1 // SPDX-License-Identifier: GPL-2.0-only
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/dma-fence-unwrap.h>
19 #include <linux/anon_inodes.h>
20 #include <linux/export.h>
21 #include <linux/debugfs.h>
22 #include <linux/module.h>
23 #include <linux/seq_file.h>
24 #include <linux/sync_file.h>
25 #include <linux/poll.h>
26 #include <linux/dma-resv.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
31 #include <uapi/linux/dma-buf.h>
32 #include <uapi/linux/magic.h>
34 #include "dma-buf-sysfs-stats.h"
36 static inline int is_dma_buf_file(struct file
*);
38 #if IS_ENABLED(CONFIG_DEBUG_FS)
39 static DEFINE_MUTEX(debugfs_list_mutex
);
40 static LIST_HEAD(debugfs_list
);
42 static void __dma_buf_debugfs_list_add(struct dma_buf
*dmabuf
)
44 mutex_lock(&debugfs_list_mutex
);
45 list_add(&dmabuf
->list_node
, &debugfs_list
);
46 mutex_unlock(&debugfs_list_mutex
);
49 static void __dma_buf_debugfs_list_del(struct dma_buf
*dmabuf
)
54 mutex_lock(&debugfs_list_mutex
);
55 list_del(&dmabuf
->list_node
);
56 mutex_unlock(&debugfs_list_mutex
);
59 static void __dma_buf_debugfs_list_add(struct dma_buf
*dmabuf
)
63 static void __dma_buf_debugfs_list_del(struct file
*file
)
68 static char *dmabuffs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
70 struct dma_buf
*dmabuf
;
71 char name
[DMA_BUF_NAME_LEN
];
74 dmabuf
= dentry
->d_fsdata
;
75 spin_lock(&dmabuf
->name_lock
);
77 ret
= strscpy(name
, dmabuf
->name
, sizeof(name
));
78 spin_unlock(&dmabuf
->name_lock
);
80 return dynamic_dname(buffer
, buflen
, "/%s:%s",
81 dentry
->d_name
.name
, ret
> 0 ? name
: "");
84 static void dma_buf_release(struct dentry
*dentry
)
86 struct dma_buf
*dmabuf
;
88 dmabuf
= dentry
->d_fsdata
;
89 if (unlikely(!dmabuf
))
92 BUG_ON(dmabuf
->vmapping_counter
);
95 * If you hit this BUG() it could mean:
96 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
97 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
99 BUG_ON(dmabuf
->cb_in
.active
|| dmabuf
->cb_out
.active
);
101 dma_buf_stats_teardown(dmabuf
);
102 dmabuf
->ops
->release(dmabuf
);
104 if (dmabuf
->resv
== (struct dma_resv
*)&dmabuf
[1])
105 dma_resv_fini(dmabuf
->resv
);
107 WARN_ON(!list_empty(&dmabuf
->attachments
));
108 module_put(dmabuf
->owner
);
113 static int dma_buf_file_release(struct inode
*inode
, struct file
*file
)
115 if (!is_dma_buf_file(file
))
118 __dma_buf_debugfs_list_del(file
->private_data
);
123 static const struct dentry_operations dma_buf_dentry_ops
= {
124 .d_dname
= dmabuffs_dname
,
125 .d_release
= dma_buf_release
,
128 static struct vfsmount
*dma_buf_mnt
;
130 static int dma_buf_fs_init_context(struct fs_context
*fc
)
132 struct pseudo_fs_context
*ctx
;
134 ctx
= init_pseudo(fc
, DMA_BUF_MAGIC
);
137 ctx
->dops
= &dma_buf_dentry_ops
;
141 static struct file_system_type dma_buf_fs_type
= {
143 .init_fs_context
= dma_buf_fs_init_context
,
144 .kill_sb
= kill_anon_super
,
147 static int dma_buf_mmap_internal(struct file
*file
, struct vm_area_struct
*vma
)
149 struct dma_buf
*dmabuf
;
151 if (!is_dma_buf_file(file
))
154 dmabuf
= file
->private_data
;
156 /* check if buffer supports mmap */
157 if (!dmabuf
->ops
->mmap
)
160 /* check for overflowing the buffer's size */
161 if (vma
->vm_pgoff
+ vma_pages(vma
) >
162 dmabuf
->size
>> PAGE_SHIFT
)
165 return dmabuf
->ops
->mmap(dmabuf
, vma
);
168 static loff_t
dma_buf_llseek(struct file
*file
, loff_t offset
, int whence
)
170 struct dma_buf
*dmabuf
;
173 if (!is_dma_buf_file(file
))
176 dmabuf
= file
->private_data
;
178 /* only support discovering the end of the buffer,
179 * but also allow SEEK_SET to maintain the idiomatic
180 * SEEK_END(0), SEEK_CUR(0) pattern.
182 if (whence
== SEEK_END
)
184 else if (whence
== SEEK_SET
)
192 return base
+ offset
;
196 * DOC: implicit fence polling
198 * To support cross-device and cross-driver synchronization of buffer access
199 * implicit fences (represented internally in the kernel with &struct dma_fence)
200 * can be attached to a &dma_buf. The glue for that and a few related things are
201 * provided in the &dma_resv structure.
203 * Userspace can query the state of these implicitly tracked fences using poll()
204 * and related system calls:
206 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
207 * most recent write or exclusive fence.
209 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
210 * all attached fences, shared and exclusive ones.
212 * Note that this only signals the completion of the respective fences, i.e. the
213 * DMA transfers are complete. Cache flushing and any other necessary
214 * preparations before CPU access can begin still need to happen.
216 * As an alternative to poll(), the set of fences on DMA buffer can be
217 * exported as a &sync_file using &dma_buf_sync_file_export.
220 static void dma_buf_poll_cb(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
222 struct dma_buf_poll_cb_t
*dcb
= (struct dma_buf_poll_cb_t
*)cb
;
223 struct dma_buf
*dmabuf
= container_of(dcb
->poll
, struct dma_buf
, poll
);
226 spin_lock_irqsave(&dcb
->poll
->lock
, flags
);
227 wake_up_locked_poll(dcb
->poll
, dcb
->active
);
229 spin_unlock_irqrestore(&dcb
->poll
->lock
, flags
);
230 dma_fence_put(fence
);
231 /* Paired with get_file in dma_buf_poll */
235 static bool dma_buf_poll_add_cb(struct dma_resv
*resv
, bool write
,
236 struct dma_buf_poll_cb_t
*dcb
)
238 struct dma_resv_iter cursor
;
239 struct dma_fence
*fence
;
242 dma_resv_for_each_fence(&cursor
, resv
, dma_resv_usage_rw(write
),
244 dma_fence_get(fence
);
245 r
= dma_fence_add_callback(fence
, &dcb
->cb
, dma_buf_poll_cb
);
248 dma_fence_put(fence
);
254 static __poll_t
dma_buf_poll(struct file
*file
, poll_table
*poll
)
256 struct dma_buf
*dmabuf
;
257 struct dma_resv
*resv
;
260 dmabuf
= file
->private_data
;
261 if (!dmabuf
|| !dmabuf
->resv
)
266 poll_wait(file
, &dmabuf
->poll
, poll
);
268 events
= poll_requested_events(poll
) & (EPOLLIN
| EPOLLOUT
);
272 dma_resv_lock(resv
, NULL
);
274 if (events
& EPOLLOUT
) {
275 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_out
;
277 /* Check that callback isn't busy */
278 spin_lock_irq(&dmabuf
->poll
.lock
);
282 dcb
->active
= EPOLLOUT
;
283 spin_unlock_irq(&dmabuf
->poll
.lock
);
285 if (events
& EPOLLOUT
) {
286 /* Paired with fput in dma_buf_poll_cb */
287 get_file(dmabuf
->file
);
289 if (!dma_buf_poll_add_cb(resv
, true, dcb
))
290 /* No callback queued, wake up any other waiters */
291 dma_buf_poll_cb(NULL
, &dcb
->cb
);
297 if (events
& EPOLLIN
) {
298 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_in
;
300 /* Check that callback isn't busy */
301 spin_lock_irq(&dmabuf
->poll
.lock
);
305 dcb
->active
= EPOLLIN
;
306 spin_unlock_irq(&dmabuf
->poll
.lock
);
308 if (events
& EPOLLIN
) {
309 /* Paired with fput in dma_buf_poll_cb */
310 get_file(dmabuf
->file
);
312 if (!dma_buf_poll_add_cb(resv
, false, dcb
))
313 /* No callback queued, wake up any other waiters */
314 dma_buf_poll_cb(NULL
, &dcb
->cb
);
320 dma_resv_unlock(resv
);
325 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
326 * It could support changing the name of the dma-buf if the same
327 * piece of memory is used for multiple purpose between different devices.
329 * @dmabuf: [in] dmabuf buffer that will be renamed.
330 * @buf: [in] A piece of userspace memory that contains the name of
333 * Returns 0 on success. If the dma-buf buffer is already attached to
334 * devices, return -EBUSY.
337 static long dma_buf_set_name(struct dma_buf
*dmabuf
, const char __user
*buf
)
339 char *name
= strndup_user(buf
, DMA_BUF_NAME_LEN
);
342 return PTR_ERR(name
);
344 spin_lock(&dmabuf
->name_lock
);
347 spin_unlock(&dmabuf
->name_lock
);
352 #if IS_ENABLED(CONFIG_SYNC_FILE)
353 static long dma_buf_export_sync_file(struct dma_buf
*dmabuf
,
354 void __user
*user_data
)
356 struct dma_buf_export_sync_file arg
;
357 enum dma_resv_usage usage
;
358 struct dma_fence
*fence
= NULL
;
359 struct sync_file
*sync_file
;
362 if (copy_from_user(&arg
, user_data
, sizeof(arg
)))
365 if (arg
.flags
& ~DMA_BUF_SYNC_RW
)
368 if ((arg
.flags
& DMA_BUF_SYNC_RW
) == 0)
371 fd
= get_unused_fd_flags(O_CLOEXEC
);
375 usage
= dma_resv_usage_rw(arg
.flags
& DMA_BUF_SYNC_WRITE
);
376 ret
= dma_resv_get_singleton(dmabuf
->resv
, usage
, &fence
);
381 fence
= dma_fence_get_stub();
383 sync_file
= sync_file_create(fence
);
385 dma_fence_put(fence
);
393 if (copy_to_user(user_data
, &arg
, sizeof(arg
))) {
398 fd_install(fd
, sync_file
->file
);
403 fput(sync_file
->file
);
409 static long dma_buf_import_sync_file(struct dma_buf
*dmabuf
,
410 const void __user
*user_data
)
412 struct dma_buf_import_sync_file arg
;
413 struct dma_fence
*fence
, *f
;
414 enum dma_resv_usage usage
;
415 struct dma_fence_unwrap iter
;
416 unsigned int num_fences
;
419 if (copy_from_user(&arg
, user_data
, sizeof(arg
)))
422 if (arg
.flags
& ~DMA_BUF_SYNC_RW
)
425 if ((arg
.flags
& DMA_BUF_SYNC_RW
) == 0)
428 fence
= sync_file_get_fence(arg
.fd
);
432 usage
= (arg
.flags
& DMA_BUF_SYNC_WRITE
) ? DMA_RESV_USAGE_WRITE
:
436 dma_fence_unwrap_for_each(f
, &iter
, fence
)
439 if (num_fences
> 0) {
440 dma_resv_lock(dmabuf
->resv
, NULL
);
442 ret
= dma_resv_reserve_fences(dmabuf
->resv
, num_fences
);
444 dma_fence_unwrap_for_each(f
, &iter
, fence
)
445 dma_resv_add_fence(dmabuf
->resv
, f
, usage
);
448 dma_resv_unlock(dmabuf
->resv
);
451 dma_fence_put(fence
);
457 static long dma_buf_ioctl(struct file
*file
,
458 unsigned int cmd
, unsigned long arg
)
460 struct dma_buf
*dmabuf
;
461 struct dma_buf_sync sync
;
462 enum dma_data_direction direction
;
465 dmabuf
= file
->private_data
;
468 case DMA_BUF_IOCTL_SYNC
:
469 if (copy_from_user(&sync
, (void __user
*) arg
, sizeof(sync
)))
472 if (sync
.flags
& ~DMA_BUF_SYNC_VALID_FLAGS_MASK
)
475 switch (sync
.flags
& DMA_BUF_SYNC_RW
) {
476 case DMA_BUF_SYNC_READ
:
477 direction
= DMA_FROM_DEVICE
;
479 case DMA_BUF_SYNC_WRITE
:
480 direction
= DMA_TO_DEVICE
;
482 case DMA_BUF_SYNC_RW
:
483 direction
= DMA_BIDIRECTIONAL
;
489 if (sync
.flags
& DMA_BUF_SYNC_END
)
490 ret
= dma_buf_end_cpu_access(dmabuf
, direction
);
492 ret
= dma_buf_begin_cpu_access(dmabuf
, direction
);
496 case DMA_BUF_SET_NAME_A
:
497 case DMA_BUF_SET_NAME_B
:
498 return dma_buf_set_name(dmabuf
, (const char __user
*)arg
);
500 #if IS_ENABLED(CONFIG_SYNC_FILE)
501 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE
:
502 return dma_buf_export_sync_file(dmabuf
, (void __user
*)arg
);
503 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE
:
504 return dma_buf_import_sync_file(dmabuf
, (const void __user
*)arg
);
512 static void dma_buf_show_fdinfo(struct seq_file
*m
, struct file
*file
)
514 struct dma_buf
*dmabuf
= file
->private_data
;
516 seq_printf(m
, "size:\t%zu\n", dmabuf
->size
);
517 /* Don't count the temporary reference taken inside procfs seq_show */
518 seq_printf(m
, "count:\t%ld\n", file_count(dmabuf
->file
) - 1);
519 seq_printf(m
, "exp_name:\t%s\n", dmabuf
->exp_name
);
520 spin_lock(&dmabuf
->name_lock
);
522 seq_printf(m
, "name:\t%s\n", dmabuf
->name
);
523 spin_unlock(&dmabuf
->name_lock
);
526 static const struct file_operations dma_buf_fops
= {
527 .release
= dma_buf_file_release
,
528 .mmap
= dma_buf_mmap_internal
,
529 .llseek
= dma_buf_llseek
,
530 .poll
= dma_buf_poll
,
531 .unlocked_ioctl
= dma_buf_ioctl
,
532 .compat_ioctl
= compat_ptr_ioctl
,
533 .show_fdinfo
= dma_buf_show_fdinfo
,
537 * is_dma_buf_file - Check if struct file* is associated with dma_buf
539 static inline int is_dma_buf_file(struct file
*file
)
541 return file
->f_op
== &dma_buf_fops
;
544 static struct file
*dma_buf_getfile(size_t size
, int flags
)
546 static atomic64_t dmabuf_inode
= ATOMIC64_INIT(0);
547 struct inode
*inode
= alloc_anon_inode(dma_buf_mnt
->mnt_sb
);
551 return ERR_CAST(inode
);
553 inode
->i_size
= size
;
554 inode_set_bytes(inode
, size
);
557 * The ->i_ino acquired from get_next_ino() is not unique thus
558 * not suitable for using it as dentry name by dmabuf stats.
559 * Override ->i_ino with the unique and dmabuffs specific
562 inode
->i_ino
= atomic64_inc_return(&dmabuf_inode
);
563 flags
&= O_ACCMODE
| O_NONBLOCK
;
564 file
= alloc_file_pseudo(inode
, dma_buf_mnt
, "dmabuf",
565 flags
, &dma_buf_fops
);
577 * DOC: dma buf device access
579 * For device DMA access to a shared DMA buffer the usual sequence of operations
582 * 1. The exporter defines his exporter instance using
583 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
584 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
585 * as a file descriptor by calling dma_buf_fd().
587 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
588 * to share with: First the file descriptor is converted to a &dma_buf using
589 * dma_buf_get(). Then the buffer is attached to the device using
592 * Up to this stage the exporter is still free to migrate or reallocate the
595 * 3. Once the buffer is attached to all devices userspace can initiate DMA
596 * access to the shared buffer. In the kernel this is done by calling
597 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
599 * 4. Once a driver is done with a shared buffer it needs to call
600 * dma_buf_detach() (after cleaning up any mappings) and then release the
601 * reference acquired with dma_buf_get() by calling dma_buf_put().
603 * For the detailed semantics exporters are expected to implement see
608 * dma_buf_export - Creates a new dma_buf, and associates an anon file
609 * with this buffer, so it can be exported.
610 * Also connect the allocator specific data and ops to the buffer.
611 * Additionally, provide a name string for exporter; useful in debugging.
613 * @exp_info: [in] holds all the export related information provided
614 * by the exporter. see &struct dma_buf_export_info
615 * for further details.
617 * Returns, on success, a newly created struct dma_buf object, which wraps the
618 * supplied private data and operations for struct dma_buf_ops. On either
619 * missing ops, or error in allocating struct dma_buf, will return negative
622 * For most cases the easiest way to create @exp_info is through the
623 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
625 struct dma_buf
*dma_buf_export(const struct dma_buf_export_info
*exp_info
)
627 struct dma_buf
*dmabuf
;
628 struct dma_resv
*resv
= exp_info
->resv
;
630 size_t alloc_size
= sizeof(struct dma_buf
);
633 if (WARN_ON(!exp_info
->priv
|| !exp_info
->ops
634 || !exp_info
->ops
->map_dma_buf
635 || !exp_info
->ops
->unmap_dma_buf
636 || !exp_info
->ops
->release
))
637 return ERR_PTR(-EINVAL
);
639 if (WARN_ON(exp_info
->ops
->cache_sgt_mapping
&&
640 (exp_info
->ops
->pin
|| exp_info
->ops
->unpin
)))
641 return ERR_PTR(-EINVAL
);
643 if (WARN_ON(!exp_info
->ops
->pin
!= !exp_info
->ops
->unpin
))
644 return ERR_PTR(-EINVAL
);
646 if (!try_module_get(exp_info
->owner
))
647 return ERR_PTR(-ENOENT
);
649 file
= dma_buf_getfile(exp_info
->size
, exp_info
->flags
);
656 alloc_size
+= sizeof(struct dma_resv
);
658 /* prevent &dma_buf[1] == dma_buf->resv */
660 dmabuf
= kzalloc(alloc_size
, GFP_KERNEL
);
666 dmabuf
->priv
= exp_info
->priv
;
667 dmabuf
->ops
= exp_info
->ops
;
668 dmabuf
->size
= exp_info
->size
;
669 dmabuf
->exp_name
= exp_info
->exp_name
;
670 dmabuf
->owner
= exp_info
->owner
;
671 spin_lock_init(&dmabuf
->name_lock
);
672 init_waitqueue_head(&dmabuf
->poll
);
673 dmabuf
->cb_in
.poll
= dmabuf
->cb_out
.poll
= &dmabuf
->poll
;
674 dmabuf
->cb_in
.active
= dmabuf
->cb_out
.active
= 0;
675 INIT_LIST_HEAD(&dmabuf
->attachments
);
678 dmabuf
->resv
= (struct dma_resv
*)&dmabuf
[1];
679 dma_resv_init(dmabuf
->resv
);
684 ret
= dma_buf_stats_setup(dmabuf
, file
);
688 file
->private_data
= dmabuf
;
689 file
->f_path
.dentry
->d_fsdata
= dmabuf
;
692 __dma_buf_debugfs_list_add(dmabuf
);
698 dma_resv_fini(dmabuf
->resv
);
703 module_put(exp_info
->owner
);
706 EXPORT_SYMBOL_NS_GPL(dma_buf_export
, DMA_BUF
);
709 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
710 * @dmabuf: [in] pointer to dma_buf for which fd is required.
711 * @flags: [in] flags to give to fd
713 * On success, returns an associated 'fd'. Else, returns error.
715 int dma_buf_fd(struct dma_buf
*dmabuf
, int flags
)
719 if (!dmabuf
|| !dmabuf
->file
)
722 fd
= get_unused_fd_flags(flags
);
726 fd_install(fd
, dmabuf
->file
);
730 EXPORT_SYMBOL_NS_GPL(dma_buf_fd
, DMA_BUF
);
733 * dma_buf_get - returns the struct dma_buf related to an fd
734 * @fd: [in] fd associated with the struct dma_buf to be returned
736 * On success, returns the struct dma_buf associated with an fd; uses
737 * file's refcounting done by fget to increase refcount. returns ERR_PTR
740 struct dma_buf
*dma_buf_get(int fd
)
747 return ERR_PTR(-EBADF
);
749 if (!is_dma_buf_file(file
)) {
751 return ERR_PTR(-EINVAL
);
754 return file
->private_data
;
756 EXPORT_SYMBOL_NS_GPL(dma_buf_get
, DMA_BUF
);
759 * dma_buf_put - decreases refcount of the buffer
760 * @dmabuf: [in] buffer to reduce refcount of
762 * Uses file's refcounting done implicitly by fput().
764 * If, as a result of this call, the refcount becomes 0, the 'release' file
765 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
766 * in turn, and frees the memory allocated for dmabuf when exported.
768 void dma_buf_put(struct dma_buf
*dmabuf
)
770 if (WARN_ON(!dmabuf
|| !dmabuf
->file
))
775 EXPORT_SYMBOL_NS_GPL(dma_buf_put
, DMA_BUF
);
777 static void mangle_sg_table(struct sg_table
*sg_table
)
779 #ifdef CONFIG_DMABUF_DEBUG
781 struct scatterlist
*sg
;
783 /* To catch abuse of the underlying struct page by importers mix
784 * up the bits, but take care to preserve the low SG_ bits to
785 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
786 * before passing the sgt back to the exporter.
788 for_each_sgtable_sg(sg_table
, sg
, i
)
789 sg
->page_link
^= ~0xffUL
;
793 static struct sg_table
*__map_dma_buf(struct dma_buf_attachment
*attach
,
794 enum dma_data_direction direction
)
796 struct sg_table
*sg_table
;
799 sg_table
= attach
->dmabuf
->ops
->map_dma_buf(attach
, direction
);
800 if (IS_ERR_OR_NULL(sg_table
))
803 if (!dma_buf_attachment_is_dynamic(attach
)) {
804 ret
= dma_resv_wait_timeout(attach
->dmabuf
->resv
,
805 DMA_RESV_USAGE_KERNEL
, true,
806 MAX_SCHEDULE_TIMEOUT
);
808 attach
->dmabuf
->ops
->unmap_dma_buf(attach
, sg_table
,
814 mangle_sg_table(sg_table
);
819 * DOC: locking convention
821 * In order to avoid deadlock situations between dma-buf exports and importers,
822 * all dma-buf API users must follow the common dma-buf locking convention.
824 * Convention for importers
826 * 1. Importers must hold the dma-buf reservation lock when calling these
831 * - dma_buf_map_attachment()
832 * - dma_buf_unmap_attachment()
836 * 2. Importers must not hold the dma-buf reservation lock when calling these
840 * - dma_buf_dynamic_attach()
847 * - dma_buf_begin_cpu_access()
848 * - dma_buf_end_cpu_access()
849 * - dma_buf_map_attachment_unlocked()
850 * - dma_buf_unmap_attachment_unlocked()
851 * - dma_buf_vmap_unlocked()
852 * - dma_buf_vunmap_unlocked()
854 * Convention for exporters
856 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
857 * reservation and exporter can take the lock:
859 * - &dma_buf_ops.attach()
860 * - &dma_buf_ops.detach()
861 * - &dma_buf_ops.release()
862 * - &dma_buf_ops.begin_cpu_access()
863 * - &dma_buf_ops.end_cpu_access()
864 * - &dma_buf_ops.mmap()
866 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
867 * reservation and exporter can't take the lock:
869 * - &dma_buf_ops.pin()
870 * - &dma_buf_ops.unpin()
871 * - &dma_buf_ops.map_dma_buf()
872 * - &dma_buf_ops.unmap_dma_buf()
873 * - &dma_buf_ops.vmap()
874 * - &dma_buf_ops.vunmap()
876 * 3. Exporters must hold the dma-buf reservation lock when calling these
879 * - dma_buf_move_notify()
883 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
884 * @dmabuf: [in] buffer to attach device to.
885 * @dev: [in] device to be attached.
886 * @importer_ops: [in] importer operations for the attachment
887 * @importer_priv: [in] importer private pointer for the attachment
889 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
890 * must be cleaned up by calling dma_buf_detach().
892 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
897 * A pointer to newly created &dma_buf_attachment on success, or a negative
898 * error code wrapped into a pointer on failure.
900 * Note that this can fail if the backing storage of @dmabuf is in a place not
901 * accessible to @dev, and cannot be moved to a more suitable place. This is
902 * indicated with the error code -EBUSY.
904 struct dma_buf_attachment
*
905 dma_buf_dynamic_attach(struct dma_buf
*dmabuf
, struct device
*dev
,
906 const struct dma_buf_attach_ops
*importer_ops
,
909 struct dma_buf_attachment
*attach
;
912 if (WARN_ON(!dmabuf
|| !dev
))
913 return ERR_PTR(-EINVAL
);
915 if (WARN_ON(importer_ops
&& !importer_ops
->move_notify
))
916 return ERR_PTR(-EINVAL
);
918 attach
= kzalloc(sizeof(*attach
), GFP_KERNEL
);
920 return ERR_PTR(-ENOMEM
);
923 attach
->dmabuf
= dmabuf
;
925 attach
->peer2peer
= importer_ops
->allow_peer2peer
;
926 attach
->importer_ops
= importer_ops
;
927 attach
->importer_priv
= importer_priv
;
929 if (dmabuf
->ops
->attach
) {
930 ret
= dmabuf
->ops
->attach(dmabuf
, attach
);
934 dma_resv_lock(dmabuf
->resv
, NULL
);
935 list_add(&attach
->node
, &dmabuf
->attachments
);
936 dma_resv_unlock(dmabuf
->resv
);
938 /* When either the importer or the exporter can't handle dynamic
939 * mappings we cache the mapping here to avoid issues with the
940 * reservation object lock.
942 if (dma_buf_attachment_is_dynamic(attach
) !=
943 dma_buf_is_dynamic(dmabuf
)) {
944 struct sg_table
*sgt
;
946 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
947 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
948 ret
= dmabuf
->ops
->pin(attach
);
953 sgt
= __map_dma_buf(attach
, DMA_BIDIRECTIONAL
);
955 sgt
= ERR_PTR(-ENOMEM
);
960 dma_resv_unlock(attach
->dmabuf
->resv
);
962 attach
->dir
= DMA_BIDIRECTIONAL
;
972 if (dma_buf_is_dynamic(attach
->dmabuf
))
973 dmabuf
->ops
->unpin(attach
);
976 dma_resv_unlock(attach
->dmabuf
->resv
);
978 dma_buf_detach(dmabuf
, attach
);
981 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach
, DMA_BUF
);
984 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
985 * @dmabuf: [in] buffer to attach device to.
986 * @dev: [in] device to be attached.
988 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
991 struct dma_buf_attachment
*dma_buf_attach(struct dma_buf
*dmabuf
,
994 return dma_buf_dynamic_attach(dmabuf
, dev
, NULL
, NULL
);
996 EXPORT_SYMBOL_NS_GPL(dma_buf_attach
, DMA_BUF
);
998 static void __unmap_dma_buf(struct dma_buf_attachment
*attach
,
999 struct sg_table
*sg_table
,
1000 enum dma_data_direction direction
)
1002 /* uses XOR, hence this unmangles */
1003 mangle_sg_table(sg_table
);
1005 attach
->dmabuf
->ops
->unmap_dma_buf(attach
, sg_table
, direction
);
1009 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
1010 * @dmabuf: [in] buffer to detach from.
1011 * @attach: [in] attachment to be detached; is free'd after this call.
1013 * Clean up a device attachment obtained by calling dma_buf_attach().
1015 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1017 void dma_buf_detach(struct dma_buf
*dmabuf
, struct dma_buf_attachment
*attach
)
1019 if (WARN_ON(!dmabuf
|| !attach
|| dmabuf
!= attach
->dmabuf
))
1022 dma_resv_lock(dmabuf
->resv
, NULL
);
1026 __unmap_dma_buf(attach
, attach
->sgt
, attach
->dir
);
1028 if (dma_buf_is_dynamic(attach
->dmabuf
))
1029 dmabuf
->ops
->unpin(attach
);
1031 list_del(&attach
->node
);
1033 dma_resv_unlock(dmabuf
->resv
);
1035 if (dmabuf
->ops
->detach
)
1036 dmabuf
->ops
->detach(dmabuf
, attach
);
1040 EXPORT_SYMBOL_NS_GPL(dma_buf_detach
, DMA_BUF
);
1043 * dma_buf_pin - Lock down the DMA-buf
1044 * @attach: [in] attachment which should be pinned
1046 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1047 * call this, and only for limited use cases like scanout and not for temporary
1048 * pin operations. It is not permitted to allow userspace to pin arbitrary
1049 * amounts of buffers through this interface.
1051 * Buffers must be unpinned by calling dma_buf_unpin().
1054 * 0 on success, negative error code on failure.
1056 int dma_buf_pin(struct dma_buf_attachment
*attach
)
1058 struct dma_buf
*dmabuf
= attach
->dmabuf
;
1061 WARN_ON(!dma_buf_attachment_is_dynamic(attach
));
1063 dma_resv_assert_held(dmabuf
->resv
);
1065 if (dmabuf
->ops
->pin
)
1066 ret
= dmabuf
->ops
->pin(attach
);
1070 EXPORT_SYMBOL_NS_GPL(dma_buf_pin
, DMA_BUF
);
1073 * dma_buf_unpin - Unpin a DMA-buf
1074 * @attach: [in] attachment which should be unpinned
1076 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1077 * any mapping of @attach again and inform the importer through
1078 * &dma_buf_attach_ops.move_notify.
1080 void dma_buf_unpin(struct dma_buf_attachment
*attach
)
1082 struct dma_buf
*dmabuf
= attach
->dmabuf
;
1084 WARN_ON(!dma_buf_attachment_is_dynamic(attach
));
1086 dma_resv_assert_held(dmabuf
->resv
);
1088 if (dmabuf
->ops
->unpin
)
1089 dmabuf
->ops
->unpin(attach
);
1091 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin
, DMA_BUF
);
1094 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1095 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1097 * @attach: [in] attachment whose scatterlist is to be returned
1098 * @direction: [in] direction of DMA transfer
1100 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1101 * on error. May return -EINTR if it is interrupted by a signal.
1103 * On success, the DMA addresses and lengths in the returned scatterlist are
1104 * PAGE_SIZE aligned.
1106 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1107 * the underlying backing storage is pinned for as long as a mapping exists,
1108 * therefore users/importers should not hold onto a mapping for undue amounts of
1111 * Important: Dynamic importers must wait for the exclusive fence of the struct
1112 * dma_resv attached to the DMA-BUF first.
1114 struct sg_table
*dma_buf_map_attachment(struct dma_buf_attachment
*attach
,
1115 enum dma_data_direction direction
)
1117 struct sg_table
*sg_table
;
1122 if (WARN_ON(!attach
|| !attach
->dmabuf
))
1123 return ERR_PTR(-EINVAL
);
1125 dma_resv_assert_held(attach
->dmabuf
->resv
);
1129 * Two mappings with different directions for the same
1130 * attachment are not allowed.
1132 if (attach
->dir
!= direction
&&
1133 attach
->dir
!= DMA_BIDIRECTIONAL
)
1134 return ERR_PTR(-EBUSY
);
1139 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
1140 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
)) {
1141 r
= attach
->dmabuf
->ops
->pin(attach
);
1147 sg_table
= __map_dma_buf(attach
, direction
);
1149 sg_table
= ERR_PTR(-ENOMEM
);
1151 if (IS_ERR(sg_table
) && dma_buf_is_dynamic(attach
->dmabuf
) &&
1152 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
))
1153 attach
->dmabuf
->ops
->unpin(attach
);
1155 if (!IS_ERR(sg_table
) && attach
->dmabuf
->ops
->cache_sgt_mapping
) {
1156 attach
->sgt
= sg_table
;
1157 attach
->dir
= direction
;
1160 #ifdef CONFIG_DMA_API_DEBUG
1161 if (!IS_ERR(sg_table
)) {
1162 struct scatterlist
*sg
;
1167 for_each_sgtable_dma_sg(sg_table
, sg
, i
) {
1168 addr
= sg_dma_address(sg
);
1169 len
= sg_dma_len(sg
);
1170 if (!PAGE_ALIGNED(addr
) || !PAGE_ALIGNED(len
)) {
1171 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1172 __func__
, addr
, len
);
1176 #endif /* CONFIG_DMA_API_DEBUG */
1179 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment
, DMA_BUF
);
1182 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1183 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1185 * @attach: [in] attachment whose scatterlist is to be returned
1186 * @direction: [in] direction of DMA transfer
1188 * Unlocked variant of dma_buf_map_attachment().
1191 dma_buf_map_attachment_unlocked(struct dma_buf_attachment
*attach
,
1192 enum dma_data_direction direction
)
1194 struct sg_table
*sg_table
;
1198 if (WARN_ON(!attach
|| !attach
->dmabuf
))
1199 return ERR_PTR(-EINVAL
);
1201 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
1202 sg_table
= dma_buf_map_attachment(attach
, direction
);
1203 dma_resv_unlock(attach
->dmabuf
->resv
);
1207 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked
, DMA_BUF
);
1210 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1211 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1213 * @attach: [in] attachment to unmap buffer from
1214 * @sg_table: [in] scatterlist info of the buffer to unmap
1215 * @direction: [in] direction of DMA transfer
1217 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1219 void dma_buf_unmap_attachment(struct dma_buf_attachment
*attach
,
1220 struct sg_table
*sg_table
,
1221 enum dma_data_direction direction
)
1225 if (WARN_ON(!attach
|| !attach
->dmabuf
|| !sg_table
))
1228 dma_resv_assert_held(attach
->dmabuf
->resv
);
1230 if (attach
->sgt
== sg_table
)
1233 __unmap_dma_buf(attach
, sg_table
, direction
);
1235 if (dma_buf_is_dynamic(attach
->dmabuf
) &&
1236 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
))
1237 dma_buf_unpin(attach
);
1239 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment
, DMA_BUF
);
1242 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1243 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1245 * @attach: [in] attachment to unmap buffer from
1246 * @sg_table: [in] scatterlist info of the buffer to unmap
1247 * @direction: [in] direction of DMA transfer
1249 * Unlocked variant of dma_buf_unmap_attachment().
1251 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment
*attach
,
1252 struct sg_table
*sg_table
,
1253 enum dma_data_direction direction
)
1257 if (WARN_ON(!attach
|| !attach
->dmabuf
|| !sg_table
))
1260 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
1261 dma_buf_unmap_attachment(attach
, sg_table
, direction
);
1262 dma_resv_unlock(attach
->dmabuf
->resv
);
1264 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked
, DMA_BUF
);
1267 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1269 * @dmabuf: [in] buffer which is moving
1271 * Informs all attachments that they need to destroy and recreate all their
1274 void dma_buf_move_notify(struct dma_buf
*dmabuf
)
1276 struct dma_buf_attachment
*attach
;
1278 dma_resv_assert_held(dmabuf
->resv
);
1280 list_for_each_entry(attach
, &dmabuf
->attachments
, node
)
1281 if (attach
->importer_ops
)
1282 attach
->importer_ops
->move_notify(attach
);
1284 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify
, DMA_BUF
);
1289 * There are multiple reasons for supporting CPU access to a dma buffer object:
1291 * - Fallback operations in the kernel, for example when a device is connected
1292 * over USB and the kernel needs to shuffle the data around first before
1293 * sending it away. Cache coherency is handled by bracketing any transactions
1294 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1297 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1298 * vmap interface is introduced. Note that on very old 32-bit architectures
1299 * vmalloc space might be limited and result in vmap calls failing.
1305 * void *dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1306 * void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1308 * The vmap call can fail if there is no vmap support in the exporter, or if
1309 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1310 * count for all vmap access and calls down into the exporter's vmap function
1311 * only when no vmapping exists, and only unmaps it once. Protection against
1312 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1314 * - For full compatibility on the importer side with existing userspace
1315 * interfaces, which might already support mmap'ing buffers. This is needed in
1316 * many processing pipelines (e.g. feeding a software rendered image into a
1317 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1318 * framework already supported this and for DMA buffer file descriptors to
1319 * replace ION buffers mmap support was needed.
1321 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1322 * fd. But like for CPU access there's a need to bracket the actual access,
1323 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1324 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1327 * Some systems might need some sort of cache coherency management e.g. when
1328 * CPU and GPU domains are being accessed through dma-buf at the same time.
1329 * To circumvent this problem there are begin/end coherency markers, that
1330 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1331 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1332 * sequence would be used like following:
1335 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1336 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1337 * want (with the new data being consumed by say the GPU or the scanout
1339 * - munmap once you don't need the buffer any more
1341 * For correctness and optimal performance, it is always required to use
1342 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1343 * mapped address. Userspace cannot rely on coherent access, even when there
1344 * are systems where it just works without calling these ioctls.
1346 * - And as a CPU fallback in userspace processing pipelines.
1348 * Similar to the motivation for kernel cpu access it is again important that
1349 * the userspace code of a given importing subsystem can use the same
1350 * interfaces with a imported dma-buf buffer object as with a native buffer
1351 * object. This is especially important for drm where the userspace part of
1352 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1353 * use a different way to mmap a buffer rather invasive.
1355 * The assumption in the current dma-buf interfaces is that redirecting the
1356 * initial mmap is all that's needed. A survey of some of the existing
1357 * subsystems shows that no driver seems to do any nefarious thing like
1358 * syncing up with outstanding asynchronous processing on the device or
1359 * allocating special resources at fault time. So hopefully this is good
1360 * enough, since adding interfaces to intercept pagefaults and allow pte
1361 * shootdowns would increase the complexity quite a bit.
1367 * int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *, unsigned long);
1369 * If the importing subsystem simply provides a special-purpose mmap call to
1370 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1371 * equally achieve that for a dma-buf object.
1374 static int __dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
1375 enum dma_data_direction direction
)
1377 bool write
= (direction
== DMA_BIDIRECTIONAL
||
1378 direction
== DMA_TO_DEVICE
);
1379 struct dma_resv
*resv
= dmabuf
->resv
;
1382 /* Wait on any implicit rendering fences */
1383 ret
= dma_resv_wait_timeout(resv
, dma_resv_usage_rw(write
),
1384 true, MAX_SCHEDULE_TIMEOUT
);
1392 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1393 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1394 * preparations. Coherency is only guaranteed in the specified range for the
1395 * specified access direction.
1396 * @dmabuf: [in] buffer to prepare cpu access for.
1397 * @direction: [in] direction of access.
1399 * After the cpu access is complete the caller should call
1400 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1401 * it guaranteed to be coherent with other DMA access.
1403 * This function will also wait for any DMA transactions tracked through
1404 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1405 * synchronization this function will only ensure cache coherency, callers must
1406 * ensure synchronization with such DMA transactions on their own.
1408 * Can return negative error values, returns 0 on success.
1410 int dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
1411 enum dma_data_direction direction
)
1415 if (WARN_ON(!dmabuf
))
1418 might_lock(&dmabuf
->resv
->lock
.base
);
1420 if (dmabuf
->ops
->begin_cpu_access
)
1421 ret
= dmabuf
->ops
->begin_cpu_access(dmabuf
, direction
);
1423 /* Ensure that all fences are waited upon - but we first allow
1424 * the native handler the chance to do so more efficiently if it
1425 * chooses. A double invocation here will be reasonably cheap no-op.
1428 ret
= __dma_buf_begin_cpu_access(dmabuf
, direction
);
1432 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access
, DMA_BUF
);
1435 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1436 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1437 * actions. Coherency is only guaranteed in the specified range for the
1438 * specified access direction.
1439 * @dmabuf: [in] buffer to complete cpu access for.
1440 * @direction: [in] direction of access.
1442 * This terminates CPU access started with dma_buf_begin_cpu_access().
1444 * Can return negative error values, returns 0 on success.
1446 int dma_buf_end_cpu_access(struct dma_buf
*dmabuf
,
1447 enum dma_data_direction direction
)
1453 might_lock(&dmabuf
->resv
->lock
.base
);
1455 if (dmabuf
->ops
->end_cpu_access
)
1456 ret
= dmabuf
->ops
->end_cpu_access(dmabuf
, direction
);
1460 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access
, DMA_BUF
);
1464 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1465 * @dmabuf: [in] buffer that should back the vma
1466 * @vma: [in] vma for the mmap
1467 * @pgoff: [in] offset in pages where this mmap should start within the
1470 * This function adjusts the passed in vma so that it points at the file of the
1471 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1472 * checking on the size of the vma. Then it calls the exporters mmap function to
1473 * set up the mapping.
1475 * Can return negative error values, returns 0 on success.
1477 int dma_buf_mmap(struct dma_buf
*dmabuf
, struct vm_area_struct
*vma
,
1478 unsigned long pgoff
)
1480 if (WARN_ON(!dmabuf
|| !vma
))
1483 /* check if buffer supports mmap */
1484 if (!dmabuf
->ops
->mmap
)
1487 /* check for offset overflow */
1488 if (pgoff
+ vma_pages(vma
) < pgoff
)
1491 /* check for overflowing the buffer's size */
1492 if (pgoff
+ vma_pages(vma
) >
1493 dmabuf
->size
>> PAGE_SHIFT
)
1496 /* readjust the vma */
1497 vma_set_file(vma
, dmabuf
->file
);
1498 vma
->vm_pgoff
= pgoff
;
1500 return dmabuf
->ops
->mmap(dmabuf
, vma
);
1502 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap
, DMA_BUF
);
1505 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1506 * address space. Same restrictions as for vmap and friends apply.
1507 * @dmabuf: [in] buffer to vmap
1508 * @map: [out] returns the vmap pointer
1510 * This call may fail due to lack of virtual mapping address space.
1511 * These calls are optional in drivers. The intended use for them
1512 * is for mapping objects linear in kernel space for high use objects.
1514 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1515 * dma_buf_end_cpu_access() around any cpu access performed through this
1518 * Returns 0 on success, or a negative errno code otherwise.
1520 int dma_buf_vmap(struct dma_buf
*dmabuf
, struct iosys_map
*map
)
1522 struct iosys_map ptr
;
1525 iosys_map_clear(map
);
1527 if (WARN_ON(!dmabuf
))
1530 dma_resv_assert_held(dmabuf
->resv
);
1532 if (!dmabuf
->ops
->vmap
)
1535 if (dmabuf
->vmapping_counter
) {
1536 dmabuf
->vmapping_counter
++;
1537 BUG_ON(iosys_map_is_null(&dmabuf
->vmap_ptr
));
1538 *map
= dmabuf
->vmap_ptr
;
1542 BUG_ON(iosys_map_is_set(&dmabuf
->vmap_ptr
));
1544 ret
= dmabuf
->ops
->vmap(dmabuf
, &ptr
);
1545 if (WARN_ON_ONCE(ret
))
1548 dmabuf
->vmap_ptr
= ptr
;
1549 dmabuf
->vmapping_counter
= 1;
1551 *map
= dmabuf
->vmap_ptr
;
1555 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap
, DMA_BUF
);
1558 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1559 * address space. Same restrictions as for vmap and friends apply.
1560 * @dmabuf: [in] buffer to vmap
1561 * @map: [out] returns the vmap pointer
1563 * Unlocked version of dma_buf_vmap()
1565 * Returns 0 on success, or a negative errno code otherwise.
1567 int dma_buf_vmap_unlocked(struct dma_buf
*dmabuf
, struct iosys_map
*map
)
1571 iosys_map_clear(map
);
1573 if (WARN_ON(!dmabuf
))
1576 dma_resv_lock(dmabuf
->resv
, NULL
);
1577 ret
= dma_buf_vmap(dmabuf
, map
);
1578 dma_resv_unlock(dmabuf
->resv
);
1582 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked
, DMA_BUF
);
1585 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1586 * @dmabuf: [in] buffer to vunmap
1587 * @map: [in] vmap pointer to vunmap
1589 void dma_buf_vunmap(struct dma_buf
*dmabuf
, struct iosys_map
*map
)
1591 if (WARN_ON(!dmabuf
))
1594 dma_resv_assert_held(dmabuf
->resv
);
1596 BUG_ON(iosys_map_is_null(&dmabuf
->vmap_ptr
));
1597 BUG_ON(dmabuf
->vmapping_counter
== 0);
1598 BUG_ON(!iosys_map_is_equal(&dmabuf
->vmap_ptr
, map
));
1600 if (--dmabuf
->vmapping_counter
== 0) {
1601 if (dmabuf
->ops
->vunmap
)
1602 dmabuf
->ops
->vunmap(dmabuf
, map
);
1603 iosys_map_clear(&dmabuf
->vmap_ptr
);
1606 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap
, DMA_BUF
);
1609 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1610 * @dmabuf: [in] buffer to vunmap
1611 * @map: [in] vmap pointer to vunmap
1613 void dma_buf_vunmap_unlocked(struct dma_buf
*dmabuf
, struct iosys_map
*map
)
1615 if (WARN_ON(!dmabuf
))
1618 dma_resv_lock(dmabuf
->resv
, NULL
);
1619 dma_buf_vunmap(dmabuf
, map
);
1620 dma_resv_unlock(dmabuf
->resv
);
1622 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked
, DMA_BUF
);
1624 #ifdef CONFIG_DEBUG_FS
1625 static int dma_buf_debug_show(struct seq_file
*s
, void *unused
)
1627 struct dma_buf
*buf_obj
;
1628 struct dma_buf_attachment
*attach_obj
;
1629 int count
= 0, attach_count
;
1633 ret
= mutex_lock_interruptible(&debugfs_list_mutex
);
1638 seq_puts(s
, "\nDma-buf Objects:\n");
1639 seq_printf(s
, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1640 "size", "flags", "mode", "count", "ino");
1642 list_for_each_entry(buf_obj
, &debugfs_list
, list_node
) {
1644 ret
= dma_resv_lock_interruptible(buf_obj
->resv
, NULL
);
1649 spin_lock(&buf_obj
->name_lock
);
1650 seq_printf(s
, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1652 buf_obj
->file
->f_flags
, buf_obj
->file
->f_mode
,
1653 file_count(buf_obj
->file
),
1655 file_inode(buf_obj
->file
)->i_ino
,
1656 buf_obj
->name
?: "<none>");
1657 spin_unlock(&buf_obj
->name_lock
);
1659 dma_resv_describe(buf_obj
->resv
, s
);
1661 seq_puts(s
, "\tAttached Devices:\n");
1664 list_for_each_entry(attach_obj
, &buf_obj
->attachments
, node
) {
1665 seq_printf(s
, "\t%s\n", dev_name(attach_obj
->dev
));
1668 dma_resv_unlock(buf_obj
->resv
);
1670 seq_printf(s
, "Total %d devices attached\n\n",
1674 size
+= buf_obj
->size
;
1677 seq_printf(s
, "\nTotal %d objects, %zu bytes\n", count
, size
);
1679 mutex_unlock(&debugfs_list_mutex
);
1683 mutex_unlock(&debugfs_list_mutex
);
1687 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug
);
1689 static struct dentry
*dma_buf_debugfs_dir
;
1691 static int dma_buf_init_debugfs(void)
1696 d
= debugfs_create_dir("dma_buf", NULL
);
1700 dma_buf_debugfs_dir
= d
;
1702 d
= debugfs_create_file("bufinfo", 0444, dma_buf_debugfs_dir
,
1703 NULL
, &dma_buf_debug_fops
);
1705 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1706 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1707 dma_buf_debugfs_dir
= NULL
;
1714 static void dma_buf_uninit_debugfs(void)
1716 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1719 static inline int dma_buf_init_debugfs(void)
1723 static inline void dma_buf_uninit_debugfs(void)
1728 static int __init
dma_buf_init(void)
1732 ret
= dma_buf_init_sysfs_statistics();
1736 dma_buf_mnt
= kern_mount(&dma_buf_fs_type
);
1737 if (IS_ERR(dma_buf_mnt
))
1738 return PTR_ERR(dma_buf_mnt
);
1740 dma_buf_init_debugfs();
1743 subsys_initcall(dma_buf_init
);
1745 static void __exit
dma_buf_deinit(void)
1747 dma_buf_uninit_debugfs();
1748 kern_unmount(dma_buf_mnt
);
1749 dma_buf_uninit_sysfs_statistics();
1751 __exitcall(dma_buf_deinit
);