Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / dma / idxd / irq.c
blobfc049c9c9892e66302929afd9b0f99b881feca92
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/sched/mm.h>
12 #include <uapi/linux/idxd.h>
13 #include "../dmaengine.h"
14 #include "idxd.h"
15 #include "registers.h"
17 enum irq_work_type {
18 IRQ_WORK_NORMAL = 0,
19 IRQ_WORK_PROCESS_FAULT,
22 struct idxd_resubmit {
23 struct work_struct work;
24 struct idxd_desc *desc;
27 struct idxd_int_handle_revoke {
28 struct work_struct work;
29 struct idxd_device *idxd;
32 static void idxd_device_reinit(struct work_struct *work)
34 struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35 struct device *dev = &idxd->pdev->dev;
36 int rc, i;
38 idxd_device_reset(idxd);
39 rc = idxd_device_config(idxd);
40 if (rc < 0)
41 goto out;
43 rc = idxd_device_enable(idxd);
44 if (rc < 0)
45 goto out;
47 for (i = 0; i < idxd->max_wqs; i++) {
48 if (test_bit(i, idxd->wq_enable_map)) {
49 struct idxd_wq *wq = idxd->wqs[i];
51 rc = idxd_wq_enable(wq);
52 if (rc < 0) {
53 clear_bit(i, idxd->wq_enable_map);
54 dev_warn(dev, "Unable to re-enable wq %s\n",
55 dev_name(wq_confdev(wq)));
60 return;
62 out:
63 idxd_device_clear_state(idxd);
67 * The function sends a drain descriptor for the interrupt handle. The drain ensures
68 * all descriptors with this interrupt handle is flushed and the interrupt
69 * will allow the cleanup of the outstanding descriptors.
71 static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
73 struct idxd_wq *wq = ie_to_wq(ie);
74 struct idxd_device *idxd = wq->idxd;
75 struct device *dev = &idxd->pdev->dev;
76 struct dsa_hw_desc desc = {};
77 void __iomem *portal;
78 int rc;
80 /* Issue a simple drain operation with interrupt but no completion record */
81 desc.flags = IDXD_OP_FLAG_RCI;
82 desc.opcode = DSA_OPCODE_DRAIN;
83 desc.priv = 1;
85 if (ie->pasid != IOMMU_PASID_INVALID)
86 desc.pasid = ie->pasid;
87 desc.int_handle = ie->int_handle;
88 portal = idxd_wq_portal_addr(wq);
91 * The wmb() makes sure that the descriptor is all there before we
92 * issue.
94 wmb();
95 if (wq_dedicated(wq)) {
96 iosubmit_cmds512(portal, &desc, 1);
97 } else {
98 rc = idxd_enqcmds(wq, portal, &desc);
99 /* This should not fail unless hardware failed. */
100 if (rc < 0)
101 dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
105 static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
107 LIST_HEAD(flist);
108 struct idxd_desc *d, *t;
109 struct llist_node *head;
111 spin_lock(&ie->list_lock);
112 head = llist_del_all(&ie->pending_llist);
113 if (head) {
114 llist_for_each_entry_safe(d, t, head, llnode)
115 list_add_tail(&d->list, &ie->work_list);
118 list_for_each_entry_safe(d, t, &ie->work_list, list) {
119 if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
120 list_move_tail(&d->list, &flist);
122 spin_unlock(&ie->list_lock);
124 list_for_each_entry_safe(d, t, &flist, list) {
125 list_del(&d->list);
126 idxd_desc_complete(d, IDXD_COMPLETE_ABORT, true);
130 static void idxd_int_handle_revoke(struct work_struct *work)
132 struct idxd_int_handle_revoke *revoke =
133 container_of(work, struct idxd_int_handle_revoke, work);
134 struct idxd_device *idxd = revoke->idxd;
135 struct pci_dev *pdev = idxd->pdev;
136 struct device *dev = &pdev->dev;
137 int i, new_handle, rc;
139 if (!idxd->request_int_handles) {
140 kfree(revoke);
141 dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
142 return;
146 * The loop attempts to acquire new interrupt handle for all interrupt
147 * vectors that supports a handle. If a new interrupt handle is acquired and the
148 * wq is kernel type, the driver will kill the percpu_ref to pause all
149 * ongoing descriptor submissions. The interrupt handle is then changed.
150 * After change, the percpu_ref is revived and all the pending submissions
151 * are woken to try again. A drain is sent to for the interrupt handle
152 * at the end to make sure all invalid int handle descriptors are processed.
154 for (i = 1; i < idxd->irq_cnt; i++) {
155 struct idxd_irq_entry *ie = idxd_get_ie(idxd, i);
156 struct idxd_wq *wq = ie_to_wq(ie);
158 if (ie->int_handle == INVALID_INT_HANDLE)
159 continue;
161 rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX);
162 if (rc < 0) {
163 dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
165 * Failed to acquire new interrupt handle. Kill the WQ
166 * and release all the pending submitters. The submitters will
167 * get error return code and handle appropriately.
169 ie->int_handle = INVALID_INT_HANDLE;
170 idxd_wq_quiesce(wq);
171 idxd_abort_invalid_int_handle_descs(ie);
172 continue;
175 /* No change in interrupt handle, nothing needs to be done */
176 if (ie->int_handle == new_handle)
177 continue;
179 if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
181 * All the MSIX interrupts are allocated at once during probe.
182 * Therefore we need to update all interrupts even if the WQ
183 * isn't supporting interrupt operations.
185 ie->int_handle = new_handle;
186 continue;
189 mutex_lock(&wq->wq_lock);
190 reinit_completion(&wq->wq_resurrect);
192 /* Kill percpu_ref to pause additional descriptor submissions */
193 percpu_ref_kill(&wq->wq_active);
195 /* Wait for all submitters quiesce before we change interrupt handle */
196 wait_for_completion(&wq->wq_dead);
198 ie->int_handle = new_handle;
200 /* Revive percpu ref and wake up all the waiting submitters */
201 percpu_ref_reinit(&wq->wq_active);
202 complete_all(&wq->wq_resurrect);
203 mutex_unlock(&wq->wq_lock);
206 * The delay here is to wait for all possible MOVDIR64B that
207 * are issued before percpu_ref_kill() has happened to have
208 * reached the PCIe domain before the drain is issued. The driver
209 * needs to ensure that the drain descriptor issued does not pass
210 * all the other issued descriptors that contain the invalid
211 * interrupt handle in order to ensure that the drain descriptor
212 * interrupt will allow the cleanup of all the descriptors with
213 * invalid interrupt handle.
215 if (wq_dedicated(wq))
216 udelay(100);
217 idxd_int_handle_revoke_drain(ie);
219 kfree(revoke);
222 static void idxd_evl_fault_work(struct work_struct *work)
224 struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
225 struct idxd_wq *wq = fault->wq;
226 struct idxd_device *idxd = wq->idxd;
227 struct device *dev = &idxd->pdev->dev;
228 struct idxd_evl *evl = idxd->evl;
229 struct __evl_entry *entry_head = fault->entry;
230 void *cr = (void *)entry_head + idxd->data->evl_cr_off;
231 int cr_size = idxd->data->compl_size;
232 u8 *status = (u8 *)cr + idxd->data->cr_status_off;
233 u8 *result = (u8 *)cr + idxd->data->cr_result_off;
234 int copied, copy_size;
235 bool *bf;
237 switch (fault->status) {
238 case DSA_COMP_CRA_XLAT:
239 if (entry_head->batch && entry_head->first_err_in_batch)
240 evl->batch_fail[entry_head->batch_id] = false;
242 copy_size = cr_size;
243 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
244 break;
245 case DSA_COMP_BATCH_EVL_ERR:
246 bf = &evl->batch_fail[entry_head->batch_id];
248 copy_size = entry_head->rcr || *bf ? cr_size : 0;
249 if (*bf) {
250 if (*status == DSA_COMP_SUCCESS)
251 *status = DSA_COMP_BATCH_FAIL;
252 *result = 1;
253 *bf = false;
255 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
256 break;
257 case DSA_COMP_DRAIN_EVL:
258 copy_size = cr_size;
259 break;
260 default:
261 copy_size = 0;
262 dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
263 break;
266 if (copy_size == 0)
267 return;
270 * Copy completion record to fault_addr in user address space
271 * that is found by wq and PASID.
273 copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr,
274 cr, copy_size);
276 * The task that triggered the page fault is unknown currently
277 * because multiple threads may share the user address
278 * space or the task exits already before this fault.
279 * So if the copy fails, SIGSEGV can not be sent to the task.
280 * Just print an error for the failure. The user application
281 * waiting for the completion record will time out on this
282 * failure.
284 switch (fault->status) {
285 case DSA_COMP_CRA_XLAT:
286 if (copied != copy_size) {
287 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
288 dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
289 copy_size, copied);
290 if (entry_head->batch)
291 evl->batch_fail[entry_head->batch_id] = true;
293 break;
294 case DSA_COMP_BATCH_EVL_ERR:
295 if (copied != copy_size) {
296 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
297 dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
298 copy_size, copied);
300 break;
301 case DSA_COMP_DRAIN_EVL:
302 if (copied != copy_size)
303 dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
304 copy_size, copied);
305 break;
308 kmem_cache_free(idxd->evl_cache, fault);
311 static void process_evl_entry(struct idxd_device *idxd,
312 struct __evl_entry *entry_head, unsigned int index)
314 struct device *dev = &idxd->pdev->dev;
315 struct idxd_evl *evl = idxd->evl;
316 u8 status;
318 if (test_bit(index, evl->bmap)) {
319 clear_bit(index, evl->bmap);
320 } else {
321 status = DSA_COMP_STATUS(entry_head->error);
323 if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
324 status == DSA_COMP_BATCH_EVL_ERR) {
325 struct idxd_evl_fault *fault;
326 int ent_size = evl_ent_size(idxd);
328 if (entry_head->rci)
329 dev_dbg(dev, "Completion Int Req set, ignoring!\n");
331 if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
332 return;
334 fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC);
335 if (fault) {
336 struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
338 fault->wq = wq;
339 fault->status = status;
340 memcpy(&fault->entry, entry_head, ent_size);
341 INIT_WORK(&fault->work, idxd_evl_fault_work);
342 queue_work(wq->wq, &fault->work);
343 } else {
344 dev_warn(dev, "Failed to service fault work.\n");
346 } else {
347 dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
348 status, entry_head->operation,
349 entry_head->fault_addr);
354 static void process_evl_entries(struct idxd_device *idxd)
356 union evl_status_reg evl_status;
357 unsigned int h, t;
358 struct idxd_evl *evl = idxd->evl;
359 struct __evl_entry *entry_head;
360 unsigned int ent_size = evl_ent_size(idxd);
361 u32 size;
363 evl_status.bits = 0;
364 evl_status.int_pending = 1;
366 mutex_lock(&evl->lock);
367 /* Clear interrupt pending bit */
368 iowrite32(evl_status.bits_upper32,
369 idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
370 evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
371 t = evl_status.tail;
372 h = evl_status.head;
373 size = idxd->evl->size;
375 while (h != t) {
376 entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
377 process_evl_entry(idxd, entry_head, h);
378 h = (h + 1) % size;
381 evl_status.head = h;
382 iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
383 mutex_unlock(&evl->lock);
386 irqreturn_t idxd_misc_thread(int vec, void *data)
388 struct idxd_irq_entry *irq_entry = data;
389 struct idxd_device *idxd = ie_to_idxd(irq_entry);
390 struct device *dev = &idxd->pdev->dev;
391 union gensts_reg gensts;
392 u32 val = 0;
393 int i;
394 bool err = false;
395 u32 cause;
397 cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
398 if (!cause)
399 return IRQ_NONE;
401 iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
403 if (cause & IDXD_INTC_HALT_STATE)
404 goto halt;
406 if (cause & IDXD_INTC_ERR) {
407 spin_lock(&idxd->dev_lock);
408 for (i = 0; i < 4; i++)
409 idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
410 IDXD_SWERR_OFFSET + i * sizeof(u64));
412 iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
413 idxd->reg_base + IDXD_SWERR_OFFSET);
415 if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
416 int id = idxd->sw_err.wq_idx;
417 struct idxd_wq *wq = idxd->wqs[id];
419 if (wq->type == IDXD_WQT_USER)
420 wake_up_interruptible(&wq->err_queue);
421 } else {
422 int i;
424 for (i = 0; i < idxd->max_wqs; i++) {
425 struct idxd_wq *wq = idxd->wqs[i];
427 if (wq->type == IDXD_WQT_USER)
428 wake_up_interruptible(&wq->err_queue);
432 spin_unlock(&idxd->dev_lock);
433 val |= IDXD_INTC_ERR;
435 for (i = 0; i < 4; i++)
436 dev_warn_ratelimited(dev, "err[%d]: %#16.16llx\n",
437 i, idxd->sw_err.bits[i]);
438 err = true;
441 if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
442 struct idxd_int_handle_revoke *revoke;
444 val |= IDXD_INTC_INT_HANDLE_REVOKED;
446 revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC);
447 if (revoke) {
448 revoke->idxd = idxd;
449 INIT_WORK(&revoke->work, idxd_int_handle_revoke);
450 queue_work(idxd->wq, &revoke->work);
452 } else {
453 dev_err(dev, "Failed to allocate work for int handle revoke\n");
454 idxd_wqs_quiesce(idxd);
458 if (cause & IDXD_INTC_CMD) {
459 val |= IDXD_INTC_CMD;
460 complete(idxd->cmd_done);
463 if (cause & IDXD_INTC_OCCUPY) {
464 /* Driver does not utilize occupancy interrupt */
465 val |= IDXD_INTC_OCCUPY;
468 if (cause & IDXD_INTC_PERFMON_OVFL) {
469 val |= IDXD_INTC_PERFMON_OVFL;
470 perfmon_counter_overflow(idxd);
473 if (cause & IDXD_INTC_EVL) {
474 val |= IDXD_INTC_EVL;
475 process_evl_entries(idxd);
478 val ^= cause;
479 if (val)
480 dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
481 val);
483 if (!err)
484 goto out;
486 halt:
487 gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
488 if (gensts.state == IDXD_DEVICE_STATE_HALT) {
489 idxd->state = IDXD_DEV_HALTED;
490 if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
492 * If we need a software reset, we will throw the work
493 * on a system workqueue in order to allow interrupts
494 * for the device command completions.
496 INIT_WORK(&idxd->work, idxd_device_reinit);
497 queue_work(idxd->wq, &idxd->work);
498 } else {
499 idxd->state = IDXD_DEV_HALTED;
500 idxd_wqs_quiesce(idxd);
501 idxd_wqs_unmap_portal(idxd);
502 idxd_device_clear_state(idxd);
503 dev_err(&idxd->pdev->dev,
504 "idxd halted, need %s.\n",
505 gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
506 "FLR" : "system reset");
510 out:
511 return IRQ_HANDLED;
514 static void idxd_int_handle_resubmit_work(struct work_struct *work)
516 struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
517 struct idxd_desc *desc = irw->desc;
518 struct idxd_wq *wq = desc->wq;
519 int rc;
521 desc->completion->status = 0;
522 rc = idxd_submit_desc(wq, desc);
523 if (rc < 0) {
524 dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
525 desc->id, wq->id);
527 * If the error is not -EAGAIN, it means the submission failed due to wq
528 * has been killed instead of ENQCMDS failure. Here the driver needs to
529 * notify the submitter of the failure by reporting abort status.
531 * -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
532 * abort.
534 if (rc != -EAGAIN) {
535 desc->completion->status = IDXD_COMP_DESC_ABORT;
536 idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, false);
538 idxd_free_desc(wq, desc);
540 kfree(irw);
543 bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
545 struct idxd_wq *wq = desc->wq;
546 struct idxd_device *idxd = wq->idxd;
547 struct idxd_resubmit *irw;
549 irw = kzalloc(sizeof(*irw), GFP_KERNEL);
550 if (!irw)
551 return false;
553 irw->desc = desc;
554 INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
555 queue_work(idxd->wq, &irw->work);
556 return true;
559 static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
561 struct idxd_desc *desc, *t;
562 struct llist_node *head;
564 head = llist_del_all(&irq_entry->pending_llist);
565 if (!head)
566 return;
568 llist_for_each_entry_safe(desc, t, head, llnode) {
569 u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
571 if (status) {
573 * Check against the original status as ABORT is software defined
574 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
576 if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
577 idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
578 continue;
581 idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
582 } else {
583 spin_lock(&irq_entry->list_lock);
584 list_add_tail(&desc->list,
585 &irq_entry->work_list);
586 spin_unlock(&irq_entry->list_lock);
591 static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
593 LIST_HEAD(flist);
594 struct idxd_desc *desc, *n;
597 * This lock protects list corruption from access of list outside of the irq handler
598 * thread.
600 spin_lock(&irq_entry->list_lock);
601 if (list_empty(&irq_entry->work_list)) {
602 spin_unlock(&irq_entry->list_lock);
603 return;
606 list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
607 if (desc->completion->status) {
608 list_move_tail(&desc->list, &flist);
612 spin_unlock(&irq_entry->list_lock);
614 list_for_each_entry_safe(desc, n, &flist, list) {
616 * Check against the original status as ABORT is software defined
617 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
619 list_del(&desc->list);
621 if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
622 idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
623 continue;
626 idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
630 irqreturn_t idxd_wq_thread(int irq, void *data)
632 struct idxd_irq_entry *irq_entry = data;
635 * There are two lists we are processing. The pending_llist is where
636 * submmiter adds all the submitted descriptor after sending it to
637 * the workqueue. It's a lockless singly linked list. The work_list
638 * is the common linux double linked list. We are in a scenario of
639 * multiple producers and a single consumer. The producers are all
640 * the kernel submitters of descriptors, and the consumer is the
641 * kernel irq handler thread for the msix vector when using threaded
642 * irq. To work with the restrictions of llist to remain lockless,
643 * we are doing the following steps:
644 * 1. Iterate through the work_list and process any completed
645 * descriptor. Delete the completed entries during iteration.
646 * 2. llist_del_all() from the pending list.
647 * 3. Iterate through the llist that was deleted from the pending list
648 * and process the completed entries.
649 * 4. If the entry is still waiting on hardware, list_add_tail() to
650 * the work_list.
652 irq_process_work_list(irq_entry);
653 irq_process_pending_llist(irq_entry);
655 return IRQ_HANDLED;