1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2020 Xillybus Ltd, http://xillybus.com
5 * Driver for the XillyUSB FPGA/host framework.
7 * This driver interfaces with a special IP core in an FPGA, setting up
8 * a pipe between a hardware FIFO in the programmable logic and a device
9 * file in the host. The number of such pipes and their attributes are
10 * set up on the logic. This driver detects these automatically and
11 * creates the device files accordingly.
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/list.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <asm/byteorder.h>
21 #include <linux/interrupt.h>
22 #include <linux/sched.h>
24 #include <linux/spinlock.h>
25 #include <linux/mutex.h>
26 #include <linux/workqueue.h>
27 #include <linux/crc32.h>
28 #include <linux/poll.h>
29 #include <linux/delay.h>
30 #include <linux/usb.h>
32 #include "xillybus_class.h"
34 MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
35 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
36 MODULE_ALIAS("xillyusb");
37 MODULE_LICENSE("GPL v2");
39 #define XILLY_RX_TIMEOUT (10 * HZ / 1000)
40 #define XILLY_RESPONSE_TIMEOUT (500 * HZ / 1000)
42 #define BUF_SIZE_ORDER 4
44 #define LOG2_IDT_FIFO_SIZE 16
45 #define LOG2_INITIAL_FIFO_BUF_SIZE 16
50 static const char xillyname
[] = "xillyusb";
52 static unsigned int fifo_buf_order
;
53 static struct workqueue_struct
*wakeup_wq
;
55 #define USB_VENDOR_ID_XILINX 0x03fd
56 #define USB_VENDOR_ID_ALTERA 0x09fb
58 #define USB_PRODUCT_ID_XILLYUSB 0xebbe
60 static const struct usb_device_id xillyusb_table
[] = {
61 { USB_DEVICE(USB_VENDOR_ID_XILINX
, USB_PRODUCT_ID_XILLYUSB
) },
62 { USB_DEVICE(USB_VENDOR_ID_ALTERA
, USB_PRODUCT_ID_XILLYUSB
) },
66 MODULE_DEVICE_TABLE(usb
, xillyusb_table
);
71 unsigned int bufsize
; /* In bytes, always a power of 2 */
73 unsigned int size
; /* Lazy: Equals bufsize * bufnum */
74 unsigned int buf_order
;
76 int fill
; /* Number of bytes in the FIFO */
78 wait_queue_head_t waitq
;
82 unsigned int writepos
;
83 unsigned int writebuf
;
87 struct xillyusb_channel
;
89 struct xillyusb_endpoint
{
90 struct xillyusb_dev
*xdev
;
92 struct mutex ep_mutex
; /* serialize operations on endpoint */
94 struct list_head buffers
;
95 struct list_head filled_buffers
;
96 spinlock_t buffers_lock
; /* protect these two lists */
99 unsigned int buffer_size
;
101 unsigned int fill_mask
;
103 int outstanding_urbs
;
105 struct usb_anchor anchor
;
107 struct xillyfifo fifo
;
109 struct work_struct workitem
;
118 struct xillyusb_channel
{
119 struct xillyusb_dev
*xdev
;
121 struct xillyfifo
*in_fifo
;
122 struct xillyusb_endpoint
*out_ep
;
123 struct mutex lock
; /* protect @out_ep, @in_fifo, bit fields below */
125 struct mutex in_mutex
; /* serialize fops on FPGA to host stream */
126 struct mutex out_mutex
; /* serialize fops on host to FPGA stream */
127 wait_queue_head_t flushq
;
131 u32 in_consumed_bytes
;
132 u32 in_current_checkpoint
;
135 unsigned int in_log2_element_size
;
136 unsigned int out_log2_element_size
;
137 unsigned int in_log2_fifo_size
;
138 unsigned int out_log2_fifo_size
;
140 unsigned int read_data_ok
; /* EOF not arrived (yet) */
141 unsigned int poll_used
;
142 unsigned int flushing
;
143 unsigned int flushed
;
144 unsigned int canceled
;
146 /* Bit fields protected by @lock except for initialization */
149 unsigned open_for_read
:1;
150 unsigned open_for_write
:1;
151 unsigned in_synchronous
:1;
152 unsigned out_synchronous
:1;
153 unsigned in_seekable
:1;
154 unsigned out_seekable
:1;
158 struct list_head entry
;
159 struct xillyusb_endpoint
*ep
;
164 struct xillyusb_dev
{
165 struct xillyusb_channel
*channels
;
167 struct usb_device
*udev
;
168 struct device
*dev
; /* For dev_err() and such */
170 struct workqueue_struct
*workq
;
173 spinlock_t error_lock
; /* protect @error */
174 struct work_struct wakeup_workitem
;
178 struct xillyusb_endpoint
*msg_ep
;
179 struct xillyusb_endpoint
*in_ep
;
181 struct mutex msg_mutex
; /* serialize opcode transmission */
183 int leftover_chan_num
;
184 unsigned int in_counter
;
185 struct mutex process_in_mutex
; /* synchronize wakeup_all() */
189 * kref_mutex is used in xillyusb_open() to prevent the xillyusb_dev
190 * struct from being freed during the gap between being found by
191 * xillybus_find_inode() and having its reference count incremented.
194 static DEFINE_MUTEX(kref_mutex
);
196 /* FPGA to host opcodes */
199 OPCODE_QUIESCE_ACK
= 1,
201 OPCODE_REACHED_CHECKPOINT
= 3,
202 OPCODE_CANCELED_CHECKPOINT
= 4,
205 /* Host to FPGA opcodes */
209 OPCODE_SET_CHECKPOINT
= 2,
212 OPCODE_UPDATE_PUSH
= 5,
213 OPCODE_CANCEL_CHECKPOINT
= 6,
218 * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
219 * calls to each on the same FIFO is not allowed) however it's OK to have
220 * threads calling each of the two functions once on the same FIFO, and
224 static int fifo_write(struct xillyfifo
*fifo
,
225 const void *data
, unsigned int len
,
226 int (*copier
)(void *, const void *, int))
228 unsigned int done
= 0;
229 unsigned int todo
= len
;
231 unsigned int writepos
= fifo
->writepos
;
232 unsigned int writebuf
= fifo
->writebuf
;
236 nmax
= fifo
->size
- READ_ONCE(fifo
->fill
);
239 unsigned int nrail
= fifo
->bufsize
- writepos
;
240 unsigned int n
= min(todo
, nmax
);
243 spin_lock_irqsave(&fifo
->lock
, flags
);
245 spin_unlock_irqrestore(&fifo
->lock
, flags
);
247 fifo
->writepos
= writepos
;
248 fifo
->writebuf
= writebuf
;
256 rc
= (*copier
)(fifo
->mem
[writebuf
] + writepos
, data
+ done
, n
);
267 if (writepos
== fifo
->bufsize
) {
271 if (writebuf
== fifo
->bufnum
)
277 static int fifo_read(struct xillyfifo
*fifo
,
278 void *data
, unsigned int len
,
279 int (*copier
)(void *, const void *, int))
281 unsigned int done
= 0;
282 unsigned int todo
= len
;
284 unsigned int readpos
= fifo
->readpos
;
285 unsigned int readbuf
= fifo
->readbuf
;
290 * The spinlock here is necessary, because otherwise fifo->fill
291 * could have been increased by fifo_write() after writing data
292 * to the buffer, but this data would potentially not have been
293 * visible on this thread at the time the updated fifo->fill was.
294 * That could lead to reading invalid data.
297 spin_lock_irqsave(&fifo
->lock
, flags
);
299 spin_unlock_irqrestore(&fifo
->lock
, flags
);
302 unsigned int nrail
= fifo
->bufsize
- readpos
;
303 unsigned int n
= min(todo
, fill
);
306 spin_lock_irqsave(&fifo
->lock
, flags
);
308 spin_unlock_irqrestore(&fifo
->lock
, flags
);
310 fifo
->readpos
= readpos
;
311 fifo
->readbuf
= readbuf
;
319 rc
= (*copier
)(data
+ done
, fifo
->mem
[readbuf
] + readpos
, n
);
330 if (readpos
== fifo
->bufsize
) {
334 if (readbuf
== fifo
->bufnum
)
341 * These three wrapper functions are used as the @copier argument to
342 * fifo_write() and fifo_read(), so that they can work directly with
343 * user memory as well.
346 static int xilly_copy_from_user(void *dst
, const void *src
, int n
)
348 if (copy_from_user(dst
, (const void __user
*)src
, n
))
354 static int xilly_copy_to_user(void *dst
, const void *src
, int n
)
356 if (copy_to_user((void __user
*)dst
, src
, n
))
362 static int xilly_memcpy(void *dst
, const void *src
, int n
)
369 static int fifo_init(struct xillyfifo
*fifo
,
370 unsigned int log2_size
)
372 unsigned int log2_bufnum
;
373 unsigned int buf_order
;
376 unsigned int log2_fifo_buf_size
;
379 log2_fifo_buf_size
= fifo_buf_order
+ PAGE_SHIFT
;
381 if (log2_size
> log2_fifo_buf_size
) {
382 log2_bufnum
= log2_size
- log2_fifo_buf_size
;
383 buf_order
= fifo_buf_order
;
384 fifo
->bufsize
= 1 << log2_fifo_buf_size
;
387 buf_order
= (log2_size
> PAGE_SHIFT
) ?
388 log2_size
- PAGE_SHIFT
: 0;
389 fifo
->bufsize
= 1 << log2_size
;
392 fifo
->bufnum
= 1 << log2_bufnum
;
393 fifo
->size
= fifo
->bufnum
* fifo
->bufsize
;
394 fifo
->buf_order
= buf_order
;
396 fifo
->mem
= kmalloc_array(fifo
->bufnum
, sizeof(void *), GFP_KERNEL
);
401 for (i
= 0; i
< fifo
->bufnum
; i
++) {
402 fifo
->mem
[i
] = (void *)
403 __get_free_pages(GFP_KERNEL
, buf_order
);
414 spin_lock_init(&fifo
->lock
);
415 init_waitqueue_head(&fifo
->waitq
);
419 for (i
--; i
>= 0; i
--)
420 free_pages((unsigned long)fifo
->mem
[i
], buf_order
);
425 if (fifo_buf_order
) {
433 static void fifo_mem_release(struct xillyfifo
*fifo
)
440 for (i
= 0; i
< fifo
->bufnum
; i
++)
441 free_pages((unsigned long)fifo
->mem
[i
], fifo
->buf_order
);
447 * When endpoint_quiesce() returns, the endpoint has no URBs submitted,
448 * won't accept any new URB submissions, and its related work item doesn't
449 * and won't run anymore.
452 static void endpoint_quiesce(struct xillyusb_endpoint
*ep
)
454 mutex_lock(&ep
->ep_mutex
);
455 ep
->shutting_down
= true;
456 mutex_unlock(&ep
->ep_mutex
);
458 usb_kill_anchored_urbs(&ep
->anchor
);
459 cancel_work_sync(&ep
->workitem
);
463 * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
464 * though endpoint_alloc doesn't allocate that memory.
467 static void endpoint_dealloc(struct xillyusb_endpoint
*ep
)
469 struct list_head
*this, *next
;
471 fifo_mem_release(&ep
->fifo
);
473 /* Join @filled_buffers with @buffers to free these entries too */
474 list_splice(&ep
->filled_buffers
, &ep
->buffers
);
476 list_for_each_safe(this, next
, &ep
->buffers
) {
477 struct xillybuffer
*xb
=
478 list_entry(this, struct xillybuffer
, entry
);
480 free_pages((unsigned long)xb
->buf
, ep
->order
);
487 static struct xillyusb_endpoint
488 *endpoint_alloc(struct xillyusb_dev
*xdev
,
490 void (*work
)(struct work_struct
*),
496 struct xillyusb_endpoint
*ep
;
498 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
503 INIT_LIST_HEAD(&ep
->buffers
);
504 INIT_LIST_HEAD(&ep
->filled_buffers
);
506 spin_lock_init(&ep
->buffers_lock
);
507 mutex_init(&ep
->ep_mutex
);
509 init_usb_anchor(&ep
->anchor
);
510 INIT_WORK(&ep
->workitem
, work
);
513 ep
->buffer_size
= 1 << (PAGE_SHIFT
+ order
);
514 ep
->outstanding_urbs
= 0;
516 ep
->wake_on_drain
= false;
519 ep
->shutting_down
= false;
521 for (i
= 0; i
< bufnum
; i
++) {
522 struct xillybuffer
*xb
;
525 xb
= kzalloc(sizeof(*xb
), GFP_KERNEL
);
528 endpoint_dealloc(ep
);
532 addr
= __get_free_pages(GFP_KERNEL
, order
);
536 endpoint_dealloc(ep
);
540 xb
->buf
= (void *)addr
;
542 list_add_tail(&xb
->entry
, &ep
->buffers
);
547 static void cleanup_dev(struct kref
*kref
)
549 struct xillyusb_dev
*xdev
=
550 container_of(kref
, struct xillyusb_dev
, kref
);
553 endpoint_dealloc(xdev
->in_ep
);
556 endpoint_dealloc(xdev
->msg_ep
);
559 destroy_workqueue(xdev
->workq
);
561 usb_put_dev(xdev
->udev
);
562 kfree(xdev
->channels
); /* Argument may be NULL, and that's fine */
567 * @process_in_mutex is taken to ensure that bulk_in_work() won't call
568 * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all
569 * @read_data_ok entries, which will make process_bulk_in() report false
570 * errors if executed. The mechanism relies on that xdev->error is assigned
571 * a non-zero value by report_io_error() prior to queueing wakeup_all(),
572 * which prevents bulk_in_work() from calling process_bulk_in().
575 static void wakeup_all(struct work_struct
*work
)
578 struct xillyusb_dev
*xdev
= container_of(work
, struct xillyusb_dev
,
581 mutex_lock(&xdev
->process_in_mutex
);
583 for (i
= 0; i
< xdev
->num_channels
; i
++) {
584 struct xillyusb_channel
*chan
= &xdev
->channels
[i
];
586 mutex_lock(&chan
->lock
);
590 * Fake an EOF: Even if such arrives, it won't be
593 chan
->read_data_ok
= 0;
594 wake_up_interruptible(&chan
->in_fifo
->waitq
);
598 wake_up_interruptible(&chan
->out_ep
->fifo
.waitq
);
600 mutex_unlock(&chan
->lock
);
602 wake_up_interruptible(&chan
->flushq
);
605 mutex_unlock(&xdev
->process_in_mutex
);
607 wake_up_interruptible(&xdev
->msg_ep
->fifo
.waitq
);
609 kref_put(&xdev
->kref
, cleanup_dev
);
612 static void report_io_error(struct xillyusb_dev
*xdev
,
616 bool do_once
= false;
618 spin_lock_irqsave(&xdev
->error_lock
, flags
);
620 xdev
->error
= errcode
;
623 spin_unlock_irqrestore(&xdev
->error_lock
, flags
);
626 kref_get(&xdev
->kref
); /* xdev is used by work item */
627 queue_work(wakeup_wq
, &xdev
->wakeup_workitem
);
632 * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
633 * the previous pointer is never used after its return.
636 static void safely_assign_in_fifo(struct xillyusb_channel
*chan
,
637 struct xillyfifo
*fifo
)
639 mutex_lock(&chan
->lock
);
640 chan
->in_fifo
= fifo
;
641 mutex_unlock(&chan
->lock
);
643 flush_work(&chan
->xdev
->in_ep
->workitem
);
646 static void bulk_in_completer(struct urb
*urb
)
648 struct xillybuffer
*xb
= urb
->context
;
649 struct xillyusb_endpoint
*ep
= xb
->ep
;
653 if (!(urb
->status
== -ENOENT
||
654 urb
->status
== -ECONNRESET
||
655 urb
->status
== -ESHUTDOWN
))
656 report_io_error(ep
->xdev
, -EIO
);
658 spin_lock_irqsave(&ep
->buffers_lock
, flags
);
659 list_add_tail(&xb
->entry
, &ep
->buffers
);
660 ep
->outstanding_urbs
--;
661 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
666 xb
->len
= urb
->actual_length
;
668 spin_lock_irqsave(&ep
->buffers_lock
, flags
);
669 list_add_tail(&xb
->entry
, &ep
->filled_buffers
);
670 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
672 if (!ep
->shutting_down
)
673 queue_work(ep
->xdev
->workq
, &ep
->workitem
);
676 static void bulk_out_completer(struct urb
*urb
)
678 struct xillybuffer
*xb
= urb
->context
;
679 struct xillyusb_endpoint
*ep
= xb
->ep
;
683 (!(urb
->status
== -ENOENT
||
684 urb
->status
== -ECONNRESET
||
685 urb
->status
== -ESHUTDOWN
)))
686 report_io_error(ep
->xdev
, -EIO
);
688 spin_lock_irqsave(&ep
->buffers_lock
, flags
);
689 list_add_tail(&xb
->entry
, &ep
->buffers
);
690 ep
->outstanding_urbs
--;
691 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
693 if (!ep
->shutting_down
)
694 queue_work(ep
->xdev
->workq
, &ep
->workitem
);
697 static void try_queue_bulk_in(struct xillyusb_endpoint
*ep
)
699 struct xillyusb_dev
*xdev
= ep
->xdev
;
700 struct xillybuffer
*xb
;
705 unsigned int bufsize
= ep
->buffer_size
;
707 mutex_lock(&ep
->ep_mutex
);
709 if (ep
->shutting_down
|| xdev
->error
)
713 spin_lock_irqsave(&ep
->buffers_lock
, flags
);
715 if (list_empty(&ep
->buffers
)) {
716 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
720 xb
= list_first_entry(&ep
->buffers
, struct xillybuffer
, entry
);
721 list_del(&xb
->entry
);
722 ep
->outstanding_urbs
++;
724 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
726 urb
= usb_alloc_urb(0, GFP_KERNEL
);
728 report_io_error(xdev
, -ENOMEM
);
732 usb_fill_bulk_urb(urb
, xdev
->udev
,
733 usb_rcvbulkpipe(xdev
->udev
, ep
->ep_num
),
734 xb
->buf
, bufsize
, bulk_in_completer
, xb
);
736 usb_anchor_urb(urb
, &ep
->anchor
);
738 rc
= usb_submit_urb(urb
, GFP_KERNEL
);
741 report_io_error(xdev
, (rc
== -ENOMEM
) ? -ENOMEM
:
746 usb_free_urb(urb
); /* This just decrements reference count */
750 usb_unanchor_urb(urb
);
754 spin_lock_irqsave(&ep
->buffers_lock
, flags
);
755 list_add_tail(&xb
->entry
, &ep
->buffers
);
756 ep
->outstanding_urbs
--;
757 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
760 mutex_unlock(&ep
->ep_mutex
);
763 static void try_queue_bulk_out(struct xillyusb_endpoint
*ep
)
765 struct xillyfifo
*fifo
= &ep
->fifo
;
766 struct xillyusb_dev
*xdev
= ep
->xdev
;
767 struct xillybuffer
*xb
;
773 bool do_wake
= false;
775 mutex_lock(&ep
->ep_mutex
);
777 if (ep
->shutting_down
|| xdev
->error
)
780 fill
= READ_ONCE(fifo
->fill
) & ep
->fill_mask
;
784 unsigned int max_read
;
786 spin_lock_irqsave(&ep
->buffers_lock
, flags
);
789 * Race conditions might have the FIFO filled while the
790 * endpoint is marked as drained here. That doesn't matter,
791 * because the sole purpose of @drained is to ensure that
792 * certain data has been sent on the USB channel before
793 * shutting it down. Hence knowing that the FIFO appears
794 * to be empty with no outstanding URBs at some moment
799 ep
->drained
= !ep
->outstanding_urbs
;
800 if (ep
->drained
&& ep
->wake_on_drain
)
803 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
809 if ((fill
< ep
->buffer_size
&& ep
->outstanding_urbs
) ||
810 list_empty(&ep
->buffers
)) {
811 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
815 xb
= list_first_entry(&ep
->buffers
, struct xillybuffer
, entry
);
816 list_del(&xb
->entry
);
817 ep
->outstanding_urbs
++;
819 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
821 max_read
= min(fill
, ep
->buffer_size
);
823 count
= fifo_read(&ep
->fifo
, xb
->buf
, max_read
, xilly_memcpy
);
826 * xilly_memcpy always returns 0 => fifo_read can't fail =>
830 urb
= usb_alloc_urb(0, GFP_KERNEL
);
832 report_io_error(xdev
, -ENOMEM
);
836 usb_fill_bulk_urb(urb
, xdev
->udev
,
837 usb_sndbulkpipe(xdev
->udev
, ep
->ep_num
),
838 xb
->buf
, count
, bulk_out_completer
, xb
);
840 usb_anchor_urb(urb
, &ep
->anchor
);
842 rc
= usb_submit_urb(urb
, GFP_KERNEL
);
845 report_io_error(xdev
, (rc
== -ENOMEM
) ? -ENOMEM
:
850 usb_free_urb(urb
); /* This just decrements reference count */
857 usb_unanchor_urb(urb
);
861 spin_lock_irqsave(&ep
->buffers_lock
, flags
);
862 list_add_tail(&xb
->entry
, &ep
->buffers
);
863 ep
->outstanding_urbs
--;
864 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
867 mutex_unlock(&ep
->ep_mutex
);
870 wake_up_interruptible(&fifo
->waitq
);
873 static void bulk_out_work(struct work_struct
*work
)
875 struct xillyusb_endpoint
*ep
= container_of(work
,
876 struct xillyusb_endpoint
,
878 try_queue_bulk_out(ep
);
881 static int process_in_opcode(struct xillyusb_dev
*xdev
,
885 struct xillyusb_channel
*chan
;
886 struct device
*dev
= xdev
->dev
;
887 int chan_idx
= chan_num
>> 1;
889 if (chan_idx
>= xdev
->num_channels
) {
890 dev_err(dev
, "Received illegal channel ID %d from FPGA\n",
895 chan
= &xdev
->channels
[chan_idx
];
899 if (!chan
->read_data_ok
) {
900 dev_err(dev
, "Received unexpected EOF for channel %d\n",
906 * A write memory barrier ensures that the FIFO's fill level
907 * is visible before read_data_ok turns zero, so the data in
908 * the FIFO isn't missed by the consumer.
911 WRITE_ONCE(chan
->read_data_ok
, 0);
912 wake_up_interruptible(&chan
->in_fifo
->waitq
);
915 case OPCODE_REACHED_CHECKPOINT
:
917 wake_up_interruptible(&chan
->flushq
);
920 case OPCODE_CANCELED_CHECKPOINT
:
922 wake_up_interruptible(&chan
->flushq
);
926 dev_err(dev
, "Received illegal opcode %d from FPGA\n",
934 static int process_bulk_in(struct xillybuffer
*xb
)
936 struct xillyusb_endpoint
*ep
= xb
->ep
;
937 struct xillyusb_dev
*xdev
= ep
->xdev
;
938 struct device
*dev
= xdev
->dev
;
939 int dws
= xb
->len
>> 2;
942 struct xillyusb_channel
*chan
;
943 struct xillyfifo
*fifo
;
944 int chan_num
= 0, opcode
;
946 int bytes
, count
, dwconsume
;
947 int in_bytes_left
= 0;
950 if ((dws
<< 2) != xb
->len
) {
951 dev_err(dev
, "Received BULK IN transfer with %d bytes, not a multiple of 4\n",
956 if (xdev
->in_bytes_left
) {
957 bytes
= min(xdev
->in_bytes_left
, dws
<< 2);
958 in_bytes_left
= xdev
->in_bytes_left
- bytes
;
959 chan_num
= xdev
->leftover_chan_num
;
960 goto resume_leftovers
;
964 ctrlword
= le32_to_cpu(*p
++);
967 chan_num
= ctrlword
& 0xfff;
968 count
= (ctrlword
>> 12) & 0x3ff;
969 opcode
= (ctrlword
>> 24) & 0xf;
971 if (opcode
!= OPCODE_DATA
) {
972 unsigned int in_counter
= xdev
->in_counter
++ & 0x3ff;
974 if (count
!= in_counter
) {
975 dev_err(dev
, "Expected opcode counter %d, got %d\n",
980 rc
= process_in_opcode(xdev
, opcode
, chan_num
);
988 bytes
= min(count
+ 1, dws
<< 2);
989 in_bytes_left
= count
+ 1 - bytes
;
992 chan_idx
= chan_num
>> 1;
994 if (!(chan_num
& 1) || chan_idx
>= xdev
->num_channels
||
995 !xdev
->channels
[chan_idx
].read_data_ok
) {
996 dev_err(dev
, "Received illegal channel ID %d from FPGA\n",
1000 chan
= &xdev
->channels
[chan_idx
];
1002 fifo
= chan
->in_fifo
;
1004 if (unlikely(!fifo
))
1005 return -EIO
; /* We got really unexpected data */
1007 if (bytes
!= fifo_write(fifo
, p
, bytes
, xilly_memcpy
)) {
1008 dev_err(dev
, "Misbehaving FPGA overflowed an upstream FIFO!\n");
1012 wake_up_interruptible(&fifo
->waitq
);
1014 dwconsume
= (bytes
+ 3) >> 2;
1019 xdev
->in_bytes_left
= in_bytes_left
;
1020 xdev
->leftover_chan_num
= chan_num
;
1024 static void bulk_in_work(struct work_struct
*work
)
1026 struct xillyusb_endpoint
*ep
=
1027 container_of(work
, struct xillyusb_endpoint
, workitem
);
1028 struct xillyusb_dev
*xdev
= ep
->xdev
;
1029 unsigned long flags
;
1030 struct xillybuffer
*xb
;
1031 bool consumed
= false;
1034 mutex_lock(&xdev
->process_in_mutex
);
1036 spin_lock_irqsave(&ep
->buffers_lock
, flags
);
1039 if (rc
|| list_empty(&ep
->filled_buffers
)) {
1040 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
1041 mutex_unlock(&xdev
->process_in_mutex
);
1044 report_io_error(xdev
, rc
);
1046 try_queue_bulk_in(ep
);
1051 xb
= list_first_entry(&ep
->filled_buffers
, struct xillybuffer
,
1053 list_del(&xb
->entry
);
1055 spin_unlock_irqrestore(&ep
->buffers_lock
, flags
);
1060 rc
= process_bulk_in(xb
);
1062 spin_lock_irqsave(&ep
->buffers_lock
, flags
);
1063 list_add_tail(&xb
->entry
, &ep
->buffers
);
1064 ep
->outstanding_urbs
--;
1068 static int xillyusb_send_opcode(struct xillyusb_dev
*xdev
,
1069 int chan_num
, char opcode
, u32 data
)
1071 struct xillyusb_endpoint
*ep
= xdev
->msg_ep
;
1072 struct xillyfifo
*fifo
= &ep
->fifo
;
1077 msg
[0] = cpu_to_le32((chan_num
& 0xfff) |
1078 ((opcode
& 0xf) << 24));
1079 msg
[1] = cpu_to_le32(data
);
1081 mutex_lock(&xdev
->msg_mutex
);
1084 * The wait queue is woken with the interruptible variant, so the
1085 * wait function matches, however returning because of an interrupt
1086 * will mess things up considerably, in particular when the caller is
1087 * the release method. And the xdev->error part prevents being stuck
1088 * forever in the event of a bizarre hardware bug: Pull the USB plug.
1091 while (wait_event_interruptible(fifo
->waitq
,
1092 fifo
->fill
<= (fifo
->size
- 8) ||
1101 fifo_write(fifo
, (void *)msg
, 8, xilly_memcpy
);
1103 try_queue_bulk_out(ep
);
1106 mutex_unlock(&xdev
->msg_mutex
);
1112 * Note that flush_downstream() merely waits for the data to arrive to
1113 * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
1114 * it does nothing to make it happen (and neither is it necessary).
1116 * This function is not reentrant for the same @chan, but this is covered
1117 * by the fact that for any given @chan, it's called either by the open,
1118 * write, llseek and flush fops methods, which can't run in parallel (and the
1119 * write + flush and llseek method handlers are protected with out_mutex).
1121 * chan->flushed is there to avoid multiple flushes at the same position,
1122 * in particular as a result of programs that close the file descriptor
1123 * e.g. after a dup2() for redirection.
1126 static int flush_downstream(struct xillyusb_channel
*chan
,
1130 struct xillyusb_dev
*xdev
= chan
->xdev
;
1131 int chan_num
= chan
->chan_idx
<< 1;
1132 long deadline
, left_to_sleep
;
1138 deadline
= jiffies
+ 1 + timeout
;
1140 if (chan
->flushing
) {
1141 long cancel_deadline
= jiffies
+ 1 + XILLY_RESPONSE_TIMEOUT
;
1144 rc
= xillyusb_send_opcode(xdev
, chan_num
,
1145 OPCODE_CANCEL_CHECKPOINT
, 0);
1148 return rc
; /* Only real error, never -EINTR */
1150 /* Ignoring interrupts. Cancellation must be handled */
1151 while (!chan
->canceled
) {
1152 left_to_sleep
= cancel_deadline
- ((long)jiffies
);
1154 if (left_to_sleep
<= 0) {
1155 report_io_error(xdev
, -EIO
);
1159 rc
= wait_event_interruptible_timeout(chan
->flushq
,
1172 * The checkpoint is given in terms of data elements, not bytes. As
1173 * a result, if less than an element's worth of data is stored in the
1174 * FIFO, it's not flushed, including the flush before closing, which
1175 * means that such data is lost. This is consistent with PCIe Xillybus.
1178 rc
= xillyusb_send_opcode(xdev
, chan_num
,
1179 OPCODE_SET_CHECKPOINT
,
1181 chan
->out_log2_element_size
);
1184 return rc
; /* Only real error, never -EINTR */
1187 while (chan
->flushing
) {
1188 rc
= wait_event_interruptible(chan
->flushq
,
1194 if (interruptible
&& rc
)
1201 while (chan
->flushing
) {
1202 left_to_sleep
= deadline
- ((long)jiffies
);
1204 if (left_to_sleep
<= 0)
1207 rc
= wait_event_interruptible_timeout(chan
->flushq
,
1215 if (interruptible
&& rc
< 0)
1224 /* request_read_anything(): Ask the FPGA for any little amount of data */
1225 static int request_read_anything(struct xillyusb_channel
*chan
,
1228 struct xillyusb_dev
*xdev
= chan
->xdev
;
1229 unsigned int sh
= chan
->in_log2_element_size
;
1230 int chan_num
= (chan
->chan_idx
<< 1) | 1;
1231 u32 mercy
= chan
->in_consumed_bytes
+ (2 << sh
) - 1;
1233 return xillyusb_send_opcode(xdev
, chan_num
, opcode
, mercy
>> sh
);
1236 static int xillyusb_open(struct inode
*inode
, struct file
*filp
)
1238 struct xillyusb_dev
*xdev
;
1239 struct xillyusb_channel
*chan
;
1240 struct xillyfifo
*in_fifo
= NULL
;
1241 struct xillyusb_endpoint
*out_ep
= NULL
;
1245 mutex_lock(&kref_mutex
);
1247 rc
= xillybus_find_inode(inode
, (void **)&xdev
, &index
);
1249 mutex_unlock(&kref_mutex
);
1253 kref_get(&xdev
->kref
);
1254 mutex_unlock(&kref_mutex
);
1256 chan
= &xdev
->channels
[index
];
1257 filp
->private_data
= chan
;
1259 mutex_lock(&chan
->lock
);
1266 if (((filp
->f_mode
& FMODE_READ
) && !chan
->readable
) ||
1267 ((filp
->f_mode
& FMODE_WRITE
) && !chan
->writable
))
1270 if ((filp
->f_flags
& O_NONBLOCK
) && (filp
->f_mode
& FMODE_READ
) &&
1271 chan
->in_synchronous
) {
1273 "open() failed: O_NONBLOCK not allowed for read on this device\n");
1277 if ((filp
->f_flags
& O_NONBLOCK
) && (filp
->f_mode
& FMODE_WRITE
) &&
1278 chan
->out_synchronous
) {
1280 "open() failed: O_NONBLOCK not allowed for write on this device\n");
1286 if (((filp
->f_mode
& FMODE_READ
) && chan
->open_for_read
) ||
1287 ((filp
->f_mode
& FMODE_WRITE
) && chan
->open_for_write
))
1290 if (filp
->f_mode
& FMODE_READ
)
1291 chan
->open_for_read
= 1;
1293 if (filp
->f_mode
& FMODE_WRITE
)
1294 chan
->open_for_write
= 1;
1296 mutex_unlock(&chan
->lock
);
1298 if (filp
->f_mode
& FMODE_WRITE
) {
1299 out_ep
= endpoint_alloc(xdev
,
1300 (chan
->chan_idx
+ 2) | USB_DIR_OUT
,
1301 bulk_out_work
, BUF_SIZE_ORDER
, BUFNUM
);
1308 rc
= fifo_init(&out_ep
->fifo
, chan
->out_log2_fifo_size
);
1313 out_ep
->fill_mask
= -(1 << chan
->out_log2_element_size
);
1314 chan
->out_bytes
= 0;
1318 * Sending a flush request to a previously closed stream
1319 * effectively opens it, and also waits until the command is
1320 * confirmed by the FPGA. The latter is necessary because the
1321 * data is sent through a separate BULK OUT endpoint, and the
1322 * xHCI controller is free to reorder transmissions.
1324 * This can't go wrong unless there's a serious hardware error
1325 * (or the computer is stuck for 500 ms?)
1327 rc
= flush_downstream(chan
, XILLY_RESPONSE_TIMEOUT
, false);
1329 if (rc
== -ETIMEDOUT
) {
1331 report_io_error(xdev
, rc
);
1338 if (filp
->f_mode
& FMODE_READ
) {
1339 in_fifo
= kzalloc(sizeof(*in_fifo
), GFP_KERNEL
);
1346 rc
= fifo_init(in_fifo
, chan
->in_log2_fifo_size
);
1354 mutex_lock(&chan
->lock
);
1356 chan
->in_fifo
= in_fifo
;
1357 chan
->read_data_ok
= 1;
1360 chan
->out_ep
= out_ep
;
1361 mutex_unlock(&chan
->lock
);
1364 u32 in_checkpoint
= 0;
1366 if (!chan
->in_synchronous
)
1367 in_checkpoint
= in_fifo
->size
>>
1368 chan
->in_log2_element_size
;
1370 chan
->in_consumed_bytes
= 0;
1371 chan
->poll_used
= 0;
1372 chan
->in_current_checkpoint
= in_checkpoint
;
1373 rc
= xillyusb_send_opcode(xdev
, (chan
->chan_idx
<< 1) | 1,
1374 OPCODE_SET_CHECKPOINT
,
1377 if (rc
) /* Failure guarantees that opcode wasn't sent */
1381 * In non-blocking mode, request the FPGA to send any data it
1382 * has right away. Otherwise, the first read() will always
1383 * return -EAGAIN, which is OK strictly speaking, but ugly.
1384 * Checking and unrolling if this fails isn't worth the
1385 * effort -- the error is propagated to the first read()
1388 if (filp
->f_flags
& O_NONBLOCK
)
1389 request_read_anything(chan
, OPCODE_SET_PUSH
);
1395 chan
->read_data_ok
= 0;
1396 safely_assign_in_fifo(chan
, NULL
);
1397 fifo_mem_release(in_fifo
);
1401 mutex_lock(&chan
->lock
);
1402 chan
->out_ep
= NULL
;
1403 mutex_unlock(&chan
->lock
);
1408 endpoint_dealloc(out_ep
);
1411 mutex_lock(&chan
->lock
);
1413 if (filp
->f_mode
& FMODE_READ
)
1414 chan
->open_for_read
= 0;
1416 if (filp
->f_mode
& FMODE_WRITE
)
1417 chan
->open_for_write
= 0;
1419 mutex_unlock(&chan
->lock
);
1421 kref_put(&xdev
->kref
, cleanup_dev
);
1426 kref_put(&xdev
->kref
, cleanup_dev
);
1427 mutex_unlock(&chan
->lock
);
1431 static ssize_t
xillyusb_read(struct file
*filp
, char __user
*userbuf
,
1432 size_t count
, loff_t
*f_pos
)
1434 struct xillyusb_channel
*chan
= filp
->private_data
;
1435 struct xillyusb_dev
*xdev
= chan
->xdev
;
1436 struct xillyfifo
*fifo
= chan
->in_fifo
;
1437 int chan_num
= (chan
->chan_idx
<< 1) | 1;
1439 long deadline
, left_to_sleep
;
1441 bool sent_set_push
= false;
1444 deadline
= jiffies
+ 1 + XILLY_RX_TIMEOUT
;
1446 rc
= mutex_lock_interruptible(&chan
->in_mutex
);
1452 u32 fifo_checkpoint_bytes
, complete_checkpoint_bytes
;
1453 u32 complete_checkpoint
, fifo_checkpoint
;
1456 unsigned int sh
= chan
->in_log2_element_size
;
1457 bool checkpoint_for_complete
;
1459 rc
= fifo_read(fifo
, (__force
void *)userbuf
+ bytes_done
,
1460 count
- bytes_done
, xilly_copy_to_user
);
1466 chan
->in_consumed_bytes
+= rc
;
1468 left_to_sleep
= deadline
- ((long)jiffies
);
1471 * Some 32-bit arithmetic that may wrap. Note that
1472 * complete_checkpoint is rounded up to the closest element
1473 * boundary, because the read() can't be completed otherwise.
1474 * fifo_checkpoint_bytes is rounded down, because it protects
1475 * in_fifo from overflowing.
1478 fifo_checkpoint_bytes
= chan
->in_consumed_bytes
+ fifo
->size
;
1479 complete_checkpoint_bytes
=
1480 chan
->in_consumed_bytes
+ count
- bytes_done
;
1482 fifo_checkpoint
= fifo_checkpoint_bytes
>> sh
;
1483 complete_checkpoint
=
1484 (complete_checkpoint_bytes
+ (1 << sh
) - 1) >> sh
;
1486 diff
= (fifo_checkpoint
- complete_checkpoint
) << sh
;
1488 if (chan
->in_synchronous
&& diff
>= 0) {
1489 checkpoint
= complete_checkpoint
;
1490 checkpoint_for_complete
= true;
1492 checkpoint
= fifo_checkpoint
;
1493 checkpoint_for_complete
= false;
1496 leap
= (checkpoint
- chan
->in_current_checkpoint
) << sh
;
1499 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
1500 * data is consumed, it's issued only if it moves the
1501 * checkpoint by at least an 8th of the FIFO's size, or if
1502 * it's necessary to complete the number of bytes requested by
1505 * chan->read_data_ok is checked to spare an unnecessary
1506 * submission after receiving EOF, however it's harmless if
1510 if (chan
->read_data_ok
&&
1511 (leap
> (fifo
->size
>> 3) ||
1512 (checkpoint_for_complete
&& leap
> 0))) {
1513 chan
->in_current_checkpoint
= checkpoint
;
1514 rc
= xillyusb_send_opcode(xdev
, chan_num
,
1515 OPCODE_SET_CHECKPOINT
,
1522 if (bytes_done
== count
||
1523 (left_to_sleep
<= 0 && bytes_done
))
1527 * Reaching here means that the FIFO was empty when
1528 * fifo_read() returned, but not necessarily right now. Error
1529 * and EOF are checked and reported only now, so that no data
1530 * that managed its way to the FIFO is lost.
1533 if (!READ_ONCE(chan
->read_data_ok
)) { /* FPGA has sent EOF */
1534 /* Has data slipped into the FIFO since fifo_read()? */
1536 if (READ_ONCE(fifo
->fill
))
1548 if (filp
->f_flags
& O_NONBLOCK
) {
1553 if (!sent_set_push
) {
1554 rc
= xillyusb_send_opcode(xdev
, chan_num
,
1556 complete_checkpoint
);
1561 sent_set_push
= true;
1564 if (left_to_sleep
> 0) {
1566 * Note that when xdev->error is set (e.g. when the
1567 * device is unplugged), read_data_ok turns zero and
1568 * fifo->waitq is awaken.
1569 * Therefore no special attention to xdev->error.
1572 rc
= wait_event_interruptible_timeout
1574 fifo
->fill
|| !chan
->read_data_ok
,
1576 } else { /* bytes_done == 0 */
1577 /* Tell FPGA to send anything it has */
1578 rc
= request_read_anything(chan
, OPCODE_UPDATE_PUSH
);
1583 rc
= wait_event_interruptible
1585 fifo
->fill
|| !chan
->read_data_ok
);
1594 if (((filp
->f_flags
& O_NONBLOCK
) || chan
->poll_used
) &&
1595 !READ_ONCE(fifo
->fill
))
1596 request_read_anything(chan
, OPCODE_SET_PUSH
);
1598 mutex_unlock(&chan
->in_mutex
);
1606 static int xillyusb_flush(struct file
*filp
, fl_owner_t id
)
1608 struct xillyusb_channel
*chan
= filp
->private_data
;
1611 if (!(filp
->f_mode
& FMODE_WRITE
))
1614 rc
= mutex_lock_interruptible(&chan
->out_mutex
);
1620 * One second's timeout on flushing. Interrupts are ignored, because if
1621 * the user pressed CTRL-C, that interrupt will still be in flight by
1622 * the time we reach here, and the opportunity to flush is lost.
1624 rc
= flush_downstream(chan
, HZ
, false);
1626 mutex_unlock(&chan
->out_mutex
);
1628 if (rc
== -ETIMEDOUT
) {
1629 /* The things you do to use dev_warn() and not pr_warn() */
1630 struct xillyusb_dev
*xdev
= chan
->xdev
;
1632 mutex_lock(&chan
->lock
);
1635 "Timed out while flushing. Output data may be lost.\n");
1636 mutex_unlock(&chan
->lock
);
1642 static ssize_t
xillyusb_write(struct file
*filp
, const char __user
*userbuf
,
1643 size_t count
, loff_t
*f_pos
)
1645 struct xillyusb_channel
*chan
= filp
->private_data
;
1646 struct xillyusb_dev
*xdev
= chan
->xdev
;
1647 struct xillyfifo
*fifo
= &chan
->out_ep
->fifo
;
1650 rc
= mutex_lock_interruptible(&chan
->out_mutex
);
1664 rc
= fifo_write(fifo
, (__force
void *)userbuf
, count
,
1665 xilly_copy_from_user
);
1670 if (filp
->f_flags
& O_NONBLOCK
) {
1675 if (wait_event_interruptible
1677 fifo
->fill
!= fifo
->size
|| xdev
->error
)) {
1686 chan
->out_bytes
+= rc
;
1689 try_queue_bulk_out(chan
->out_ep
);
1693 if (chan
->out_synchronous
) {
1694 int flush_rc
= flush_downstream(chan
, 0, true);
1696 if (flush_rc
&& !rc
)
1701 mutex_unlock(&chan
->out_mutex
);
1706 static int xillyusb_release(struct inode
*inode
, struct file
*filp
)
1708 struct xillyusb_channel
*chan
= filp
->private_data
;
1709 struct xillyusb_dev
*xdev
= chan
->xdev
;
1710 int rc_read
= 0, rc_write
= 0;
1712 if (filp
->f_mode
& FMODE_READ
) {
1713 struct xillyfifo
*in_fifo
= chan
->in_fifo
;
1715 rc_read
= xillyusb_send_opcode(xdev
, (chan
->chan_idx
<< 1) | 1,
1718 * If rc_read is nonzero, xdev->error indicates a global
1719 * device error. The error is reported later, so that
1720 * resources are freed.
1722 * Looping on wait_event_interruptible() kinda breaks the idea
1723 * of being interruptible, and this should have been
1724 * wait_event(). Only it's being waken with
1725 * wake_up_interruptible() for the sake of other uses. If
1726 * there's a global device error, chan->read_data_ok is
1727 * deasserted and the wait queue is awaken, so this is covered.
1730 while (wait_event_interruptible(in_fifo
->waitq
,
1731 !chan
->read_data_ok
))
1734 safely_assign_in_fifo(chan
, NULL
);
1735 fifo_mem_release(in_fifo
);
1738 mutex_lock(&chan
->lock
);
1739 chan
->open_for_read
= 0;
1740 mutex_unlock(&chan
->lock
);
1743 if (filp
->f_mode
& FMODE_WRITE
) {
1744 struct xillyusb_endpoint
*ep
= chan
->out_ep
;
1746 * chan->flushing isn't zeroed. If the pre-release flush timed
1747 * out, a cancel request will be sent before the next
1748 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
1749 * This is despite that the FPGA forgets about the checkpoint
1750 * request as the file closes. Still, in an exceptional race
1751 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
1752 * just before closing that would reach the host after the
1753 * file has re-opened.
1756 mutex_lock(&chan
->lock
);
1757 chan
->out_ep
= NULL
;
1758 mutex_unlock(&chan
->lock
);
1760 endpoint_quiesce(ep
);
1761 endpoint_dealloc(ep
);
1763 /* See comments on rc_read above */
1764 rc_write
= xillyusb_send_opcode(xdev
, chan
->chan_idx
<< 1,
1767 mutex_lock(&chan
->lock
);
1768 chan
->open_for_write
= 0;
1769 mutex_unlock(&chan
->lock
);
1772 kref_put(&xdev
->kref
, cleanup_dev
);
1774 return rc_read
? rc_read
: rc_write
;
1778 * Xillybus' API allows device nodes to be seekable, giving the user
1779 * application access to a RAM array on the FPGA (or logic emulating it).
1782 static loff_t
xillyusb_llseek(struct file
*filp
, loff_t offset
, int whence
)
1784 struct xillyusb_channel
*chan
= filp
->private_data
;
1785 struct xillyusb_dev
*xdev
= chan
->xdev
;
1786 loff_t pos
= filp
->f_pos
;
1788 unsigned int log2_element_size
= chan
->readable
?
1789 chan
->in_log2_element_size
: chan
->out_log2_element_size
;
1792 * Take both mutexes not allowing interrupts, since it seems like
1793 * common applications don't expect an -EINTR here. Besides, multiple
1794 * access to a single file descriptor on seekable devices is a mess
1798 mutex_lock(&chan
->out_mutex
);
1799 mutex_lock(&chan
->in_mutex
);
1809 pos
= offset
; /* Going to the end => to the beginning */
1816 /* In any case, we must finish on an element boundary */
1817 if (pos
& ((1 << log2_element_size
) - 1)) {
1822 rc
= xillyusb_send_opcode(xdev
, chan
->chan_idx
<< 1,
1824 pos
>> log2_element_size
);
1829 if (chan
->writable
) {
1831 rc
= flush_downstream(chan
, HZ
, false);
1835 mutex_unlock(&chan
->out_mutex
);
1836 mutex_unlock(&chan
->in_mutex
);
1838 if (rc
) /* Return error after releasing mutexes */
1846 static __poll_t
xillyusb_poll(struct file
*filp
, poll_table
*wait
)
1848 struct xillyusb_channel
*chan
= filp
->private_data
;
1852 poll_wait(filp
, &chan
->in_fifo
->waitq
, wait
);
1855 poll_wait(filp
, &chan
->out_ep
->fifo
.waitq
, wait
);
1858 * If this is the first time poll() is called, and the file is
1859 * readable, set the relevant flag. Also tell the FPGA to send all it
1860 * has, to kickstart the mechanism that ensures there's always some
1861 * data in in_fifo unless the stream is dry end-to-end. Note that the
1862 * first poll() may not return a EPOLLIN, even if there's data on the
1863 * FPGA. Rather, the data will arrive soon, and trigger the relevant
1867 if (!chan
->poll_used
&& chan
->in_fifo
) {
1868 chan
->poll_used
= 1;
1869 request_read_anything(chan
, OPCODE_SET_PUSH
);
1873 * poll() won't play ball regarding read() channels which
1874 * are synchronous. Allowing that will create situations where data has
1875 * been delivered at the FPGA, and users expecting select() to wake up,
1876 * which it may not. So make it never work.
1879 if (chan
->in_fifo
&& !chan
->in_synchronous
&&
1880 (READ_ONCE(chan
->in_fifo
->fill
) || !chan
->read_data_ok
))
1881 mask
|= EPOLLIN
| EPOLLRDNORM
;
1884 (READ_ONCE(chan
->out_ep
->fifo
.fill
) != chan
->out_ep
->fifo
.size
))
1885 mask
|= EPOLLOUT
| EPOLLWRNORM
;
1887 if (chan
->xdev
->error
)
1893 static const struct file_operations xillyusb_fops
= {
1894 .owner
= THIS_MODULE
,
1895 .read
= xillyusb_read
,
1896 .write
= xillyusb_write
,
1897 .open
= xillyusb_open
,
1898 .flush
= xillyusb_flush
,
1899 .release
= xillyusb_release
,
1900 .llseek
= xillyusb_llseek
,
1901 .poll
= xillyusb_poll
,
1904 static int xillyusb_setup_base_eps(struct xillyusb_dev
*xdev
)
1906 struct usb_device
*udev
= xdev
->udev
;
1908 /* Verify that device has the two fundamental bulk in/out endpoints */
1909 if (usb_pipe_type_check(udev
, usb_sndbulkpipe(udev
, MSG_EP_NUM
)) ||
1910 usb_pipe_type_check(udev
, usb_rcvbulkpipe(udev
, IN_EP_NUM
)))
1913 xdev
->msg_ep
= endpoint_alloc(xdev
, MSG_EP_NUM
| USB_DIR_OUT
,
1914 bulk_out_work
, 1, 2);
1918 if (fifo_init(&xdev
->msg_ep
->fifo
, 13)) /* 8 kiB */
1921 xdev
->msg_ep
->fill_mask
= -8; /* 8 bytes granularity */
1923 xdev
->in_ep
= endpoint_alloc(xdev
, IN_EP_NUM
| USB_DIR_IN
,
1924 bulk_in_work
, BUF_SIZE_ORDER
, BUFNUM
);
1928 try_queue_bulk_in(xdev
->in_ep
);
1933 endpoint_dealloc(xdev
->msg_ep
); /* Also frees FIFO mem if allocated */
1934 xdev
->msg_ep
= NULL
;
1938 static int setup_channels(struct xillyusb_dev
*xdev
,
1942 struct usb_device
*udev
= xdev
->udev
;
1943 struct xillyusb_channel
*chan
, *new_channels
;
1946 chan
= kcalloc(num_channels
, sizeof(*chan
), GFP_KERNEL
);
1950 new_channels
= chan
;
1952 for (i
= 0; i
< num_channels
; i
++, chan
++) {
1953 unsigned int in_desc
= le16_to_cpu(*chandesc
++);
1954 unsigned int out_desc
= le16_to_cpu(*chandesc
++);
1957 mutex_init(&chan
->in_mutex
);
1958 mutex_init(&chan
->out_mutex
);
1959 mutex_init(&chan
->lock
);
1960 init_waitqueue_head(&chan
->flushq
);
1964 if (in_desc
& 0x80) { /* Entry is valid */
1966 chan
->in_synchronous
= !!(in_desc
& 0x40);
1967 chan
->in_seekable
= !!(in_desc
& 0x20);
1968 chan
->in_log2_element_size
= in_desc
& 0x0f;
1969 chan
->in_log2_fifo_size
= ((in_desc
>> 8) & 0x1f) + 16;
1973 * A downstream channel should never exist above index 13,
1974 * as it would request a nonexistent BULK endpoint > 15.
1975 * In the peculiar case that it does, it's ignored silently.
1978 if ((out_desc
& 0x80) && i
< 14) { /* Entry is valid */
1979 if (usb_pipe_type_check(udev
,
1980 usb_sndbulkpipe(udev
, i
+ 2))) {
1982 "Missing BULK OUT endpoint %d\n",
1984 kfree(new_channels
);
1989 chan
->out_synchronous
= !!(out_desc
& 0x40);
1990 chan
->out_seekable
= !!(out_desc
& 0x20);
1991 chan
->out_log2_element_size
= out_desc
& 0x0f;
1992 chan
->out_log2_fifo_size
=
1993 ((out_desc
>> 8) & 0x1f) + 16;
1997 xdev
->channels
= new_channels
;
2001 static int xillyusb_discovery(struct usb_interface
*interface
)
2004 struct xillyusb_dev
*xdev
= usb_get_intfdata(interface
);
2005 __le16 bogus_chandesc
[2];
2006 struct xillyfifo idt_fifo
;
2007 struct xillyusb_channel
*chan
;
2008 unsigned int idt_len
, names_offset
;
2012 rc
= xillyusb_send_opcode(xdev
, ~0, OPCODE_QUIESCE
, 0);
2015 dev_err(&interface
->dev
, "Failed to send quiesce request. Aborting.\n");
2019 /* Phase I: Set up one fake upstream channel and obtain IDT */
2021 /* Set up a fake IDT with one async IN stream */
2022 bogus_chandesc
[0] = cpu_to_le16(0x80);
2023 bogus_chandesc
[1] = cpu_to_le16(0);
2025 rc
= setup_channels(xdev
, bogus_chandesc
, 1);
2030 rc
= fifo_init(&idt_fifo
, LOG2_IDT_FIFO_SIZE
);
2035 chan
= xdev
->channels
;
2037 chan
->in_fifo
= &idt_fifo
;
2038 chan
->read_data_ok
= 1;
2040 xdev
->num_channels
= 1;
2042 rc
= xillyusb_send_opcode(xdev
, ~0, OPCODE_REQ_IDT
, 0);
2045 dev_err(&interface
->dev
, "Failed to send IDT request. Aborting.\n");
2049 rc
= wait_event_interruptible_timeout(idt_fifo
.waitq
,
2050 !chan
->read_data_ok
,
2051 XILLY_RESPONSE_TIMEOUT
);
2059 rc
= -EINTR
; /* Interrupt on probe method? Interesting. */
2063 if (chan
->read_data_ok
) {
2065 dev_err(&interface
->dev
, "No response from FPGA. Aborting.\n");
2069 idt_len
= READ_ONCE(idt_fifo
.fill
);
2070 idt
= kmalloc(idt_len
, GFP_KERNEL
);
2077 fifo_read(&idt_fifo
, idt
, idt_len
, xilly_memcpy
);
2079 if (crc32_le(~0, idt
, idt_len
) != 0) {
2080 dev_err(&interface
->dev
, "IDT failed CRC check. Aborting.\n");
2086 dev_err(&interface
->dev
, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n",
2092 /* Phase II: Set up the streams as defined in IDT */
2094 num_channels
= le16_to_cpu(*((__le16
*)(idt
+ 1)));
2095 names_offset
= 3 + num_channels
* 4;
2096 idt_len
-= 4; /* Exclude CRC */
2098 if (idt_len
< names_offset
) {
2099 dev_err(&interface
->dev
, "IDT too short. This is exceptionally weird, because its CRC is OK\n");
2104 rc
= setup_channels(xdev
, (void *)idt
+ 3, num_channels
);
2110 * Except for wildly misbehaving hardware, or if it was disconnected
2111 * just after responding with the IDT, there is no reason for any
2112 * work item to be running now. To be sure that xdev->channels
2113 * is updated on anything that might run in parallel, flush the
2114 * device's workqueue and the wakeup work item. This rarely
2117 flush_workqueue(xdev
->workq
);
2118 flush_work(&xdev
->wakeup_workitem
);
2120 xdev
->num_channels
= num_channels
;
2122 fifo_mem_release(&idt_fifo
);
2125 rc
= xillybus_init_chrdev(&interface
->dev
, &xillyusb_fops
,
2128 idt_len
- names_offset
,
2140 safely_assign_in_fifo(chan
, NULL
);
2141 fifo_mem_release(&idt_fifo
);
2146 static int xillyusb_probe(struct usb_interface
*interface
,
2147 const struct usb_device_id
*id
)
2149 struct xillyusb_dev
*xdev
;
2152 xdev
= kzalloc(sizeof(*xdev
), GFP_KERNEL
);
2156 kref_init(&xdev
->kref
);
2157 mutex_init(&xdev
->process_in_mutex
);
2158 mutex_init(&xdev
->msg_mutex
);
2160 xdev
->udev
= usb_get_dev(interface_to_usbdev(interface
));
2161 xdev
->dev
= &interface
->dev
;
2163 spin_lock_init(&xdev
->error_lock
);
2164 xdev
->in_counter
= 0;
2165 xdev
->in_bytes_left
= 0;
2166 xdev
->workq
= alloc_workqueue(xillyname
, WQ_HIGHPRI
, 0);
2169 dev_err(&interface
->dev
, "Failed to allocate work queue\n");
2174 INIT_WORK(&xdev
->wakeup_workitem
, wakeup_all
);
2176 usb_set_intfdata(interface
, xdev
);
2178 rc
= xillyusb_setup_base_eps(xdev
);
2182 rc
= xillyusb_discovery(interface
);
2189 endpoint_quiesce(xdev
->in_ep
);
2190 endpoint_quiesce(xdev
->msg_ep
);
2193 usb_set_intfdata(interface
, NULL
);
2194 kref_put(&xdev
->kref
, cleanup_dev
);
2198 static void xillyusb_disconnect(struct usb_interface
*interface
)
2200 struct xillyusb_dev
*xdev
= usb_get_intfdata(interface
);
2201 struct xillyusb_endpoint
*msg_ep
= xdev
->msg_ep
;
2202 struct xillyfifo
*fifo
= &msg_ep
->fifo
;
2206 xillybus_cleanup_chrdev(xdev
, &interface
->dev
);
2209 * Try to send OPCODE_QUIESCE, which will fail silently if the device
2210 * was disconnected, but makes sense on module unload.
2213 msg_ep
->wake_on_drain
= true;
2214 xillyusb_send_opcode(xdev
, ~0, OPCODE_QUIESCE
, 0);
2217 * If the device has been disconnected, sending the opcode causes
2218 * a global device error with xdev->error, if such error didn't
2219 * occur earlier. Hence timing out means that the USB link is fine,
2220 * but somehow the message wasn't sent. Should never happen.
2223 rc
= wait_event_interruptible_timeout(fifo
->waitq
,
2224 msg_ep
->drained
|| xdev
->error
,
2225 XILLY_RESPONSE_TIMEOUT
);
2228 dev_err(&interface
->dev
,
2229 "Weird timeout condition on sending quiesce request.\n");
2231 report_io_error(xdev
, -ENODEV
); /* Discourage further activity */
2234 * This device driver is declared with soft_unbind set, or else
2235 * sending OPCODE_QUIESCE above would always fail. The price is
2236 * that the USB framework didn't kill outstanding URBs, so it has
2237 * to be done explicitly before returning from this call.
2240 for (i
= 0; i
< xdev
->num_channels
; i
++) {
2241 struct xillyusb_channel
*chan
= &xdev
->channels
[i
];
2244 * Lock taken to prevent chan->out_ep from changing. It also
2245 * ensures xillyusb_open() and xillyusb_flush() don't access
2246 * xdev->dev after being nullified below.
2248 mutex_lock(&chan
->lock
);
2250 endpoint_quiesce(chan
->out_ep
);
2251 mutex_unlock(&chan
->lock
);
2254 endpoint_quiesce(xdev
->in_ep
);
2255 endpoint_quiesce(xdev
->msg_ep
);
2257 usb_set_intfdata(interface
, NULL
);
2261 mutex_lock(&kref_mutex
);
2262 kref_put(&xdev
->kref
, cleanup_dev
);
2263 mutex_unlock(&kref_mutex
);
2266 static struct usb_driver xillyusb_driver
= {
2268 .id_table
= xillyusb_table
,
2269 .probe
= xillyusb_probe
,
2270 .disconnect
= xillyusb_disconnect
,
2274 static int __init
xillyusb_init(void)
2278 wakeup_wq
= alloc_workqueue(xillyname
, 0, 0);
2282 if (LOG2_INITIAL_FIFO_BUF_SIZE
> PAGE_SHIFT
)
2283 fifo_buf_order
= LOG2_INITIAL_FIFO_BUF_SIZE
- PAGE_SHIFT
;
2287 rc
= usb_register(&xillyusb_driver
);
2290 destroy_workqueue(wakeup_wq
);
2295 static void __exit
xillyusb_exit(void)
2297 usb_deregister(&xillyusb_driver
);
2299 destroy_workqueue(wakeup_wq
);
2302 module_init(xillyusb_init
);
2303 module_exit(xillyusb_exit
);