1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/clocksource/arm_arch_timer.c
5 * Copyright (C) 2011 ARM Ltd.
9 #define pr_fmt(fmt) "arch_timer: " fmt
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
32 #include <asm/arch_timer.h>
35 #include <clocksource/arm_arch_timer.h>
38 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
40 #define CNTACR(n) (0x40 + ((n) * 4))
41 #define CNTACR_RPCT BIT(0)
42 #define CNTACR_RVCT BIT(1)
43 #define CNTACR_RFRQ BIT(2)
44 #define CNTACR_RVOFF BIT(3)
45 #define CNTACR_RWVT BIT(4)
46 #define CNTACR_RWPT BIT(5)
48 #define CNTPCT_LO 0x00
49 #define CNTVCT_LO 0x08
51 #define CNTP_CVAL_LO 0x20
53 #define CNTV_CVAL_LO 0x30
57 * The minimum amount of time a generic counter is guaranteed to not roll over
60 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
62 static unsigned arch_timers_present __initdata
;
66 struct clock_event_device evt
;
69 static struct arch_timer
*arch_timer_mem __ro_after_init
;
71 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
73 static u32 arch_timer_rate __ro_after_init
;
74 static int arch_timer_ppi
[ARCH_TIMER_MAX_TIMER_PPI
] __ro_after_init
;
76 static const char *arch_timer_ppi_names
[ARCH_TIMER_MAX_TIMER_PPI
] = {
77 [ARCH_TIMER_PHYS_SECURE_PPI
] = "sec-phys",
78 [ARCH_TIMER_PHYS_NONSECURE_PPI
] = "phys",
79 [ARCH_TIMER_VIRT_PPI
] = "virt",
80 [ARCH_TIMER_HYP_PPI
] = "hyp-phys",
81 [ARCH_TIMER_HYP_VIRT_PPI
] = "hyp-virt",
84 static struct clock_event_device __percpu
*arch_timer_evt
;
86 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init
= ARCH_TIMER_VIRT_PPI
;
87 static bool arch_timer_c3stop __ro_after_init
;
88 static bool arch_timer_mem_use_virtual __ro_after_init
;
89 static bool arch_counter_suspend_stop __ro_after_init
;
90 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
91 static enum vdso_clock_mode vdso_default
= VDSO_CLOCKMODE_ARCHTIMER
;
93 static enum vdso_clock_mode vdso_default
= VDSO_CLOCKMODE_NONE
;
94 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
96 static cpumask_t evtstrm_available
= CPU_MASK_NONE
;
97 static bool evtstrm_enable __ro_after_init
= IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM
);
99 static int __init
early_evtstrm_cfg(char *buf
)
101 return kstrtobool(buf
, &evtstrm_enable
);
103 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg
);
106 * Makes an educated guess at a valid counter width based on the Generic Timer
107 * specification. Of note:
108 * 1) the system counter is at least 56 bits wide
109 * 2) a roll-over time of not less than 40 years
111 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
113 static int arch_counter_get_width(void)
115 u64 min_cycles
= MIN_ROLLOVER_SECS
* arch_timer_rate
;
117 /* guarantee the returned width is within the valid range */
118 return clamp_val(ilog2(min_cycles
- 1) + 1, 56, 64);
122 * Architected system timer support.
125 static __always_inline
126 void arch_timer_reg_write(int access
, enum arch_timer_reg reg
, u64 val
,
127 struct clock_event_device
*clk
)
129 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
130 struct arch_timer
*timer
= to_arch_timer(clk
);
132 case ARCH_TIMER_REG_CTRL
:
133 writel_relaxed((u32
)val
, timer
->base
+ CNTP_CTL
);
135 case ARCH_TIMER_REG_CVAL
:
137 * Not guaranteed to be atomic, so the timer
138 * must be disabled at this point.
140 writeq_relaxed(val
, timer
->base
+ CNTP_CVAL_LO
);
145 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
146 struct arch_timer
*timer
= to_arch_timer(clk
);
148 case ARCH_TIMER_REG_CTRL
:
149 writel_relaxed((u32
)val
, timer
->base
+ CNTV_CTL
);
151 case ARCH_TIMER_REG_CVAL
:
152 /* Same restriction as above */
153 writeq_relaxed(val
, timer
->base
+ CNTV_CVAL_LO
);
159 arch_timer_reg_write_cp15(access
, reg
, val
);
163 static __always_inline
164 u32
arch_timer_reg_read(int access
, enum arch_timer_reg reg
,
165 struct clock_event_device
*clk
)
169 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
170 struct arch_timer
*timer
= to_arch_timer(clk
);
172 case ARCH_TIMER_REG_CTRL
:
173 val
= readl_relaxed(timer
->base
+ CNTP_CTL
);
178 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
179 struct arch_timer
*timer
= to_arch_timer(clk
);
181 case ARCH_TIMER_REG_CTRL
:
182 val
= readl_relaxed(timer
->base
+ CNTV_CTL
);
188 val
= arch_timer_reg_read_cp15(access
, reg
);
194 static noinstr u64
raw_counter_get_cntpct_stable(void)
196 return __arch_counter_get_cntpct_stable();
199 static notrace u64
arch_counter_get_cntpct_stable(void)
202 preempt_disable_notrace();
203 val
= __arch_counter_get_cntpct_stable();
204 preempt_enable_notrace();
208 static noinstr u64
arch_counter_get_cntpct(void)
210 return __arch_counter_get_cntpct();
213 static noinstr u64
raw_counter_get_cntvct_stable(void)
215 return __arch_counter_get_cntvct_stable();
218 static notrace u64
arch_counter_get_cntvct_stable(void)
221 preempt_disable_notrace();
222 val
= __arch_counter_get_cntvct_stable();
223 preempt_enable_notrace();
227 static noinstr u64
arch_counter_get_cntvct(void)
229 return __arch_counter_get_cntvct();
233 * Default to cp15 based access because arm64 uses this function for
234 * sched_clock() before DT is probed and the cp15 method is guaranteed
235 * to exist on arm64. arm doesn't use this before DT is probed so even
236 * if we don't have the cp15 accessors we won't have a problem.
238 u64 (*arch_timer_read_counter
)(void) __ro_after_init
= arch_counter_get_cntvct
;
239 EXPORT_SYMBOL_GPL(arch_timer_read_counter
);
241 static u64
arch_counter_read(struct clocksource
*cs
)
243 return arch_timer_read_counter();
246 static u64
arch_counter_read_cc(const struct cyclecounter
*cc
)
248 return arch_timer_read_counter();
251 static struct clocksource clocksource_counter
= {
252 .name
= "arch_sys_counter",
253 .id
= CSID_ARM_ARCH_COUNTER
,
255 .read
= arch_counter_read
,
256 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
259 static struct cyclecounter cyclecounter __ro_after_init
= {
260 .read
= arch_counter_read_cc
,
263 struct ate_acpi_oem_info
{
264 char oem_id
[ACPI_OEM_ID_SIZE
+ 1];
265 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
+ 1];
269 #ifdef CONFIG_FSL_ERRATUM_A008585
271 * The number of retries is an arbitrary value well beyond the highest number
272 * of iterations the loop has been observed to take.
274 #define __fsl_a008585_read_reg(reg) ({ \
276 int _retries = 200; \
279 _old = read_sysreg(reg); \
280 _new = read_sysreg(reg); \
282 } while (unlikely(_old != _new) && _retries); \
284 WARN_ON_ONCE(!_retries); \
288 static u64 notrace
fsl_a008585_read_cntpct_el0(void)
290 return __fsl_a008585_read_reg(cntpct_el0
);
293 static u64 notrace
fsl_a008585_read_cntvct_el0(void)
295 return __fsl_a008585_read_reg(cntvct_el0
);
299 #ifdef CONFIG_HISILICON_ERRATUM_161010101
301 * Verify whether the value of the second read is larger than the first by
302 * less than 32 is the only way to confirm the value is correct, so clear the
303 * lower 5 bits to check whether the difference is greater than 32 or not.
304 * Theoretically the erratum should not occur more than twice in succession
305 * when reading the system counter, but it is possible that some interrupts
306 * may lead to more than twice read errors, triggering the warning, so setting
307 * the number of retries far beyond the number of iterations the loop has been
310 #define __hisi_161010101_read_reg(reg) ({ \
315 _old = read_sysreg(reg); \
316 _new = read_sysreg(reg); \
318 } while (unlikely((_new - _old) >> 5) && _retries); \
320 WARN_ON_ONCE(!_retries); \
324 static u64 notrace
hisi_161010101_read_cntpct_el0(void)
326 return __hisi_161010101_read_reg(cntpct_el0
);
329 static u64 notrace
hisi_161010101_read_cntvct_el0(void)
331 return __hisi_161010101_read_reg(cntvct_el0
);
334 static const struct ate_acpi_oem_info hisi_161010101_oem_info
[] = {
336 * Note that trailing spaces are required to properly match
337 * the OEM table information.
341 .oem_table_id
= "HIP05 ",
346 .oem_table_id
= "HIP06 ",
351 .oem_table_id
= "HIP07 ",
354 { /* Sentinel indicating the end of the OEM array */ },
358 #ifdef CONFIG_ARM64_ERRATUM_858921
359 static u64 notrace
arm64_858921_read_cntpct_el0(void)
363 old
= read_sysreg(cntpct_el0
);
364 new = read_sysreg(cntpct_el0
);
365 return (((old
^ new) >> 32) & 1) ? old
: new;
368 static u64 notrace
arm64_858921_read_cntvct_el0(void)
372 old
= read_sysreg(cntvct_el0
);
373 new = read_sysreg(cntvct_el0
);
374 return (((old
^ new) >> 32) & 1) ? old
: new;
378 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
380 * The low bits of the counter registers are indeterminate while bit 10 or
381 * greater is rolling over. Since the counter value can jump both backward
382 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
383 * with all ones or all zeros in the low bits. Bound the loop by the maximum
384 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
386 #define __sun50i_a64_read_reg(reg) ({ \
388 int _retries = 150; \
391 _val = read_sysreg(reg); \
393 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
395 WARN_ON_ONCE(!_retries); \
399 static u64 notrace
sun50i_a64_read_cntpct_el0(void)
401 return __sun50i_a64_read_reg(cntpct_el0
);
404 static u64 notrace
sun50i_a64_read_cntvct_el0(void)
406 return __sun50i_a64_read_reg(cntvct_el0
);
410 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
411 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround
*, timer_unstable_counter_workaround
);
412 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround
);
414 static atomic_t timer_unstable_counter_workaround_in_use
= ATOMIC_INIT(0);
417 * Force the inlining of this function so that the register accesses
418 * can be themselves correctly inlined.
420 static __always_inline
421 void erratum_set_next_event_generic(const int access
, unsigned long evt
,
422 struct clock_event_device
*clk
)
427 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
428 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
429 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
431 if (access
== ARCH_TIMER_PHYS_ACCESS
) {
432 cval
= evt
+ arch_counter_get_cntpct_stable();
433 write_sysreg(cval
, cntp_cval_el0
);
435 cval
= evt
+ arch_counter_get_cntvct_stable();
436 write_sysreg(cval
, cntv_cval_el0
);
439 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
442 static __maybe_unused
int erratum_set_next_event_virt(unsigned long evt
,
443 struct clock_event_device
*clk
)
445 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
449 static __maybe_unused
int erratum_set_next_event_phys(unsigned long evt
,
450 struct clock_event_device
*clk
)
452 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
456 static const struct arch_timer_erratum_workaround ool_workarounds
[] = {
457 #ifdef CONFIG_FSL_ERRATUM_A008585
459 .match_type
= ate_match_dt
,
460 .id
= "fsl,erratum-a008585",
461 .desc
= "Freescale erratum a005858",
462 .read_cntpct_el0
= fsl_a008585_read_cntpct_el0
,
463 .read_cntvct_el0
= fsl_a008585_read_cntvct_el0
,
464 .set_next_event_phys
= erratum_set_next_event_phys
,
465 .set_next_event_virt
= erratum_set_next_event_virt
,
468 #ifdef CONFIG_HISILICON_ERRATUM_161010101
470 .match_type
= ate_match_dt
,
471 .id
= "hisilicon,erratum-161010101",
472 .desc
= "HiSilicon erratum 161010101",
473 .read_cntpct_el0
= hisi_161010101_read_cntpct_el0
,
474 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
475 .set_next_event_phys
= erratum_set_next_event_phys
,
476 .set_next_event_virt
= erratum_set_next_event_virt
,
479 .match_type
= ate_match_acpi_oem_info
,
480 .id
= hisi_161010101_oem_info
,
481 .desc
= "HiSilicon erratum 161010101",
482 .read_cntpct_el0
= hisi_161010101_read_cntpct_el0
,
483 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
484 .set_next_event_phys
= erratum_set_next_event_phys
,
485 .set_next_event_virt
= erratum_set_next_event_virt
,
488 #ifdef CONFIG_ARM64_ERRATUM_858921
490 .match_type
= ate_match_local_cap_id
,
491 .id
= (void *)ARM64_WORKAROUND_858921
,
492 .desc
= "ARM erratum 858921",
493 .read_cntpct_el0
= arm64_858921_read_cntpct_el0
,
494 .read_cntvct_el0
= arm64_858921_read_cntvct_el0
,
495 .set_next_event_phys
= erratum_set_next_event_phys
,
496 .set_next_event_virt
= erratum_set_next_event_virt
,
499 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
501 .match_type
= ate_match_dt
,
502 .id
= "allwinner,erratum-unknown1",
503 .desc
= "Allwinner erratum UNKNOWN1",
504 .read_cntpct_el0
= sun50i_a64_read_cntpct_el0
,
505 .read_cntvct_el0
= sun50i_a64_read_cntvct_el0
,
506 .set_next_event_phys
= erratum_set_next_event_phys
,
507 .set_next_event_virt
= erratum_set_next_event_virt
,
510 #ifdef CONFIG_ARM64_ERRATUM_1418040
512 .match_type
= ate_match_local_cap_id
,
513 .id
= (void *)ARM64_WORKAROUND_1418040
,
514 .desc
= "ARM erratum 1418040",
515 .disable_compat_vdso
= true,
520 typedef bool (*ate_match_fn_t
)(const struct arch_timer_erratum_workaround
*,
524 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround
*wa
,
527 const struct device_node
*np
= arg
;
529 return of_property_read_bool(np
, wa
->id
);
533 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround
*wa
,
536 return this_cpu_has_cap((uintptr_t)wa
->id
);
541 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround
*wa
,
544 static const struct ate_acpi_oem_info empty_oem_info
= {};
545 const struct ate_acpi_oem_info
*info
= wa
->id
;
546 const struct acpi_table_header
*table
= arg
;
548 /* Iterate over the ACPI OEM info array, looking for a match */
549 while (memcmp(info
, &empty_oem_info
, sizeof(*info
))) {
550 if (!memcmp(info
->oem_id
, table
->oem_id
, ACPI_OEM_ID_SIZE
) &&
551 !memcmp(info
->oem_table_id
, table
->oem_table_id
, ACPI_OEM_TABLE_ID_SIZE
) &&
552 info
->oem_revision
== table
->oem_revision
)
561 static const struct arch_timer_erratum_workaround
*
562 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type
,
563 ate_match_fn_t match_fn
,
568 for (i
= 0; i
< ARRAY_SIZE(ool_workarounds
); i
++) {
569 if (ool_workarounds
[i
].match_type
!= type
)
572 if (match_fn(&ool_workarounds
[i
], arg
))
573 return &ool_workarounds
[i
];
580 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround
*wa
,
586 __this_cpu_write(timer_unstable_counter_workaround
, wa
);
588 for_each_possible_cpu(i
)
589 per_cpu(timer_unstable_counter_workaround
, i
) = wa
;
592 if (wa
->read_cntvct_el0
|| wa
->read_cntpct_el0
)
593 atomic_set(&timer_unstable_counter_workaround_in_use
, 1);
596 * Don't use the vdso fastpath if errata require using the
597 * out-of-line counter accessor. We may change our mind pretty
598 * late in the game (with a per-CPU erratum, for example), so
599 * change both the default value and the vdso itself.
601 if (wa
->read_cntvct_el0
) {
602 clocksource_counter
.vdso_clock_mode
= VDSO_CLOCKMODE_NONE
;
603 vdso_default
= VDSO_CLOCKMODE_NONE
;
604 } else if (wa
->disable_compat_vdso
&& vdso_default
!= VDSO_CLOCKMODE_NONE
) {
605 vdso_default
= VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT
;
606 clocksource_counter
.vdso_clock_mode
= vdso_default
;
610 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type
,
613 const struct arch_timer_erratum_workaround
*wa
, *__wa
;
614 ate_match_fn_t match_fn
= NULL
;
619 match_fn
= arch_timer_check_dt_erratum
;
621 case ate_match_local_cap_id
:
622 match_fn
= arch_timer_check_local_cap_erratum
;
625 case ate_match_acpi_oem_info
:
626 match_fn
= arch_timer_check_acpi_oem_erratum
;
633 wa
= arch_timer_iterate_errata(type
, match_fn
, arg
);
637 __wa
= __this_cpu_read(timer_unstable_counter_workaround
);
638 if (__wa
&& wa
!= __wa
)
639 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
640 wa
->desc
, __wa
->desc
);
645 arch_timer_enable_workaround(wa
, local
);
646 pr_info("Enabling %s workaround for %s\n",
647 local
? "local" : "global", wa
->desc
);
650 static bool arch_timer_this_cpu_has_cntvct_wa(void)
652 return has_erratum_handler(read_cntvct_el0
);
655 static bool arch_timer_counter_has_wa(void)
657 return atomic_read(&timer_unstable_counter_workaround_in_use
);
660 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
661 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
662 #define arch_timer_counter_has_wa() ({false;})
663 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
665 static __always_inline irqreturn_t
timer_handler(const int access
,
666 struct clock_event_device
*evt
)
670 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, evt
);
671 if (ctrl
& ARCH_TIMER_CTRL_IT_STAT
) {
672 ctrl
|= ARCH_TIMER_CTRL_IT_MASK
;
673 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, evt
);
674 evt
->event_handler(evt
);
681 static irqreturn_t
arch_timer_handler_virt(int irq
, void *dev_id
)
683 struct clock_event_device
*evt
= dev_id
;
685 return timer_handler(ARCH_TIMER_VIRT_ACCESS
, evt
);
688 static irqreturn_t
arch_timer_handler_phys(int irq
, void *dev_id
)
690 struct clock_event_device
*evt
= dev_id
;
692 return timer_handler(ARCH_TIMER_PHYS_ACCESS
, evt
);
695 static irqreturn_t
arch_timer_handler_phys_mem(int irq
, void *dev_id
)
697 struct clock_event_device
*evt
= dev_id
;
699 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
);
702 static irqreturn_t
arch_timer_handler_virt_mem(int irq
, void *dev_id
)
704 struct clock_event_device
*evt
= dev_id
;
706 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
);
709 static __always_inline
int arch_timer_shutdown(const int access
,
710 struct clock_event_device
*clk
)
714 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
715 ctrl
&= ~ARCH_TIMER_CTRL_ENABLE
;
716 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
721 static int arch_timer_shutdown_virt(struct clock_event_device
*clk
)
723 return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS
, clk
);
726 static int arch_timer_shutdown_phys(struct clock_event_device
*clk
)
728 return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS
, clk
);
731 static int arch_timer_shutdown_virt_mem(struct clock_event_device
*clk
)
733 return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS
, clk
);
736 static int arch_timer_shutdown_phys_mem(struct clock_event_device
*clk
)
738 return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS
, clk
);
741 static __always_inline
void set_next_event(const int access
, unsigned long evt
,
742 struct clock_event_device
*clk
)
747 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
748 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
749 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
751 if (access
== ARCH_TIMER_PHYS_ACCESS
)
752 cnt
= __arch_counter_get_cntpct();
754 cnt
= __arch_counter_get_cntvct();
756 arch_timer_reg_write(access
, ARCH_TIMER_REG_CVAL
, evt
+ cnt
, clk
);
757 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
760 static int arch_timer_set_next_event_virt(unsigned long evt
,
761 struct clock_event_device
*clk
)
763 set_next_event(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
767 static int arch_timer_set_next_event_phys(unsigned long evt
,
768 struct clock_event_device
*clk
)
770 set_next_event(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
774 static noinstr u64
arch_counter_get_cnt_mem(struct arch_timer
*t
, int offset_lo
)
776 u32 cnt_lo
, cnt_hi
, tmp_hi
;
779 cnt_hi
= __le32_to_cpu((__le32 __force
)__raw_readl(t
->base
+ offset_lo
+ 4));
780 cnt_lo
= __le32_to_cpu((__le32 __force
)__raw_readl(t
->base
+ offset_lo
));
781 tmp_hi
= __le32_to_cpu((__le32 __force
)__raw_readl(t
->base
+ offset_lo
+ 4));
782 } while (cnt_hi
!= tmp_hi
);
784 return ((u64
) cnt_hi
<< 32) | cnt_lo
;
787 static __always_inline
void set_next_event_mem(const int access
, unsigned long evt
,
788 struct clock_event_device
*clk
)
790 struct arch_timer
*timer
= to_arch_timer(clk
);
794 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
796 /* Timer must be disabled before programming CVAL */
797 if (ctrl
& ARCH_TIMER_CTRL_ENABLE
) {
798 ctrl
&= ~ARCH_TIMER_CTRL_ENABLE
;
799 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
802 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
803 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
805 if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
)
806 cnt
= arch_counter_get_cnt_mem(timer
, CNTVCT_LO
);
808 cnt
= arch_counter_get_cnt_mem(timer
, CNTPCT_LO
);
810 arch_timer_reg_write(access
, ARCH_TIMER_REG_CVAL
, evt
+ cnt
, clk
);
811 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
814 static int arch_timer_set_next_event_virt_mem(unsigned long evt
,
815 struct clock_event_device
*clk
)
817 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
, clk
);
821 static int arch_timer_set_next_event_phys_mem(unsigned long evt
,
822 struct clock_event_device
*clk
)
824 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
, clk
);
828 static u64
__arch_timer_check_delta(void)
831 const struct midr_range broken_cval_midrs
[] = {
833 * XGene-1 implements CVAL in terms of TVAL, meaning
834 * that the maximum timer range is 32bit. Shame on them.
836 * Note that TVAL is signed, thus has only 31 of its
837 * 32 bits to express magnitude.
839 MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM
,
841 APM_CPU_VAR_POTENZA
, 0x0, 0xf),
845 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs
)) {
846 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
847 return CLOCKSOURCE_MASK(31);
850 return CLOCKSOURCE_MASK(arch_counter_get_width());
853 static void __arch_timer_setup(unsigned type
,
854 struct clock_event_device
*clk
)
858 clk
->features
= CLOCK_EVT_FEAT_ONESHOT
;
860 if (type
== ARCH_TIMER_TYPE_CP15
) {
861 typeof(clk
->set_next_event
) sne
;
863 arch_timer_check_ool_workaround(ate_match_local_cap_id
, NULL
);
865 if (arch_timer_c3stop
)
866 clk
->features
|= CLOCK_EVT_FEAT_C3STOP
;
867 clk
->name
= "arch_sys_timer";
869 clk
->cpumask
= cpumask_of(smp_processor_id());
870 clk
->irq
= arch_timer_ppi
[arch_timer_uses_ppi
];
871 switch (arch_timer_uses_ppi
) {
872 case ARCH_TIMER_VIRT_PPI
:
873 clk
->set_state_shutdown
= arch_timer_shutdown_virt
;
874 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt
;
875 sne
= erratum_handler(set_next_event_virt
);
877 case ARCH_TIMER_PHYS_SECURE_PPI
:
878 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
879 case ARCH_TIMER_HYP_PPI
:
880 clk
->set_state_shutdown
= arch_timer_shutdown_phys
;
881 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys
;
882 sne
= erratum_handler(set_next_event_phys
);
888 clk
->set_next_event
= sne
;
889 max_delta
= __arch_timer_check_delta();
891 clk
->features
|= CLOCK_EVT_FEAT_DYNIRQ
;
892 clk
->name
= "arch_mem_timer";
894 clk
->cpumask
= cpu_possible_mask
;
895 if (arch_timer_mem_use_virtual
) {
896 clk
->set_state_shutdown
= arch_timer_shutdown_virt_mem
;
897 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt_mem
;
898 clk
->set_next_event
=
899 arch_timer_set_next_event_virt_mem
;
901 clk
->set_state_shutdown
= arch_timer_shutdown_phys_mem
;
902 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys_mem
;
903 clk
->set_next_event
=
904 arch_timer_set_next_event_phys_mem
;
907 max_delta
= CLOCKSOURCE_MASK(56);
910 clk
->set_state_shutdown(clk
);
912 clockevents_config_and_register(clk
, arch_timer_rate
, 0xf, max_delta
);
915 static void arch_timer_evtstrm_enable(unsigned int divider
)
917 u32 cntkctl
= arch_timer_get_cntkctl();
920 /* ECV is likely to require a large divider. Use the EVNTIS flag. */
921 if (cpus_have_final_cap(ARM64_HAS_ECV
) && divider
> 15) {
922 cntkctl
|= ARCH_TIMER_EVT_INTERVAL_SCALE
;
927 divider
= min(divider
, 15U);
928 cntkctl
&= ~ARCH_TIMER_EVT_TRIGGER_MASK
;
929 /* Set the divider and enable virtual event stream */
930 cntkctl
|= (divider
<< ARCH_TIMER_EVT_TRIGGER_SHIFT
)
931 | ARCH_TIMER_VIRT_EVT_EN
;
932 arch_timer_set_cntkctl(cntkctl
);
933 arch_timer_set_evtstrm_feature();
934 cpumask_set_cpu(smp_processor_id(), &evtstrm_available
);
937 static void arch_timer_configure_evtstream(void)
939 int evt_stream_div
, lsb
;
942 * As the event stream can at most be generated at half the frequency
943 * of the counter, use half the frequency when computing the divider.
945 evt_stream_div
= arch_timer_rate
/ ARCH_TIMER_EVT_STREAM_FREQ
/ 2;
948 * Find the closest power of two to the divisor. If the adjacent bit
949 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
951 lsb
= fls(evt_stream_div
) - 1;
952 if (lsb
> 0 && (evt_stream_div
& BIT(lsb
- 1)))
955 /* enable event stream */
956 arch_timer_evtstrm_enable(max(0, lsb
));
959 static int arch_timer_evtstrm_starting_cpu(unsigned int cpu
)
961 arch_timer_configure_evtstream();
965 static int arch_timer_evtstrm_dying_cpu(unsigned int cpu
)
967 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available
);
971 static int __init
arch_timer_evtstrm_register(void)
973 if (!arch_timer_evt
|| !evtstrm_enable
)
976 return cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_EVTSTRM_STARTING
,
977 "clockevents/arm/arch_timer_evtstrm:starting",
978 arch_timer_evtstrm_starting_cpu
,
979 arch_timer_evtstrm_dying_cpu
);
981 core_initcall(arch_timer_evtstrm_register
);
983 static void arch_counter_set_user_access(void)
985 u32 cntkctl
= arch_timer_get_cntkctl();
987 /* Disable user access to the timers and both counters */
988 /* Also disable virtual event stream */
989 cntkctl
&= ~(ARCH_TIMER_USR_PT_ACCESS_EN
990 | ARCH_TIMER_USR_VT_ACCESS_EN
991 | ARCH_TIMER_USR_VCT_ACCESS_EN
992 | ARCH_TIMER_VIRT_EVT_EN
993 | ARCH_TIMER_USR_PCT_ACCESS_EN
);
996 * Enable user access to the virtual counter if it doesn't
997 * need to be workaround. The vdso may have been already
1000 if (arch_timer_this_cpu_has_cntvct_wa())
1001 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
1003 cntkctl
|= ARCH_TIMER_USR_VCT_ACCESS_EN
;
1005 arch_timer_set_cntkctl(cntkctl
);
1008 static bool arch_timer_has_nonsecure_ppi(void)
1010 return (arch_timer_uses_ppi
== ARCH_TIMER_PHYS_SECURE_PPI
&&
1011 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
1014 static u32
check_ppi_trigger(int irq
)
1016 u32 flags
= irq_get_trigger_type(irq
);
1018 if (flags
!= IRQF_TRIGGER_HIGH
&& flags
!= IRQF_TRIGGER_LOW
) {
1019 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq
);
1020 pr_warn("WARNING: Please fix your firmware\n");
1021 flags
= IRQF_TRIGGER_LOW
;
1027 static int arch_timer_starting_cpu(unsigned int cpu
)
1029 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
1032 __arch_timer_setup(ARCH_TIMER_TYPE_CP15
, clk
);
1034 flags
= check_ppi_trigger(arch_timer_ppi
[arch_timer_uses_ppi
]);
1035 enable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], flags
);
1037 if (arch_timer_has_nonsecure_ppi()) {
1038 flags
= check_ppi_trigger(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
1039 enable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
1043 arch_counter_set_user_access();
1048 static int validate_timer_rate(void)
1050 if (!arch_timer_rate
)
1053 /* Arch timer frequency < 1MHz can cause trouble */
1054 WARN_ON(arch_timer_rate
< 1000000);
1060 * For historical reasons, when probing with DT we use whichever (non-zero)
1061 * rate was probed first, and don't verify that others match. If the first node
1062 * probed has a clock-frequency property, this overrides the HW register.
1064 static void __init
arch_timer_of_configure_rate(u32 rate
, struct device_node
*np
)
1066 /* Who has more than one independent system counter? */
1067 if (arch_timer_rate
)
1070 if (of_property_read_u32(np
, "clock-frequency", &arch_timer_rate
))
1071 arch_timer_rate
= rate
;
1073 /* Check the timer frequency. */
1074 if (validate_timer_rate())
1075 pr_warn("frequency not available\n");
1078 static void __init
arch_timer_banner(unsigned type
)
1080 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1081 type
& ARCH_TIMER_TYPE_CP15
? "cp15" : "",
1082 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ?
1084 type
& ARCH_TIMER_TYPE_MEM
? "mmio" : "",
1085 (unsigned long)arch_timer_rate
/ 1000000,
1086 (unsigned long)(arch_timer_rate
/ 10000) % 100,
1087 type
& ARCH_TIMER_TYPE_CP15
?
1088 (arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
) ? "virt" : "phys" :
1090 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ? "/" : "",
1091 type
& ARCH_TIMER_TYPE_MEM
?
1092 arch_timer_mem_use_virtual
? "virt" : "phys" :
1096 u32
arch_timer_get_rate(void)
1098 return arch_timer_rate
;
1101 bool arch_timer_evtstrm_available(void)
1104 * We might get called from a preemptible context. This is fine
1105 * because availability of the event stream should be always the same
1106 * for a preemptible context and context where we might resume a task.
1108 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available
);
1111 static noinstr u64
arch_counter_get_cntvct_mem(void)
1113 return arch_counter_get_cnt_mem(arch_timer_mem
, CNTVCT_LO
);
1116 static struct arch_timer_kvm_info arch_timer_kvm_info
;
1118 struct arch_timer_kvm_info
*arch_timer_get_kvm_info(void)
1120 return &arch_timer_kvm_info
;
1123 static void __init
arch_counter_register(unsigned type
)
1129 /* Register the CP15 based counter if we have one */
1130 if (type
& ARCH_TIMER_TYPE_CP15
) {
1133 if ((IS_ENABLED(CONFIG_ARM64
) && !is_hyp_mode_available()) ||
1134 arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
) {
1135 if (arch_timer_counter_has_wa()) {
1136 rd
= arch_counter_get_cntvct_stable
;
1137 scr
= raw_counter_get_cntvct_stable
;
1139 rd
= arch_counter_get_cntvct
;
1140 scr
= arch_counter_get_cntvct
;
1143 if (arch_timer_counter_has_wa()) {
1144 rd
= arch_counter_get_cntpct_stable
;
1145 scr
= raw_counter_get_cntpct_stable
;
1147 rd
= arch_counter_get_cntpct
;
1148 scr
= arch_counter_get_cntpct
;
1152 arch_timer_read_counter
= rd
;
1153 clocksource_counter
.vdso_clock_mode
= vdso_default
;
1155 arch_timer_read_counter
= arch_counter_get_cntvct_mem
;
1156 scr
= arch_counter_get_cntvct_mem
;
1159 width
= arch_counter_get_width();
1160 clocksource_counter
.mask
= CLOCKSOURCE_MASK(width
);
1161 cyclecounter
.mask
= CLOCKSOURCE_MASK(width
);
1163 if (!arch_counter_suspend_stop
)
1164 clocksource_counter
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
1165 start_count
= arch_timer_read_counter();
1166 clocksource_register_hz(&clocksource_counter
, arch_timer_rate
);
1167 cyclecounter
.mult
= clocksource_counter
.mult
;
1168 cyclecounter
.shift
= clocksource_counter
.shift
;
1169 timecounter_init(&arch_timer_kvm_info
.timecounter
,
1170 &cyclecounter
, start_count
);
1172 sched_clock_register(scr
, width
, arch_timer_rate
);
1175 static void arch_timer_stop(struct clock_event_device
*clk
)
1177 pr_debug("disable IRQ%d cpu #%d\n", clk
->irq
, smp_processor_id());
1179 disable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
]);
1180 if (arch_timer_has_nonsecure_ppi())
1181 disable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
1184 static int arch_timer_dying_cpu(unsigned int cpu
)
1186 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
1188 arch_timer_stop(clk
);
1192 #ifdef CONFIG_CPU_PM
1193 static DEFINE_PER_CPU(unsigned long, saved_cntkctl
);
1194 static int arch_timer_cpu_pm_notify(struct notifier_block
*self
,
1195 unsigned long action
, void *hcpu
)
1197 if (action
== CPU_PM_ENTER
) {
1198 __this_cpu_write(saved_cntkctl
, arch_timer_get_cntkctl());
1200 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available
);
1201 } else if (action
== CPU_PM_ENTER_FAILED
|| action
== CPU_PM_EXIT
) {
1202 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl
));
1204 if (arch_timer_have_evtstrm_feature())
1205 cpumask_set_cpu(smp_processor_id(), &evtstrm_available
);
1210 static struct notifier_block arch_timer_cpu_pm_notifier
= {
1211 .notifier_call
= arch_timer_cpu_pm_notify
,
1214 static int __init
arch_timer_cpu_pm_init(void)
1216 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier
);
1219 static void __init
arch_timer_cpu_pm_deinit(void)
1221 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier
));
1225 static int __init
arch_timer_cpu_pm_init(void)
1230 static void __init
arch_timer_cpu_pm_deinit(void)
1235 static int __init
arch_timer_register(void)
1240 arch_timer_evt
= alloc_percpu(struct clock_event_device
);
1241 if (!arch_timer_evt
) {
1246 ppi
= arch_timer_ppi
[arch_timer_uses_ppi
];
1247 switch (arch_timer_uses_ppi
) {
1248 case ARCH_TIMER_VIRT_PPI
:
1249 err
= request_percpu_irq(ppi
, arch_timer_handler_virt
,
1250 "arch_timer", arch_timer_evt
);
1252 case ARCH_TIMER_PHYS_SECURE_PPI
:
1253 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
1254 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1255 "arch_timer", arch_timer_evt
);
1256 if (!err
&& arch_timer_has_nonsecure_ppi()) {
1257 ppi
= arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
];
1258 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1259 "arch_timer", arch_timer_evt
);
1261 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_SECURE_PPI
],
1265 case ARCH_TIMER_HYP_PPI
:
1266 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1267 "arch_timer", arch_timer_evt
);
1274 pr_err("can't register interrupt %d (%d)\n", ppi
, err
);
1278 err
= arch_timer_cpu_pm_init();
1280 goto out_unreg_notify
;
1282 /* Register and immediately configure the timer on the boot CPU */
1283 err
= cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING
,
1284 "clockevents/arm/arch_timer:starting",
1285 arch_timer_starting_cpu
, arch_timer_dying_cpu
);
1287 goto out_unreg_cpupm
;
1291 arch_timer_cpu_pm_deinit();
1294 free_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], arch_timer_evt
);
1295 if (arch_timer_has_nonsecure_ppi())
1296 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
1300 free_percpu(arch_timer_evt
);
1301 arch_timer_evt
= NULL
;
1306 static int __init
arch_timer_mem_register(void __iomem
*base
, unsigned int irq
)
1311 arch_timer_mem
= kzalloc(sizeof(*arch_timer_mem
), GFP_KERNEL
);
1312 if (!arch_timer_mem
)
1315 arch_timer_mem
->base
= base
;
1316 arch_timer_mem
->evt
.irq
= irq
;
1317 __arch_timer_setup(ARCH_TIMER_TYPE_MEM
, &arch_timer_mem
->evt
);
1319 if (arch_timer_mem_use_virtual
)
1320 func
= arch_timer_handler_virt_mem
;
1322 func
= arch_timer_handler_phys_mem
;
1324 ret
= request_irq(irq
, func
, IRQF_TIMER
, "arch_mem_timer", &arch_timer_mem
->evt
);
1326 pr_err("Failed to request mem timer irq\n");
1327 kfree(arch_timer_mem
);
1328 arch_timer_mem
= NULL
;
1334 static const struct of_device_id arch_timer_of_match
[] __initconst
= {
1335 { .compatible
= "arm,armv7-timer", },
1336 { .compatible
= "arm,armv8-timer", },
1340 static const struct of_device_id arch_timer_mem_of_match
[] __initconst
= {
1341 { .compatible
= "arm,armv7-timer-mem", },
1345 static bool __init
arch_timer_needs_of_probing(void)
1347 struct device_node
*dn
;
1348 bool needs_probing
= false;
1349 unsigned int mask
= ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
;
1351 /* We have two timers, and both device-tree nodes are probed. */
1352 if ((arch_timers_present
& mask
) == mask
)
1356 * Only one type of timer is probed,
1357 * check if we have another type of timer node in device-tree.
1359 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
)
1360 dn
= of_find_matching_node(NULL
, arch_timer_mem_of_match
);
1362 dn
= of_find_matching_node(NULL
, arch_timer_of_match
);
1364 if (dn
&& of_device_is_available(dn
))
1365 needs_probing
= true;
1369 return needs_probing
;
1372 static int __init
arch_timer_common_init(void)
1374 arch_timer_banner(arch_timers_present
);
1375 arch_counter_register(arch_timers_present
);
1376 return arch_timer_arch_init();
1380 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1382 * If HYP mode is available, we know that the physical timer
1383 * has been configured to be accessible from PL1. Use it, so
1384 * that a guest can use the virtual timer instead.
1386 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1387 * accesses to CNTP_*_EL1 registers are silently redirected to
1388 * their CNTHP_*_EL2 counterparts, and use a different PPI
1391 * If no interrupt provided for virtual timer, we'll have to
1392 * stick to the physical timer. It'd better be accessible...
1393 * For arm64 we never use the secure interrupt.
1395 * Return: a suitable PPI type for the current system.
1397 static enum arch_timer_ppi_nr __init
arch_timer_select_ppi(void)
1399 if (is_kernel_in_hyp_mode())
1400 return ARCH_TIMER_HYP_PPI
;
1402 if (!is_hyp_mode_available() && arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
])
1403 return ARCH_TIMER_VIRT_PPI
;
1405 if (IS_ENABLED(CONFIG_ARM64
))
1406 return ARCH_TIMER_PHYS_NONSECURE_PPI
;
1408 return ARCH_TIMER_PHYS_SECURE_PPI
;
1411 static void __init
arch_timer_populate_kvm_info(void)
1413 arch_timer_kvm_info
.virtual_irq
= arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
];
1414 if (is_kernel_in_hyp_mode())
1415 arch_timer_kvm_info
.physical_irq
= arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
];
1418 static int __init
arch_timer_of_init(struct device_node
*np
)
1424 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1425 pr_warn("multiple nodes in dt, skipping\n");
1429 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1431 has_names
= of_property_present(np
, "interrupt-names");
1433 for (i
= ARCH_TIMER_PHYS_SECURE_PPI
; i
< ARCH_TIMER_MAX_TIMER_PPI
; i
++) {
1435 irq
= of_irq_get_byname(np
, arch_timer_ppi_names
[i
]);
1437 irq
= of_irq_get(np
, i
);
1439 arch_timer_ppi
[i
] = irq
;
1442 arch_timer_populate_kvm_info();
1444 rate
= arch_timer_get_cntfrq();
1445 arch_timer_of_configure_rate(rate
, np
);
1447 arch_timer_c3stop
= !of_property_read_bool(np
, "always-on");
1449 /* Check for globally applicable workarounds */
1450 arch_timer_check_ool_workaround(ate_match_dt
, np
);
1453 * If we cannot rely on firmware initializing the timer registers then
1454 * we should use the physical timers instead.
1456 if (IS_ENABLED(CONFIG_ARM
) &&
1457 of_property_read_bool(np
, "arm,cpu-registers-not-fw-configured"))
1458 arch_timer_uses_ppi
= ARCH_TIMER_PHYS_SECURE_PPI
;
1460 arch_timer_uses_ppi
= arch_timer_select_ppi();
1462 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1463 pr_err("No interrupt available, giving up\n");
1467 /* On some systems, the counter stops ticking when in suspend. */
1468 arch_counter_suspend_stop
= of_property_read_bool(np
,
1469 "arm,no-tick-in-suspend");
1471 ret
= arch_timer_register();
1475 if (arch_timer_needs_of_probing())
1478 return arch_timer_common_init();
1480 TIMER_OF_DECLARE(armv7_arch_timer
, "arm,armv7-timer", arch_timer_of_init
);
1481 TIMER_OF_DECLARE(armv8_arch_timer
, "arm,armv8-timer", arch_timer_of_init
);
1484 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame
*frame
)
1489 base
= ioremap(frame
->cntbase
, frame
->size
);
1491 pr_err("Unable to map frame @ %pa\n", &frame
->cntbase
);
1495 rate
= readl_relaxed(base
+ CNTFRQ
);
1502 static struct arch_timer_mem_frame
* __init
1503 arch_timer_mem_find_best_frame(struct arch_timer_mem
*timer_mem
)
1505 struct arch_timer_mem_frame
*frame
, *best_frame
= NULL
;
1506 void __iomem
*cntctlbase
;
1510 cntctlbase
= ioremap(timer_mem
->cntctlbase
, timer_mem
->size
);
1512 pr_err("Can't map CNTCTLBase @ %pa\n",
1513 &timer_mem
->cntctlbase
);
1517 cnttidr
= readl_relaxed(cntctlbase
+ CNTTIDR
);
1520 * Try to find a virtual capable frame. Otherwise fall back to a
1521 * physical capable frame.
1523 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1524 u32 cntacr
= CNTACR_RFRQ
| CNTACR_RWPT
| CNTACR_RPCT
|
1525 CNTACR_RWVT
| CNTACR_RVOFF
| CNTACR_RVCT
;
1527 frame
= &timer_mem
->frame
[i
];
1531 /* Try enabling everything, and see what sticks */
1532 writel_relaxed(cntacr
, cntctlbase
+ CNTACR(i
));
1533 cntacr
= readl_relaxed(cntctlbase
+ CNTACR(i
));
1535 if ((cnttidr
& CNTTIDR_VIRT(i
)) &&
1536 !(~cntacr
& (CNTACR_RWVT
| CNTACR_RVCT
))) {
1538 arch_timer_mem_use_virtual
= true;
1542 if (~cntacr
& (CNTACR_RWPT
| CNTACR_RPCT
))
1548 iounmap(cntctlbase
);
1554 arch_timer_mem_frame_register(struct arch_timer_mem_frame
*frame
)
1559 if (arch_timer_mem_use_virtual
)
1560 irq
= frame
->virt_irq
;
1562 irq
= frame
->phys_irq
;
1565 pr_err("Frame missing %s irq.\n",
1566 arch_timer_mem_use_virtual
? "virt" : "phys");
1570 if (!request_mem_region(frame
->cntbase
, frame
->size
,
1574 base
= ioremap(frame
->cntbase
, frame
->size
);
1576 pr_err("Can't map frame's registers\n");
1580 ret
= arch_timer_mem_register(base
, irq
);
1586 arch_timers_present
|= ARCH_TIMER_TYPE_MEM
;
1591 static int __init
arch_timer_mem_of_init(struct device_node
*np
)
1593 struct arch_timer_mem
*timer_mem
;
1594 struct arch_timer_mem_frame
*frame
;
1595 struct resource res
;
1599 timer_mem
= kzalloc(sizeof(*timer_mem
), GFP_KERNEL
);
1603 if (of_address_to_resource(np
, 0, &res
))
1605 timer_mem
->cntctlbase
= res
.start
;
1606 timer_mem
->size
= resource_size(&res
);
1608 for_each_available_child_of_node_scoped(np
, frame_node
) {
1610 struct arch_timer_mem_frame
*frame
;
1612 if (of_property_read_u32(frame_node
, "frame-number", &n
)) {
1613 pr_err(FW_BUG
"Missing frame-number.\n");
1616 if (n
>= ARCH_TIMER_MEM_MAX_FRAMES
) {
1617 pr_err(FW_BUG
"Wrong frame-number, only 0-%u are permitted.\n",
1618 ARCH_TIMER_MEM_MAX_FRAMES
- 1);
1621 frame
= &timer_mem
->frame
[n
];
1624 pr_err(FW_BUG
"Duplicated frame-number.\n");
1628 if (of_address_to_resource(frame_node
, 0, &res
))
1631 frame
->cntbase
= res
.start
;
1632 frame
->size
= resource_size(&res
);
1634 frame
->virt_irq
= irq_of_parse_and_map(frame_node
,
1635 ARCH_TIMER_VIRT_SPI
);
1636 frame
->phys_irq
= irq_of_parse_and_map(frame_node
,
1637 ARCH_TIMER_PHYS_SPI
);
1639 frame
->valid
= true;
1642 frame
= arch_timer_mem_find_best_frame(timer_mem
);
1644 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1645 &timer_mem
->cntctlbase
);
1650 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1651 arch_timer_of_configure_rate(rate
, np
);
1653 ret
= arch_timer_mem_frame_register(frame
);
1654 if (!ret
&& !arch_timer_needs_of_probing())
1655 ret
= arch_timer_common_init();
1660 TIMER_OF_DECLARE(armv7_arch_timer_mem
, "arm,armv7-timer-mem",
1661 arch_timer_mem_of_init
);
1663 #ifdef CONFIG_ACPI_GTDT
1665 arch_timer_mem_verify_cntfrq(struct arch_timer_mem
*timer_mem
)
1667 struct arch_timer_mem_frame
*frame
;
1671 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1672 frame
= &timer_mem
->frame
[i
];
1677 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1678 if (rate
== arch_timer_rate
)
1681 pr_err(FW_BUG
"CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1683 (unsigned long)rate
, (unsigned long)arch_timer_rate
);
1691 static int __init
arch_timer_mem_acpi_init(int platform_timer_count
)
1693 struct arch_timer_mem
*timers
, *timer
;
1694 struct arch_timer_mem_frame
*frame
, *best_frame
= NULL
;
1695 int timer_count
, i
, ret
= 0;
1697 timers
= kcalloc(platform_timer_count
, sizeof(*timers
),
1702 ret
= acpi_arch_timer_mem_init(timers
, &timer_count
);
1703 if (ret
|| !timer_count
)
1707 * While unlikely, it's theoretically possible that none of the frames
1708 * in a timer expose the combination of feature we want.
1710 for (i
= 0; i
< timer_count
; i
++) {
1713 frame
= arch_timer_mem_find_best_frame(timer
);
1717 ret
= arch_timer_mem_verify_cntfrq(timer
);
1719 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1723 if (!best_frame
) /* implies !frame */
1725 * Only complain about missing suitable frames if we
1726 * haven't already found one in a previous iteration.
1728 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1729 &timer
->cntctlbase
);
1733 ret
= arch_timer_mem_frame_register(best_frame
);
1739 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1740 static int __init
arch_timer_acpi_init(struct acpi_table_header
*table
)
1742 int ret
, platform_timer_count
;
1744 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1745 pr_warn("already initialized, skipping\n");
1749 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1751 ret
= acpi_gtdt_init(table
, &platform_timer_count
);
1755 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
] =
1756 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI
);
1758 arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
] =
1759 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI
);
1761 arch_timer_ppi
[ARCH_TIMER_HYP_PPI
] =
1762 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI
);
1764 arch_timer_populate_kvm_info();
1767 * When probing via ACPI, we have no mechanism to override the sysreg
1768 * CNTFRQ value. This *must* be correct.
1770 arch_timer_rate
= arch_timer_get_cntfrq();
1771 ret
= validate_timer_rate();
1773 pr_err(FW_BUG
"frequency not available.\n");
1777 arch_timer_uses_ppi
= arch_timer_select_ppi();
1778 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1779 pr_err("No interrupt available, giving up\n");
1783 /* Always-on capability */
1784 arch_timer_c3stop
= acpi_gtdt_c3stop(arch_timer_uses_ppi
);
1786 /* Check for globally applicable workarounds */
1787 arch_timer_check_ool_workaround(ate_match_acpi_oem_info
, table
);
1789 ret
= arch_timer_register();
1793 if (platform_timer_count
&&
1794 arch_timer_mem_acpi_init(platform_timer_count
))
1795 pr_err("Failed to initialize memory-mapped timer.\n");
1797 return arch_timer_common_init();
1799 TIMER_ACPI_DECLARE(arch_timer
, ACPI_SIG_GTDT
, arch_timer_acpi_init
);
1802 int kvm_arch_ptp_get_crosststamp(u64
*cycle
, struct timespec64
*ts
,
1803 enum clocksource_ids
*cs_id
)
1805 struct arm_smccc_res hvc_res
;
1809 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY
))
1812 if (arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
)
1813 ptp_counter
= KVM_PTP_VIRT_COUNTER
;
1815 ptp_counter
= KVM_PTP_PHYS_COUNTER
;
1817 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID
,
1818 ptp_counter
, &hvc_res
);
1820 if ((int)(hvc_res
.a0
) < 0)
1823 ktime
= (u64
)hvc_res
.a0
<< 32 | hvc_res
.a1
;
1824 *ts
= ktime_to_timespec64(ktime
);
1826 *cycle
= (u64
)hvc_res
.a2
<< 32 | hvc_res
.a3
;
1828 *cs_id
= CSID_ARM_ARCH_COUNTER
;
1832 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp
);