1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2010,2015 Broadcom
4 * Copyright (C) 2012 Stephen Warren
8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
10 * The clock tree on the 2835 has several levels. There's a root
11 * oscillator running at 19.2Mhz. After the oscillator there are 5
12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13 * and "HDMI displays". Those 5 PLLs each can divide their output to
14 * produce up to 4 channels. Finally, there is the level of clocks to
15 * be consumed by other hardware components (like "H264" or "HDMI
16 * state machine"), which divide off of some subset of the PLL
19 * All of the clocks in the tree are exposed in the DT, because the DT
20 * may want to make assignments of the final layer of clocks to the
21 * PLL channels, and some components of the hardware will actually
22 * skip layers of the tree (for example, the pixel clock comes
23 * directly from the PLLH PIX channel without using a CM_*CTL clock
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
33 #include <linux/math.h>
34 #include <linux/module.h>
36 #include <linux/platform_device.h>
37 #include <linux/slab.h>
38 #include <dt-bindings/clock/bcm2835.h>
40 #define CM_PASSWORD 0x5a000000
42 #define CM_GNRICCTL 0x000
43 #define CM_GNRICDIV 0x004
44 # define CM_DIV_FRAC_BITS 12
45 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
47 #define CM_VPUCTL 0x008
48 #define CM_VPUDIV 0x00c
49 #define CM_SYSCTL 0x010
50 #define CM_SYSDIV 0x014
51 #define CM_PERIACTL 0x018
52 #define CM_PERIADIV 0x01c
53 #define CM_PERIICTL 0x020
54 #define CM_PERIIDIV 0x024
55 #define CM_H264CTL 0x028
56 #define CM_H264DIV 0x02c
57 #define CM_ISPCTL 0x030
58 #define CM_ISPDIV 0x034
59 #define CM_V3DCTL 0x038
60 #define CM_V3DDIV 0x03c
61 #define CM_CAM0CTL 0x040
62 #define CM_CAM0DIV 0x044
63 #define CM_CAM1CTL 0x048
64 #define CM_CAM1DIV 0x04c
65 #define CM_CCP2CTL 0x050
66 #define CM_CCP2DIV 0x054
67 #define CM_DSI0ECTL 0x058
68 #define CM_DSI0EDIV 0x05c
69 #define CM_DSI0PCTL 0x060
70 #define CM_DSI0PDIV 0x064
71 #define CM_DPICTL 0x068
72 #define CM_DPIDIV 0x06c
73 #define CM_GP0CTL 0x070
74 #define CM_GP0DIV 0x074
75 #define CM_GP1CTL 0x078
76 #define CM_GP1DIV 0x07c
77 #define CM_GP2CTL 0x080
78 #define CM_GP2DIV 0x084
79 #define CM_HSMCTL 0x088
80 #define CM_HSMDIV 0x08c
81 #define CM_OTPCTL 0x090
82 #define CM_OTPDIV 0x094
83 #define CM_PCMCTL 0x098
84 #define CM_PCMDIV 0x09c
85 #define CM_PWMCTL 0x0a0
86 #define CM_PWMDIV 0x0a4
87 #define CM_SLIMCTL 0x0a8
88 #define CM_SLIMDIV 0x0ac
89 #define CM_SMICTL 0x0b0
90 #define CM_SMIDIV 0x0b4
91 /* no definition for 0x0b8 and 0x0bc */
92 #define CM_TCNTCTL 0x0c0
93 # define CM_TCNT_SRC1_SHIFT 12
94 #define CM_TCNTCNT 0x0c4
95 #define CM_TECCTL 0x0c8
96 #define CM_TECDIV 0x0cc
97 #define CM_TD0CTL 0x0d0
98 #define CM_TD0DIV 0x0d4
99 #define CM_TD1CTL 0x0d8
100 #define CM_TD1DIV 0x0dc
101 #define CM_TSENSCTL 0x0e0
102 #define CM_TSENSDIV 0x0e4
103 #define CM_TIMERCTL 0x0e8
104 #define CM_TIMERDIV 0x0ec
105 #define CM_UARTCTL 0x0f0
106 #define CM_UARTDIV 0x0f4
107 #define CM_VECCTL 0x0f8
108 #define CM_VECDIV 0x0fc
109 #define CM_PULSECTL 0x190
110 #define CM_PULSEDIV 0x194
111 #define CM_SDCCTL 0x1a8
112 #define CM_SDCDIV 0x1ac
113 #define CM_ARMCTL 0x1b0
114 #define CM_AVEOCTL 0x1b8
115 #define CM_AVEODIV 0x1bc
116 #define CM_EMMCCTL 0x1c0
117 #define CM_EMMCDIV 0x1c4
118 #define CM_EMMC2CTL 0x1d0
119 #define CM_EMMC2DIV 0x1d4
121 /* General bits for the CM_*CTL regs */
122 # define CM_ENABLE BIT(4)
123 # define CM_KILL BIT(5)
124 # define CM_GATE_BIT 6
125 # define CM_GATE BIT(CM_GATE_BIT)
126 # define CM_BUSY BIT(7)
127 # define CM_BUSYD BIT(8)
128 # define CM_FRAC BIT(9)
129 # define CM_SRC_SHIFT 0
130 # define CM_SRC_BITS 4
131 # define CM_SRC_MASK 0xf
132 # define CM_SRC_GND 0
133 # define CM_SRC_OSC 1
134 # define CM_SRC_TESTDEBUG0 2
135 # define CM_SRC_TESTDEBUG1 3
136 # define CM_SRC_PLLA_CORE 4
137 # define CM_SRC_PLLA_PER 4
138 # define CM_SRC_PLLC_CORE0 5
139 # define CM_SRC_PLLC_PER 5
140 # define CM_SRC_PLLC_CORE1 8
141 # define CM_SRC_PLLD_CORE 6
142 # define CM_SRC_PLLD_PER 6
143 # define CM_SRC_PLLH_AUX 7
144 # define CM_SRC_PLLC_CORE1 8
145 # define CM_SRC_PLLC_CORE2 9
147 #define CM_OSCCOUNT 0x100
149 #define CM_PLLA 0x104
150 # define CM_PLL_ANARST BIT(8)
151 # define CM_PLLA_HOLDPER BIT(7)
152 # define CM_PLLA_LOADPER BIT(6)
153 # define CM_PLLA_HOLDCORE BIT(5)
154 # define CM_PLLA_LOADCORE BIT(4)
155 # define CM_PLLA_HOLDCCP2 BIT(3)
156 # define CM_PLLA_LOADCCP2 BIT(2)
157 # define CM_PLLA_HOLDDSI0 BIT(1)
158 # define CM_PLLA_LOADDSI0 BIT(0)
160 #define CM_PLLC 0x108
161 # define CM_PLLC_HOLDPER BIT(7)
162 # define CM_PLLC_LOADPER BIT(6)
163 # define CM_PLLC_HOLDCORE2 BIT(5)
164 # define CM_PLLC_LOADCORE2 BIT(4)
165 # define CM_PLLC_HOLDCORE1 BIT(3)
166 # define CM_PLLC_LOADCORE1 BIT(2)
167 # define CM_PLLC_HOLDCORE0 BIT(1)
168 # define CM_PLLC_LOADCORE0 BIT(0)
170 #define CM_PLLD 0x10c
171 # define CM_PLLD_HOLDPER BIT(7)
172 # define CM_PLLD_LOADPER BIT(6)
173 # define CM_PLLD_HOLDCORE BIT(5)
174 # define CM_PLLD_LOADCORE BIT(4)
175 # define CM_PLLD_HOLDDSI1 BIT(3)
176 # define CM_PLLD_LOADDSI1 BIT(2)
177 # define CM_PLLD_HOLDDSI0 BIT(1)
178 # define CM_PLLD_LOADDSI0 BIT(0)
180 #define CM_PLLH 0x110
181 # define CM_PLLH_LOADRCAL BIT(2)
182 # define CM_PLLH_LOADAUX BIT(1)
183 # define CM_PLLH_LOADPIX BIT(0)
185 #define CM_LOCK 0x114
186 # define CM_LOCK_FLOCKH BIT(12)
187 # define CM_LOCK_FLOCKD BIT(11)
188 # define CM_LOCK_FLOCKC BIT(10)
189 # define CM_LOCK_FLOCKB BIT(9)
190 # define CM_LOCK_FLOCKA BIT(8)
192 #define CM_EVENT 0x118
193 #define CM_DSI1ECTL 0x158
194 #define CM_DSI1EDIV 0x15c
195 #define CM_DSI1PCTL 0x160
196 #define CM_DSI1PDIV 0x164
197 #define CM_DFTCTL 0x168
198 #define CM_DFTDIV 0x16c
200 #define CM_PLLB 0x170
201 # define CM_PLLB_HOLDARM BIT(1)
202 # define CM_PLLB_LOADARM BIT(0)
204 #define A2W_PLLA_CTRL 0x1100
205 #define A2W_PLLC_CTRL 0x1120
206 #define A2W_PLLD_CTRL 0x1140
207 #define A2W_PLLH_CTRL 0x1160
208 #define A2W_PLLB_CTRL 0x11e0
209 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
210 # define A2W_PLL_CTRL_PWRDN BIT(16)
211 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
212 # define A2W_PLL_CTRL_PDIV_SHIFT 12
213 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
214 # define A2W_PLL_CTRL_NDIV_SHIFT 0
216 #define A2W_PLLA_ANA0 0x1010
217 #define A2W_PLLC_ANA0 0x1030
218 #define A2W_PLLD_ANA0 0x1050
219 #define A2W_PLLH_ANA0 0x1070
220 #define A2W_PLLB_ANA0 0x10f0
222 #define A2W_PLL_KA_SHIFT 7
223 #define A2W_PLL_KA_MASK GENMASK(9, 7)
224 #define A2W_PLL_KI_SHIFT 19
225 #define A2W_PLL_KI_MASK GENMASK(21, 19)
226 #define A2W_PLL_KP_SHIFT 15
227 #define A2W_PLL_KP_MASK GENMASK(18, 15)
229 #define A2W_PLLH_KA_SHIFT 19
230 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
231 #define A2W_PLLH_KI_LOW_SHIFT 22
232 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
233 #define A2W_PLLH_KI_HIGH_SHIFT 0
234 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
235 #define A2W_PLLH_KP_SHIFT 1
236 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
238 #define A2W_XOSC_CTRL 0x1190
239 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
240 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
241 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
242 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
243 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
244 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
245 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
246 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
248 #define A2W_PLLA_FRAC 0x1200
249 #define A2W_PLLC_FRAC 0x1220
250 #define A2W_PLLD_FRAC 0x1240
251 #define A2W_PLLH_FRAC 0x1260
252 #define A2W_PLLB_FRAC 0x12e0
253 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
254 # define A2W_PLL_FRAC_BITS 20
256 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
257 #define A2W_PLL_DIV_BITS 8
258 #define A2W_PLL_DIV_SHIFT 0
260 #define A2W_PLLA_DSI0 0x1300
261 #define A2W_PLLA_CORE 0x1400
262 #define A2W_PLLA_PER 0x1500
263 #define A2W_PLLA_CCP2 0x1600
265 #define A2W_PLLC_CORE2 0x1320
266 #define A2W_PLLC_CORE1 0x1420
267 #define A2W_PLLC_PER 0x1520
268 #define A2W_PLLC_CORE0 0x1620
270 #define A2W_PLLD_DSI0 0x1340
271 #define A2W_PLLD_CORE 0x1440
272 #define A2W_PLLD_PER 0x1540
273 #define A2W_PLLD_DSI1 0x1640
275 #define A2W_PLLH_AUX 0x1360
276 #define A2W_PLLH_RCAL 0x1460
277 #define A2W_PLLH_PIX 0x1560
278 #define A2W_PLLH_STS 0x1660
280 #define A2W_PLLH_CTRLR 0x1960
281 #define A2W_PLLH_FRACR 0x1a60
282 #define A2W_PLLH_AUXR 0x1b60
283 #define A2W_PLLH_RCALR 0x1c60
284 #define A2W_PLLH_PIXR 0x1d60
285 #define A2W_PLLH_STSR 0x1e60
287 #define A2W_PLLB_ARM 0x13e0
288 #define A2W_PLLB_SP0 0x14e0
289 #define A2W_PLLB_SP1 0x15e0
290 #define A2W_PLLB_SP2 0x16e0
292 #define LOCK_TIMEOUT_NS 100000000
293 #define BCM2835_MAX_FB_RATE 1750000000u
295 #define SOC_BCM2835 BIT(0)
296 #define SOC_BCM2711 BIT(1)
297 #define SOC_ALL (SOC_BCM2835 | SOC_BCM2711)
300 * Names of clocks used within the driver that need to be replaced
301 * with an external parent's name. This array is in the order that
302 * the clocks node in the DT references external clocks.
304 static const char *const cprman_parent_names
[] = {
314 struct bcm2835_cprman
{
317 spinlock_t regs_lock
; /* spinlock for all clocks */
321 * Real names of cprman clock parents looked up through
322 * of_clk_get_parent_name(), which will be used in the
323 * parent_names[] arrays for clock registration.
325 const char *real_parent_names
[ARRAY_SIZE(cprman_parent_names
)];
328 struct clk_hw_onecell_data onecell
;
331 struct cprman_plat_data
{
335 static inline void cprman_write(struct bcm2835_cprman
*cprman
, u32 reg
, u32 val
)
337 writel(CM_PASSWORD
| val
, cprman
->regs
+ reg
);
340 static inline u32
cprman_read(struct bcm2835_cprman
*cprman
, u32 reg
)
342 return readl(cprman
->regs
+ reg
);
345 /* Does a cycle of measuring a clock through the TCNT clock, which may
346 * source from many other clocks in the system.
348 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman
*cprman
,
351 u32 osccount
= 19200; /* 1ms */
355 spin_lock(&cprman
->regs_lock
);
357 cprman_write(cprman
, CM_TCNTCTL
, CM_KILL
);
359 cprman_write(cprman
, CM_TCNTCTL
,
360 (tcnt_mux
& CM_SRC_MASK
) |
361 (tcnt_mux
>> CM_SRC_BITS
) << CM_TCNT_SRC1_SHIFT
);
363 cprman_write(cprman
, CM_OSCCOUNT
, osccount
);
365 /* do a kind delay at the start */
368 /* Finish off whatever is left of OSCCOUNT */
369 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
370 while (cprman_read(cprman
, CM_OSCCOUNT
)) {
371 if (ktime_after(ktime_get(), timeout
)) {
372 dev_err(cprman
->dev
, "timeout waiting for OSCCOUNT\n");
379 /* Wait for BUSY to clear. */
380 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
381 while (cprman_read(cprman
, CM_TCNTCTL
) & CM_BUSY
) {
382 if (ktime_after(ktime_get(), timeout
)) {
383 dev_err(cprman
->dev
, "timeout waiting for !BUSY\n");
390 count
= cprman_read(cprman
, CM_TCNTCNT
);
392 cprman_write(cprman
, CM_TCNTCTL
, 0);
395 spin_unlock(&cprman
->regs_lock
);
400 static void bcm2835_debugfs_regset(struct bcm2835_cprman
*cprman
, u32 base
,
401 const struct debugfs_reg32
*regs
,
402 size_t nregs
, struct dentry
*dentry
)
404 struct debugfs_regset32
*regset
;
406 regset
= devm_kzalloc(cprman
->dev
, sizeof(*regset
), GFP_KERNEL
);
411 regset
->nregs
= nregs
;
412 regset
->base
= cprman
->regs
+ base
;
414 debugfs_create_regset32("regdump", S_IRUGO
, dentry
, regset
);
417 struct bcm2835_pll_data
{
423 u32 reference_enable_mask
;
424 /* Bit in CM_LOCK to indicate when the PLL has locked. */
428 const struct bcm2835_pll_ana_bits
*ana
;
430 unsigned long min_rate
;
431 unsigned long max_rate
;
433 * Highest rate for the VCO before we have to use the
436 unsigned long max_fb_rate
;
439 struct bcm2835_pll_ana_bits
{
449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default
= {
452 .mask1
= A2W_PLL_KI_MASK
| A2W_PLL_KP_MASK
,
453 .set1
= (2 << A2W_PLL_KI_SHIFT
) | (8 << A2W_PLL_KP_SHIFT
),
454 .mask3
= A2W_PLL_KA_MASK
,
455 .set3
= (2 << A2W_PLL_KA_SHIFT
),
456 .fb_prediv_mask
= BIT(14),
459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh
= {
460 .mask0
= A2W_PLLH_KA_MASK
| A2W_PLLH_KI_LOW_MASK
,
461 .set0
= (2 << A2W_PLLH_KA_SHIFT
) | (2 << A2W_PLLH_KI_LOW_SHIFT
),
462 .mask1
= A2W_PLLH_KI_HIGH_MASK
| A2W_PLLH_KP_MASK
,
463 .set1
= (6 << A2W_PLLH_KP_SHIFT
),
466 .fb_prediv_mask
= BIT(11),
469 struct bcm2835_pll_divider_data
{
471 const char *source_pll
;
482 struct bcm2835_clock_data
{
485 const char *const *parents
;
488 /* Bitmap encoding which parents accept rate change propagation. */
489 unsigned int set_rate_parent
;
494 /* Number of integer bits in the divider */
496 /* Number of fractional bits in the divider */
510 struct bcm2835_gate_data
{
519 struct bcm2835_cprman
*cprman
;
520 const struct bcm2835_pll_data
*data
;
523 static int bcm2835_pll_is_on(struct clk_hw
*hw
)
525 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
526 struct bcm2835_cprman
*cprman
= pll
->cprman
;
527 const struct bcm2835_pll_data
*data
= pll
->data
;
529 return cprman_read(cprman
, data
->a2w_ctrl_reg
) &
530 A2W_PLL_CTRL_PRST_DISABLE
;
533 static u32
bcm2835_pll_get_prediv_mask(struct bcm2835_cprman
*cprman
,
534 const struct bcm2835_pll_data
*data
)
537 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
538 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
539 * for to for VCO RANGE bits.
541 if (cprman
->soc
& SOC_BCM2711
)
544 return data
->ana
->fb_prediv_mask
;
547 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate
,
548 unsigned long parent_rate
,
549 u32
*ndiv
, u32
*fdiv
)
553 div
= (u64
)rate
<< A2W_PLL_FRAC_BITS
;
554 do_div(div
, parent_rate
);
556 *ndiv
= div
>> A2W_PLL_FRAC_BITS
;
557 *fdiv
= div
& ((1 << A2W_PLL_FRAC_BITS
) - 1);
560 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate
,
561 u32 ndiv
, u32 fdiv
, u32 pdiv
)
568 rate
= (u64
)parent_rate
* ((ndiv
<< A2W_PLL_FRAC_BITS
) + fdiv
);
570 return rate
>> A2W_PLL_FRAC_BITS
;
573 static long bcm2835_pll_round_rate(struct clk_hw
*hw
, unsigned long rate
,
574 unsigned long *parent_rate
)
576 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
577 const struct bcm2835_pll_data
*data
= pll
->data
;
580 rate
= clamp(rate
, data
->min_rate
, data
->max_rate
);
582 bcm2835_pll_choose_ndiv_and_fdiv(rate
, *parent_rate
, &ndiv
, &fdiv
);
584 return bcm2835_pll_rate_from_divisors(*parent_rate
, ndiv
, fdiv
, 1);
587 static unsigned long bcm2835_pll_get_rate(struct clk_hw
*hw
,
588 unsigned long parent_rate
)
590 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
591 struct bcm2835_cprman
*cprman
= pll
->cprman
;
592 const struct bcm2835_pll_data
*data
= pll
->data
;
593 u32 a2wctrl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
594 u32 ndiv
, pdiv
, fdiv
;
597 if (parent_rate
== 0)
600 fdiv
= cprman_read(cprman
, data
->frac_reg
) & A2W_PLL_FRAC_MASK
;
601 ndiv
= (a2wctrl
& A2W_PLL_CTRL_NDIV_MASK
) >> A2W_PLL_CTRL_NDIV_SHIFT
;
602 pdiv
= (a2wctrl
& A2W_PLL_CTRL_PDIV_MASK
) >> A2W_PLL_CTRL_PDIV_SHIFT
;
603 using_prediv
= cprman_read(cprman
, data
->ana_reg_base
+ 4) &
604 bcm2835_pll_get_prediv_mask(cprman
, data
);
611 return bcm2835_pll_rate_from_divisors(parent_rate
, ndiv
, fdiv
, pdiv
);
614 static void bcm2835_pll_off(struct clk_hw
*hw
)
616 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
617 struct bcm2835_cprman
*cprman
= pll
->cprman
;
618 const struct bcm2835_pll_data
*data
= pll
->data
;
620 spin_lock(&cprman
->regs_lock
);
621 cprman_write(cprman
, data
->cm_ctrl_reg
, CM_PLL_ANARST
);
622 cprman_write(cprman
, data
->a2w_ctrl_reg
,
623 cprman_read(cprman
, data
->a2w_ctrl_reg
) |
625 spin_unlock(&cprman
->regs_lock
);
628 static int bcm2835_pll_on(struct clk_hw
*hw
)
630 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
631 struct bcm2835_cprman
*cprman
= pll
->cprman
;
632 const struct bcm2835_pll_data
*data
= pll
->data
;
635 cprman_write(cprman
, data
->a2w_ctrl_reg
,
636 cprman_read(cprman
, data
->a2w_ctrl_reg
) &
637 ~A2W_PLL_CTRL_PWRDN
);
639 /* Take the PLL out of reset. */
640 spin_lock(&cprman
->regs_lock
);
641 cprman_write(cprman
, data
->cm_ctrl_reg
,
642 cprman_read(cprman
, data
->cm_ctrl_reg
) & ~CM_PLL_ANARST
);
643 spin_unlock(&cprman
->regs_lock
);
645 /* Wait for the PLL to lock. */
646 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
647 while (!(cprman_read(cprman
, CM_LOCK
) & data
->lock_mask
)) {
648 if (ktime_after(ktime_get(), timeout
)) {
649 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
650 clk_hw_get_name(hw
));
657 cprman_write(cprman
, data
->a2w_ctrl_reg
,
658 cprman_read(cprman
, data
->a2w_ctrl_reg
) |
659 A2W_PLL_CTRL_PRST_DISABLE
);
665 bcm2835_pll_write_ana(struct bcm2835_cprman
*cprman
, u32 ana_reg_base
, u32
*ana
)
670 * ANA register setup is done as a series of writes to
671 * ANA3-ANA0, in that order. This lets us write all 4
672 * registers as a single cycle of the serdes interface (taking
673 * 100 xosc clocks), whereas if we were to update ana0, 1, and
674 * 3 individually through their partial-write registers, each
675 * would be their own serdes cycle.
677 for (i
= 3; i
>= 0; i
--)
678 cprman_write(cprman
, ana_reg_base
+ i
* 4, ana
[i
]);
681 static int bcm2835_pll_set_rate(struct clk_hw
*hw
,
682 unsigned long rate
, unsigned long parent_rate
)
684 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
685 struct bcm2835_cprman
*cprman
= pll
->cprman
;
686 const struct bcm2835_pll_data
*data
= pll
->data
;
687 u32 prediv_mask
= bcm2835_pll_get_prediv_mask(cprman
, data
);
688 bool was_using_prediv
, use_fb_prediv
, do_ana_setup_first
;
689 u32 ndiv
, fdiv
, a2w_ctl
;
693 if (rate
> data
->max_fb_rate
) {
694 use_fb_prediv
= true;
697 use_fb_prediv
= false;
700 bcm2835_pll_choose_ndiv_and_fdiv(rate
, parent_rate
, &ndiv
, &fdiv
);
702 for (i
= 3; i
>= 0; i
--)
703 ana
[i
] = cprman_read(cprman
, data
->ana_reg_base
+ i
* 4);
705 was_using_prediv
= ana
[1] & prediv_mask
;
707 ana
[0] &= ~data
->ana
->mask0
;
708 ana
[0] |= data
->ana
->set0
;
709 ana
[1] &= ~data
->ana
->mask1
;
710 ana
[1] |= data
->ana
->set1
;
711 ana
[3] &= ~data
->ana
->mask3
;
712 ana
[3] |= data
->ana
->set3
;
714 if (was_using_prediv
&& !use_fb_prediv
) {
715 ana
[1] &= ~prediv_mask
;
716 do_ana_setup_first
= true;
717 } else if (!was_using_prediv
&& use_fb_prediv
) {
718 ana
[1] |= prediv_mask
;
719 do_ana_setup_first
= false;
721 do_ana_setup_first
= true;
724 /* Unmask the reference clock from the oscillator. */
725 spin_lock(&cprman
->regs_lock
);
726 cprman_write(cprman
, A2W_XOSC_CTRL
,
727 cprman_read(cprman
, A2W_XOSC_CTRL
) |
728 data
->reference_enable_mask
);
729 spin_unlock(&cprman
->regs_lock
);
731 if (do_ana_setup_first
)
732 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
734 /* Set the PLL multiplier from the oscillator. */
735 cprman_write(cprman
, data
->frac_reg
, fdiv
);
737 a2w_ctl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
738 a2w_ctl
&= ~A2W_PLL_CTRL_NDIV_MASK
;
739 a2w_ctl
|= ndiv
<< A2W_PLL_CTRL_NDIV_SHIFT
;
740 a2w_ctl
&= ~A2W_PLL_CTRL_PDIV_MASK
;
741 a2w_ctl
|= 1 << A2W_PLL_CTRL_PDIV_SHIFT
;
742 cprman_write(cprman
, data
->a2w_ctrl_reg
, a2w_ctl
);
744 if (!do_ana_setup_first
)
745 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
750 static void bcm2835_pll_debug_init(struct clk_hw
*hw
,
751 struct dentry
*dentry
)
753 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
754 struct bcm2835_cprman
*cprman
= pll
->cprman
;
755 const struct bcm2835_pll_data
*data
= pll
->data
;
756 struct debugfs_reg32
*regs
;
758 regs
= devm_kcalloc(cprman
->dev
, 7, sizeof(*regs
), GFP_KERNEL
);
762 regs
[0].name
= "cm_ctrl";
763 regs
[0].offset
= data
->cm_ctrl_reg
;
764 regs
[1].name
= "a2w_ctrl";
765 regs
[1].offset
= data
->a2w_ctrl_reg
;
766 regs
[2].name
= "frac";
767 regs
[2].offset
= data
->frac_reg
;
768 regs
[3].name
= "ana0";
769 regs
[3].offset
= data
->ana_reg_base
+ 0 * 4;
770 regs
[4].name
= "ana1";
771 regs
[4].offset
= data
->ana_reg_base
+ 1 * 4;
772 regs
[5].name
= "ana2";
773 regs
[5].offset
= data
->ana_reg_base
+ 2 * 4;
774 regs
[6].name
= "ana3";
775 regs
[6].offset
= data
->ana_reg_base
+ 3 * 4;
777 bcm2835_debugfs_regset(cprman
, 0, regs
, 7, dentry
);
780 static const struct clk_ops bcm2835_pll_clk_ops
= {
781 .is_prepared
= bcm2835_pll_is_on
,
782 .prepare
= bcm2835_pll_on
,
783 .unprepare
= bcm2835_pll_off
,
784 .recalc_rate
= bcm2835_pll_get_rate
,
785 .set_rate
= bcm2835_pll_set_rate
,
786 .round_rate
= bcm2835_pll_round_rate
,
787 .debug_init
= bcm2835_pll_debug_init
,
790 struct bcm2835_pll_divider
{
791 struct clk_divider div
;
792 struct bcm2835_cprman
*cprman
;
793 const struct bcm2835_pll_divider_data
*data
;
796 static struct bcm2835_pll_divider
*
797 bcm2835_pll_divider_from_hw(struct clk_hw
*hw
)
799 return container_of(hw
, struct bcm2835_pll_divider
, div
.hw
);
802 static int bcm2835_pll_divider_is_on(struct clk_hw
*hw
)
804 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
805 struct bcm2835_cprman
*cprman
= divider
->cprman
;
806 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
808 return !(cprman_read(cprman
, data
->a2w_reg
) & A2W_PLL_CHANNEL_DISABLE
);
811 static int bcm2835_pll_divider_determine_rate(struct clk_hw
*hw
,
812 struct clk_rate_request
*req
)
814 return clk_divider_ops
.determine_rate(hw
, req
);
817 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw
*hw
,
818 unsigned long parent_rate
)
820 return clk_divider_ops
.recalc_rate(hw
, parent_rate
);
823 static void bcm2835_pll_divider_off(struct clk_hw
*hw
)
825 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
826 struct bcm2835_cprman
*cprman
= divider
->cprman
;
827 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
829 spin_lock(&cprman
->regs_lock
);
830 cprman_write(cprman
, data
->cm_reg
,
831 (cprman_read(cprman
, data
->cm_reg
) &
832 ~data
->load_mask
) | data
->hold_mask
);
833 cprman_write(cprman
, data
->a2w_reg
,
834 cprman_read(cprman
, data
->a2w_reg
) |
835 A2W_PLL_CHANNEL_DISABLE
);
836 spin_unlock(&cprman
->regs_lock
);
839 static int bcm2835_pll_divider_on(struct clk_hw
*hw
)
841 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
842 struct bcm2835_cprman
*cprman
= divider
->cprman
;
843 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
845 spin_lock(&cprman
->regs_lock
);
846 cprman_write(cprman
, data
->a2w_reg
,
847 cprman_read(cprman
, data
->a2w_reg
) &
848 ~A2W_PLL_CHANNEL_DISABLE
);
850 cprman_write(cprman
, data
->cm_reg
,
851 cprman_read(cprman
, data
->cm_reg
) & ~data
->hold_mask
);
852 spin_unlock(&cprman
->regs_lock
);
857 static int bcm2835_pll_divider_set_rate(struct clk_hw
*hw
,
859 unsigned long parent_rate
)
861 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
862 struct bcm2835_cprman
*cprman
= divider
->cprman
;
863 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
864 u32 cm
, div
, max_div
= 1 << A2W_PLL_DIV_BITS
;
866 div
= DIV_ROUND_UP_ULL(parent_rate
, rate
);
868 div
= min(div
, max_div
);
872 cprman_write(cprman
, data
->a2w_reg
, div
);
873 cm
= cprman_read(cprman
, data
->cm_reg
);
874 cprman_write(cprman
, data
->cm_reg
, cm
| data
->load_mask
);
875 cprman_write(cprman
, data
->cm_reg
, cm
& ~data
->load_mask
);
880 static void bcm2835_pll_divider_debug_init(struct clk_hw
*hw
,
881 struct dentry
*dentry
)
883 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
884 struct bcm2835_cprman
*cprman
= divider
->cprman
;
885 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
886 struct debugfs_reg32
*regs
;
888 regs
= devm_kcalloc(cprman
->dev
, 7, sizeof(*regs
), GFP_KERNEL
);
893 regs
[0].offset
= data
->cm_reg
;
894 regs
[1].name
= "a2w";
895 regs
[1].offset
= data
->a2w_reg
;
897 bcm2835_debugfs_regset(cprman
, 0, regs
, 2, dentry
);
900 static const struct clk_ops bcm2835_pll_divider_clk_ops
= {
901 .is_prepared
= bcm2835_pll_divider_is_on
,
902 .prepare
= bcm2835_pll_divider_on
,
903 .unprepare
= bcm2835_pll_divider_off
,
904 .recalc_rate
= bcm2835_pll_divider_get_rate
,
905 .set_rate
= bcm2835_pll_divider_set_rate
,
906 .determine_rate
= bcm2835_pll_divider_determine_rate
,
907 .debug_init
= bcm2835_pll_divider_debug_init
,
911 * The CM dividers do fixed-point division, so we can't use the
912 * generic integer divider code like the PLL dividers do (and we can't
913 * fake it by having some fixed shifts preceding it in the clock tree,
914 * because we'd run out of bits in a 32-bit unsigned long).
916 struct bcm2835_clock
{
918 struct bcm2835_cprman
*cprman
;
919 const struct bcm2835_clock_data
*data
;
922 static struct bcm2835_clock
*bcm2835_clock_from_hw(struct clk_hw
*hw
)
924 return container_of(hw
, struct bcm2835_clock
, hw
);
927 static int bcm2835_clock_is_on(struct clk_hw
*hw
)
929 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
930 struct bcm2835_cprman
*cprman
= clock
->cprman
;
931 const struct bcm2835_clock_data
*data
= clock
->data
;
933 return (cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
) != 0;
936 static u32
bcm2835_clock_choose_div(struct clk_hw
*hw
,
938 unsigned long parent_rate
)
940 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
941 const struct bcm2835_clock_data
*data
= clock
->data
;
942 u32 unused_frac_mask
=
943 GENMASK(CM_DIV_FRAC_BITS
- data
->frac_bits
, 0) >> 1;
944 u64 temp
= (u64
)parent_rate
<< CM_DIV_FRAC_BITS
;
945 u32 div
, mindiv
, maxdiv
;
949 div
&= ~unused_frac_mask
;
951 /* different clamping limits apply for a mash clock */
952 if (data
->is_mash_clock
) {
953 /* clamp to min divider of 2 */
954 mindiv
= 2 << CM_DIV_FRAC_BITS
;
955 /* clamp to the highest possible integer divider */
956 maxdiv
= (BIT(data
->int_bits
) - 1) << CM_DIV_FRAC_BITS
;
958 /* clamp to min divider of 1 */
959 mindiv
= 1 << CM_DIV_FRAC_BITS
;
960 /* clamp to the highest possible fractional divider */
961 maxdiv
= GENMASK(data
->int_bits
+ CM_DIV_FRAC_BITS
- 1,
962 CM_DIV_FRAC_BITS
- data
->frac_bits
);
965 /* apply the clamping limits */
966 div
= max_t(u32
, div
, mindiv
);
967 div
= min_t(u32
, div
, maxdiv
);
972 static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock
*clock
,
973 unsigned long parent_rate
,
976 const struct bcm2835_clock_data
*data
= clock
->data
;
979 if (data
->int_bits
== 0 && data
->frac_bits
== 0)
983 * The divisor is a 12.12 fixed point field, but only some of
984 * the bits are populated in any given clock.
986 div
>>= CM_DIV_FRAC_BITS
- data
->frac_bits
;
987 div
&= (1 << (data
->int_bits
+ data
->frac_bits
)) - 1;
992 temp
= (u64
)parent_rate
<< data
->frac_bits
;
999 static unsigned long bcm2835_round_rate(unsigned long rate
)
1001 unsigned long scaler
;
1002 unsigned long limit
;
1004 limit
= rate
/ 100000;
1007 while (scaler
< limit
)
1011 * If increasing a clock by less than 0.1% changes it
1012 * from ..999.. to ..000.., round up.
1014 if ((rate
+ scaler
- 1) / scaler
% 1000 == 0)
1015 rate
= roundup(rate
, scaler
);
1020 static unsigned long bcm2835_clock_get_rate(struct clk_hw
*hw
,
1021 unsigned long parent_rate
)
1023 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1024 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1025 const struct bcm2835_clock_data
*data
= clock
->data
;
1029 if (data
->int_bits
== 0 && data
->frac_bits
== 0)
1032 div
= cprman_read(cprman
, data
->div_reg
);
1034 rate
= bcm2835_clock_rate_from_divisor(clock
, parent_rate
, div
);
1037 rate
= bcm2835_round_rate(rate
);
1042 static void bcm2835_clock_wait_busy(struct bcm2835_clock
*clock
)
1044 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1045 const struct bcm2835_clock_data
*data
= clock
->data
;
1046 ktime_t timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
1048 while (cprman_read(cprman
, data
->ctl_reg
) & CM_BUSY
) {
1049 if (ktime_after(ktime_get(), timeout
)) {
1050 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
1051 clk_hw_get_name(&clock
->hw
));
1058 static void bcm2835_clock_off(struct clk_hw
*hw
)
1060 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1061 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1062 const struct bcm2835_clock_data
*data
= clock
->data
;
1064 spin_lock(&cprman
->regs_lock
);
1065 cprman_write(cprman
, data
->ctl_reg
,
1066 cprman_read(cprman
, data
->ctl_reg
) & ~CM_ENABLE
);
1067 spin_unlock(&cprman
->regs_lock
);
1069 /* BUSY will remain high until the divider completes its cycle. */
1070 bcm2835_clock_wait_busy(clock
);
1073 static int bcm2835_clock_on(struct clk_hw
*hw
)
1075 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1076 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1077 const struct bcm2835_clock_data
*data
= clock
->data
;
1079 spin_lock(&cprman
->regs_lock
);
1080 cprman_write(cprman
, data
->ctl_reg
,
1081 cprman_read(cprman
, data
->ctl_reg
) |
1084 spin_unlock(&cprman
->regs_lock
);
1086 /* Debug code to measure the clock once it's turned on to see
1087 * if it's ticking at the rate we expect.
1089 if (data
->tcnt_mux
&& false) {
1090 dev_info(cprman
->dev
,
1091 "clk %s: rate %ld, measure %ld\n",
1093 clk_hw_get_rate(hw
),
1094 bcm2835_measure_tcnt_mux(cprman
, data
->tcnt_mux
));
1100 static int bcm2835_clock_set_rate(struct clk_hw
*hw
,
1101 unsigned long rate
, unsigned long parent_rate
)
1103 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1104 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1105 const struct bcm2835_clock_data
*data
= clock
->data
;
1106 u32 div
= bcm2835_clock_choose_div(hw
, rate
, parent_rate
);
1109 spin_lock(&cprman
->regs_lock
);
1112 * Setting up frac support
1114 * In principle it is recommended to stop/start the clock first,
1115 * but as we set CLK_SET_RATE_GATE during registration of the
1116 * clock this requirement should be take care of by the
1119 ctl
= cprman_read(cprman
, data
->ctl_reg
) & ~CM_FRAC
;
1120 ctl
|= (div
& CM_DIV_FRAC_MASK
) ? CM_FRAC
: 0;
1121 cprman_write(cprman
, data
->ctl_reg
, ctl
);
1123 cprman_write(cprman
, data
->div_reg
, div
);
1125 spin_unlock(&cprman
->regs_lock
);
1131 bcm2835_clk_is_pllc(struct clk_hw
*hw
)
1136 return strncmp(clk_hw_get_name(hw
), "pllc", 4) == 0;
1139 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw
*hw
,
1143 unsigned long *prate
,
1144 unsigned long *avgrate
)
1146 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1147 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1148 const struct bcm2835_clock_data
*data
= clock
->data
;
1149 unsigned long best_rate
= 0;
1150 u32 curdiv
, mindiv
, maxdiv
;
1151 struct clk_hw
*parent
;
1153 parent
= clk_hw_get_parent_by_index(hw
, parent_idx
);
1155 if (!(BIT(parent_idx
) & data
->set_rate_parent
)) {
1156 *prate
= clk_hw_get_rate(parent
);
1157 *div
= bcm2835_clock_choose_div(hw
, rate
, *prate
);
1159 *avgrate
= bcm2835_clock_rate_from_divisor(clock
, *prate
, *div
);
1161 if (data
->low_jitter
&& (*div
& CM_DIV_FRAC_MASK
)) {
1162 unsigned long high
, low
;
1163 u32 int_div
= *div
& ~CM_DIV_FRAC_MASK
;
1165 high
= bcm2835_clock_rate_from_divisor(clock
, *prate
,
1167 int_div
+= CM_DIV_FRAC_MASK
+ 1;
1168 low
= bcm2835_clock_rate_from_divisor(clock
, *prate
,
1172 * Return a value which is the maximum deviation
1173 * below the ideal rate, for use as a metric.
1175 return *avgrate
- max(*avgrate
- low
, high
- *avgrate
);
1180 if (data
->frac_bits
)
1181 dev_warn(cprman
->dev
,
1182 "frac bits are not used when propagating rate change");
1184 /* clamp to min divider of 2 if we're dealing with a mash clock */
1185 mindiv
= data
->is_mash_clock
? 2 : 1;
1186 maxdiv
= BIT(data
->int_bits
) - 1;
1188 /* TODO: Be smart, and only test a subset of the available divisors. */
1189 for (curdiv
= mindiv
; curdiv
<= maxdiv
; curdiv
++) {
1190 unsigned long tmp_rate
;
1192 tmp_rate
= clk_hw_round_rate(parent
, rate
* curdiv
);
1194 if (curdiv
== mindiv
||
1195 (tmp_rate
> best_rate
&& tmp_rate
<= rate
))
1196 best_rate
= tmp_rate
;
1198 if (best_rate
== rate
)
1202 *div
= curdiv
<< CM_DIV_FRAC_BITS
;
1203 *prate
= curdiv
* best_rate
;
1204 *avgrate
= best_rate
;
1209 static int bcm2835_clock_determine_rate(struct clk_hw
*hw
,
1210 struct clk_rate_request
*req
)
1212 struct clk_hw
*parent
, *best_parent
= NULL
;
1213 bool current_parent_is_pllc
;
1214 unsigned long rate
, best_rate
= 0;
1215 unsigned long prate
, best_prate
= 0;
1216 unsigned long avgrate
, best_avgrate
= 0;
1220 current_parent_is_pllc
= bcm2835_clk_is_pllc(clk_hw_get_parent(hw
));
1223 * Select parent clock that results in the closest but lower rate
1225 for (i
= 0; i
< clk_hw_get_num_parents(hw
); ++i
) {
1226 parent
= clk_hw_get_parent_by_index(hw
, i
);
1231 * Don't choose a PLLC-derived clock as our parent
1232 * unless it had been manually set that way. PLLC's
1233 * frequency gets adjusted by the firmware due to
1234 * over-temp or under-voltage conditions, without
1235 * prior notification to our clock consumer.
1237 if (bcm2835_clk_is_pllc(parent
) && !current_parent_is_pllc
)
1240 rate
= bcm2835_clock_choose_div_and_prate(hw
, i
, req
->rate
,
1243 if (abs(req
->rate
- rate
) < abs(req
->rate
- best_rate
)) {
1244 best_parent
= parent
;
1247 best_avgrate
= avgrate
;
1254 req
->best_parent_hw
= best_parent
;
1255 req
->best_parent_rate
= best_prate
;
1257 req
->rate
= best_avgrate
;
1262 static int bcm2835_clock_set_parent(struct clk_hw
*hw
, u8 index
)
1264 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1265 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1266 const struct bcm2835_clock_data
*data
= clock
->data
;
1267 u8 src
= (index
<< CM_SRC_SHIFT
) & CM_SRC_MASK
;
1269 cprman_write(cprman
, data
->ctl_reg
, src
);
1273 static u8
bcm2835_clock_get_parent(struct clk_hw
*hw
)
1275 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1276 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1277 const struct bcm2835_clock_data
*data
= clock
->data
;
1278 u32 src
= cprman_read(cprman
, data
->ctl_reg
);
1280 return (src
& CM_SRC_MASK
) >> CM_SRC_SHIFT
;
1283 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32
[] = {
1294 static void bcm2835_clock_debug_init(struct clk_hw
*hw
,
1295 struct dentry
*dentry
)
1297 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1298 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1299 const struct bcm2835_clock_data
*data
= clock
->data
;
1301 bcm2835_debugfs_regset(cprman
, data
->ctl_reg
,
1302 bcm2835_debugfs_clock_reg32
,
1303 ARRAY_SIZE(bcm2835_debugfs_clock_reg32
),
1307 static const struct clk_ops bcm2835_clock_clk_ops
= {
1308 .is_prepared
= bcm2835_clock_is_on
,
1309 .prepare
= bcm2835_clock_on
,
1310 .unprepare
= bcm2835_clock_off
,
1311 .recalc_rate
= bcm2835_clock_get_rate
,
1312 .set_rate
= bcm2835_clock_set_rate
,
1313 .determine_rate
= bcm2835_clock_determine_rate
,
1314 .set_parent
= bcm2835_clock_set_parent
,
1315 .get_parent
= bcm2835_clock_get_parent
,
1316 .debug_init
= bcm2835_clock_debug_init
,
1319 static int bcm2835_vpu_clock_is_on(struct clk_hw
*hw
)
1325 * The VPU clock can never be disabled (it doesn't have an ENABLE
1326 * bit), so it gets its own set of clock ops.
1328 static const struct clk_ops bcm2835_vpu_clock_clk_ops
= {
1329 .is_prepared
= bcm2835_vpu_clock_is_on
,
1330 .recalc_rate
= bcm2835_clock_get_rate
,
1331 .set_rate
= bcm2835_clock_set_rate
,
1332 .determine_rate
= bcm2835_clock_determine_rate
,
1333 .set_parent
= bcm2835_clock_set_parent
,
1334 .get_parent
= bcm2835_clock_get_parent
,
1335 .debug_init
= bcm2835_clock_debug_init
,
1338 static struct clk_hw
*bcm2835_register_pll(struct bcm2835_cprman
*cprman
,
1341 const struct bcm2835_pll_data
*pll_data
= data
;
1342 struct bcm2835_pll
*pll
;
1343 struct clk_init_data init
;
1346 memset(&init
, 0, sizeof(init
));
1348 /* All of the PLLs derive from the external oscillator. */
1349 init
.parent_names
= &cprman
->real_parent_names
[0];
1350 init
.num_parents
= 1;
1351 init
.name
= pll_data
->name
;
1352 init
.ops
= &bcm2835_pll_clk_ops
;
1353 init
.flags
= pll_data
->flags
| CLK_IGNORE_UNUSED
;
1355 pll
= kzalloc(sizeof(*pll
), GFP_KERNEL
);
1359 pll
->cprman
= cprman
;
1360 pll
->data
= pll_data
;
1361 pll
->hw
.init
= &init
;
1363 ret
= devm_clk_hw_register(cprman
->dev
, &pll
->hw
);
1371 static struct clk_hw
*
1372 bcm2835_register_pll_divider(struct bcm2835_cprman
*cprman
,
1375 const struct bcm2835_pll_divider_data
*divider_data
= data
;
1376 struct bcm2835_pll_divider
*divider
;
1377 struct clk_init_data init
;
1378 const char *divider_name
;
1381 if (divider_data
->fixed_divider
!= 1) {
1382 divider_name
= devm_kasprintf(cprman
->dev
, GFP_KERNEL
,
1383 "%s_prediv", divider_data
->name
);
1387 divider_name
= divider_data
->name
;
1390 memset(&init
, 0, sizeof(init
));
1392 init
.parent_names
= ÷r_data
->source_pll
;
1393 init
.num_parents
= 1;
1394 init
.name
= divider_name
;
1395 init
.ops
= &bcm2835_pll_divider_clk_ops
;
1396 init
.flags
= divider_data
->flags
| CLK_IGNORE_UNUSED
;
1398 divider
= devm_kzalloc(cprman
->dev
, sizeof(*divider
), GFP_KERNEL
);
1402 divider
->div
.reg
= cprman
->regs
+ divider_data
->a2w_reg
;
1403 divider
->div
.shift
= A2W_PLL_DIV_SHIFT
;
1404 divider
->div
.width
= A2W_PLL_DIV_BITS
;
1405 divider
->div
.flags
= CLK_DIVIDER_MAX_AT_ZERO
;
1406 divider
->div
.lock
= &cprman
->regs_lock
;
1407 divider
->div
.hw
.init
= &init
;
1408 divider
->div
.table
= NULL
;
1410 divider
->cprman
= cprman
;
1411 divider
->data
= divider_data
;
1413 ret
= devm_clk_hw_register(cprman
->dev
, ÷r
->div
.hw
);
1415 return ERR_PTR(ret
);
1418 * PLLH's channels have a fixed divide by 10 afterwards, which
1419 * is what our consumers are actually using.
1421 if (divider_data
->fixed_divider
!= 1) {
1422 return clk_hw_register_fixed_factor(cprman
->dev
,
1425 CLK_SET_RATE_PARENT
,
1427 divider_data
->fixed_divider
);
1430 return ÷r
->div
.hw
;
1433 static struct clk_hw
*bcm2835_register_clock(struct bcm2835_cprman
*cprman
,
1436 const struct bcm2835_clock_data
*clock_data
= data
;
1437 struct bcm2835_clock
*clock
;
1438 struct clk_init_data init
;
1439 const char *parents
[1 << CM_SRC_BITS
];
1444 * Replace our strings referencing parent clocks with the
1445 * actual clock-output-name of the parent.
1447 for (i
= 0; i
< clock_data
->num_mux_parents
; i
++) {
1448 parents
[i
] = clock_data
->parents
[i
];
1450 ret
= match_string(cprman_parent_names
,
1451 ARRAY_SIZE(cprman_parent_names
),
1454 parents
[i
] = cprman
->real_parent_names
[ret
];
1457 memset(&init
, 0, sizeof(init
));
1458 init
.parent_names
= parents
;
1459 init
.num_parents
= clock_data
->num_mux_parents
;
1460 init
.name
= clock_data
->name
;
1461 init
.flags
= clock_data
->flags
| CLK_IGNORE_UNUSED
;
1464 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1465 * rate changes on at least of the parents.
1467 if (clock_data
->set_rate_parent
)
1468 init
.flags
|= CLK_SET_RATE_PARENT
;
1470 if (clock_data
->is_vpu_clock
) {
1471 init
.ops
= &bcm2835_vpu_clock_clk_ops
;
1473 init
.ops
= &bcm2835_clock_clk_ops
;
1474 init
.flags
|= CLK_SET_RATE_GATE
| CLK_SET_PARENT_GATE
;
1476 /* If the clock wasn't actually enabled at boot, it's not
1479 if (!(cprman_read(cprman
, clock_data
->ctl_reg
) & CM_ENABLE
))
1480 init
.flags
&= ~CLK_IS_CRITICAL
;
1483 clock
= devm_kzalloc(cprman
->dev
, sizeof(*clock
), GFP_KERNEL
);
1487 clock
->cprman
= cprman
;
1488 clock
->data
= clock_data
;
1489 clock
->hw
.init
= &init
;
1491 ret
= devm_clk_hw_register(cprman
->dev
, &clock
->hw
);
1493 return ERR_PTR(ret
);
1497 static struct clk_hw
*bcm2835_register_gate(struct bcm2835_cprman
*cprman
,
1500 const struct bcm2835_gate_data
*gate_data
= data
;
1502 return clk_hw_register_gate(cprman
->dev
, gate_data
->name
,
1504 CLK_IGNORE_UNUSED
| CLK_SET_RATE_GATE
,
1505 cprman
->regs
+ gate_data
->ctl_reg
,
1506 CM_GATE_BIT
, 0, &cprman
->regs_lock
);
1509 struct bcm2835_clk_desc
{
1510 struct clk_hw
*(*clk_register
)(struct bcm2835_cprman
*cprman
,
1512 unsigned int supported
;
1516 /* assignment helper macros for different clock types */
1517 #define _REGISTER(f, s, ...) { .clk_register = f, \
1519 .data = __VA_ARGS__ }
1520 #define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \
1522 &(struct bcm2835_pll_data) \
1524 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1526 &(struct bcm2835_pll_divider_data) \
1528 #define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \
1530 &(struct bcm2835_clock_data) \
1532 #define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \
1534 &(struct bcm2835_gate_data) \
1537 /* parent mux arrays plus helper macros */
1539 /* main oscillator parent mux */
1540 static const char *const bcm2835_clock_osc_parents
[] = {
1547 #define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \
1549 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1550 .parents = bcm2835_clock_osc_parents, \
1553 /* main peripherial parent mux */
1554 static const char *const bcm2835_clock_per_parents
[] = {
1565 #define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \
1567 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1568 .parents = bcm2835_clock_per_parents, \
1572 * Restrict clock sources for the PCM peripheral to the oscillator and
1573 * PLLD_PER because other source may have varying rates or be switched
1576 * Prevent other sources from being selected by replacing their names in
1577 * the list of potential parents with dummy entries (entry index is
1580 static const char *const bcm2835_pcm_per_parents
[] = {
1591 #define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \
1593 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1594 .parents = bcm2835_pcm_per_parents, \
1597 /* main vpu parent mux */
1598 static const char *const bcm2835_clock_vpu_parents
[] = {
1611 #define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \
1613 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1614 .parents = bcm2835_clock_vpu_parents, \
1618 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1619 * analog PHY. The _inv variants are generated internally to cprman,
1620 * but we don't use them so they aren't hooked up.
1622 static const char *const bcm2835_clock_dsi0_parents
[] = {
1635 static const char *const bcm2835_clock_dsi1_parents
[] = {
1648 #define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \
1650 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1651 .parents = bcm2835_clock_dsi0_parents, \
1654 #define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \
1656 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1657 .parents = bcm2835_clock_dsi1_parents, \
1661 * the real definition of all the pll, pll_dividers and clocks
1662 * these make use of the above REGISTER_* macros
1664 static const struct bcm2835_clk_desc clk_desc_array
[] = {
1665 /* the PLL + PLL dividers */
1668 * PLLA is the auxiliary PLL, used to drive the CCP2
1669 * (Compact Camera Port 2) transmitter clock.
1671 * It is in the PX LDO power domain, which is on when the
1672 * AUDIO domain is on.
1674 [BCM2835_PLLA
] = REGISTER_PLL(
1677 .cm_ctrl_reg
= CM_PLLA
,
1678 .a2w_ctrl_reg
= A2W_PLLA_CTRL
,
1679 .frac_reg
= A2W_PLLA_FRAC
,
1680 .ana_reg_base
= A2W_PLLA_ANA0
,
1681 .reference_enable_mask
= A2W_XOSC_CTRL_PLLA_ENABLE
,
1682 .lock_mask
= CM_LOCK_FLOCKA
,
1684 .ana
= &bcm2835_ana_default
,
1686 .min_rate
= 600000000u,
1687 .max_rate
= 2400000000u,
1688 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1689 [BCM2835_PLLA_CORE
] = REGISTER_PLL_DIV(
1691 .name
= "plla_core",
1692 .source_pll
= "plla",
1694 .a2w_reg
= A2W_PLLA_CORE
,
1695 .load_mask
= CM_PLLA_LOADCORE
,
1696 .hold_mask
= CM_PLLA_HOLDCORE
,
1698 .flags
= CLK_SET_RATE_PARENT
),
1699 [BCM2835_PLLA_PER
] = REGISTER_PLL_DIV(
1702 .source_pll
= "plla",
1704 .a2w_reg
= A2W_PLLA_PER
,
1705 .load_mask
= CM_PLLA_LOADPER
,
1706 .hold_mask
= CM_PLLA_HOLDPER
,
1708 .flags
= CLK_SET_RATE_PARENT
),
1709 [BCM2835_PLLA_DSI0
] = REGISTER_PLL_DIV(
1711 .name
= "plla_dsi0",
1712 .source_pll
= "plla",
1714 .a2w_reg
= A2W_PLLA_DSI0
,
1715 .load_mask
= CM_PLLA_LOADDSI0
,
1716 .hold_mask
= CM_PLLA_HOLDDSI0
,
1717 .fixed_divider
= 1),
1718 [BCM2835_PLLA_CCP2
] = REGISTER_PLL_DIV(
1720 .name
= "plla_ccp2",
1721 .source_pll
= "plla",
1723 .a2w_reg
= A2W_PLLA_CCP2
,
1724 .load_mask
= CM_PLLA_LOADCCP2
,
1725 .hold_mask
= CM_PLLA_HOLDCCP2
,
1727 .flags
= CLK_SET_RATE_PARENT
),
1729 /* PLLB is used for the ARM's clock. */
1730 [BCM2835_PLLB
] = REGISTER_PLL(
1733 .cm_ctrl_reg
= CM_PLLB
,
1734 .a2w_ctrl_reg
= A2W_PLLB_CTRL
,
1735 .frac_reg
= A2W_PLLB_FRAC
,
1736 .ana_reg_base
= A2W_PLLB_ANA0
,
1737 .reference_enable_mask
= A2W_XOSC_CTRL_PLLB_ENABLE
,
1738 .lock_mask
= CM_LOCK_FLOCKB
,
1740 .ana
= &bcm2835_ana_default
,
1742 .min_rate
= 600000000u,
1743 .max_rate
= 3000000000u,
1744 .max_fb_rate
= BCM2835_MAX_FB_RATE
,
1745 .flags
= CLK_GET_RATE_NOCACHE
),
1746 [BCM2835_PLLB_ARM
] = REGISTER_PLL_DIV(
1749 .source_pll
= "pllb",
1751 .a2w_reg
= A2W_PLLB_ARM
,
1752 .load_mask
= CM_PLLB_LOADARM
,
1753 .hold_mask
= CM_PLLB_HOLDARM
,
1755 .flags
= CLK_SET_RATE_PARENT
| CLK_GET_RATE_NOCACHE
),
1758 * PLLC is the core PLL, used to drive the core VPU clock.
1760 * It is in the PX LDO power domain, which is on when the
1761 * AUDIO domain is on.
1763 [BCM2835_PLLC
] = REGISTER_PLL(
1766 .cm_ctrl_reg
= CM_PLLC
,
1767 .a2w_ctrl_reg
= A2W_PLLC_CTRL
,
1768 .frac_reg
= A2W_PLLC_FRAC
,
1769 .ana_reg_base
= A2W_PLLC_ANA0
,
1770 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1771 .lock_mask
= CM_LOCK_FLOCKC
,
1773 .ana
= &bcm2835_ana_default
,
1775 .min_rate
= 600000000u,
1776 .max_rate
= 3000000000u,
1777 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1778 [BCM2835_PLLC_CORE0
] = REGISTER_PLL_DIV(
1780 .name
= "pllc_core0",
1781 .source_pll
= "pllc",
1783 .a2w_reg
= A2W_PLLC_CORE0
,
1784 .load_mask
= CM_PLLC_LOADCORE0
,
1785 .hold_mask
= CM_PLLC_HOLDCORE0
,
1787 .flags
= CLK_SET_RATE_PARENT
),
1788 [BCM2835_PLLC_CORE1
] = REGISTER_PLL_DIV(
1790 .name
= "pllc_core1",
1791 .source_pll
= "pllc",
1793 .a2w_reg
= A2W_PLLC_CORE1
,
1794 .load_mask
= CM_PLLC_LOADCORE1
,
1795 .hold_mask
= CM_PLLC_HOLDCORE1
,
1797 .flags
= CLK_SET_RATE_PARENT
),
1798 [BCM2835_PLLC_CORE2
] = REGISTER_PLL_DIV(
1800 .name
= "pllc_core2",
1801 .source_pll
= "pllc",
1803 .a2w_reg
= A2W_PLLC_CORE2
,
1804 .load_mask
= CM_PLLC_LOADCORE2
,
1805 .hold_mask
= CM_PLLC_HOLDCORE2
,
1807 .flags
= CLK_SET_RATE_PARENT
),
1808 [BCM2835_PLLC_PER
] = REGISTER_PLL_DIV(
1811 .source_pll
= "pllc",
1813 .a2w_reg
= A2W_PLLC_PER
,
1814 .load_mask
= CM_PLLC_LOADPER
,
1815 .hold_mask
= CM_PLLC_HOLDPER
,
1817 .flags
= CLK_IS_CRITICAL
| CLK_SET_RATE_PARENT
),
1820 * PLLD is the display PLL, used to drive DSI display panels.
1822 * It is in the PX LDO power domain, which is on when the
1823 * AUDIO domain is on.
1825 [BCM2835_PLLD
] = REGISTER_PLL(
1828 .cm_ctrl_reg
= CM_PLLD
,
1829 .a2w_ctrl_reg
= A2W_PLLD_CTRL
,
1830 .frac_reg
= A2W_PLLD_FRAC
,
1831 .ana_reg_base
= A2W_PLLD_ANA0
,
1832 .reference_enable_mask
= A2W_XOSC_CTRL_DDR_ENABLE
,
1833 .lock_mask
= CM_LOCK_FLOCKD
,
1835 .ana
= &bcm2835_ana_default
,
1837 .min_rate
= 600000000u,
1838 .max_rate
= 2400000000u,
1839 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1840 [BCM2835_PLLD_CORE
] = REGISTER_PLL_DIV(
1842 .name
= "plld_core",
1843 .source_pll
= "plld",
1845 .a2w_reg
= A2W_PLLD_CORE
,
1846 .load_mask
= CM_PLLD_LOADCORE
,
1847 .hold_mask
= CM_PLLD_HOLDCORE
,
1849 .flags
= CLK_SET_RATE_PARENT
),
1851 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1852 * Otherwise this could cause firmware lookups. That's why we mark
1855 [BCM2835_PLLD_PER
] = REGISTER_PLL_DIV(
1858 .source_pll
= "plld",
1860 .a2w_reg
= A2W_PLLD_PER
,
1861 .load_mask
= CM_PLLD_LOADPER
,
1862 .hold_mask
= CM_PLLD_HOLDPER
,
1864 .flags
= CLK_IS_CRITICAL
| CLK_SET_RATE_PARENT
),
1865 [BCM2835_PLLD_DSI0
] = REGISTER_PLL_DIV(
1867 .name
= "plld_dsi0",
1868 .source_pll
= "plld",
1870 .a2w_reg
= A2W_PLLD_DSI0
,
1871 .load_mask
= CM_PLLD_LOADDSI0
,
1872 .hold_mask
= CM_PLLD_HOLDDSI0
,
1873 .fixed_divider
= 1),
1874 [BCM2835_PLLD_DSI1
] = REGISTER_PLL_DIV(
1876 .name
= "plld_dsi1",
1877 .source_pll
= "plld",
1879 .a2w_reg
= A2W_PLLD_DSI1
,
1880 .load_mask
= CM_PLLD_LOADDSI1
,
1881 .hold_mask
= CM_PLLD_HOLDDSI1
,
1882 .fixed_divider
= 1),
1885 * PLLH is used to supply the pixel clock or the AUX clock for the
1888 * It is in the HDMI power domain.
1890 [BCM2835_PLLH
] = REGISTER_PLL(
1893 .cm_ctrl_reg
= CM_PLLH
,
1894 .a2w_ctrl_reg
= A2W_PLLH_CTRL
,
1895 .frac_reg
= A2W_PLLH_FRAC
,
1896 .ana_reg_base
= A2W_PLLH_ANA0
,
1897 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1898 .lock_mask
= CM_LOCK_FLOCKH
,
1900 .ana
= &bcm2835_ana_pllh
,
1902 .min_rate
= 600000000u,
1903 .max_rate
= 3000000000u,
1904 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1905 [BCM2835_PLLH_RCAL
] = REGISTER_PLL_DIV(
1907 .name
= "pllh_rcal",
1908 .source_pll
= "pllh",
1910 .a2w_reg
= A2W_PLLH_RCAL
,
1911 .load_mask
= CM_PLLH_LOADRCAL
,
1913 .fixed_divider
= 10,
1914 .flags
= CLK_SET_RATE_PARENT
),
1915 [BCM2835_PLLH_AUX
] = REGISTER_PLL_DIV(
1918 .source_pll
= "pllh",
1920 .a2w_reg
= A2W_PLLH_AUX
,
1921 .load_mask
= CM_PLLH_LOADAUX
,
1924 .flags
= CLK_SET_RATE_PARENT
),
1925 [BCM2835_PLLH_PIX
] = REGISTER_PLL_DIV(
1928 .source_pll
= "pllh",
1930 .a2w_reg
= A2W_PLLH_PIX
,
1931 .load_mask
= CM_PLLH_LOADPIX
,
1933 .fixed_divider
= 10,
1934 .flags
= CLK_SET_RATE_PARENT
),
1938 /* clocks with oscillator parent mux */
1940 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1941 [BCM2835_CLOCK_OTP
] = REGISTER_OSC_CLK(
1944 .ctl_reg
= CM_OTPCTL
,
1945 .div_reg
= CM_OTPDIV
,
1950 * Used for a 1Mhz clock for the system clocksource, and also used
1951 * bythe watchdog timer and the camera pulse generator.
1953 [BCM2835_CLOCK_TIMER
] = REGISTER_OSC_CLK(
1956 .ctl_reg
= CM_TIMERCTL
,
1957 .div_reg
= CM_TIMERDIV
,
1961 * Clock for the temperature sensor.
1962 * Generally run at 2Mhz, max 5Mhz.
1964 [BCM2835_CLOCK_TSENS
] = REGISTER_OSC_CLK(
1967 .ctl_reg
= CM_TSENSCTL
,
1968 .div_reg
= CM_TSENSDIV
,
1971 [BCM2835_CLOCK_TEC
] = REGISTER_OSC_CLK(
1974 .ctl_reg
= CM_TECCTL
,
1975 .div_reg
= CM_TECDIV
,
1979 /* clocks with vpu parent mux */
1980 [BCM2835_CLOCK_H264
] = REGISTER_VPU_CLK(
1983 .ctl_reg
= CM_H264CTL
,
1984 .div_reg
= CM_H264DIV
,
1988 [BCM2835_CLOCK_ISP
] = REGISTER_VPU_CLK(
1991 .ctl_reg
= CM_ISPCTL
,
1992 .div_reg
= CM_ISPDIV
,
1998 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1999 * in the SDRAM controller can't be used.
2001 [BCM2835_CLOCK_SDRAM
] = REGISTER_VPU_CLK(
2004 .ctl_reg
= CM_SDCCTL
,
2005 .div_reg
= CM_SDCDIV
,
2009 [BCM2835_CLOCK_V3D
] = REGISTER_VPU_CLK(
2012 .ctl_reg
= CM_V3DCTL
,
2013 .div_reg
= CM_V3DDIV
,
2018 * VPU clock. This doesn't have an enable bit, since it drives
2019 * the bus for everything else, and is special so it doesn't need
2020 * to be gated for rate changes. It is also known as "clk_audio"
2021 * in various hardware documentation.
2023 [BCM2835_CLOCK_VPU
] = REGISTER_VPU_CLK(
2026 .ctl_reg
= CM_VPUCTL
,
2027 .div_reg
= CM_VPUDIV
,
2030 .flags
= CLK_IS_CRITICAL
,
2031 .is_vpu_clock
= true,
2034 /* clocks with per parent mux */
2035 [BCM2835_CLOCK_AVEO
] = REGISTER_PER_CLK(
2038 .ctl_reg
= CM_AVEOCTL
,
2039 .div_reg
= CM_AVEODIV
,
2043 [BCM2835_CLOCK_CAM0
] = REGISTER_PER_CLK(
2046 .ctl_reg
= CM_CAM0CTL
,
2047 .div_reg
= CM_CAM0DIV
,
2051 [BCM2835_CLOCK_CAM1
] = REGISTER_PER_CLK(
2054 .ctl_reg
= CM_CAM1CTL
,
2055 .div_reg
= CM_CAM1DIV
,
2059 [BCM2835_CLOCK_DFT
] = REGISTER_PER_CLK(
2062 .ctl_reg
= CM_DFTCTL
,
2063 .div_reg
= CM_DFTDIV
,
2066 [BCM2835_CLOCK_DPI
] = REGISTER_PER_CLK(
2069 .ctl_reg
= CM_DPICTL
,
2070 .div_reg
= CM_DPIDIV
,
2075 /* Arasan EMMC clock */
2076 [BCM2835_CLOCK_EMMC
] = REGISTER_PER_CLK(
2079 .ctl_reg
= CM_EMMCCTL
,
2080 .div_reg
= CM_EMMCDIV
,
2085 /* EMMC2 clock (only available for BCM2711) */
2086 [BCM2711_CLOCK_EMMC2
] = REGISTER_PER_CLK(
2089 .ctl_reg
= CM_EMMC2CTL
,
2090 .div_reg
= CM_EMMC2DIV
,
2095 /* General purpose (GPIO) clocks */
2096 [BCM2835_CLOCK_GP0
] = REGISTER_PER_CLK(
2099 .ctl_reg
= CM_GP0CTL
,
2100 .div_reg
= CM_GP0DIV
,
2103 .is_mash_clock
= true,
2105 [BCM2835_CLOCK_GP1
] = REGISTER_PER_CLK(
2108 .ctl_reg
= CM_GP1CTL
,
2109 .div_reg
= CM_GP1DIV
,
2112 .flags
= CLK_IS_CRITICAL
,
2113 .is_mash_clock
= true,
2115 [BCM2835_CLOCK_GP2
] = REGISTER_PER_CLK(
2118 .ctl_reg
= CM_GP2CTL
,
2119 .div_reg
= CM_GP2DIV
,
2122 .flags
= CLK_IS_CRITICAL
),
2124 /* HDMI state machine */
2125 [BCM2835_CLOCK_HSM
] = REGISTER_PER_CLK(
2128 .ctl_reg
= CM_HSMCTL
,
2129 .div_reg
= CM_HSMDIV
,
2133 [BCM2835_CLOCK_PCM
] = REGISTER_PCM_CLK(
2136 .ctl_reg
= CM_PCMCTL
,
2137 .div_reg
= CM_PCMDIV
,
2140 .is_mash_clock
= true,
2143 [BCM2835_CLOCK_PWM
] = REGISTER_PER_CLK(
2146 .ctl_reg
= CM_PWMCTL
,
2147 .div_reg
= CM_PWMDIV
,
2150 .is_mash_clock
= true,
2152 [BCM2835_CLOCK_SLIM
] = REGISTER_PER_CLK(
2155 .ctl_reg
= CM_SLIMCTL
,
2156 .div_reg
= CM_SLIMDIV
,
2159 .is_mash_clock
= true,
2161 [BCM2835_CLOCK_SMI
] = REGISTER_PER_CLK(
2164 .ctl_reg
= CM_SMICTL
,
2165 .div_reg
= CM_SMIDIV
,
2169 [BCM2835_CLOCK_UART
] = REGISTER_PER_CLK(
2172 .ctl_reg
= CM_UARTCTL
,
2173 .div_reg
= CM_UARTDIV
,
2179 /* TV encoder clock. Only operating frequency is 108Mhz. */
2180 [BCM2835_CLOCK_VEC
] = REGISTER_PER_CLK(
2183 .ctl_reg
= CM_VECCTL
,
2184 .div_reg
= CM_VECDIV
,
2188 * Allow rate change propagation only on PLLH_AUX which is
2189 * assigned index 7 in the parent array.
2191 .set_rate_parent
= BIT(7),
2195 [BCM2835_CLOCK_DSI0E
] = REGISTER_PER_CLK(
2198 .ctl_reg
= CM_DSI0ECTL
,
2199 .div_reg
= CM_DSI0EDIV
,
2203 [BCM2835_CLOCK_DSI1E
] = REGISTER_PER_CLK(
2206 .ctl_reg
= CM_DSI1ECTL
,
2207 .div_reg
= CM_DSI1EDIV
,
2211 [BCM2835_CLOCK_DSI0P
] = REGISTER_DSI0_CLK(
2214 .ctl_reg
= CM_DSI0PCTL
,
2215 .div_reg
= CM_DSI0PDIV
,
2219 [BCM2835_CLOCK_DSI1P
] = REGISTER_DSI1_CLK(
2222 .ctl_reg
= CM_DSI1PCTL
,
2223 .div_reg
= CM_DSI1PDIV
,
2231 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2232 * you have the debug bit set in the power manager, which we
2233 * don't bother exposing) are individual gates off of the
2234 * non-stop vpu clock.
2236 [BCM2835_CLOCK_PERI_IMAGE
] = REGISTER_GATE(
2238 .name
= "peri_image",
2240 .ctl_reg
= CM_PERIICTL
),
2244 * Permanently take a reference on the parent of the SDRAM clock.
2246 * While the SDRAM is being driven by its dedicated PLL most of the
2247 * time, there is a little loop running in the firmware that
2248 * periodically switches the SDRAM to using our CM clock to do PVT
2249 * recalibration, with the assumption that the previously configured
2250 * SDRAM parent is still enabled and running.
2252 static int bcm2835_mark_sdc_parent_critical(struct clk
*sdc
)
2254 struct clk
*parent
= clk_get_parent(sdc
);
2257 return PTR_ERR(parent
);
2259 return clk_prepare_enable(parent
);
2262 static int bcm2835_clk_probe(struct platform_device
*pdev
)
2264 struct device
*dev
= &pdev
->dev
;
2265 struct clk_hw
**hws
;
2266 struct bcm2835_cprman
*cprman
;
2267 const struct bcm2835_clk_desc
*desc
;
2268 const size_t asize
= ARRAY_SIZE(clk_desc_array
);
2269 const struct cprman_plat_data
*pdata
;
2273 pdata
= of_device_get_match_data(&pdev
->dev
);
2277 cprman
= devm_kzalloc(dev
,
2278 struct_size(cprman
, onecell
.hws
, asize
),
2283 spin_lock_init(&cprman
->regs_lock
);
2285 cprman
->regs
= devm_platform_ioremap_resource(pdev
, 0);
2286 if (IS_ERR(cprman
->regs
))
2287 return PTR_ERR(cprman
->regs
);
2289 memcpy(cprman
->real_parent_names
, cprman_parent_names
,
2290 sizeof(cprman_parent_names
));
2291 of_clk_parent_fill(dev
->of_node
, cprman
->real_parent_names
,
2292 ARRAY_SIZE(cprman_parent_names
));
2295 * Make sure the external oscillator has been registered.
2297 * The other (DSI) clocks are not present on older device
2298 * trees, which we still need to support for backwards
2301 if (!cprman
->real_parent_names
[0])
2304 platform_set_drvdata(pdev
, cprman
);
2306 cprman
->onecell
.num
= asize
;
2307 cprman
->soc
= pdata
->soc
;
2308 hws
= cprman
->onecell
.hws
;
2310 for (i
= 0; i
< asize
; i
++) {
2311 desc
= &clk_desc_array
[i
];
2312 if (desc
->clk_register
&& desc
->data
&&
2313 (desc
->supported
& pdata
->soc
)) {
2314 hws
[i
] = desc
->clk_register(cprman
, desc
->data
);
2318 ret
= bcm2835_mark_sdc_parent_critical(hws
[BCM2835_CLOCK_SDRAM
]->clk
);
2322 return of_clk_add_hw_provider(dev
->of_node
, of_clk_hw_onecell_get
,
2326 static const struct cprman_plat_data cprman_bcm2835_plat_data
= {
2330 static const struct cprman_plat_data cprman_bcm2711_plat_data
= {
2334 static const struct of_device_id bcm2835_clk_of_match
[] = {
2335 { .compatible
= "brcm,bcm2835-cprman", .data
= &cprman_bcm2835_plat_data
},
2336 { .compatible
= "brcm,bcm2711-cprman", .data
= &cprman_bcm2711_plat_data
},
2339 MODULE_DEVICE_TABLE(of
, bcm2835_clk_of_match
);
2341 static struct platform_driver bcm2835_clk_driver
= {
2343 .name
= "bcm2835-clk",
2344 .of_match_table
= bcm2835_clk_of_match
,
2346 .probe
= bcm2835_clk_probe
,
2349 builtin_platform_driver(bcm2835_clk_driver
);
2351 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2352 MODULE_DESCRIPTION("BCM2835 clock driver");