1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
17 * The high level overview is that there is one input pool, into which
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <linux/sched/isolation.h>
57 #include <crypto/chacha.h>
58 #include <crypto/blake2s.h>
59 #ifdef CONFIG_VDSO_GETRANDOM
60 #include <vdso/getrandom.h>
61 #include <vdso/datapage.h>
62 #include <vdso/vsyscall.h>
64 #include <asm/archrandom.h>
65 #include <asm/processor.h>
67 #include <asm/irq_regs.h>
70 /*********************************************************************
72 * Initialization and readiness waiting.
74 * Much of the RNG infrastructure is devoted to various dependencies
75 * being able to wait until the RNG has collected enough entropy and
76 * is ready for safe consumption.
78 *********************************************************************/
81 * crng_init is protected by base_crng->lock, and only increases
82 * its value (from empty->early->ready).
85 CRNG_EMPTY
= 0, /* Little to no entropy collected */
86 CRNG_EARLY
= 1, /* At least POOL_EARLY_BITS collected */
87 CRNG_READY
= 2 /* Fully initialized with POOL_READY_BITS collected */
88 } crng_init __read_mostly
= CRNG_EMPTY
;
89 static DEFINE_STATIC_KEY_FALSE(crng_is_ready
);
90 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
91 /* Various types of waiters for crng_init->CRNG_READY transition. */
92 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait
);
93 static struct fasync_struct
*fasync
;
94 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier
);
96 /* Control how we warn userspace. */
97 static struct ratelimit_state urandom_warning
=
98 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ
, 3, RATELIMIT_MSG_ON_RELEASE
);
99 static int ratelimit_disable __read_mostly
=
100 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM
);
101 module_param_named(ratelimit_disable
, ratelimit_disable
, int, 0644);
102 MODULE_PARM_DESC(ratelimit_disable
, "Disable random ratelimit suppression");
105 * Returns whether or not the input pool has been seeded and thus guaranteed
106 * to supply cryptographically secure random numbers. This applies to: the
107 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
108 * u16,u32,u64,long} family of functions.
110 * Returns: true if the input pool has been seeded.
111 * false if the input pool has not been seeded.
113 bool rng_is_initialized(void)
117 EXPORT_SYMBOL(rng_is_initialized
);
119 static void __cold
crng_set_ready(struct work_struct
*work
)
121 static_branch_enable(&crng_is_ready
);
124 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
125 static void try_to_generate_entropy(void);
128 * Wait for the input pool to be seeded and thus guaranteed to supply
129 * cryptographically secure random numbers. This applies to: the /dev/urandom
130 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
131 * long} family of functions. Using any of these functions without first
132 * calling this function forfeits the guarantee of security.
134 * Returns: 0 if the input pool has been seeded.
135 * -ERESTARTSYS if the function was interrupted by a signal.
137 int wait_for_random_bytes(void)
139 while (!crng_ready()) {
142 try_to_generate_entropy();
143 ret
= wait_event_interruptible_timeout(crng_init_wait
, crng_ready(), HZ
);
145 return ret
> 0 ? 0 : ret
;
149 EXPORT_SYMBOL(wait_for_random_bytes
);
152 * Add a callback function that will be invoked when the crng is initialised,
153 * or immediately if it already has been. Only use this is you are absolutely
154 * sure it is required. Most users should instead be able to test
155 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
157 int __cold
execute_with_initialized_rng(struct notifier_block
*nb
)
162 spin_lock_irqsave(&random_ready_notifier
.lock
, flags
);
164 nb
->notifier_call(nb
, 0, NULL
);
166 ret
= raw_notifier_chain_register((struct raw_notifier_head
*)&random_ready_notifier
.head
, nb
);
167 spin_unlock_irqrestore(&random_ready_notifier
.lock
, flags
);
171 #define warn_unseeded_randomness() \
172 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
173 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
174 __func__, (void *)_RET_IP_, crng_init)
177 /*********************************************************************
179 * Fast key erasure RNG, the "crng".
181 * These functions expand entropy from the entropy extractor into
182 * long streams for external consumption using the "fast key erasure"
183 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
185 * There are a few exported interfaces for use by other drivers:
187 * void get_random_bytes(void *buf, size_t len)
189 * u16 get_random_u16()
190 * u32 get_random_u32()
191 * u32 get_random_u32_below(u32 ceil)
192 * u32 get_random_u32_above(u32 floor)
193 * u32 get_random_u32_inclusive(u32 floor, u32 ceil)
194 * u64 get_random_u64()
195 * unsigned long get_random_long()
197 * These interfaces will return the requested number of random bytes
198 * into the given buffer or as a return value. This is equivalent to
199 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
200 * functions may be higher performance for one-off random integers,
201 * because they do a bit of buffering and do not invoke reseeding
202 * until the buffer is emptied.
204 *********************************************************************/
207 CRNG_RESEED_START_INTERVAL
= HZ
,
208 CRNG_RESEED_INTERVAL
= 60 * HZ
212 u8 key
[CHACHA_KEY_SIZE
] __aligned(__alignof__(long));
213 unsigned long generation
;
216 .lock
= __SPIN_LOCK_UNLOCKED(base_crng
.lock
)
220 u8 key
[CHACHA_KEY_SIZE
];
221 unsigned long generation
;
225 static DEFINE_PER_CPU(struct crng
, crngs
) = {
226 .generation
= ULONG_MAX
,
227 .lock
= INIT_LOCAL_LOCK(crngs
.lock
),
231 * Return the interval until the next reseeding, which is normally
232 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
233 * proportional to the uptime.
235 static unsigned int crng_reseed_interval(void)
237 static bool early_boot
= true;
239 if (unlikely(READ_ONCE(early_boot
))) {
240 time64_t uptime
= ktime_get_seconds();
241 if (uptime
>= CRNG_RESEED_INTERVAL
/ HZ
* 2)
242 WRITE_ONCE(early_boot
, false);
244 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL
,
245 (unsigned int)uptime
/ 2 * HZ
);
247 return CRNG_RESEED_INTERVAL
;
250 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
251 static void extract_entropy(void *buf
, size_t len
);
253 /* This extracts a new crng key from the input pool. */
254 static void crng_reseed(struct work_struct
*work
)
256 static DECLARE_DELAYED_WORK(next_reseed
, crng_reseed
);
258 unsigned long next_gen
;
259 u8 key
[CHACHA_KEY_SIZE
];
261 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
262 if (likely(system_unbound_wq
))
263 queue_delayed_work(system_unbound_wq
, &next_reseed
, crng_reseed_interval());
265 extract_entropy(key
, sizeof(key
));
268 * We copy the new key into the base_crng, overwriting the old one,
269 * and update the generation counter. We avoid hitting ULONG_MAX,
270 * because the per-cpu crngs are initialized to ULONG_MAX, so this
271 * forces new CPUs that come online to always initialize.
273 spin_lock_irqsave(&base_crng
.lock
, flags
);
274 memcpy(base_crng
.key
, key
, sizeof(base_crng
.key
));
275 next_gen
= base_crng
.generation
+ 1;
276 if (next_gen
== ULONG_MAX
)
278 WRITE_ONCE(base_crng
.generation
, next_gen
);
279 #ifdef CONFIG_VDSO_GETRANDOM
280 /* base_crng.generation's invalid value is ULONG_MAX, while
281 * _vdso_rng_data.generation's invalid value is 0, so add one to the
282 * former to arrive at the latter. Use smp_store_release so that this
283 * is ordered with the write above to base_crng.generation. Pairs with
284 * the smp_rmb() before the syscall in the vDSO code.
286 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit
287 * operations are not supported on those architectures. This is safe
288 * because base_crng.generation is a 32-bit value. On big-endian
289 * architectures it will be stored in the upper 32 bits, but that's okay
290 * because the vDSO side only checks whether the value changed, without
291 * actually using or interpreting the value.
293 smp_store_release((unsigned long *)&__arch_get_k_vdso_rng_data()->generation
, next_gen
+ 1);
295 if (!static_branch_likely(&crng_is_ready
))
296 crng_init
= CRNG_READY
;
297 spin_unlock_irqrestore(&base_crng
.lock
, flags
);
298 memzero_explicit(key
, sizeof(key
));
302 * This generates a ChaCha block using the provided key, and then
303 * immediately overwrites that key with half the block. It returns
304 * the resultant ChaCha state to the user, along with the second
305 * half of the block containing 32 bytes of random data that may
306 * be used; random_data_len may not be greater than 32.
308 * The returned ChaCha state contains within it a copy of the old
309 * key value, at index 4, so the state should always be zeroed out
310 * immediately after using in order to maintain forward secrecy.
311 * If the state cannot be erased in a timely manner, then it is
312 * safer to set the random_data parameter to &chacha_state[4] so
313 * that this function overwrites it before returning.
315 static void crng_fast_key_erasure(u8 key
[CHACHA_KEY_SIZE
],
316 u32 chacha_state
[CHACHA_STATE_WORDS
],
317 u8
*random_data
, size_t random_data_len
)
319 u8 first_block
[CHACHA_BLOCK_SIZE
];
321 BUG_ON(random_data_len
> 32);
323 chacha_init_consts(chacha_state
);
324 memcpy(&chacha_state
[4], key
, CHACHA_KEY_SIZE
);
325 memset(&chacha_state
[12], 0, sizeof(u32
) * 4);
326 chacha20_block(chacha_state
, first_block
);
328 memcpy(key
, first_block
, CHACHA_KEY_SIZE
);
329 memcpy(random_data
, first_block
+ CHACHA_KEY_SIZE
, random_data_len
);
330 memzero_explicit(first_block
, sizeof(first_block
));
334 * This function returns a ChaCha state that you may use for generating
335 * random data. It also returns up to 32 bytes on its own of random data
336 * that may be used; random_data_len may not be greater than 32.
338 static void crng_make_state(u32 chacha_state
[CHACHA_STATE_WORDS
],
339 u8
*random_data
, size_t random_data_len
)
344 BUG_ON(random_data_len
> 32);
347 * For the fast path, we check whether we're ready, unlocked first, and
348 * then re-check once locked later. In the case where we're really not
349 * ready, we do fast key erasure with the base_crng directly, extracting
350 * when crng_init is CRNG_EMPTY.
355 spin_lock_irqsave(&base_crng
.lock
, flags
);
356 ready
= crng_ready();
358 if (crng_init
== CRNG_EMPTY
)
359 extract_entropy(base_crng
.key
, sizeof(base_crng
.key
));
360 crng_fast_key_erasure(base_crng
.key
, chacha_state
,
361 random_data
, random_data_len
);
363 spin_unlock_irqrestore(&base_crng
.lock
, flags
);
368 local_lock_irqsave(&crngs
.lock
, flags
);
369 crng
= raw_cpu_ptr(&crngs
);
372 * If our per-cpu crng is older than the base_crng, then it means
373 * somebody reseeded the base_crng. In that case, we do fast key
374 * erasure on the base_crng, and use its output as the new key
375 * for our per-cpu crng. This brings us up to date with base_crng.
377 if (unlikely(crng
->generation
!= READ_ONCE(base_crng
.generation
))) {
378 spin_lock(&base_crng
.lock
);
379 crng_fast_key_erasure(base_crng
.key
, chacha_state
,
380 crng
->key
, sizeof(crng
->key
));
381 crng
->generation
= base_crng
.generation
;
382 spin_unlock(&base_crng
.lock
);
386 * Finally, when we've made it this far, our per-cpu crng has an up
387 * to date key, and we can do fast key erasure with it to produce
388 * some random data and a ChaCha state for the caller. All other
389 * branches of this function are "unlikely", so most of the time we
390 * should wind up here immediately.
392 crng_fast_key_erasure(crng
->key
, chacha_state
, random_data
, random_data_len
);
393 local_unlock_irqrestore(&crngs
.lock
, flags
);
396 static void _get_random_bytes(void *buf
, size_t len
)
398 u32 chacha_state
[CHACHA_STATE_WORDS
];
399 u8 tmp
[CHACHA_BLOCK_SIZE
];
400 size_t first_block_len
;
405 first_block_len
= min_t(size_t, 32, len
);
406 crng_make_state(chacha_state
, buf
, first_block_len
);
407 len
-= first_block_len
;
408 buf
+= first_block_len
;
411 if (len
< CHACHA_BLOCK_SIZE
) {
412 chacha20_block(chacha_state
, tmp
);
413 memcpy(buf
, tmp
, len
);
414 memzero_explicit(tmp
, sizeof(tmp
));
418 chacha20_block(chacha_state
, buf
);
419 if (unlikely(chacha_state
[12] == 0))
421 len
-= CHACHA_BLOCK_SIZE
;
422 buf
+= CHACHA_BLOCK_SIZE
;
425 memzero_explicit(chacha_state
, sizeof(chacha_state
));
429 * This returns random bytes in arbitrary quantities. The quality of the
430 * random bytes is good as /dev/urandom. In order to ensure that the
431 * randomness provided by this function is okay, the function
432 * wait_for_random_bytes() should be called and return 0 at least once
433 * at any point prior.
435 void get_random_bytes(void *buf
, size_t len
)
437 warn_unseeded_randomness();
438 _get_random_bytes(buf
, len
);
440 EXPORT_SYMBOL(get_random_bytes
);
442 static ssize_t
get_random_bytes_user(struct iov_iter
*iter
)
444 u32 chacha_state
[CHACHA_STATE_WORDS
];
445 u8 block
[CHACHA_BLOCK_SIZE
];
446 size_t ret
= 0, copied
;
448 if (unlikely(!iov_iter_count(iter
)))
452 * Immediately overwrite the ChaCha key at index 4 with random
453 * bytes, in case userspace causes copy_to_iter() below to sleep
454 * forever, so that we still retain forward secrecy in that case.
456 crng_make_state(chacha_state
, (u8
*)&chacha_state
[4], CHACHA_KEY_SIZE
);
458 * However, if we're doing a read of len <= 32, we don't need to
459 * use chacha_state after, so we can simply return those bytes to
462 if (iov_iter_count(iter
) <= CHACHA_KEY_SIZE
) {
463 ret
= copy_to_iter(&chacha_state
[4], CHACHA_KEY_SIZE
, iter
);
464 goto out_zero_chacha
;
468 chacha20_block(chacha_state
, block
);
469 if (unlikely(chacha_state
[12] == 0))
472 copied
= copy_to_iter(block
, sizeof(block
), iter
);
474 if (!iov_iter_count(iter
) || copied
!= sizeof(block
))
477 BUILD_BUG_ON(PAGE_SIZE
% sizeof(block
) != 0);
478 if (ret
% PAGE_SIZE
== 0) {
479 if (signal_pending(current
))
485 memzero_explicit(block
, sizeof(block
));
487 memzero_explicit(chacha_state
, sizeof(chacha_state
));
488 return ret
? ret
: -EFAULT
;
492 * Batched entropy returns random integers. The quality of the random
493 * number is good as /dev/urandom. In order to ensure that the randomness
494 * provided by this function is okay, the function wait_for_random_bytes()
495 * should be called and return 0 at least once at any point prior.
498 #define DEFINE_BATCHED_ENTROPY(type) \
499 struct batch_ ##type { \
501 * We make this 1.5x a ChaCha block, so that we get the \
502 * remaining 32 bytes from fast key erasure, plus one full \
503 * block from the detached ChaCha state. We can increase \
504 * the size of this later if needed so long as we keep the \
505 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
507 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
509 unsigned long generation; \
510 unsigned int position; \
513 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
514 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
515 .position = UINT_MAX \
518 type get_random_ ##type(void) \
521 unsigned long flags; \
522 struct batch_ ##type *batch; \
523 unsigned long next_gen; \
525 warn_unseeded_randomness(); \
527 if (!crng_ready()) { \
528 _get_random_bytes(&ret, sizeof(ret)); \
532 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
533 batch = raw_cpu_ptr(&batched_entropy_##type); \
535 next_gen = READ_ONCE(base_crng.generation); \
536 if (batch->position >= ARRAY_SIZE(batch->entropy) || \
537 next_gen != batch->generation) { \
538 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
539 batch->position = 0; \
540 batch->generation = next_gen; \
543 ret = batch->entropy[batch->position]; \
544 batch->entropy[batch->position] = 0; \
546 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
549 EXPORT_SYMBOL(get_random_ ##type);
551 DEFINE_BATCHED_ENTROPY(u8
)
552 DEFINE_BATCHED_ENTROPY(u16
)
553 DEFINE_BATCHED_ENTROPY(u32
)
554 DEFINE_BATCHED_ENTROPY(u64
)
556 u32
__get_random_u32_below(u32 ceil
)
559 * This is the slow path for variable ceil. It is still fast, most of
560 * the time, by doing traditional reciprocal multiplication and
561 * opportunistically comparing the lower half to ceil itself, before
562 * falling back to computing a larger bound, and then rejecting samples
563 * whose lower half would indicate a range indivisible by ceil. The use
564 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
567 u32 rand
= get_random_u32();
571 * This function is technically undefined for ceil == 0, and in fact
572 * for the non-underscored constant version in the header, we build bug
573 * on that. But for the non-constant case, it's convenient to have that
574 * evaluate to being a straight call to get_random_u32(), so that
575 * get_random_u32_inclusive() can work over its whole range without
576 * undefined behavior.
581 mult
= (u64
)ceil
* rand
;
582 if (unlikely((u32
)mult
< ceil
)) {
583 u32 bound
= -ceil
% ceil
;
584 while (unlikely((u32
)mult
< bound
))
585 mult
= (u64
)ceil
* get_random_u32();
589 EXPORT_SYMBOL(__get_random_u32_below
);
593 * This function is called when the CPU is coming up, with entry
594 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
596 int __cold
random_prepare_cpu(unsigned int cpu
)
599 * When the cpu comes back online, immediately invalidate both
600 * the per-cpu crng and all batches, so that we serve fresh
603 per_cpu_ptr(&crngs
, cpu
)->generation
= ULONG_MAX
;
604 per_cpu_ptr(&batched_entropy_u8
, cpu
)->position
= UINT_MAX
;
605 per_cpu_ptr(&batched_entropy_u16
, cpu
)->position
= UINT_MAX
;
606 per_cpu_ptr(&batched_entropy_u32
, cpu
)->position
= UINT_MAX
;
607 per_cpu_ptr(&batched_entropy_u64
, cpu
)->position
= UINT_MAX
;
613 /**********************************************************************
615 * Entropy accumulation and extraction routines.
617 * Callers may add entropy via:
619 * static void mix_pool_bytes(const void *buf, size_t len)
621 * After which, if added entropy should be credited:
623 * static void credit_init_bits(size_t bits)
625 * Finally, extract entropy via:
627 * static void extract_entropy(void *buf, size_t len)
629 **********************************************************************/
632 POOL_BITS
= BLAKE2S_HASH_SIZE
* 8,
633 POOL_READY_BITS
= POOL_BITS
, /* When crng_init->CRNG_READY */
634 POOL_EARLY_BITS
= POOL_READY_BITS
/ 2 /* When crng_init->CRNG_EARLY */
638 struct blake2s_state hash
;
640 unsigned int init_bits
;
642 .hash
.h
= { BLAKE2S_IV0
^ (0x01010000 | BLAKE2S_HASH_SIZE
),
643 BLAKE2S_IV1
, BLAKE2S_IV2
, BLAKE2S_IV3
, BLAKE2S_IV4
,
644 BLAKE2S_IV5
, BLAKE2S_IV6
, BLAKE2S_IV7
},
645 .hash
.outlen
= BLAKE2S_HASH_SIZE
,
646 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
649 static void _mix_pool_bytes(const void *buf
, size_t len
)
651 blake2s_update(&input_pool
.hash
, buf
, len
);
655 * This function adds bytes into the input pool. It does not
656 * update the initialization bit counter; the caller should call
657 * credit_init_bits if this is appropriate.
659 static void mix_pool_bytes(const void *buf
, size_t len
)
663 spin_lock_irqsave(&input_pool
.lock
, flags
);
664 _mix_pool_bytes(buf
, len
);
665 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
669 * This is an HKDF-like construction for using the hashed collected entropy
670 * as a PRF key, that's then expanded block-by-block.
672 static void extract_entropy(void *buf
, size_t len
)
675 u8 seed
[BLAKE2S_HASH_SIZE
], next_key
[BLAKE2S_HASH_SIZE
];
677 unsigned long rdseed
[32 / sizeof(long)];
682 for (i
= 0; i
< ARRAY_SIZE(block
.rdseed
);) {
683 longs
= arch_get_random_seed_longs(&block
.rdseed
[i
], ARRAY_SIZE(block
.rdseed
) - i
);
688 longs
= arch_get_random_longs(&block
.rdseed
[i
], ARRAY_SIZE(block
.rdseed
) - i
);
693 block
.rdseed
[i
++] = random_get_entropy();
696 spin_lock_irqsave(&input_pool
.lock
, flags
);
698 /* seed = HASHPRF(last_key, entropy_input) */
699 blake2s_final(&input_pool
.hash
, seed
);
701 /* next_key = HASHPRF(seed, RDSEED || 0) */
703 blake2s(next_key
, (u8
*)&block
, seed
, sizeof(next_key
), sizeof(block
), sizeof(seed
));
704 blake2s_init_key(&input_pool
.hash
, BLAKE2S_HASH_SIZE
, next_key
, sizeof(next_key
));
706 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
707 memzero_explicit(next_key
, sizeof(next_key
));
710 i
= min_t(size_t, len
, BLAKE2S_HASH_SIZE
);
711 /* output = HASHPRF(seed, RDSEED || ++counter) */
713 blake2s(buf
, (u8
*)&block
, seed
, i
, sizeof(block
), sizeof(seed
));
718 memzero_explicit(seed
, sizeof(seed
));
719 memzero_explicit(&block
, sizeof(block
));
722 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
724 static void __cold
_credit_init_bits(size_t bits
)
726 static DECLARE_WORK(set_ready
, crng_set_ready
);
727 unsigned int new, orig
, add
;
733 add
= min_t(size_t, bits
, POOL_BITS
);
735 orig
= READ_ONCE(input_pool
.init_bits
);
737 new = min_t(unsigned int, POOL_BITS
, orig
+ add
);
738 } while (!try_cmpxchg(&input_pool
.init_bits
, &orig
, new));
740 if (orig
< POOL_READY_BITS
&& new >= POOL_READY_BITS
) {
741 crng_reseed(NULL
); /* Sets crng_init to CRNG_READY under base_crng.lock. */
742 if (static_key_initialized
&& system_unbound_wq
)
743 queue_work(system_unbound_wq
, &set_ready
);
744 atomic_notifier_call_chain(&random_ready_notifier
, 0, NULL
);
745 #ifdef CONFIG_VDSO_GETRANDOM
746 WRITE_ONCE(__arch_get_k_vdso_rng_data()->is_ready
, true);
748 wake_up_interruptible(&crng_init_wait
);
749 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
750 pr_notice("crng init done\n");
751 if (urandom_warning
.missed
)
752 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
753 urandom_warning
.missed
);
754 } else if (orig
< POOL_EARLY_BITS
&& new >= POOL_EARLY_BITS
) {
755 spin_lock_irqsave(&base_crng
.lock
, flags
);
756 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
757 if (crng_init
== CRNG_EMPTY
) {
758 extract_entropy(base_crng
.key
, sizeof(base_crng
.key
));
759 crng_init
= CRNG_EARLY
;
761 spin_unlock_irqrestore(&base_crng
.lock
, flags
);
766 /**********************************************************************
768 * Entropy collection routines.
770 * The following exported functions are used for pushing entropy into
771 * the above entropy accumulation routines:
773 * void add_device_randomness(const void *buf, size_t len);
774 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
775 * void add_bootloader_randomness(const void *buf, size_t len);
776 * void add_vmfork_randomness(const void *unique_vm_id, size_t len);
777 * void add_interrupt_randomness(int irq);
778 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
779 * void add_disk_randomness(struct gendisk *disk);
781 * add_device_randomness() adds data to the input pool that
782 * is likely to differ between two devices (or possibly even per boot).
783 * This would be things like MAC addresses or serial numbers, or the
784 * read-out of the RTC. This does *not* credit any actual entropy to
785 * the pool, but it initializes the pool to different values for devices
786 * that might otherwise be identical and have very little entropy
787 * available to them (particularly common in the embedded world).
789 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
790 * entropy as specified by the caller. If the entropy pool is full it will
791 * block until more entropy is needed.
793 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
794 * and device tree, and credits its input depending on whether or not the
795 * command line option 'random.trust_bootloader'.
797 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
798 * representing the current instance of a VM to the pool, without crediting,
799 * and then force-reseeds the crng so that it takes effect immediately.
801 * add_interrupt_randomness() uses the interrupt timing as random
802 * inputs to the entropy pool. Using the cycle counters and the irq source
803 * as inputs, it feeds the input pool roughly once a second or after 64
804 * interrupts, crediting 1 bit of entropy for whichever comes first.
806 * add_input_randomness() uses the input layer interrupt timing, as well
807 * as the event type information from the hardware.
809 * add_disk_randomness() uses what amounts to the seek time of block
810 * layer request events, on a per-disk_devt basis, as input to the
811 * entropy pool. Note that high-speed solid state drives with very low
812 * seek times do not make for good sources of entropy, as their seek
813 * times are usually fairly consistent.
815 * The last two routines try to estimate how many bits of entropy
816 * to credit. They do this by keeping track of the first and second
817 * order deltas of the event timings.
819 **********************************************************************/
821 static bool trust_cpu __initdata
= true;
822 static bool trust_bootloader __initdata
= true;
823 static int __init
parse_trust_cpu(char *arg
)
825 return kstrtobool(arg
, &trust_cpu
);
827 static int __init
parse_trust_bootloader(char *arg
)
829 return kstrtobool(arg
, &trust_bootloader
);
831 early_param("random.trust_cpu", parse_trust_cpu
);
832 early_param("random.trust_bootloader", parse_trust_bootloader
);
834 static int random_pm_notification(struct notifier_block
*nb
, unsigned long action
, void *data
)
836 unsigned long flags
, entropy
= random_get_entropy();
839 * Encode a representation of how long the system has been suspended,
840 * in a way that is distinct from prior system suspends.
842 ktime_t stamps
[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
844 spin_lock_irqsave(&input_pool
.lock
, flags
);
845 _mix_pool_bytes(&action
, sizeof(action
));
846 _mix_pool_bytes(stamps
, sizeof(stamps
));
847 _mix_pool_bytes(&entropy
, sizeof(entropy
));
848 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
850 if (crng_ready() && (action
== PM_RESTORE_PREPARE
||
851 (action
== PM_POST_SUSPEND
&& !IS_ENABLED(CONFIG_PM_AUTOSLEEP
) &&
852 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP
)))) {
854 pr_notice("crng reseeded on system resumption\n");
859 static struct notifier_block pm_notifier
= { .notifier_call
= random_pm_notification
};
862 * This is called extremely early, before time keeping functionality is
863 * available, but arch randomness is. Interrupts are not yet enabled.
865 void __init
random_init_early(const char *command_line
)
867 unsigned long entropy
[BLAKE2S_BLOCK_SIZE
/ sizeof(long)];
868 size_t i
, longs
, arch_bits
;
870 #if defined(LATENT_ENTROPY_PLUGIN)
871 static const u8 compiletime_seed
[BLAKE2S_BLOCK_SIZE
] __initconst __latent_entropy
;
872 _mix_pool_bytes(compiletime_seed
, sizeof(compiletime_seed
));
875 for (i
= 0, arch_bits
= sizeof(entropy
) * 8; i
< ARRAY_SIZE(entropy
);) {
876 longs
= arch_get_random_seed_longs(entropy
, ARRAY_SIZE(entropy
) - i
);
878 _mix_pool_bytes(entropy
, sizeof(*entropy
) * longs
);
882 longs
= arch_get_random_longs(entropy
, ARRAY_SIZE(entropy
) - i
);
884 _mix_pool_bytes(entropy
, sizeof(*entropy
) * longs
);
888 arch_bits
-= sizeof(*entropy
) * 8;
892 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
893 _mix_pool_bytes(command_line
, strlen(command_line
));
895 /* Reseed if already seeded by earlier phases. */
899 _credit_init_bits(arch_bits
);
903 * This is called a little bit after the prior function, and now there is
904 * access to timestamps counters. Interrupts are not yet enabled.
906 void __init
random_init(void)
908 unsigned long entropy
= random_get_entropy();
909 ktime_t now
= ktime_get_real();
911 _mix_pool_bytes(&now
, sizeof(now
));
912 _mix_pool_bytes(&entropy
, sizeof(entropy
));
913 add_latent_entropy();
916 * If we were initialized by the cpu or bootloader before jump labels
917 * or workqueues are initialized, then we should enable the static
918 * branch here, where it's guaranteed that these have been initialized.
920 if (!static_branch_likely(&crng_is_ready
) && crng_init
>= CRNG_READY
)
921 crng_set_ready(NULL
);
923 /* Reseed if already seeded by earlier phases. */
927 WARN_ON(register_pm_notifier(&pm_notifier
));
929 WARN(!entropy
, "Missing cycle counter and fallback timer; RNG "
930 "entropy collection will consequently suffer.");
934 * Add device- or boot-specific data to the input pool to help
937 * None of this adds any entropy; it is meant to avoid the problem of
938 * the entropy pool having similar initial state across largely
941 void add_device_randomness(const void *buf
, size_t len
)
943 unsigned long entropy
= random_get_entropy();
946 spin_lock_irqsave(&input_pool
.lock
, flags
);
947 _mix_pool_bytes(&entropy
, sizeof(entropy
));
948 _mix_pool_bytes(buf
, len
);
949 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
951 EXPORT_SYMBOL(add_device_randomness
);
954 * Interface for in-kernel drivers of true hardware RNGs. Those devices
955 * may produce endless random bits, so this function will sleep for
956 * some amount of time after, if the sleep_after parameter is true.
958 void add_hwgenerator_randomness(const void *buf
, size_t len
, size_t entropy
, bool sleep_after
)
960 mix_pool_bytes(buf
, len
);
961 credit_init_bits(entropy
);
964 * Throttle writing to once every reseed interval, unless we're not yet
965 * initialized or no entropy is credited.
967 if (sleep_after
&& !kthread_should_stop() && (crng_ready() || !entropy
))
968 schedule_timeout_interruptible(crng_reseed_interval());
970 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness
);
973 * Handle random seed passed by bootloader, and credit it depending
974 * on the command line option 'random.trust_bootloader'.
976 void __init
add_bootloader_randomness(const void *buf
, size_t len
)
978 mix_pool_bytes(buf
, len
);
979 if (trust_bootloader
)
980 credit_init_bits(len
* 8);
983 #if IS_ENABLED(CONFIG_VMGENID)
984 static BLOCKING_NOTIFIER_HEAD(vmfork_chain
);
987 * Handle a new unique VM ID, which is unique, not secret, so we
988 * don't credit it, but we do immediately force a reseed after so
989 * that it's used by the crng posthaste.
991 void __cold
add_vmfork_randomness(const void *unique_vm_id
, size_t len
)
993 add_device_randomness(unique_vm_id
, len
);
996 pr_notice("crng reseeded due to virtual machine fork\n");
998 blocking_notifier_call_chain(&vmfork_chain
, 0, NULL
);
1000 #if IS_MODULE(CONFIG_VMGENID)
1001 EXPORT_SYMBOL_GPL(add_vmfork_randomness
);
1004 int __cold
register_random_vmfork_notifier(struct notifier_block
*nb
)
1006 return blocking_notifier_chain_register(&vmfork_chain
, nb
);
1008 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier
);
1010 int __cold
unregister_random_vmfork_notifier(struct notifier_block
*nb
)
1012 return blocking_notifier_chain_unregister(&vmfork_chain
, nb
);
1014 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier
);
1018 unsigned long pool
[4];
1021 struct timer_list mix
;
1024 static void mix_interrupt_randomness(struct timer_list
*work
);
1026 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
) = {
1028 #define FASTMIX_PERM SIPHASH_PERMUTATION
1029 .pool
= { SIPHASH_CONST_0
, SIPHASH_CONST_1
, SIPHASH_CONST_2
, SIPHASH_CONST_3
},
1031 #define FASTMIX_PERM HSIPHASH_PERMUTATION
1032 .pool
= { HSIPHASH_CONST_0
, HSIPHASH_CONST_1
, HSIPHASH_CONST_2
, HSIPHASH_CONST_3
},
1034 .mix
= __TIMER_INITIALIZER(mix_interrupt_randomness
, 0)
1038 * This is [Half]SipHash-1-x, starting from an empty key. Because
1039 * the key is fixed, it assumes that its inputs are non-malicious,
1040 * and therefore this has no security on its own. s represents the
1041 * four-word SipHash state, while v represents a two-word input.
1043 static void fast_mix(unsigned long s
[4], unsigned long v1
, unsigned long v2
)
1046 FASTMIX_PERM(s
[0], s
[1], s
[2], s
[3]);
1049 FASTMIX_PERM(s
[0], s
[1], s
[2], s
[3]);
1055 * This function is called when the CPU has just come online, with
1056 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1058 int __cold
random_online_cpu(unsigned int cpu
)
1061 * During CPU shutdown and before CPU onlining, add_interrupt_
1062 * randomness() may schedule mix_interrupt_randomness(), and
1063 * set the MIX_INFLIGHT flag. However, because the worker can
1064 * be scheduled on a different CPU during this period, that
1065 * flag will never be cleared. For that reason, we zero out
1066 * the flag here, which runs just after workqueues are onlined
1067 * for the CPU again. This also has the effect of setting the
1068 * irq randomness count to zero so that new accumulated irqs
1071 per_cpu_ptr(&irq_randomness
, cpu
)->count
= 0;
1076 static void mix_interrupt_randomness(struct timer_list
*work
)
1078 struct fast_pool
*fast_pool
= container_of(work
, struct fast_pool
, mix
);
1080 * The size of the copied stack pool is explicitly 2 longs so that we
1081 * only ever ingest half of the siphash output each time, retaining
1082 * the other half as the next "key" that carries over. The entropy is
1083 * supposed to be sufficiently dispersed between bits so on average
1084 * we don't wind up "losing" some.
1086 unsigned long pool
[2];
1089 /* Check to see if we're running on the wrong CPU due to hotplug. */
1090 local_irq_disable();
1091 if (fast_pool
!= this_cpu_ptr(&irq_randomness
)) {
1097 * Copy the pool to the stack so that the mixer always has a
1098 * consistent view, before we reenable irqs again.
1100 memcpy(pool
, fast_pool
->pool
, sizeof(pool
));
1101 count
= fast_pool
->count
;
1102 fast_pool
->count
= 0;
1103 fast_pool
->last
= jiffies
;
1106 mix_pool_bytes(pool
, sizeof(pool
));
1107 credit_init_bits(clamp_t(unsigned int, (count
& U16_MAX
) / 64, 1, sizeof(pool
) * 8));
1109 memzero_explicit(pool
, sizeof(pool
));
1112 void add_interrupt_randomness(int irq
)
1114 enum { MIX_INFLIGHT
= 1U << 31 };
1115 unsigned long entropy
= random_get_entropy();
1116 struct fast_pool
*fast_pool
= this_cpu_ptr(&irq_randomness
);
1117 struct pt_regs
*regs
= get_irq_regs();
1118 unsigned int new_count
;
1120 fast_mix(fast_pool
->pool
, entropy
,
1121 (regs
? instruction_pointer(regs
) : _RET_IP_
) ^ swab(irq
));
1122 new_count
= ++fast_pool
->count
;
1124 if (new_count
& MIX_INFLIGHT
)
1127 if (new_count
< 1024 && !time_is_before_jiffies(fast_pool
->last
+ HZ
))
1130 fast_pool
->count
|= MIX_INFLIGHT
;
1131 if (!timer_pending(&fast_pool
->mix
)) {
1132 fast_pool
->mix
.expires
= jiffies
;
1133 add_timer_on(&fast_pool
->mix
, raw_smp_processor_id());
1136 EXPORT_SYMBOL_GPL(add_interrupt_randomness
);
1138 /* There is one of these per entropy source */
1139 struct timer_rand_state
{
1140 unsigned long last_time
;
1141 long last_delta
, last_delta2
;
1145 * This function adds entropy to the entropy "pool" by using timing
1146 * delays. It uses the timer_rand_state structure to make an estimate
1147 * of how many bits of entropy this call has added to the pool. The
1148 * value "num" is also added to the pool; it should somehow describe
1149 * the type of event that just happened.
1151 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned int num
)
1153 unsigned long entropy
= random_get_entropy(), now
= jiffies
, flags
;
1154 long delta
, delta2
, delta3
;
1158 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1159 * sometime after, so mix into the fast pool.
1162 fast_mix(this_cpu_ptr(&irq_randomness
)->pool
, entropy
, num
);
1164 spin_lock_irqsave(&input_pool
.lock
, flags
);
1165 _mix_pool_bytes(&entropy
, sizeof(entropy
));
1166 _mix_pool_bytes(&num
, sizeof(num
));
1167 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
1174 * Calculate number of bits of randomness we probably added.
1175 * We take into account the first, second and third-order deltas
1176 * in order to make our estimate.
1178 delta
= now
- READ_ONCE(state
->last_time
);
1179 WRITE_ONCE(state
->last_time
, now
);
1181 delta2
= delta
- READ_ONCE(state
->last_delta
);
1182 WRITE_ONCE(state
->last_delta
, delta
);
1184 delta3
= delta2
- READ_ONCE(state
->last_delta2
);
1185 WRITE_ONCE(state
->last_delta2
, delta2
);
1199 * delta is now minimum absolute delta. Round down by 1 bit
1200 * on general principles, and limit entropy estimate to 11 bits.
1202 bits
= min(fls(delta
>> 1), 11);
1205 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1206 * will run after this, which uses a different crediting scheme of 1 bit
1207 * per every 64 interrupts. In order to let that function do accounting
1208 * close to the one in this function, we credit a full 64/64 bit per bit,
1209 * and then subtract one to account for the extra one added.
1212 this_cpu_ptr(&irq_randomness
)->count
+= max(1u, bits
* 64) - 1;
1214 _credit_init_bits(bits
);
1217 void add_input_randomness(unsigned int type
, unsigned int code
, unsigned int value
)
1219 static unsigned char last_value
;
1220 static struct timer_rand_state input_timer_state
= { INITIAL_JIFFIES
};
1222 /* Ignore autorepeat and the like. */
1223 if (value
== last_value
)
1227 add_timer_randomness(&input_timer_state
,
1228 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
1230 EXPORT_SYMBOL_GPL(add_input_randomness
);
1233 void add_disk_randomness(struct gendisk
*disk
)
1235 if (!disk
|| !disk
->random
)
1237 /* First major is 1, so we get >= 0x200 here. */
1238 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
1240 EXPORT_SYMBOL_GPL(add_disk_randomness
);
1242 void __cold
rand_initialize_disk(struct gendisk
*disk
)
1244 struct timer_rand_state
*state
;
1247 * If kzalloc returns null, we just won't use that entropy
1250 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1252 state
->last_time
= INITIAL_JIFFIES
;
1253 disk
->random
= state
;
1258 struct entropy_timer_state
{
1259 unsigned long entropy
;
1260 struct timer_list timer
;
1262 unsigned int samples_per_bit
;
1266 * Each time the timer fires, we expect that we got an unpredictable jump in
1267 * the cycle counter. Even if the timer is running on another CPU, the timer
1268 * activity will be touching the stack of the CPU that is generating entropy.
1270 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1271 * scheduled away, since that just makes the load more complex, but we do not
1272 * want the timer to keep ticking unless the entropy loop is running.
1274 * So the re-arming always happens in the entropy loop itself.
1276 static void __cold
entropy_timer(struct timer_list
*timer
)
1278 struct entropy_timer_state
*state
= container_of(timer
, struct entropy_timer_state
, timer
);
1279 unsigned long entropy
= random_get_entropy();
1281 mix_pool_bytes(&entropy
, sizeof(entropy
));
1282 if (atomic_inc_return(&state
->samples
) % state
->samples_per_bit
== 0)
1283 credit_init_bits(1);
1287 * If we have an actual cycle counter, see if we can generate enough entropy
1288 * with timing noise.
1290 static void __cold
try_to_generate_entropy(void)
1292 enum { NUM_TRIAL_SAMPLES
= 8192, MAX_SAMPLES_PER_BIT
= HZ
/ 15 };
1293 u8 stack_bytes
[sizeof(struct entropy_timer_state
) + SMP_CACHE_BYTES
- 1];
1294 struct entropy_timer_state
*stack
= PTR_ALIGN((void *)stack_bytes
, SMP_CACHE_BYTES
);
1295 unsigned int i
, num_different
= 0;
1296 unsigned long last
= random_get_entropy();
1299 for (i
= 0; i
< NUM_TRIAL_SAMPLES
- 1; ++i
) {
1300 stack
->entropy
= random_get_entropy();
1301 if (stack
->entropy
!= last
)
1303 last
= stack
->entropy
;
1305 stack
->samples_per_bit
= DIV_ROUND_UP(NUM_TRIAL_SAMPLES
, num_different
+ 1);
1306 if (stack
->samples_per_bit
> MAX_SAMPLES_PER_BIT
)
1309 atomic_set(&stack
->samples
, 0);
1310 timer_setup_on_stack(&stack
->timer
, entropy_timer
, 0);
1311 while (!crng_ready() && !signal_pending(current
)) {
1313 * Check !timer_pending() and then ensure that any previous callback has finished
1314 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1316 if (!timer_pending(&stack
->timer
) && try_to_del_timer_sync(&stack
->timer
) >= 0) {
1317 struct cpumask timer_cpus
;
1318 unsigned int num_cpus
;
1321 * Preemption must be disabled here, both to read the current CPU number
1322 * and to avoid scheduling a timer on a dead CPU.
1326 /* Only schedule callbacks on timer CPUs that are online. */
1327 cpumask_and(&timer_cpus
, housekeeping_cpumask(HK_TYPE_TIMER
), cpu_online_mask
);
1328 num_cpus
= cpumask_weight(&timer_cpus
);
1329 /* In very bizarre case of misconfiguration, fallback to all online. */
1330 if (unlikely(num_cpus
== 0)) {
1331 timer_cpus
= *cpu_online_mask
;
1332 num_cpus
= cpumask_weight(&timer_cpus
);
1335 /* Basic CPU round-robin, which avoids the current CPU. */
1337 cpu
= cpumask_next(cpu
, &timer_cpus
);
1338 if (cpu
>= nr_cpu_ids
)
1339 cpu
= cpumask_first(&timer_cpus
);
1340 } while (cpu
== smp_processor_id() && num_cpus
> 1);
1342 /* Expiring the timer at `jiffies` means it's the next tick. */
1343 stack
->timer
.expires
= jiffies
;
1345 add_timer_on(&stack
->timer
, cpu
);
1349 mix_pool_bytes(&stack
->entropy
, sizeof(stack
->entropy
));
1351 stack
->entropy
= random_get_entropy();
1353 mix_pool_bytes(&stack
->entropy
, sizeof(stack
->entropy
));
1355 del_timer_sync(&stack
->timer
);
1356 destroy_timer_on_stack(&stack
->timer
);
1360 /**********************************************************************
1362 * Userspace reader/writer interfaces.
1364 * getrandom(2) is the primary modern interface into the RNG and should
1365 * be used in preference to anything else.
1367 * Reading from /dev/random has the same functionality as calling
1368 * getrandom(2) with flags=0. In earlier versions, however, it had
1369 * vastly different semantics and should therefore be avoided, to
1370 * prevent backwards compatibility issues.
1372 * Reading from /dev/urandom has the same functionality as calling
1373 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1374 * waiting for the RNG to be ready, it should not be used.
1376 * Writing to either /dev/random or /dev/urandom adds entropy to
1377 * the input pool but does not credit it.
1379 * Polling on /dev/random indicates when the RNG is initialized, on
1380 * the read side, and when it wants new entropy, on the write side.
1382 * Both /dev/random and /dev/urandom have the same set of ioctls for
1383 * adding entropy, getting the entropy count, zeroing the count, and
1384 * reseeding the crng.
1386 **********************************************************************/
1388 SYSCALL_DEFINE3(getrandom
, char __user
*, ubuf
, size_t, len
, unsigned int, flags
)
1390 struct iov_iter iter
;
1393 if (flags
& ~(GRND_NONBLOCK
| GRND_RANDOM
| GRND_INSECURE
))
1397 * Requesting insecure and blocking randomness at the same time makes
1400 if ((flags
& (GRND_INSECURE
| GRND_RANDOM
)) == (GRND_INSECURE
| GRND_RANDOM
))
1403 if (!crng_ready() && !(flags
& GRND_INSECURE
)) {
1404 if (flags
& GRND_NONBLOCK
)
1406 ret
= wait_for_random_bytes();
1411 ret
= import_ubuf(ITER_DEST
, ubuf
, len
, &iter
);
1414 return get_random_bytes_user(&iter
);
1417 static __poll_t
random_poll(struct file
*file
, poll_table
*wait
)
1419 poll_wait(file
, &crng_init_wait
, wait
);
1420 return crng_ready() ? EPOLLIN
| EPOLLRDNORM
: EPOLLOUT
| EPOLLWRNORM
;
1423 static ssize_t
write_pool_user(struct iov_iter
*iter
)
1425 u8 block
[BLAKE2S_BLOCK_SIZE
];
1429 if (unlikely(!iov_iter_count(iter
)))
1433 copied
= copy_from_iter(block
, sizeof(block
), iter
);
1435 mix_pool_bytes(block
, copied
);
1436 if (!iov_iter_count(iter
) || copied
!= sizeof(block
))
1439 BUILD_BUG_ON(PAGE_SIZE
% sizeof(block
) != 0);
1440 if (ret
% PAGE_SIZE
== 0) {
1441 if (signal_pending(current
))
1447 memzero_explicit(block
, sizeof(block
));
1448 return ret
? ret
: -EFAULT
;
1451 static ssize_t
random_write_iter(struct kiocb
*kiocb
, struct iov_iter
*iter
)
1453 return write_pool_user(iter
);
1456 static ssize_t
urandom_read_iter(struct kiocb
*kiocb
, struct iov_iter
*iter
)
1458 static int maxwarn
= 10;
1461 * Opportunistically attempt to initialize the RNG on platforms that
1462 * have fast cycle counters, but don't (for now) require it to succeed.
1465 try_to_generate_entropy();
1467 if (!crng_ready()) {
1468 if (!ratelimit_disable
&& maxwarn
<= 0)
1469 ++urandom_warning
.missed
;
1470 else if (ratelimit_disable
|| __ratelimit(&urandom_warning
)) {
1472 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1473 current
->comm
, iov_iter_count(iter
));
1477 return get_random_bytes_user(iter
);
1480 static ssize_t
random_read_iter(struct kiocb
*kiocb
, struct iov_iter
*iter
)
1484 if (!crng_ready() &&
1485 ((kiocb
->ki_flags
& (IOCB_NOWAIT
| IOCB_NOIO
)) ||
1486 (kiocb
->ki_filp
->f_flags
& O_NONBLOCK
)))
1489 ret
= wait_for_random_bytes();
1492 return get_random_bytes_user(iter
);
1495 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
1497 int __user
*p
= (int __user
*)arg
;
1502 /* Inherently racy, no point locking. */
1503 if (put_user(input_pool
.init_bits
, p
))
1506 case RNDADDTOENTCNT
:
1507 if (!capable(CAP_SYS_ADMIN
))
1509 if (get_user(ent_count
, p
))
1513 credit_init_bits(ent_count
);
1515 case RNDADDENTROPY
: {
1516 struct iov_iter iter
;
1520 if (!capable(CAP_SYS_ADMIN
))
1522 if (get_user(ent_count
, p
++))
1526 if (get_user(len
, p
++))
1528 ret
= import_ubuf(ITER_SOURCE
, p
, len
, &iter
);
1531 ret
= write_pool_user(&iter
);
1532 if (unlikely(ret
< 0))
1534 /* Since we're crediting, enforce that it was all written into the pool. */
1535 if (unlikely(ret
!= len
))
1537 credit_init_bits(ent_count
);
1542 /* No longer has any effect. */
1543 if (!capable(CAP_SYS_ADMIN
))
1547 if (!capable(CAP_SYS_ADMIN
))
1558 static int random_fasync(int fd
, struct file
*filp
, int on
)
1560 return fasync_helper(fd
, filp
, on
, &fasync
);
1563 const struct file_operations random_fops
= {
1564 .read_iter
= random_read_iter
,
1565 .write_iter
= random_write_iter
,
1566 .poll
= random_poll
,
1567 .unlocked_ioctl
= random_ioctl
,
1568 .compat_ioctl
= compat_ptr_ioctl
,
1569 .fasync
= random_fasync
,
1570 .llseek
= noop_llseek
,
1571 .splice_read
= copy_splice_read
,
1572 .splice_write
= iter_file_splice_write
,
1575 const struct file_operations urandom_fops
= {
1576 .read_iter
= urandom_read_iter
,
1577 .write_iter
= random_write_iter
,
1578 .unlocked_ioctl
= random_ioctl
,
1579 .compat_ioctl
= compat_ptr_ioctl
,
1580 .fasync
= random_fasync
,
1581 .llseek
= noop_llseek
,
1582 .splice_read
= copy_splice_read
,
1583 .splice_write
= iter_file_splice_write
,
1587 /********************************************************************
1591 * These are partly unused legacy knobs with dummy values to not break
1592 * userspace and partly still useful things. They are usually accessible
1593 * in /proc/sys/kernel/random/ and are as follows:
1595 * - boot_id - a UUID representing the current boot.
1597 * - uuid - a random UUID, different each time the file is read.
1599 * - poolsize - the number of bits of entropy that the input pool can
1600 * hold, tied to the POOL_BITS constant.
1602 * - entropy_avail - the number of bits of entropy currently in the
1603 * input pool. Always <= poolsize.
1605 * - write_wakeup_threshold - the amount of entropy in the input pool
1606 * below which write polls to /dev/random will unblock, requesting
1607 * more entropy, tied to the POOL_READY_BITS constant. It is writable
1608 * to avoid breaking old userspaces, but writing to it does not
1609 * change any behavior of the RNG.
1611 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1612 * It is writable to avoid breaking old userspaces, but writing
1613 * to it does not change any behavior of the RNG.
1615 ********************************************************************/
1617 #ifdef CONFIG_SYSCTL
1619 #include <linux/sysctl.h>
1621 static int sysctl_random_min_urandom_seed
= CRNG_RESEED_INTERVAL
/ HZ
;
1622 static int sysctl_random_write_wakeup_bits
= POOL_READY_BITS
;
1623 static int sysctl_poolsize
= POOL_BITS
;
1624 static u8 sysctl_bootid
[UUID_SIZE
];
1627 * This function is used to return both the bootid UUID, and random
1628 * UUID. The difference is in whether table->data is NULL; if it is,
1629 * then a new UUID is generated and returned to the user.
1631 static int proc_do_uuid(const struct ctl_table
*table
, int write
, void *buf
,
1632 size_t *lenp
, loff_t
*ppos
)
1634 u8 tmp_uuid
[UUID_SIZE
], *uuid
;
1635 char uuid_string
[UUID_STRING_LEN
+ 1];
1636 struct ctl_table fake_table
= {
1637 .data
= uuid_string
,
1638 .maxlen
= UUID_STRING_LEN
1647 generate_random_uuid(uuid
);
1649 static DEFINE_SPINLOCK(bootid_spinlock
);
1651 spin_lock(&bootid_spinlock
);
1653 generate_random_uuid(uuid
);
1654 spin_unlock(&bootid_spinlock
);
1657 snprintf(uuid_string
, sizeof(uuid_string
), "%pU", uuid
);
1658 return proc_dostring(&fake_table
, 0, buf
, lenp
, ppos
);
1661 /* The same as proc_dointvec, but writes don't change anything. */
1662 static int proc_do_rointvec(const struct ctl_table
*table
, int write
, void *buf
,
1663 size_t *lenp
, loff_t
*ppos
)
1665 return write
? 0 : proc_dointvec(table
, 0, buf
, lenp
, ppos
);
1668 static struct ctl_table random_table
[] = {
1670 .procname
= "poolsize",
1671 .data
= &sysctl_poolsize
,
1672 .maxlen
= sizeof(int),
1674 .proc_handler
= proc_dointvec
,
1677 .procname
= "entropy_avail",
1678 .data
= &input_pool
.init_bits
,
1679 .maxlen
= sizeof(int),
1681 .proc_handler
= proc_dointvec
,
1684 .procname
= "write_wakeup_threshold",
1685 .data
= &sysctl_random_write_wakeup_bits
,
1686 .maxlen
= sizeof(int),
1688 .proc_handler
= proc_do_rointvec
,
1691 .procname
= "urandom_min_reseed_secs",
1692 .data
= &sysctl_random_min_urandom_seed
,
1693 .maxlen
= sizeof(int),
1695 .proc_handler
= proc_do_rointvec
,
1698 .procname
= "boot_id",
1699 .data
= &sysctl_bootid
,
1701 .proc_handler
= proc_do_uuid
,
1706 .proc_handler
= proc_do_uuid
,
1711 * random_init() is called before sysctl_init(),
1712 * so we cannot call register_sysctl_init() in random_init()
1714 static int __init
random_sysctls_init(void)
1716 register_sysctl_init("kernel/random", random_table
);
1719 device_initcall(random_sysctls_init
);