1 // SPDX-License-Identifier: GPL-2.0-only
2 /* linux/arch/arm/mach-exynos4/mct.c
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
7 * Exynos4 MCT(Multi-Core Timer) support
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/err.h>
13 #include <linux/clk.h>
14 #include <linux/clockchips.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/clocksource.h>
22 #include <linux/sched_clock.h>
24 #define EXYNOS4_MCTREG(x) (x)
25 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
26 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
27 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
28 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
29 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
30 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
31 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
32 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
33 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
34 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
35 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
36 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * (x)))
37 #define EXYNOS4_MCT_L_MASK (0xffffff00)
39 #define MCT_L_TCNTB_OFFSET (0x00)
40 #define MCT_L_ICNTB_OFFSET (0x08)
41 #define MCT_L_TCON_OFFSET (0x20)
42 #define MCT_L_INT_CSTAT_OFFSET (0x30)
43 #define MCT_L_INT_ENB_OFFSET (0x34)
44 #define MCT_L_WSTAT_OFFSET (0x40)
45 #define MCT_G_TCON_START (1 << 8)
46 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
47 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
48 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
49 #define MCT_L_TCON_INT_START (1 << 1)
50 #define MCT_L_TCON_TIMER_START (1 << 0)
52 #define TICK_BASE_CNT 1
55 /* Use values higher than ARM arch timer. See 6282edb72bed. */
56 #define MCT_CLKSOURCE_RATING 450
57 #define MCT_CLKEVENTS_RATING 500
59 #define MCT_CLKSOURCE_RATING 350
60 #define MCT_CLKEVENTS_RATING 350
63 /* There are four Global timers starting with 0 offset */
65 /* Local timers count starts after global timer count */
67 /* Max number of IRQ as per DT binding document */
68 #define MCT_NR_IRQS 20
69 /* Max number of local timers */
70 #define MCT_NR_LOCAL (MCT_NR_IRQS - MCT_L0_IRQ)
77 static void __iomem
*reg_base
;
78 static unsigned long clk_rate
;
79 static unsigned int mct_int_type
;
80 static int mct_irqs
[MCT_NR_IRQS
];
82 struct mct_clock_event_device
{
83 struct clock_event_device evt
;
86 * The length of the name must be adjusted if number of
87 * local timer interrupts grow over two digits
92 static void exynos4_mct_write(unsigned int value
, unsigned long offset
)
94 unsigned long stat_addr
;
98 writel_relaxed(value
, reg_base
+ offset
);
100 if (likely(offset
>= EXYNOS4_MCT_L_BASE(0))) {
101 stat_addr
= (offset
& EXYNOS4_MCT_L_MASK
) + MCT_L_WSTAT_OFFSET
;
102 switch (offset
& ~EXYNOS4_MCT_L_MASK
) {
103 case MCT_L_TCON_OFFSET
:
104 mask
= 1 << 3; /* L_TCON write status */
106 case MCT_L_ICNTB_OFFSET
:
107 mask
= 1 << 1; /* L_ICNTB write status */
109 case MCT_L_TCNTB_OFFSET
:
110 mask
= 1 << 0; /* L_TCNTB write status */
117 case EXYNOS4_MCT_G_TCON
:
118 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
119 mask
= 1 << 16; /* G_TCON write status */
121 case EXYNOS4_MCT_G_COMP0_L
:
122 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
123 mask
= 1 << 0; /* G_COMP0_L write status */
125 case EXYNOS4_MCT_G_COMP0_U
:
126 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
127 mask
= 1 << 1; /* G_COMP0_U write status */
129 case EXYNOS4_MCT_G_COMP0_ADD_INCR
:
130 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
131 mask
= 1 << 2; /* G_COMP0_ADD_INCR w status */
133 case EXYNOS4_MCT_G_CNT_L
:
134 stat_addr
= EXYNOS4_MCT_G_CNT_WSTAT
;
135 mask
= 1 << 0; /* G_CNT_L write status */
137 case EXYNOS4_MCT_G_CNT_U
:
138 stat_addr
= EXYNOS4_MCT_G_CNT_WSTAT
;
139 mask
= 1 << 1; /* G_CNT_U write status */
146 /* Wait maximum 1 ms until written values are applied */
147 for (i
= 0; i
< loops_per_jiffy
/ 1000 * HZ
; i
++)
148 if (readl_relaxed(reg_base
+ stat_addr
) & mask
) {
149 writel_relaxed(mask
, reg_base
+ stat_addr
);
153 panic("MCT hangs after writing %d (offset:0x%lx)\n", value
, offset
);
156 /* Clocksource handling */
157 static void exynos4_mct_frc_start(void)
161 reg
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_TCON
);
162 reg
|= MCT_G_TCON_START
;
163 exynos4_mct_write(reg
, EXYNOS4_MCT_G_TCON
);
167 * exynos4_read_count_64 - Read all 64-bits of the global counter
169 * This will read all 64-bits of the global counter taking care to make sure
170 * that the upper and lower half match. Note that reading the MCT can be quite
171 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
172 * only) version when possible.
174 * Returns the number of cycles in the global counter.
176 static u64
exynos4_read_count_64(void)
179 u32 hi2
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_CNT_U
);
183 lo
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_CNT_L
);
184 hi2
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_CNT_U
);
187 return ((u64
)hi
<< 32) | lo
;
191 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
193 * This will read just the lower 32-bits of the global counter. This is marked
194 * as notrace so it can be used by the scheduler clock.
196 * Returns the number of cycles in the global counter (lower 32 bits).
198 static u32 notrace
exynos4_read_count_32(void)
200 return readl_relaxed(reg_base
+ EXYNOS4_MCT_G_CNT_L
);
203 static u64
exynos4_frc_read(struct clocksource
*cs
)
205 return exynos4_read_count_32();
208 static void exynos4_frc_resume(struct clocksource
*cs
)
210 exynos4_mct_frc_start();
213 static struct clocksource mct_frc
= {
215 .rating
= MCT_CLKSOURCE_RATING
,
216 .read
= exynos4_frc_read
,
217 .mask
= CLOCKSOURCE_MASK(32),
218 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
219 .resume
= exynos4_frc_resume
,
222 static u64 notrace
exynos4_read_sched_clock(void)
224 return exynos4_read_count_32();
227 #if defined(CONFIG_ARM)
228 static struct delay_timer exynos4_delay_timer
;
230 static cycles_t
exynos4_read_current_timer(void)
232 BUILD_BUG_ON_MSG(sizeof(cycles_t
) != sizeof(u32
),
233 "cycles_t needs to move to 32-bit for ARM64 usage");
234 return exynos4_read_count_32();
238 static int __init
exynos4_clocksource_init(bool frc_shared
)
241 * When the frc is shared, the main processer should have already
242 * turned it on and we shouldn't be writing to TCON.
245 mct_frc
.resume
= NULL
;
247 exynos4_mct_frc_start();
249 #if defined(CONFIG_ARM)
250 exynos4_delay_timer
.read_current_timer
= &exynos4_read_current_timer
;
251 exynos4_delay_timer
.freq
= clk_rate
;
252 register_current_timer_delay(&exynos4_delay_timer
);
255 if (clocksource_register_hz(&mct_frc
, clk_rate
))
256 panic("%s: can't register clocksource\n", mct_frc
.name
);
258 sched_clock_register(exynos4_read_sched_clock
, 32, clk_rate
);
263 static void exynos4_mct_comp0_stop(void)
267 tcon
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_TCON
);
268 tcon
&= ~(MCT_G_TCON_COMP0_ENABLE
| MCT_G_TCON_COMP0_AUTO_INC
);
270 exynos4_mct_write(tcon
, EXYNOS4_MCT_G_TCON
);
271 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB
);
274 static void exynos4_mct_comp0_start(bool periodic
, unsigned long cycles
)
279 tcon
= readl_relaxed(reg_base
+ EXYNOS4_MCT_G_TCON
);
282 tcon
|= MCT_G_TCON_COMP0_AUTO_INC
;
283 exynos4_mct_write(cycles
, EXYNOS4_MCT_G_COMP0_ADD_INCR
);
286 comp_cycle
= exynos4_read_count_64() + cycles
;
287 exynos4_mct_write((u32
)comp_cycle
, EXYNOS4_MCT_G_COMP0_L
);
288 exynos4_mct_write((u32
)(comp_cycle
>> 32), EXYNOS4_MCT_G_COMP0_U
);
290 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB
);
292 tcon
|= MCT_G_TCON_COMP0_ENABLE
;
293 exynos4_mct_write(tcon
, EXYNOS4_MCT_G_TCON
);
296 static int exynos4_comp_set_next_event(unsigned long cycles
,
297 struct clock_event_device
*evt
)
299 exynos4_mct_comp0_start(false, cycles
);
304 static int mct_set_state_shutdown(struct clock_event_device
*evt
)
306 exynos4_mct_comp0_stop();
310 static int mct_set_state_periodic(struct clock_event_device
*evt
)
312 unsigned long cycles_per_jiffy
;
314 cycles_per_jiffy
= (((unsigned long long)NSEC_PER_SEC
/ HZ
* evt
->mult
)
316 exynos4_mct_comp0_stop();
317 exynos4_mct_comp0_start(true, cycles_per_jiffy
);
321 static struct clock_event_device mct_comp_device
= {
323 .features
= CLOCK_EVT_FEAT_PERIODIC
|
324 CLOCK_EVT_FEAT_ONESHOT
,
326 .set_next_event
= exynos4_comp_set_next_event
,
327 .set_state_periodic
= mct_set_state_periodic
,
328 .set_state_shutdown
= mct_set_state_shutdown
,
329 .set_state_oneshot
= mct_set_state_shutdown
,
330 .set_state_oneshot_stopped
= mct_set_state_shutdown
,
331 .tick_resume
= mct_set_state_shutdown
,
334 static irqreturn_t
exynos4_mct_comp_isr(int irq
, void *dev_id
)
336 struct clock_event_device
*evt
= dev_id
;
338 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT
);
340 evt
->event_handler(evt
);
345 static int exynos4_clockevent_init(void)
347 mct_comp_device
.cpumask
= cpumask_of(0);
348 clockevents_config_and_register(&mct_comp_device
, clk_rate
,
350 if (request_irq(mct_irqs
[MCT_G0_IRQ
], exynos4_mct_comp_isr
,
351 IRQF_TIMER
| IRQF_IRQPOLL
, "mct_comp_irq",
353 pr_err("%s: request_irq() failed\n", "mct_comp_irq");
358 static DEFINE_PER_CPU(struct mct_clock_event_device
, percpu_mct_tick
);
360 /* Clock event handling */
361 static void exynos4_mct_tick_stop(struct mct_clock_event_device
*mevt
)
364 unsigned long mask
= MCT_L_TCON_INT_START
| MCT_L_TCON_TIMER_START
;
365 unsigned long offset
= mevt
->base
+ MCT_L_TCON_OFFSET
;
367 tmp
= readl_relaxed(reg_base
+ offset
);
370 exynos4_mct_write(tmp
, offset
);
374 static void exynos4_mct_tick_start(unsigned long cycles
,
375 struct mct_clock_event_device
*mevt
)
379 exynos4_mct_tick_stop(mevt
);
381 tmp
= (1 << 31) | cycles
; /* MCT_L_UPDATE_ICNTB */
383 /* update interrupt count buffer */
384 exynos4_mct_write(tmp
, mevt
->base
+ MCT_L_ICNTB_OFFSET
);
386 /* enable MCT tick interrupt */
387 exynos4_mct_write(0x1, mevt
->base
+ MCT_L_INT_ENB_OFFSET
);
389 tmp
= readl_relaxed(reg_base
+ mevt
->base
+ MCT_L_TCON_OFFSET
);
390 tmp
|= MCT_L_TCON_INT_START
| MCT_L_TCON_TIMER_START
|
391 MCT_L_TCON_INTERVAL_MODE
;
392 exynos4_mct_write(tmp
, mevt
->base
+ MCT_L_TCON_OFFSET
);
395 static void exynos4_mct_tick_clear(struct mct_clock_event_device
*mevt
)
397 /* Clear the MCT tick interrupt */
398 if (readl_relaxed(reg_base
+ mevt
->base
+ MCT_L_INT_CSTAT_OFFSET
) & 1)
399 exynos4_mct_write(0x1, mevt
->base
+ MCT_L_INT_CSTAT_OFFSET
);
402 static int exynos4_tick_set_next_event(unsigned long cycles
,
403 struct clock_event_device
*evt
)
405 struct mct_clock_event_device
*mevt
;
407 mevt
= container_of(evt
, struct mct_clock_event_device
, evt
);
408 exynos4_mct_tick_start(cycles
, mevt
);
412 static int set_state_shutdown(struct clock_event_device
*evt
)
414 struct mct_clock_event_device
*mevt
;
416 mevt
= container_of(evt
, struct mct_clock_event_device
, evt
);
417 exynos4_mct_tick_stop(mevt
);
418 exynos4_mct_tick_clear(mevt
);
422 static int set_state_periodic(struct clock_event_device
*evt
)
424 struct mct_clock_event_device
*mevt
;
425 unsigned long cycles_per_jiffy
;
427 mevt
= container_of(evt
, struct mct_clock_event_device
, evt
);
428 cycles_per_jiffy
= (((unsigned long long)NSEC_PER_SEC
/ HZ
* evt
->mult
)
430 exynos4_mct_tick_stop(mevt
);
431 exynos4_mct_tick_start(cycles_per_jiffy
, mevt
);
435 static irqreturn_t
exynos4_mct_tick_isr(int irq
, void *dev_id
)
437 struct mct_clock_event_device
*mevt
= dev_id
;
438 struct clock_event_device
*evt
= &mevt
->evt
;
441 * This is for supporting oneshot mode.
442 * Mct would generate interrupt periodically
443 * without explicit stopping.
445 if (!clockevent_state_periodic(&mevt
->evt
))
446 exynos4_mct_tick_stop(mevt
);
448 exynos4_mct_tick_clear(mevt
);
450 evt
->event_handler(evt
);
455 static int exynos4_mct_starting_cpu(unsigned int cpu
)
457 struct mct_clock_event_device
*mevt
=
458 per_cpu_ptr(&percpu_mct_tick
, cpu
);
459 struct clock_event_device
*evt
= &mevt
->evt
;
461 snprintf(mevt
->name
, sizeof(mevt
->name
), "mct_tick%d", cpu
);
463 evt
->name
= mevt
->name
;
464 evt
->cpumask
= cpumask_of(cpu
);
465 evt
->set_next_event
= exynos4_tick_set_next_event
;
466 evt
->set_state_periodic
= set_state_periodic
;
467 evt
->set_state_shutdown
= set_state_shutdown
;
468 evt
->set_state_oneshot
= set_state_shutdown
;
469 evt
->set_state_oneshot_stopped
= set_state_shutdown
;
470 evt
->tick_resume
= set_state_shutdown
;
471 evt
->features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
|
472 CLOCK_EVT_FEAT_PERCPU
;
473 evt
->rating
= MCT_CLKEVENTS_RATING
;
475 exynos4_mct_write(TICK_BASE_CNT
, mevt
->base
+ MCT_L_TCNTB_OFFSET
);
477 if (mct_int_type
== MCT_INT_SPI
) {
482 irq_force_affinity(evt
->irq
, cpumask_of(cpu
));
483 enable_irq(evt
->irq
);
485 enable_percpu_irq(mct_irqs
[MCT_L0_IRQ
], 0);
487 clockevents_config_and_register(evt
, clk_rate
/ (TICK_BASE_CNT
+ 1),
493 static int exynos4_mct_dying_cpu(unsigned int cpu
)
495 struct mct_clock_event_device
*mevt
=
496 per_cpu_ptr(&percpu_mct_tick
, cpu
);
497 struct clock_event_device
*evt
= &mevt
->evt
;
499 if (mct_int_type
== MCT_INT_SPI
) {
501 disable_irq_nosync(evt
->irq
);
502 exynos4_mct_write(0x1, mevt
->base
+ MCT_L_INT_CSTAT_OFFSET
);
504 disable_percpu_irq(mct_irqs
[MCT_L0_IRQ
]);
509 static int __init
exynos4_timer_resources(struct device_node
*np
)
511 struct clk
*mct_clk
, *tick_clk
;
513 reg_base
= of_iomap(np
, 0);
515 panic("%s: unable to ioremap mct address space\n", __func__
);
517 tick_clk
= of_clk_get_by_name(np
, "fin_pll");
518 if (IS_ERR(tick_clk
))
519 panic("%s: unable to determine tick clock rate\n", __func__
);
520 clk_rate
= clk_get_rate(tick_clk
);
522 mct_clk
= of_clk_get_by_name(np
, "mct");
524 panic("%s: unable to retrieve mct clock instance\n", __func__
);
525 clk_prepare_enable(mct_clk
);
531 * exynos4_timer_interrupts - initialize MCT interrupts
532 * @np: device node for MCT
533 * @int_type: interrupt type, MCT_INT_PPI or MCT_INT_SPI
534 * @local_idx: array mapping CPU numbers to local timer indices
535 * @nr_local: size of @local_idx array
537 static int __init
exynos4_timer_interrupts(struct device_node
*np
,
538 unsigned int int_type
,
539 const u32
*local_idx
,
542 int nr_irqs
, i
, err
, cpu
;
544 mct_int_type
= int_type
;
546 /* This driver uses only one global timer interrupt */
547 mct_irqs
[MCT_G0_IRQ
] = irq_of_parse_and_map(np
, MCT_G0_IRQ
);
550 * Find out the number of local irqs specified. The local
551 * timer irqs are specified after the four global timer
552 * irqs are specified.
554 nr_irqs
= of_irq_count(np
);
555 if (nr_irqs
> ARRAY_SIZE(mct_irqs
)) {
556 pr_err("exynos-mct: too many (%d) interrupts configured in DT\n",
558 nr_irqs
= ARRAY_SIZE(mct_irqs
);
560 for (i
= MCT_L0_IRQ
; i
< nr_irqs
; i
++)
561 mct_irqs
[i
] = irq_of_parse_and_map(np
, i
);
563 if (mct_int_type
== MCT_INT_PPI
) {
565 err
= request_percpu_irq(mct_irqs
[MCT_L0_IRQ
],
566 exynos4_mct_tick_isr
, "MCT",
568 WARN(err
, "MCT: can't request IRQ %d (%d)\n",
569 mct_irqs
[MCT_L0_IRQ
], err
);
571 for_each_possible_cpu(cpu
) {
573 unsigned int irq_idx
;
574 struct mct_clock_event_device
*pcpu_mevt
=
575 per_cpu_ptr(&percpu_mct_tick
, cpu
);
577 if (cpu
>= nr_local
) {
582 irq_idx
= MCT_L0_IRQ
+ local_idx
[cpu
];
584 pcpu_mevt
->evt
.irq
= -1;
585 if (irq_idx
>= ARRAY_SIZE(mct_irqs
))
587 mct_irq
= mct_irqs
[irq_idx
];
589 irq_set_status_flags(mct_irq
, IRQ_NOAUTOEN
);
590 if (request_irq(mct_irq
,
591 exynos4_mct_tick_isr
,
592 IRQF_TIMER
| IRQF_NOBALANCING
,
593 pcpu_mevt
->name
, pcpu_mevt
)) {
594 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
599 pcpu_mevt
->evt
.irq
= mct_irq
;
603 for_each_possible_cpu(cpu
) {
604 struct mct_clock_event_device
*mevt
= per_cpu_ptr(&percpu_mct_tick
, cpu
);
606 if (cpu
>= nr_local
) {
611 mevt
->base
= EXYNOS4_MCT_L_BASE(local_idx
[cpu
]);
614 /* Install hotplug callbacks which configure the timer on this CPU */
615 err
= cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING
,
616 "clockevents/exynos4/mct_timer:starting",
617 exynos4_mct_starting_cpu
,
618 exynos4_mct_dying_cpu
);
625 if (mct_int_type
== MCT_INT_PPI
) {
626 free_percpu_irq(mct_irqs
[MCT_L0_IRQ
], &percpu_mct_tick
);
628 for_each_possible_cpu(cpu
) {
629 struct mct_clock_event_device
*pcpu_mevt
=
630 per_cpu_ptr(&percpu_mct_tick
, cpu
);
632 if (pcpu_mevt
->evt
.irq
!= -1) {
633 free_irq(pcpu_mevt
->evt
.irq
, pcpu_mevt
);
634 pcpu_mevt
->evt
.irq
= -1;
641 static int __init
mct_init_dt(struct device_node
*np
, unsigned int int_type
)
643 bool frc_shared
= of_property_read_bool(np
, "samsung,frc-shared");
644 u32 local_idx
[MCT_NR_LOCAL
] = {0};
648 nr_local
= of_property_count_u32_elems(np
, "samsung,local-timers");
652 if (nr_local
> ARRAY_SIZE(local_idx
))
655 ret
= of_property_read_u32_array(np
, "samsung,local-timers",
656 local_idx
, nr_local
);
662 nr_local
= ARRAY_SIZE(local_idx
);
663 for (i
= 0; i
< nr_local
; i
++)
667 ret
= exynos4_timer_resources(np
);
671 ret
= exynos4_timer_interrupts(np
, int_type
, local_idx
, nr_local
);
675 ret
= exynos4_clocksource_init(frc_shared
);
680 * When the FRC is shared with a main processor, this secondary
681 * processor cannot use the global comparator.
686 return exynos4_clockevent_init();
690 static int __init
mct_init_spi(struct device_node
*np
)
692 return mct_init_dt(np
, MCT_INT_SPI
);
695 static int __init
mct_init_ppi(struct device_node
*np
)
697 return mct_init_dt(np
, MCT_INT_PPI
);
699 TIMER_OF_DECLARE(exynos4210
, "samsung,exynos4210-mct", mct_init_spi
);
700 TIMER_OF_DECLARE(exynos4412
, "samsung,exynos4412-mct", mct_init_ppi
);