Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / crypto / qce / common.c
blob04253a8d33409a2a51db527435d09ae85a7880af
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4 */
6 #include <crypto/internal/hash.h>
7 #include <linux/err.h>
8 #include <linux/interrupt.h>
9 #include <linux/types.h>
10 #include <crypto/scatterwalk.h>
11 #include <crypto/sha1.h>
12 #include <crypto/sha2.h>
14 #include "cipher.h"
15 #include "common.h"
16 #include "core.h"
17 #include "regs-v5.h"
18 #include "sha.h"
19 #include "aead.h"
21 static inline u32 qce_read(struct qce_device *qce, u32 offset)
23 return readl(qce->base + offset);
26 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
28 writel(val, qce->base + offset);
31 static inline void qce_write_array(struct qce_device *qce, u32 offset,
32 const u32 *val, unsigned int len)
34 int i;
36 for (i = 0; i < len; i++)
37 qce_write(qce, offset + i * sizeof(u32), val[i]);
40 static inline void
41 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
43 int i;
45 for (i = 0; i < len; i++)
46 qce_write(qce, offset + i * sizeof(u32), 0);
49 static u32 qce_config_reg(struct qce_device *qce, int little)
51 u32 beats = (qce->burst_size >> 3) - 1;
52 u32 pipe_pair = qce->pipe_pair_id;
53 u32 config;
55 config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
56 config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
57 BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
58 config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
59 config &= ~HIGH_SPD_EN_N_SHIFT;
61 if (little)
62 config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
64 return config;
67 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
69 __be32 *d = dst;
70 const u8 *s = src;
71 unsigned int n;
73 n = len / sizeof(u32);
74 for (; n > 0; n--) {
75 *d = cpu_to_be32p((const __u32 *) s);
76 s += sizeof(__u32);
77 d++;
81 static void qce_setup_config(struct qce_device *qce)
83 u32 config;
85 /* get big endianness */
86 config = qce_config_reg(qce, 0);
88 /* clear status */
89 qce_write(qce, REG_STATUS, 0);
90 qce_write(qce, REG_CONFIG, config);
93 static inline void qce_crypto_go(struct qce_device *qce, bool result_dump)
95 if (result_dump)
96 qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
97 else
98 qce_write(qce, REG_GOPROC, BIT(GO_SHIFT));
101 #if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
102 static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size)
104 u32 cfg = 0;
106 if (IS_CCM(flags) || IS_CMAC(flags))
107 cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
108 else
109 cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
111 if (IS_CCM(flags) || IS_CMAC(flags)) {
112 if (key_size == AES_KEYSIZE_128)
113 cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
114 else if (key_size == AES_KEYSIZE_256)
115 cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
118 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
119 cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
120 else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
121 cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
122 else if (IS_CMAC(flags))
123 cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
124 else if (IS_CCM(flags))
125 cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT;
127 if (IS_SHA1(flags) || IS_SHA256(flags))
128 cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
129 else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags))
130 cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
131 else if (IS_CCM(flags))
132 cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
133 else if (IS_CMAC(flags))
134 cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
136 if (IS_SHA(flags) || IS_SHA_HMAC(flags))
137 cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
139 if (IS_CCM(flags))
140 cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
142 return cfg;
144 #endif
146 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
147 static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
149 struct ahash_request *req = ahash_request_cast(async_req);
150 struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
151 struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
152 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
153 struct qce_device *qce = tmpl->qce;
154 unsigned int digestsize = crypto_ahash_digestsize(ahash);
155 unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
156 __be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
157 __be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
158 u32 auth_cfg = 0, config;
159 unsigned int iv_words;
161 /* if not the last, the size has to be on the block boundary */
162 if (!rctx->last_blk && req->nbytes % blocksize)
163 return -EINVAL;
165 qce_setup_config(qce);
167 if (IS_CMAC(rctx->flags)) {
168 qce_write(qce, REG_AUTH_SEG_CFG, 0);
169 qce_write(qce, REG_ENCR_SEG_CFG, 0);
170 qce_write(qce, REG_ENCR_SEG_SIZE, 0);
171 qce_clear_array(qce, REG_AUTH_IV0, 16);
172 qce_clear_array(qce, REG_AUTH_KEY0, 16);
173 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
175 auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize);
178 if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
179 u32 authkey_words = rctx->authklen / sizeof(u32);
181 qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
182 qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
183 authkey_words);
186 if (IS_CMAC(rctx->flags))
187 goto go_proc;
189 if (rctx->first_blk)
190 memcpy(auth, rctx->digest, digestsize);
191 else
192 qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
194 iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
195 qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
197 if (rctx->first_blk)
198 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
199 else
200 qce_write_array(qce, REG_AUTH_BYTECNT0,
201 (u32 *)rctx->byte_count, 2);
203 auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize);
205 if (rctx->last_blk)
206 auth_cfg |= BIT(AUTH_LAST_SHIFT);
207 else
208 auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
210 if (rctx->first_blk)
211 auth_cfg |= BIT(AUTH_FIRST_SHIFT);
212 else
213 auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
215 go_proc:
216 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
217 qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
218 qce_write(qce, REG_AUTH_SEG_START, 0);
219 qce_write(qce, REG_ENCR_SEG_CFG, 0);
220 qce_write(qce, REG_SEG_SIZE, req->nbytes);
222 /* get little endianness */
223 config = qce_config_reg(qce, 1);
224 qce_write(qce, REG_CONFIG, config);
226 qce_crypto_go(qce, true);
228 return 0;
230 #endif
232 #if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
233 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
235 u32 cfg = 0;
237 if (IS_AES(flags)) {
238 if (aes_key_size == AES_KEYSIZE_128)
239 cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
240 else if (aes_key_size == AES_KEYSIZE_256)
241 cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
244 if (IS_AES(flags))
245 cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
246 else if (IS_DES(flags) || IS_3DES(flags))
247 cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
249 if (IS_DES(flags))
250 cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
252 if (IS_3DES(flags))
253 cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
255 switch (flags & QCE_MODE_MASK) {
256 case QCE_MODE_ECB:
257 cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
258 break;
259 case QCE_MODE_CBC:
260 cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
261 break;
262 case QCE_MODE_CTR:
263 cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
264 break;
265 case QCE_MODE_XTS:
266 cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
267 break;
268 case QCE_MODE_CCM:
269 cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
270 cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
271 break;
272 default:
273 return ~0;
276 return cfg;
278 #endif
280 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
281 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
283 u8 swap[QCE_AES_IV_LENGTH];
284 u32 i, j;
286 if (ivsize > QCE_AES_IV_LENGTH)
287 return;
289 memset(swap, 0, QCE_AES_IV_LENGTH);
291 for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
292 i < QCE_AES_IV_LENGTH; i++, j--)
293 swap[i] = src[j];
295 qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
298 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
299 unsigned int enckeylen, unsigned int cryptlen)
301 u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
302 unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
304 qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
305 enckeylen / 2);
306 qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
308 /* Set data unit size to cryptlen. Anything else causes
309 * crypto engine to return back incorrect results.
311 qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen);
314 static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
316 struct skcipher_request *req = skcipher_request_cast(async_req);
317 struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
318 struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
319 struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
320 struct qce_device *qce = tmpl->qce;
321 __be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
322 __be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
323 unsigned int enckey_words, enciv_words;
324 unsigned int keylen;
325 u32 encr_cfg = 0, auth_cfg = 0, config;
326 unsigned int ivsize = rctx->ivsize;
327 unsigned long flags = rctx->flags;
329 qce_setup_config(qce);
331 if (IS_XTS(flags))
332 keylen = ctx->enc_keylen / 2;
333 else
334 keylen = ctx->enc_keylen;
336 qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
337 enckey_words = keylen / sizeof(u32);
339 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
341 encr_cfg = qce_encr_cfg(flags, keylen);
343 if (IS_DES(flags)) {
344 enciv_words = 2;
345 enckey_words = 2;
346 } else if (IS_3DES(flags)) {
347 enciv_words = 2;
348 enckey_words = 6;
349 } else if (IS_AES(flags)) {
350 if (IS_XTS(flags))
351 qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
352 rctx->cryptlen);
353 enciv_words = 4;
354 } else {
355 return -EINVAL;
358 qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
360 if (!IS_ECB(flags)) {
361 if (IS_XTS(flags))
362 qce_xts_swapiv(enciv, rctx->iv, ivsize);
363 else
364 qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
366 qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
369 if (IS_ENCRYPT(flags))
370 encr_cfg |= BIT(ENCODE_SHIFT);
372 qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
373 qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
374 qce_write(qce, REG_ENCR_SEG_START, 0);
376 if (IS_CTR(flags)) {
377 qce_write(qce, REG_CNTR_MASK, ~0);
378 qce_write(qce, REG_CNTR_MASK0, ~0);
379 qce_write(qce, REG_CNTR_MASK1, ~0);
380 qce_write(qce, REG_CNTR_MASK2, ~0);
383 qce_write(qce, REG_SEG_SIZE, rctx->cryptlen);
385 /* get little endianness */
386 config = qce_config_reg(qce, 1);
387 qce_write(qce, REG_CONFIG, config);
389 qce_crypto_go(qce, true);
391 return 0;
393 #endif
395 #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
396 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
397 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
400 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
401 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
402 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
405 static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len)
407 u32 *d = dst;
408 const u8 *s = src;
409 unsigned int n;
411 n = len / sizeof(u32);
412 for (; n > 0; n--) {
413 *d = be32_to_cpup((const __be32 *)s);
414 s += sizeof(u32);
415 d++;
417 return DIV_ROUND_UP(len, sizeof(u32));
420 static int qce_setup_regs_aead(struct crypto_async_request *async_req)
422 struct aead_request *req = aead_request_cast(async_req);
423 struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req);
424 struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
425 struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req));
426 struct qce_device *qce = tmpl->qce;
427 u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
428 u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0};
429 u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0};
430 u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0};
431 u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0};
432 unsigned int enc_keylen = ctx->enc_keylen;
433 unsigned int auth_keylen = ctx->auth_keylen;
434 unsigned int enc_ivsize = rctx->ivsize;
435 unsigned int auth_ivsize = 0;
436 unsigned int enckey_words, enciv_words;
437 unsigned int authkey_words, authiv_words, authnonce_words;
438 unsigned long flags = rctx->flags;
439 u32 encr_cfg, auth_cfg, config, totallen;
440 u32 iv_last_word;
442 qce_setup_config(qce);
444 /* Write encryption key */
445 enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen);
446 qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words);
448 /* Write encryption iv */
449 enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize);
450 qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words);
452 if (IS_CCM(rctx->flags)) {
453 iv_last_word = enciv[enciv_words - 1];
454 qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1);
455 qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words);
456 qce_write(qce, REG_CNTR_MASK, ~0);
457 qce_write(qce, REG_CNTR_MASK0, ~0);
458 qce_write(qce, REG_CNTR_MASK1, ~0);
459 qce_write(qce, REG_CNTR_MASK2, ~0);
462 /* Clear authentication IV and KEY registers of previous values */
463 qce_clear_array(qce, REG_AUTH_IV0, 16);
464 qce_clear_array(qce, REG_AUTH_KEY0, 16);
466 /* Clear byte count */
467 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
469 /* Write authentication key */
470 authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen);
471 qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words);
473 /* Write initial authentication IV only for HMAC algorithms */
474 if (IS_SHA_HMAC(rctx->flags)) {
475 /* Write default authentication iv */
476 if (IS_SHA1_HMAC(rctx->flags)) {
477 auth_ivsize = SHA1_DIGEST_SIZE;
478 memcpy(authiv, std_iv_sha1, auth_ivsize);
479 } else if (IS_SHA256_HMAC(rctx->flags)) {
480 auth_ivsize = SHA256_DIGEST_SIZE;
481 memcpy(authiv, std_iv_sha256, auth_ivsize);
483 authiv_words = auth_ivsize / sizeof(u32);
484 qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words);
485 } else if (IS_CCM(rctx->flags)) {
486 /* Write nonce for CCM algorithms */
487 authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE);
488 qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words);
491 /* Set up ENCR_SEG_CFG */
492 encr_cfg = qce_encr_cfg(flags, enc_keylen);
493 if (IS_ENCRYPT(flags))
494 encr_cfg |= BIT(ENCODE_SHIFT);
495 qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
497 /* Set up AUTH_SEG_CFG */
498 auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize);
499 auth_cfg |= BIT(AUTH_LAST_SHIFT);
500 auth_cfg |= BIT(AUTH_FIRST_SHIFT);
501 if (IS_ENCRYPT(flags)) {
502 if (IS_CCM(rctx->flags))
503 auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
504 else
505 auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
506 } else {
507 if (IS_CCM(rctx->flags))
508 auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
509 else
510 auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
512 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
514 totallen = rctx->cryptlen + rctx->assoclen;
516 /* Set the encryption size and start offset */
517 if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
518 qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize);
519 else
520 qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
521 qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff);
523 /* Set the authentication size and start offset */
524 qce_write(qce, REG_AUTH_SEG_SIZE, totallen);
525 qce_write(qce, REG_AUTH_SEG_START, 0);
527 /* Write total length */
528 if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
529 qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize);
530 else
531 qce_write(qce, REG_SEG_SIZE, totallen);
533 /* get little endianness */
534 config = qce_config_reg(qce, 1);
535 qce_write(qce, REG_CONFIG, config);
537 /* Start the process */
538 qce_crypto_go(qce, !IS_CCM(flags));
540 return 0;
542 #endif
544 int qce_start(struct crypto_async_request *async_req, u32 type)
546 switch (type) {
547 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
548 case CRYPTO_ALG_TYPE_SKCIPHER:
549 return qce_setup_regs_skcipher(async_req);
550 #endif
551 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
552 case CRYPTO_ALG_TYPE_AHASH:
553 return qce_setup_regs_ahash(async_req);
554 #endif
555 #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
556 case CRYPTO_ALG_TYPE_AEAD:
557 return qce_setup_regs_aead(async_req);
558 #endif
559 default:
560 return -EINVAL;
564 #define STATUS_ERRORS \
565 (BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
567 int qce_check_status(struct qce_device *qce, u32 *status)
569 int ret = 0;
571 *status = qce_read(qce, REG_STATUS);
574 * Don't use result dump status. The operation may not be complete.
575 * Instead, use the status we just read from device. In case, we need to
576 * use result_status from result dump the result_status needs to be byte
577 * swapped, since we set the device to little endian.
579 if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
580 ret = -ENXIO;
581 else if (*status & BIT(MAC_FAILED_SHIFT))
582 ret = -EBADMSG;
584 return ret;
587 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
589 u32 val;
591 val = qce_read(qce, REG_VERSION);
592 *major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
593 *minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
594 *step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;