->timer, cpu);
1347 preempt_enable();
1349 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1350 schedule();
1351 stack->entropy = random_get_entropy();
1353 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1355 del_timer_sync(&stack->timer);
1356 destroy_timer_on_stack(&stack->timer);
1360 /**********************************************************************
1362 * Userspace reader/writer interfaces.
1364 * getrandom(2) is the primary modern interface into the RNG and should
1365 * be used in preference to anything else.
1367 * Reading from /dev/random has the same functionality as calling
1368 * getrandom(2) with flags=0. In earlier versions, however, it had
1369 * vastly different semantics and should therefore be avoided, to
1370 * prevent backwards compatibility issues.
1372 * Reading from /dev/urandom has the same functionality as calling
1373 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1374 * waiting for the RNG to be ready, it should not be used.
1376 * Writing to either /dev/random or /dev/urandom adds entropy to
1377 * the input pool but does not credit it.
1379 * Polling on /dev/random indicates when the RNG is initialized, on
1380 * the read side, and when it wants new entropy, on the write side.
1382 * Both /dev/random and /dev/urandom have the same set of ioctls for
1383 * adding entropy, getting the entropy count, zeroing the count, and
1384 * reseeding the crng.
1386 **********************************************************************/
1388 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1390 struct iov_iter iter;
1391 int ret;
1393 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1394 return -EINVAL;
1397 * Requesting insecure and blocking randomness at the same time makes
1398 * no sense.
1400 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1401 return -EINVAL;
1403 if (!crng_ready() && !(flags & GRND_INSECURE)) {
1404 if (flags & GRND_NONBLOCK)
1405 return -EAGAIN;
1406 ret = wait_for_random_bytes();
1407 if (unlikely(ret))
1408 return ret;
1411 ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1412 if (unlikely(ret))
1413 return ret;
1414 return get_random_bytes_user(&iter);
1417 static __poll_t random_poll(struct file *file, poll_table *wait)
1419 poll_wait(file, &crng_init_wait, wait);
1420 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1423 static ssize_t write_pool_user(struct iov_iter *iter)
1425 u8 block[BLAKE2S_BLOCK_SIZE];
1426 ssize_t ret = 0;
1427 size_t copied;
1429 if (unlikely(!iov_iter_count(iter)))
1430 return 0;
1432 for (;;) {
1433 copied = copy_from_iter(block, sizeof(block), iter);
1434 ret += copied;
1435 mix_pool_bytes(block, copied);
1436 if (!iov_iter_count(iter) || copied != sizeof(block))
1437 break;
1439 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1440 if (ret % PAGE_SIZE == 0) {
1441 if (signal_pending(current))
1442 break;
1443 cond_resched();
1447 memzero_explicit(block, sizeof(block));
1448 return ret ? ret : -EFAULT;
1451 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1453 return write_pool_user(iter);
1456 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1458 static int maxwarn = 10;
1461 * Opportunistically attempt to initialize the RNG on platforms that
1462 * have fast cycle counters, but don't (for now) require it to succeed.
1464 if (!crng_ready())
1465 try_to_generate_entropy();
1467 if (!crng_ready()) {
1468 if (!ratelimit_disable && maxwarn <= 0)
1469 ++urandom_warning.missed;
1470 else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1471 --maxwarn;
1472 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1473 current->comm, iov_iter_count(iter));
1477 return get_random_bytes_user(iter);
1480 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1482 int ret;
1484 if (!crng_ready() &&
1485 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1486 (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1487 return -EAGAIN;
1489 ret = wait_for_random_bytes();
1490 if (ret != 0)
1491 return ret;
1492 return get_random_bytes_user(iter);
1495 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1497 int __user *p = (int __user *)arg;
1498 int ent_count;
1500 switch (cmd) {
1501 case RNDGETENTCNT:
1502 /* Inherently racy, no point locking. */
1503 if (put_user(input_pool.init_bits, p))
1504 return -EFAULT;
1505 return 0;
1506 case RNDADDTOENTCNT:
1507 if (!capable(CAP_SYS_ADMIN))
1508 return -EPERM;
1509 if (get_user(ent_count, p))
1510 return -EFAULT;
1511 if (ent_count < 0)
1512 return -EINVAL;
1513 credit_init_bits(ent_count);
1514 return 0;
1515 case RNDADDENTROPY: {
1516 struct iov_iter iter;
1517 ssize_t ret;
1518 int len;
1520 if (!capable(CAP_SYS_ADMIN))
1521 return -EPERM;
1522 if (get_user(ent_count, p++))
1523 return -EFAULT;
1524 if (ent_count < 0)
1525 return -EINVAL;
1526 if (get_user(len, p++))
1527 return -EFAULT;
1528 ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1529 if (unlikely(ret))
1530 return ret;
1531 ret = write_pool_user(&iter);
1532 if (unlikely(ret < 0))
1533 return ret;
1534 /* Since we're crediting, enforce that it was all written into the pool. */
1535 if (unlikely(ret != len))
1536 return -EFAULT;
1537 credit_init_bits(ent_count);
1538 return 0;
1540 case RNDZAPENTCNT:
1541 case RNDCLEARPOOL:
1542 /* No longer has any effect. */
1543 if (!capable(CAP_SYS_ADMIN))
1544 return -EPERM;
1545 return 0;
1546 case RNDRESEEDCRNG:
1547 if (!capable(CAP_SYS_ADMIN))
1548 return -EPERM;
1549 if (!crng_ready())
1550 return -ENODATA;
1551 crng_reseed(NULL);
1552 return 0;
1553 default:
1554 return -EINVAL;
1558 static int random_fasync(int fd, struct file *filp, int on)
1560 return fasync_helper(fd, filp, on, &fasync);
1563 const struct file_operations random_fops = {
1564 .read_iter = random_read_iter,
1565 .write_iter = random_write_iter,
1566 .poll = random_poll,
1567 .unlocked_ioctl = random_ioctl,
1568 .compat_ioctl = compat_ptr_ioctl,
1569 .fasync = random_fasync,
1570 .llseek = noop_llseek,
1571 .splice_read = copy_splice_read,
1572 .splice_write = iter_file_splice_write,
1575 const struct file_operations urandom_fops = {
1576 .read_iter = urandom_read_iter,
1577 .write_iter = random_write_iter,
1578 .unlocked_ioctl = random_ioctl,
1579 .compat_ioctl = compat_ptr_ioctl,
1580 .fasync = random_fasync,
1581 .llseek = noop_llseek,
1582 .splice_read = copy_splice_read,
1583 .splice_write = iter_file_splice_write,
1587 /********************************************************************
1589 * Sysctl interface.
1591 * These are partly unused legacy knobs with dummy values to not break
1592 * userspace and partly still useful things. They are usually accessible
1593 * in /proc/sys/kernel/random/ and are as follows:
1595 * - boot_id - a UUID representing the current boot.
1597 * - uuid - a random UUID, different each time the file is read.
1599 * - poolsize - the number of bits of entropy that the input pool can
1600 * hold, tied to the POOL_BITS constant.
1602 * - entropy_avail - the number of bits of entropy currently in the
1603 * input pool. Always <= poolsize.
1605 * - write_wakeup_threshold - the amount of entropy in the input pool
1606 * below which write polls to /dev/random will unblock, requesting
1607 * more entropy, tied to the POOL_READY_BITS constant. It is writable
1608 * to avoid breaking old userspaces, but writing to it does not
1609 * change any behavior of the RNG.
1611 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1612 * It is writable to avoid breaking old userspaces, but writing
1613 * to it does not change any behavior of the RNG.
1615 ********************************************************************/
1617 #ifdef CONFIG_SYSCTL
1619 #include <linux/sysctl.h>
1621 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1622 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1623 static int sysctl_poolsize = POOL_BITS;
1624 static u8 sysctl_bootid[UUID_SIZE];
1627 * This function is used to return both the bootid UUID, and random
1628 * UUID. The difference is in whether table->data is NULL; if it is,
1629 * then a new UUID is generated and returned to the user.
1631 static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1632 size_t *lenp, loff_t *ppos)
1634 u8 tmp_uuid[UUID_SIZE], *uuid;
1635 char uuid_string[UUID_STRING_LEN + 1];
1636 struct ctl_table fake_table = {
1637 .data = uuid_string,
1638 .maxlen = UUID_STRING_LEN
1641 if (write)
1642 return -EPERM;
1644 uuid = table->data;
1645 if (!uuid) {
1646 uuid = tmp_uuid;
1647 generate_random_uuid(uuid);
1648 } else {
1649 static DEFINE_SPINLOCK(bootid_spinlock);
1651 spin_lock(&bootid_spinlock);
1652 if (!uuid[8])
1653 generate_random_uuid(uuid);
1654 spin_unlock(&bootid_spinlock);
1657 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1658 return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1661 /* The same as proc_dointvec, but writes don't change anything. */
1662 static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1663 size_t *lenp, loff_t *ppos)
1665 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1668 static struct ctl_table random_table[] = {
1670 .procname = "poolsize",
1671 .data = &sysctl_poolsize,
1672 .maxlen = sizeof(int),
1673 .mode = 0444,
1674 .proc_handler = proc_dointvec,
1677 .procname = "entropy_avail",
1678 .data = &input_pool.init_bits,
1679 .maxlen = sizeof(int),
1680 .mode = 0444,
1681 .proc_handler = proc_dointvec,
1684 .procname = "write_wakeup_threshold",
1685 .data = &sysctl_random_write_wakeup_bits,
1686 .maxlen = sizeof(int),
1687 .mode = 0644,
1688 .proc_handler = proc_do_rointvec,
1691 .procname = "urandom_min_reseed_secs",
1692 .data = &sysctl_random_min_urandom_seed,
1693 .maxlen = sizeof(int),
1694 .mode = 0644,
1695 .proc_handler = proc_do_rointvec,
1698 .procname = "boot_id",
1699 .data = &sysctl_bootid,
1700 .mode = 0444,
1701 .proc_handler = proc_do_uuid,
1704 .procname = "uuid",
1705 .mode = 0444,
1706 .proc_handler = proc_do_uuid,
1711 * random_init() is called before sysctl_init(),
1712 * so we cannot call register_sysctl_init() in random_init()
1714 static int __init random_sysctls_init(void)
1716 register_sysctl_init("kernel/random", random_table);
1717 return 0;
1719 device_initcall(random_sysctls_init);
1720 #endif