Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / clk / renesas / rcar-gen4-cpg.c
blob31aa790fd003d45e212c2954156bd58d41d85ddd
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * R-Car Gen4 Clock Pulse Generator
5 * Copyright (C) 2021 Renesas Electronics Corp.
7 * Based on rcar-gen3-cpg.c
9 * Copyright (C) 2015-2018 Glider bvba
10 * Copyright (C) 2019 Renesas Electronics Corp.
13 #include <linux/bitfield.h>
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/slab.h>
23 #include "renesas-cpg-mssr.h"
24 #include "rcar-gen4-cpg.h"
25 #include "rcar-cpg-lib.h"
27 static const struct rcar_gen4_cpg_pll_config *cpg_pll_config __initdata;
28 static unsigned int cpg_clk_extalr __initdata;
29 static u32 cpg_mode __initdata;
31 #define CPG_PLLECR 0x0820 /* PLL Enable Control Register */
33 #define CPG_PLLECR_PLLST(n) BIT(8 + ((n) < 3 ? (n) - 1 : \
34 (n) > 3 ? (n) + 1 : n)) /* PLLn Circuit Status */
36 #define CPG_PLL1CR0 0x830 /* PLLn Control Registers */
37 #define CPG_PLL1CR1 0x8b0
38 #define CPG_PLL2CR0 0x834
39 #define CPG_PLL2CR1 0x8b8
40 #define CPG_PLL3CR0 0x83c
41 #define CPG_PLL3CR1 0x8c0
42 #define CPG_PLL4CR0 0x844
43 #define CPG_PLL4CR1 0x8c8
44 #define CPG_PLL6CR0 0x84c
45 #define CPG_PLL6CR1 0x8d8
47 #define CPG_PLLxCR0_KICK BIT(31)
48 #define CPG_PLLxCR0_SSMODE GENMASK(18, 16) /* PLL mode */
49 #define CPG_PLLxCR0_SSMODE_FM BIT(18) /* Fractional Multiplication */
50 #define CPG_PLLxCR0_SSMODE_DITH BIT(17) /* Frequency Dithering */
51 #define CPG_PLLxCR0_SSMODE_CENT BIT(16) /* Center (vs. Down) Spread Dithering */
52 #define CPG_PLLxCR0_SSFREQ GENMASK(14, 8) /* SSCG Modulation Frequency */
53 #define CPG_PLLxCR0_SSDEPT GENMASK(6, 0) /* SSCG Modulation Depth */
55 /* Fractional 8.25 PLL */
56 #define CPG_PLLxCR0_NI8 GENMASK(27, 20) /* Integer mult. factor */
57 #define CPG_PLLxCR1_NF25 GENMASK(24, 0) /* Fractional mult. factor */
59 /* Fractional 9.24 PLL */
60 #define CPG_PLLxCR0_NI9 GENMASK(28, 20) /* Integer mult. factor */
61 #define CPG_PLLxCR1_NF24 GENMASK(23, 0) /* Fractional mult. factor */
63 #define CPG_PLLxCR_STC GENMASK(30, 24) /* R_Car V3U PLLxCR */
65 #define CPG_RPCCKCR 0x874 /* RPC Clock Freq. Control Register */
67 #define CPG_SD0CKCR1 0x8a4 /* SD-IF0 Clock Freq. Control Reg. 1 */
69 #define CPG_SD0CKCR1_SDSRC_SEL GENMASK(30, 29) /* SDSRC clock freq. select */
71 /* PLL Clocks */
72 struct cpg_pll_clk {
73 struct clk_hw hw;
74 void __iomem *pllcr0_reg;
75 void __iomem *pllcr1_reg;
76 void __iomem *pllecr_reg;
77 u32 pllecr_pllst_mask;
80 #define to_pll_clk(_hw) container_of(_hw, struct cpg_pll_clk, hw)
82 static unsigned long cpg_pll_8_25_clk_recalc_rate(struct clk_hw *hw,
83 unsigned long parent_rate)
85 struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
86 u32 cr0 = readl(pll_clk->pllcr0_reg);
87 unsigned int ni, nf;
88 unsigned long rate;
90 ni = (FIELD_GET(CPG_PLLxCR0_NI8, cr0) + 1) * 2;
91 rate = parent_rate * ni;
92 if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
93 nf = FIELD_GET(CPG_PLLxCR1_NF25, readl(pll_clk->pllcr1_reg));
94 rate += mul_u64_u32_shr(parent_rate, nf, 24);
97 return rate;
100 static int cpg_pll_8_25_clk_determine_rate(struct clk_hw *hw,
101 struct clk_rate_request *req)
103 struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
104 unsigned int min_mult, max_mult, ni, nf;
105 u32 cr0 = readl(pll_clk->pllcr0_reg);
106 unsigned long prate;
108 prate = req->best_parent_rate * 2;
109 min_mult = max(div64_ul(req->min_rate, prate), 1ULL);
110 max_mult = min(div64_ul(req->max_rate, prate), 256ULL);
111 if (max_mult < min_mult)
112 return -EINVAL;
114 if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
115 ni = div64_ul(req->rate, prate);
116 if (ni < min_mult) {
117 ni = min_mult;
118 nf = 0;
119 } else {
120 ni = min(ni, max_mult);
121 nf = div64_ul((u64)(req->rate - prate * ni) << 24,
122 req->best_parent_rate);
124 } else {
125 ni = DIV_ROUND_CLOSEST_ULL(req->rate, prate);
126 ni = clamp(ni, min_mult, max_mult);
127 nf = 0;
129 req->rate = prate * ni + mul_u64_u32_shr(req->best_parent_rate, nf, 24);
131 return 0;
134 static int cpg_pll_8_25_clk_set_rate(struct clk_hw *hw, unsigned long rate,
135 unsigned long parent_rate)
137 struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
138 unsigned long prate = parent_rate * 2;
139 u32 cr0 = readl(pll_clk->pllcr0_reg);
140 unsigned int ni, nf;
141 u32 val;
143 if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
144 ni = div64_ul(rate, prate);
145 if (ni < 1) {
146 ni = 1;
147 nf = 0;
148 } else {
149 ni = min(ni, 256U);
150 nf = div64_ul((u64)(rate - prate * ni) << 24,
151 parent_rate);
153 } else {
154 ni = DIV_ROUND_CLOSEST_ULL(rate, prate);
155 ni = clamp(ni, 1U, 256U);
158 if (readl(pll_clk->pllcr0_reg) & CPG_PLLxCR0_KICK)
159 return -EBUSY;
161 cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_NI8,
162 FIELD_PREP(CPG_PLLxCR0_NI8, ni - 1));
163 if (cr0 & CPG_PLLxCR0_SSMODE_FM)
164 cpg_reg_modify(pll_clk->pllcr1_reg, CPG_PLLxCR1_NF25,
165 FIELD_PREP(CPG_PLLxCR1_NF25, nf));
168 * Set KICK bit in PLLxCR0 to update hardware setting and wait for
169 * clock change completion.
171 cpg_reg_modify(pll_clk->pllcr0_reg, 0, CPG_PLLxCR0_KICK);
174 * Note: There is no HW information about the worst case latency.
176 * Using experimental measurements, it seems that no more than
177 * ~45 µs are needed, independently of the CPU rate.
178 * Since this value might be dependent on external xtal rate, pll
179 * rate or even the other emulation clocks rate, use 1000 as a
180 * "super" safe value.
182 return readl_poll_timeout(pll_clk->pllecr_reg, val,
183 val & pll_clk->pllecr_pllst_mask, 0, 1000);
186 static const struct clk_ops cpg_pll_f8_25_clk_ops = {
187 .recalc_rate = cpg_pll_8_25_clk_recalc_rate,
190 static const struct clk_ops cpg_pll_v8_25_clk_ops = {
191 .recalc_rate = cpg_pll_8_25_clk_recalc_rate,
192 .determine_rate = cpg_pll_8_25_clk_determine_rate,
193 .set_rate = cpg_pll_8_25_clk_set_rate,
196 static unsigned long cpg_pll_9_24_clk_recalc_rate(struct clk_hw *hw,
197 unsigned long parent_rate)
199 struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
200 u32 cr0 = readl(pll_clk->pllcr0_reg);
201 unsigned int ni, nf;
202 unsigned long rate;
204 ni = FIELD_GET(CPG_PLLxCR0_NI9, cr0) + 1;
205 rate = parent_rate * ni;
206 if (cr0 & CPG_PLLxCR0_SSMODE_FM) {
207 nf = FIELD_GET(CPG_PLLxCR1_NF24, readl(pll_clk->pllcr1_reg));
208 rate += mul_u64_u32_shr(parent_rate, nf, 24);
209 } else {
210 rate *= 2;
213 return rate;
216 static const struct clk_ops cpg_pll_f9_24_clk_ops = {
217 .recalc_rate = cpg_pll_9_24_clk_recalc_rate,
220 static struct clk * __init cpg_pll_clk_register(const char *name,
221 const char *parent_name,
222 void __iomem *base,
223 unsigned int index,
224 const struct clk_ops *ops)
226 static const struct { u16 cr0, cr1; } pll_cr_offsets[] __initconst = {
227 [1 - 1] = { CPG_PLL1CR0, CPG_PLL1CR1 },
228 [2 - 1] = { CPG_PLL2CR0, CPG_PLL2CR1 },
229 [3 - 1] = { CPG_PLL3CR0, CPG_PLL3CR1 },
230 [4 - 1] = { CPG_PLL4CR0, CPG_PLL4CR1 },
231 [6 - 1] = { CPG_PLL6CR0, CPG_PLL6CR1 },
233 struct clk_init_data init = {};
234 struct cpg_pll_clk *pll_clk;
235 struct clk *clk;
237 pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL);
238 if (!pll_clk)
239 return ERR_PTR(-ENOMEM);
241 init.name = name;
242 init.ops = ops;
243 init.parent_names = &parent_name;
244 init.num_parents = 1;
246 pll_clk->hw.init = &init;
247 pll_clk->pllcr0_reg = base + pll_cr_offsets[index - 1].cr0;
248 pll_clk->pllcr1_reg = base + pll_cr_offsets[index - 1].cr1;
249 pll_clk->pllecr_reg = base + CPG_PLLECR;
250 pll_clk->pllecr_pllst_mask = CPG_PLLECR_PLLST(index);
252 clk = clk_register(NULL, &pll_clk->hw);
253 if (IS_ERR(clk))
254 kfree(pll_clk);
256 return clk;
260 * Z0 Clock & Z1 Clock
262 #define CPG_FRQCRB 0x00000804
263 #define CPG_FRQCRB_KICK BIT(31)
264 #define CPG_FRQCRC0 0x00000808
265 #define CPG_FRQCRC1 0x000008e0
267 struct cpg_z_clk {
268 struct clk_hw hw;
269 void __iomem *reg;
270 void __iomem *kick_reg;
271 unsigned long max_rate; /* Maximum rate for normal mode */
272 unsigned int fixed_div;
273 u32 mask;
276 #define to_z_clk(_hw) container_of(_hw, struct cpg_z_clk, hw)
278 static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
279 unsigned long parent_rate)
281 struct cpg_z_clk *zclk = to_z_clk(hw);
282 unsigned int mult;
283 u32 val;
285 val = readl(zclk->reg) & zclk->mask;
286 mult = 32 - (val >> __ffs(zclk->mask));
288 return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult,
289 32 * zclk->fixed_div);
292 static int cpg_z_clk_determine_rate(struct clk_hw *hw,
293 struct clk_rate_request *req)
295 struct cpg_z_clk *zclk = to_z_clk(hw);
296 unsigned int min_mult, max_mult, mult;
297 unsigned long rate, prate;
299 rate = min(req->rate, req->max_rate);
300 if (rate <= zclk->max_rate) {
301 /* Set parent rate to initial value for normal modes */
302 prate = zclk->max_rate;
303 } else {
304 /* Set increased parent rate for boost modes */
305 prate = rate;
307 req->best_parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw),
308 prate * zclk->fixed_div);
310 prate = req->best_parent_rate / zclk->fixed_div;
311 min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
312 max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
313 if (max_mult < min_mult)
314 return -EINVAL;
316 mult = DIV_ROUND_CLOSEST_ULL(rate * 32ULL, prate);
317 mult = clamp(mult, min_mult, max_mult);
319 req->rate = DIV_ROUND_CLOSEST_ULL((u64)prate * mult, 32);
320 return 0;
323 static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
324 unsigned long parent_rate)
326 struct cpg_z_clk *zclk = to_z_clk(hw);
327 unsigned int mult;
328 unsigned int i;
330 mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div,
331 parent_rate);
332 mult = clamp(mult, 1U, 32U);
334 if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
335 return -EBUSY;
337 cpg_reg_modify(zclk->reg, zclk->mask, (32 - mult) << __ffs(zclk->mask));
340 * Set KICK bit in FRQCRB to update hardware setting and wait for
341 * clock change completion.
343 cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK);
346 * Note: There is no HW information about the worst case latency.
348 * Using experimental measurements, it seems that no more than
349 * ~10 iterations are needed, independently of the CPU rate.
350 * Since this value might be dependent on external xtal rate, pll1
351 * rate or even the other emulation clocks rate, use 1000 as a
352 * "super" safe value.
354 for (i = 1000; i; i--) {
355 if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
356 return 0;
358 cpu_relax();
361 return -ETIMEDOUT;
364 static const struct clk_ops cpg_z_clk_ops = {
365 .recalc_rate = cpg_z_clk_recalc_rate,
366 .determine_rate = cpg_z_clk_determine_rate,
367 .set_rate = cpg_z_clk_set_rate,
370 static struct clk * __init cpg_z_clk_register(const char *name,
371 const char *parent_name,
372 void __iomem *reg,
373 unsigned int div,
374 unsigned int offset)
376 struct clk_init_data init = {};
377 struct cpg_z_clk *zclk;
378 struct clk *clk;
380 zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
381 if (!zclk)
382 return ERR_PTR(-ENOMEM);
384 init.name = name;
385 init.ops = &cpg_z_clk_ops;
386 init.flags = CLK_SET_RATE_PARENT;
387 init.parent_names = &parent_name;
388 init.num_parents = 1;
390 if (offset < 32) {
391 zclk->reg = reg + CPG_FRQCRC0;
392 } else {
393 zclk->reg = reg + CPG_FRQCRC1;
394 offset -= 32;
396 zclk->kick_reg = reg + CPG_FRQCRB;
397 zclk->hw.init = &init;
398 zclk->mask = GENMASK(offset + 4, offset);
399 zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */
401 clk = clk_register(NULL, &zclk->hw);
402 if (IS_ERR(clk)) {
403 kfree(zclk);
404 return clk;
407 zclk->max_rate = clk_hw_get_rate(clk_hw_get_parent(&zclk->hw)) /
408 zclk->fixed_div;
409 return clk;
413 * RPC Clocks
415 static const struct clk_div_table cpg_rpcsrc_div_table[] = {
416 { 0, 4 }, { 1, 6 }, { 2, 5 }, { 3, 6 }, { 0, 0 },
419 struct clk * __init rcar_gen4_cpg_clk_register(struct device *dev,
420 const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
421 struct clk **clks, void __iomem *base,
422 struct raw_notifier_head *notifiers)
424 const struct clk *parent;
425 unsigned int mult = 1;
426 unsigned int div = 1;
427 u32 value;
429 parent = clks[core->parent & 0xffff]; /* some types use high bits */
430 if (IS_ERR(parent))
431 return ERR_CAST(parent);
433 switch (core->type) {
434 case CLK_TYPE_GEN4_MAIN:
435 div = cpg_pll_config->extal_div;
436 break;
438 case CLK_TYPE_GEN4_PLL1:
439 mult = cpg_pll_config->pll1_mult;
440 div = cpg_pll_config->pll1_div;
441 break;
443 case CLK_TYPE_GEN4_PLL5:
444 mult = cpg_pll_config->pll5_mult;
445 div = cpg_pll_config->pll5_div;
446 break;
448 case CLK_TYPE_GEN4_PLL2X_3X:
449 value = readl(base + core->offset);
450 mult = (FIELD_GET(CPG_PLLxCR_STC, value) + 1) * 2;
451 break;
453 case CLK_TYPE_GEN4_PLL_F8_25:
454 return cpg_pll_clk_register(core->name, __clk_get_name(parent),
455 base, core->offset,
456 &cpg_pll_f8_25_clk_ops);
458 case CLK_TYPE_GEN4_PLL_V8_25:
459 return cpg_pll_clk_register(core->name, __clk_get_name(parent),
460 base, core->offset,
461 &cpg_pll_v8_25_clk_ops);
463 case CLK_TYPE_GEN4_PLL_V9_24:
464 /* Variable fractional 9.24 is not yet supported, using fixed */
465 fallthrough;
466 case CLK_TYPE_GEN4_PLL_F9_24:
467 return cpg_pll_clk_register(core->name, __clk_get_name(parent),
468 base, core->offset,
469 &cpg_pll_f9_24_clk_ops);
471 case CLK_TYPE_GEN4_Z:
472 return cpg_z_clk_register(core->name, __clk_get_name(parent),
473 base, core->div, core->offset);
475 case CLK_TYPE_GEN4_SDSRC:
476 value = readl(base + CPG_SD0CKCR1);
477 div = FIELD_GET(CPG_SD0CKCR1_SDSRC_SEL, value) + 4;
478 break;
480 case CLK_TYPE_GEN4_SDH:
481 return cpg_sdh_clk_register(core->name, base + core->offset,
482 __clk_get_name(parent), notifiers);
484 case CLK_TYPE_GEN4_SD:
485 return cpg_sd_clk_register(core->name, base + core->offset,
486 __clk_get_name(parent));
488 case CLK_TYPE_GEN4_MDSEL:
490 * Clock selectable between two parents and two fixed dividers
491 * using a mode pin
493 if (cpg_mode & BIT(core->offset)) {
494 div = core->div & 0xffff;
495 } else {
496 parent = clks[core->parent >> 16];
497 if (IS_ERR(parent))
498 return ERR_CAST(parent);
499 div = core->div >> 16;
501 mult = 1;
502 break;
504 case CLK_TYPE_GEN4_OSC:
506 * Clock combining OSC EXTAL predivider and a fixed divider
508 div = cpg_pll_config->osc_prediv * core->div;
509 break;
511 case CLK_TYPE_GEN4_RPCSRC:
512 return clk_register_divider_table(NULL, core->name,
513 __clk_get_name(parent), 0,
514 base + CPG_RPCCKCR, 3, 2, 0,
515 cpg_rpcsrc_div_table,
516 &cpg_lock);
518 case CLK_TYPE_GEN4_RPC:
519 return cpg_rpc_clk_register(core->name, base + CPG_RPCCKCR,
520 __clk_get_name(parent), notifiers);
522 case CLK_TYPE_GEN4_RPCD2:
523 return cpg_rpcd2_clk_register(core->name, base + CPG_RPCCKCR,
524 __clk_get_name(parent));
526 default:
527 return ERR_PTR(-EINVAL);
530 return clk_register_fixed_factor(NULL, core->name,
531 __clk_get_name(parent), 0, mult, div);
534 int __init rcar_gen4_cpg_init(const struct rcar_gen4_cpg_pll_config *config,
535 unsigned int clk_extalr, u32 mode)
537 cpg_pll_config = config;
538 cpg_clk_extalr = clk_extalr;
539 cpg_mode = mode;
541 return 0;