Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / dma / imx-sdma.c
blob3449006cd14b56c3b65cfdff067a2e1379dae55f
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/genalloc.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/firmware.h>
30 #include <linux/slab.h>
31 #include <linux/platform_device.h>
32 #include <linux/dmaengine.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_dma.h>
36 #include <linux/workqueue.h>
38 #include <asm/irq.h>
39 #include <linux/dma/imx-dma.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
44 #include "dmaengine.h"
45 #include "virt-dma.h"
47 /* SDMA registers */
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
77 #define SDMA_DONE0_CONFIG 0x1000
80 * Buffer descriptor status values.
82 #define BD_DONE 0x01
83 #define BD_WRAP 0x02
84 #define BD_CONT 0x04
85 #define BD_INTR 0x08
86 #define BD_RROR 0x10
87 #define BD_LAST 0x20
88 #define BD_EXTD 0x80
91 * Data Node descriptor status values.
93 #define DND_END_OF_FRAME 0x80
94 #define DND_END_OF_XFER 0x40
95 #define DND_DONE 0x20
96 #define DND_UNUSED 0x01
99 * IPCV2 descriptor status values.
101 #define BD_IPCV2_END_OF_FRAME 0x40
103 #define IPCV2_MAX_NODES 50
105 * Error bit set in the CCB status field by the SDMA,
106 * in setbd routine, in case of a transfer error
108 #define DATA_ERROR 0x10000000
111 * Buffer descriptor commands.
113 #define C0_ADDR 0x01
114 #define C0_LOAD 0x02
115 #define C0_DUMP 0x03
116 #define C0_SETCTX 0x07
117 #define C0_GETCTX 0x03
118 #define C0_SETDM 0x01
119 #define C0_SETPM 0x04
120 #define C0_GETDM 0x02
121 #define C0_GETPM 0x08
123 * Change endianness indicator in the BD command field
125 #define CHANGE_ENDIANNESS 0x80
128 * p_2_p watermark_level description
129 * Bits Name Description
130 * 0-7 Lower WML Lower watermark level
131 * 8 PS 1: Pad Swallowing
132 * 0: No Pad Swallowing
133 * 9 PA 1: Pad Adding
134 * 0: No Pad Adding
135 * 10 SPDIF If this bit is set both source
136 * and destination are on SPBA
137 * 11 Source Bit(SP) 1: Source on SPBA
138 * 0: Source on AIPS
139 * 12 Destination Bit(DP) 1: Destination on SPBA
140 * 0: Destination on AIPS
141 * 13 Source FIFO 1: Source is dual FIFO
142 * 0: Source is single FIFO
143 * 14 Destination FIFO 1: Destination is dual FIFO
144 * 0: Destination is single FIFO
145 * 15 --------- MUST BE 0
146 * 16-23 Higher WML HWML
147 * 24-27 N Total number of samples after
148 * which Pad adding/Swallowing
149 * must be done. It must be odd.
150 * 28 Lower WML Event(LWE) SDMA events reg to check for
151 * LWML event mask
152 * 0: LWE in EVENTS register
153 * 1: LWE in EVENTS2 register
154 * 29 Higher WML Event(HWE) SDMA events reg to check for
155 * HWML event mask
156 * 0: HWE in EVENTS register
157 * 1: HWE in EVENTS2 register
158 * 30 --------- MUST BE 0
159 * 31 CONT 1: Amount of samples to be
160 * transferred is unknown and
161 * script will keep on
162 * transferring samples as long as
163 * both events are detected and
164 * script must be manually stopped
165 * by the application
166 * 0: The amount of samples to be
167 * transferred is equal to the
168 * count field of mode word
170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
171 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
176 #define SDMA_WATERMARK_LEVEL_SD BIT(13)
177 #define SDMA_WATERMARK_LEVEL_DD BIT(14)
178 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
179 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
180 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
181 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
183 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
184 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
185 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
186 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
188 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
189 BIT(DMA_MEM_TO_DEV) | \
190 BIT(DMA_DEV_TO_DEV))
192 #define SDMA_WATERMARK_LEVEL_N_FIFOS GENMASK(15, 12)
193 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS GENMASK(19, 16)
194 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO GENMASK(31, 28)
195 #define SDMA_WATERMARK_LEVEL_SW_DONE BIT(23)
197 #define SDMA_DONE0_CONFIG_DONE_SEL BIT(7)
198 #define SDMA_DONE0_CONFIG_DONE_DIS BIT(6)
201 * struct sdma_script_start_addrs - SDMA script start pointers
203 * start addresses of the different functions in the physical
204 * address space of the SDMA engine.
206 struct sdma_script_start_addrs {
207 s32 ap_2_ap_addr;
208 s32 ap_2_bp_addr;
209 s32 ap_2_ap_fixed_addr;
210 s32 bp_2_ap_addr;
211 s32 loopback_on_dsp_side_addr;
212 s32 mcu_interrupt_only_addr;
213 s32 firi_2_per_addr;
214 s32 firi_2_mcu_addr;
215 s32 per_2_firi_addr;
216 s32 mcu_2_firi_addr;
217 s32 uart_2_per_addr;
218 s32 uart_2_mcu_addr;
219 s32 per_2_app_addr;
220 s32 mcu_2_app_addr;
221 s32 per_2_per_addr;
222 s32 uartsh_2_per_addr;
223 s32 uartsh_2_mcu_addr;
224 s32 per_2_shp_addr;
225 s32 mcu_2_shp_addr;
226 s32 ata_2_mcu_addr;
227 s32 mcu_2_ata_addr;
228 s32 app_2_per_addr;
229 s32 app_2_mcu_addr;
230 s32 shp_2_per_addr;
231 s32 shp_2_mcu_addr;
232 s32 mshc_2_mcu_addr;
233 s32 mcu_2_mshc_addr;
234 s32 spdif_2_mcu_addr;
235 s32 mcu_2_spdif_addr;
236 s32 asrc_2_mcu_addr;
237 s32 ext_mem_2_ipu_addr;
238 s32 descrambler_addr;
239 s32 dptc_dvfs_addr;
240 s32 utra_addr;
241 s32 ram_code_start_addr;
242 /* End of v1 array */
243 union { s32 v1_end; s32 mcu_2_ssish_addr; };
244 s32 ssish_2_mcu_addr;
245 s32 hdmi_dma_addr;
246 /* End of v2 array */
247 union { s32 v2_end; s32 zcanfd_2_mcu_addr; };
248 s32 zqspi_2_mcu_addr;
249 s32 mcu_2_ecspi_addr;
250 s32 mcu_2_sai_addr;
251 s32 sai_2_mcu_addr;
252 s32 uart_2_mcu_rom_addr;
253 s32 uartsh_2_mcu_rom_addr;
254 s32 i2c_2_mcu_addr;
255 s32 mcu_2_i2c_addr;
256 /* End of v3 array */
257 union { s32 v3_end; s32 mcu_2_zqspi_addr; };
258 /* End of v4 array */
259 s32 v4_end[0];
263 * Mode/Count of data node descriptors - IPCv2
265 struct sdma_mode_count {
266 #define SDMA_BD_MAX_CNT 0xffff
267 u32 count : 16; /* size of the buffer pointed by this BD */
268 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
269 u32 command : 8; /* command mostly used for channel 0 */
273 * Buffer descriptor
275 struct sdma_buffer_descriptor {
276 struct sdma_mode_count mode;
277 u32 buffer_addr; /* address of the buffer described */
278 u32 ext_buffer_addr; /* extended buffer address */
279 } __attribute__ ((packed));
282 * struct sdma_channel_control - Channel control Block
284 * @current_bd_ptr: current buffer descriptor processed
285 * @base_bd_ptr: first element of buffer descriptor array
286 * @unused: padding. The SDMA engine expects an array of 128 byte
287 * control blocks
289 struct sdma_channel_control {
290 u32 current_bd_ptr;
291 u32 base_bd_ptr;
292 u32 unused[2];
293 } __attribute__ ((packed));
296 * struct sdma_state_registers - SDMA context for a channel
298 * @pc: program counter
299 * @unused1: unused
300 * @t: test bit: status of arithmetic & test instruction
301 * @rpc: return program counter
302 * @unused0: unused
303 * @sf: source fault while loading data
304 * @spc: loop start program counter
305 * @unused2: unused
306 * @df: destination fault while storing data
307 * @epc: loop end program counter
308 * @lm: loop mode
310 struct sdma_state_registers {
311 u32 pc :14;
312 u32 unused1: 1;
313 u32 t : 1;
314 u32 rpc :14;
315 u32 unused0: 1;
316 u32 sf : 1;
317 u32 spc :14;
318 u32 unused2: 1;
319 u32 df : 1;
320 u32 epc :14;
321 u32 lm : 2;
322 } __attribute__ ((packed));
325 * struct sdma_context_data - sdma context specific to a channel
327 * @channel_state: channel state bits
328 * @gReg: general registers
329 * @mda: burst dma destination address register
330 * @msa: burst dma source address register
331 * @ms: burst dma status register
332 * @md: burst dma data register
333 * @pda: peripheral dma destination address register
334 * @psa: peripheral dma source address register
335 * @ps: peripheral dma status register
336 * @pd: peripheral dma data register
337 * @ca: CRC polynomial register
338 * @cs: CRC accumulator register
339 * @dda: dedicated core destination address register
340 * @dsa: dedicated core source address register
341 * @ds: dedicated core status register
342 * @dd: dedicated core data register
343 * @scratch0: 1st word of dedicated ram for context switch
344 * @scratch1: 2nd word of dedicated ram for context switch
345 * @scratch2: 3rd word of dedicated ram for context switch
346 * @scratch3: 4th word of dedicated ram for context switch
347 * @scratch4: 5th word of dedicated ram for context switch
348 * @scratch5: 6th word of dedicated ram for context switch
349 * @scratch6: 7th word of dedicated ram for context switch
350 * @scratch7: 8th word of dedicated ram for context switch
352 struct sdma_context_data {
353 struct sdma_state_registers channel_state;
354 u32 gReg[8];
355 u32 mda;
356 u32 msa;
357 u32 ms;
358 u32 md;
359 u32 pda;
360 u32 psa;
361 u32 ps;
362 u32 pd;
363 u32 ca;
364 u32 cs;
365 u32 dda;
366 u32 dsa;
367 u32 ds;
368 u32 dd;
369 u32 scratch0;
370 u32 scratch1;
371 u32 scratch2;
372 u32 scratch3;
373 u32 scratch4;
374 u32 scratch5;
375 u32 scratch6;
376 u32 scratch7;
377 } __attribute__ ((packed));
380 struct sdma_engine;
383 * struct sdma_desc - descriptor structor for one transfer
384 * @vd: descriptor for virt dma
385 * @num_bd: number of descriptors currently handling
386 * @bd_phys: physical address of bd
387 * @buf_tail: ID of the buffer that was processed
388 * @buf_ptail: ID of the previous buffer that was processed
389 * @period_len: period length, used in cyclic.
390 * @chn_real_count: the real count updated from bd->mode.count
391 * @chn_count: the transfer count set
392 * @sdmac: sdma_channel pointer
393 * @bd: pointer of allocate bd
395 struct sdma_desc {
396 struct virt_dma_desc vd;
397 unsigned int num_bd;
398 dma_addr_t bd_phys;
399 unsigned int buf_tail;
400 unsigned int buf_ptail;
401 unsigned int period_len;
402 unsigned int chn_real_count;
403 unsigned int chn_count;
404 struct sdma_channel *sdmac;
405 struct sdma_buffer_descriptor *bd;
409 * struct sdma_channel - housekeeping for a SDMA channel
411 * @vc: virt_dma base structure
412 * @desc: sdma description including vd and other special member
413 * @sdma: pointer to the SDMA engine for this channel
414 * @channel: the channel number, matches dmaengine chan_id + 1
415 * @direction: transfer type. Needed for setting SDMA script
416 * @slave_config: Slave configuration
417 * @peripheral_type: Peripheral type. Needed for setting SDMA script
418 * @event_id0: aka dma request line
419 * @event_id1: for channels that use 2 events
420 * @word_size: peripheral access size
421 * @pc_from_device: script address for those device_2_memory
422 * @pc_to_device: script address for those memory_2_device
423 * @device_to_device: script address for those device_2_device
424 * @pc_to_pc: script address for those memory_2_memory
425 * @flags: loop mode or not
426 * @per_address: peripheral source or destination address in common case
427 * destination address in p_2_p case
428 * @per_address2: peripheral source address in p_2_p case
429 * @event_mask: event mask used in p_2_p script
430 * @watermark_level: value for gReg[7], some script will extend it from
431 * basic watermark such as p_2_p
432 * @shp_addr: value for gReg[6]
433 * @per_addr: value for gReg[2]
434 * @status: status of dma channel
435 * @data: specific sdma interface structure
436 * @terminate_worker: used to call back into terminate work function
437 * @terminated: terminated list
438 * @is_ram_script: flag for script in ram
439 * @n_fifos_src: number of source device fifos
440 * @n_fifos_dst: number of destination device fifos
441 * @sw_done: software done flag
442 * @stride_fifos_src: stride for source device FIFOs
443 * @stride_fifos_dst: stride for destination device FIFOs
444 * @words_per_fifo: copy number of words one time for one FIFO
446 struct sdma_channel {
447 struct virt_dma_chan vc;
448 struct sdma_desc *desc;
449 struct sdma_engine *sdma;
450 unsigned int channel;
451 enum dma_transfer_direction direction;
452 struct dma_slave_config slave_config;
453 enum sdma_peripheral_type peripheral_type;
454 unsigned int event_id0;
455 unsigned int event_id1;
456 enum dma_slave_buswidth word_size;
457 unsigned int pc_from_device, pc_to_device;
458 unsigned int device_to_device;
459 unsigned int pc_to_pc;
460 unsigned long flags;
461 dma_addr_t per_address, per_address2;
462 unsigned long event_mask[2];
463 unsigned long watermark_level;
464 u32 shp_addr, per_addr;
465 enum dma_status status;
466 struct imx_dma_data data;
467 struct work_struct terminate_worker;
468 struct list_head terminated;
469 bool is_ram_script;
470 unsigned int n_fifos_src;
471 unsigned int n_fifos_dst;
472 unsigned int stride_fifos_src;
473 unsigned int stride_fifos_dst;
474 unsigned int words_per_fifo;
475 bool sw_done;
478 #define IMX_DMA_SG_LOOP BIT(0)
480 #define MAX_DMA_CHANNELS 32
481 #define MXC_SDMA_DEFAULT_PRIORITY 1
482 #define MXC_SDMA_MIN_PRIORITY 1
483 #define MXC_SDMA_MAX_PRIORITY 7
485 #define SDMA_FIRMWARE_MAGIC 0x414d4453
488 * struct sdma_firmware_header - Layout of the firmware image
490 * @magic: "SDMA"
491 * @version_major: increased whenever layout of struct
492 * sdma_script_start_addrs changes.
493 * @version_minor: firmware minor version (for binary compatible changes)
494 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
495 * @num_script_addrs: Number of script addresses in this image
496 * @ram_code_start: offset of SDMA ram image in this firmware image
497 * @ram_code_size: size of SDMA ram image
499 struct sdma_firmware_header {
500 u32 magic;
501 u32 version_major;
502 u32 version_minor;
503 u32 script_addrs_start;
504 u32 num_script_addrs;
505 u32 ram_code_start;
506 u32 ram_code_size;
509 struct sdma_driver_data {
510 int chnenbl0;
511 int num_events;
512 struct sdma_script_start_addrs *script_addrs;
513 bool check_ratio;
515 * ecspi ERR009165 fixed should be done in sdma script
516 * and it has been fixed in soc from i.mx6ul.
517 * please get more information from the below link:
518 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
520 bool ecspi_fixed;
523 struct sdma_engine {
524 struct device *dev;
525 struct sdma_channel channel[MAX_DMA_CHANNELS];
526 struct sdma_channel_control *channel_control;
527 void __iomem *regs;
528 struct sdma_context_data *context;
529 dma_addr_t context_phys;
530 struct dma_device dma_device;
531 struct clk *clk_ipg;
532 struct clk *clk_ahb;
533 spinlock_t channel_0_lock;
534 u32 script_number;
535 struct sdma_script_start_addrs *script_addrs;
536 const struct sdma_driver_data *drvdata;
537 u32 spba_start_addr;
538 u32 spba_end_addr;
539 unsigned int irq;
540 dma_addr_t bd0_phys;
541 struct sdma_buffer_descriptor *bd0;
542 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
543 bool clk_ratio;
544 bool fw_loaded;
545 struct gen_pool *iram_pool;
548 static int sdma_config_write(struct dma_chan *chan,
549 struct dma_slave_config *dmaengine_cfg,
550 enum dma_transfer_direction direction);
552 static struct sdma_driver_data sdma_imx31 = {
553 .chnenbl0 = SDMA_CHNENBL0_IMX31,
554 .num_events = 32,
557 static struct sdma_script_start_addrs sdma_script_imx25 = {
558 .ap_2_ap_addr = 729,
559 .uart_2_mcu_addr = 904,
560 .per_2_app_addr = 1255,
561 .mcu_2_app_addr = 834,
562 .uartsh_2_mcu_addr = 1120,
563 .per_2_shp_addr = 1329,
564 .mcu_2_shp_addr = 1048,
565 .ata_2_mcu_addr = 1560,
566 .mcu_2_ata_addr = 1479,
567 .app_2_per_addr = 1189,
568 .app_2_mcu_addr = 770,
569 .shp_2_per_addr = 1407,
570 .shp_2_mcu_addr = 979,
573 static struct sdma_driver_data sdma_imx25 = {
574 .chnenbl0 = SDMA_CHNENBL0_IMX35,
575 .num_events = 48,
576 .script_addrs = &sdma_script_imx25,
579 static struct sdma_driver_data sdma_imx35 = {
580 .chnenbl0 = SDMA_CHNENBL0_IMX35,
581 .num_events = 48,
584 static struct sdma_script_start_addrs sdma_script_imx51 = {
585 .ap_2_ap_addr = 642,
586 .uart_2_mcu_addr = 817,
587 .mcu_2_app_addr = 747,
588 .mcu_2_shp_addr = 961,
589 .ata_2_mcu_addr = 1473,
590 .mcu_2_ata_addr = 1392,
591 .app_2_per_addr = 1033,
592 .app_2_mcu_addr = 683,
593 .shp_2_per_addr = 1251,
594 .shp_2_mcu_addr = 892,
597 static struct sdma_driver_data sdma_imx51 = {
598 .chnenbl0 = SDMA_CHNENBL0_IMX35,
599 .num_events = 48,
600 .script_addrs = &sdma_script_imx51,
603 static struct sdma_script_start_addrs sdma_script_imx53 = {
604 .ap_2_ap_addr = 642,
605 .app_2_mcu_addr = 683,
606 .mcu_2_app_addr = 747,
607 .uart_2_mcu_addr = 817,
608 .shp_2_mcu_addr = 891,
609 .mcu_2_shp_addr = 960,
610 .uartsh_2_mcu_addr = 1032,
611 .spdif_2_mcu_addr = 1100,
612 .mcu_2_spdif_addr = 1134,
613 .firi_2_mcu_addr = 1193,
614 .mcu_2_firi_addr = 1290,
617 static struct sdma_driver_data sdma_imx53 = {
618 .chnenbl0 = SDMA_CHNENBL0_IMX35,
619 .num_events = 48,
620 .script_addrs = &sdma_script_imx53,
623 static struct sdma_script_start_addrs sdma_script_imx6q = {
624 .ap_2_ap_addr = 642,
625 .uart_2_mcu_addr = 817,
626 .mcu_2_app_addr = 747,
627 .per_2_per_addr = 6331,
628 .uartsh_2_mcu_addr = 1032,
629 .mcu_2_shp_addr = 960,
630 .app_2_mcu_addr = 683,
631 .shp_2_mcu_addr = 891,
632 .spdif_2_mcu_addr = 1100,
633 .mcu_2_spdif_addr = 1134,
636 static struct sdma_driver_data sdma_imx6q = {
637 .chnenbl0 = SDMA_CHNENBL0_IMX35,
638 .num_events = 48,
639 .script_addrs = &sdma_script_imx6q,
642 static struct sdma_driver_data sdma_imx6ul = {
643 .chnenbl0 = SDMA_CHNENBL0_IMX35,
644 .num_events = 48,
645 .script_addrs = &sdma_script_imx6q,
646 .ecspi_fixed = true,
649 static struct sdma_script_start_addrs sdma_script_imx7d = {
650 .ap_2_ap_addr = 644,
651 .uart_2_mcu_addr = 819,
652 .mcu_2_app_addr = 749,
653 .uartsh_2_mcu_addr = 1034,
654 .mcu_2_shp_addr = 962,
655 .app_2_mcu_addr = 685,
656 .shp_2_mcu_addr = 893,
657 .spdif_2_mcu_addr = 1102,
658 .mcu_2_spdif_addr = 1136,
661 static struct sdma_driver_data sdma_imx7d = {
662 .chnenbl0 = SDMA_CHNENBL0_IMX35,
663 .num_events = 48,
664 .script_addrs = &sdma_script_imx7d,
667 static struct sdma_driver_data sdma_imx8mq = {
668 .chnenbl0 = SDMA_CHNENBL0_IMX35,
669 .num_events = 48,
670 .script_addrs = &sdma_script_imx7d,
671 .check_ratio = 1,
674 static const struct of_device_id sdma_dt_ids[] = {
675 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
676 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
677 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
678 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
679 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
680 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
681 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
682 { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
683 { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
684 { /* sentinel */ }
686 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
688 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
689 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
690 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
691 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
693 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
695 u32 chnenbl0 = sdma->drvdata->chnenbl0;
696 return chnenbl0 + event * 4;
699 static int sdma_config_ownership(struct sdma_channel *sdmac,
700 bool event_override, bool mcu_override, bool dsp_override)
702 struct sdma_engine *sdma = sdmac->sdma;
703 int channel = sdmac->channel;
704 unsigned long evt, mcu, dsp;
706 if (event_override && mcu_override && dsp_override)
707 return -EINVAL;
709 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
710 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
711 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
713 if (dsp_override)
714 __clear_bit(channel, &dsp);
715 else
716 __set_bit(channel, &dsp);
718 if (event_override)
719 __clear_bit(channel, &evt);
720 else
721 __set_bit(channel, &evt);
723 if (mcu_override)
724 __clear_bit(channel, &mcu);
725 else
726 __set_bit(channel, &mcu);
728 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
729 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
730 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
732 return 0;
735 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
737 return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
740 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
742 writel(BIT(channel), sdma->regs + SDMA_H_START);
746 * sdma_run_channel0 - run a channel and wait till it's done
748 static int sdma_run_channel0(struct sdma_engine *sdma)
750 int ret;
751 u32 reg;
753 sdma_enable_channel(sdma, 0);
755 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
756 reg, !(reg & 1), 1, 500);
757 if (ret)
758 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
760 /* Set bits of CONFIG register with dynamic context switching */
761 reg = readl(sdma->regs + SDMA_H_CONFIG);
762 if ((reg & SDMA_H_CONFIG_CSM) == 0) {
763 reg |= SDMA_H_CONFIG_CSM;
764 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
767 return ret;
770 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
771 u32 address)
773 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
774 void *buf_virt;
775 dma_addr_t buf_phys;
776 int ret;
777 unsigned long flags;
779 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
780 if (!buf_virt)
781 return -ENOMEM;
783 spin_lock_irqsave(&sdma->channel_0_lock, flags);
785 bd0->mode.command = C0_SETPM;
786 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
787 bd0->mode.count = size / 2;
788 bd0->buffer_addr = buf_phys;
789 bd0->ext_buffer_addr = address;
791 memcpy(buf_virt, buf, size);
793 ret = sdma_run_channel0(sdma);
795 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
797 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
799 return ret;
802 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
804 struct sdma_engine *sdma = sdmac->sdma;
805 int channel = sdmac->channel;
806 unsigned long val;
807 u32 chnenbl = chnenbl_ofs(sdma, event);
809 val = readl_relaxed(sdma->regs + chnenbl);
810 __set_bit(channel, &val);
811 writel_relaxed(val, sdma->regs + chnenbl);
813 /* Set SDMA_DONEx_CONFIG is sw_done enabled */
814 if (sdmac->sw_done) {
815 val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
816 val |= SDMA_DONE0_CONFIG_DONE_SEL;
817 val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
818 writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
822 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
824 struct sdma_engine *sdma = sdmac->sdma;
825 int channel = sdmac->channel;
826 u32 chnenbl = chnenbl_ofs(sdma, event);
827 unsigned long val;
829 val = readl_relaxed(sdma->regs + chnenbl);
830 __clear_bit(channel, &val);
831 writel_relaxed(val, sdma->regs + chnenbl);
834 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
836 return container_of(t, struct sdma_desc, vd.tx);
839 static void sdma_start_desc(struct sdma_channel *sdmac)
841 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
842 struct sdma_desc *desc;
843 struct sdma_engine *sdma = sdmac->sdma;
844 int channel = sdmac->channel;
846 if (!vd) {
847 sdmac->desc = NULL;
848 return;
850 sdmac->desc = desc = to_sdma_desc(&vd->tx);
852 list_del(&vd->node);
854 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
855 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
856 sdma_enable_channel(sdma, sdmac->channel);
859 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
861 struct sdma_buffer_descriptor *bd;
862 int error = 0;
863 enum dma_status old_status = sdmac->status;
866 * loop mode. Iterate over descriptors, re-setup them and
867 * call callback function.
869 while (sdmac->desc) {
870 struct sdma_desc *desc = sdmac->desc;
872 bd = &desc->bd[desc->buf_tail];
874 if (bd->mode.status & BD_DONE)
875 break;
877 if (bd->mode.status & BD_RROR) {
878 bd->mode.status &= ~BD_RROR;
879 sdmac->status = DMA_ERROR;
880 error = -EIO;
884 * We use bd->mode.count to calculate the residue, since contains
885 * the number of bytes present in the current buffer descriptor.
888 desc->chn_real_count = bd->mode.count;
889 bd->mode.count = desc->period_len;
890 desc->buf_ptail = desc->buf_tail;
891 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
894 * The callback is called from the interrupt context in order
895 * to reduce latency and to avoid the risk of altering the
896 * SDMA transaction status by the time the client tasklet is
897 * executed.
899 spin_unlock(&sdmac->vc.lock);
900 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
901 spin_lock(&sdmac->vc.lock);
903 /* Assign buffer ownership to SDMA */
904 bd->mode.status |= BD_DONE;
906 if (error)
907 sdmac->status = old_status;
911 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
912 * owned buffer is available (i.e. BD_DONE was set too late).
914 if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
915 dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
916 sdma_enable_channel(sdmac->sdma, sdmac->channel);
920 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
922 struct sdma_channel *sdmac = (struct sdma_channel *) data;
923 struct sdma_buffer_descriptor *bd;
924 int i, error = 0;
926 sdmac->desc->chn_real_count = 0;
928 * non loop mode. Iterate over all descriptors, collect
929 * errors and call callback function
931 for (i = 0; i < sdmac->desc->num_bd; i++) {
932 bd = &sdmac->desc->bd[i];
934 if (bd->mode.status & (BD_DONE | BD_RROR))
935 error = -EIO;
936 sdmac->desc->chn_real_count += bd->mode.count;
939 if (error)
940 sdmac->status = DMA_ERROR;
941 else
942 sdmac->status = DMA_COMPLETE;
945 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
947 struct sdma_engine *sdma = dev_id;
948 unsigned long stat;
950 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
951 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
952 /* channel 0 is special and not handled here, see run_channel0() */
953 stat &= ~1;
955 while (stat) {
956 int channel = fls(stat) - 1;
957 struct sdma_channel *sdmac = &sdma->channel[channel];
958 struct sdma_desc *desc;
960 spin_lock(&sdmac->vc.lock);
961 desc = sdmac->desc;
962 if (desc) {
963 if (sdmac->flags & IMX_DMA_SG_LOOP) {
964 if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
965 sdma_update_channel_loop(sdmac);
966 else
967 vchan_cyclic_callback(&desc->vd);
968 } else {
969 mxc_sdma_handle_channel_normal(sdmac);
970 vchan_cookie_complete(&desc->vd);
971 sdma_start_desc(sdmac);
975 spin_unlock(&sdmac->vc.lock);
976 __clear_bit(channel, &stat);
979 return IRQ_HANDLED;
983 * sets the pc of SDMA script according to the peripheral type
985 static int sdma_get_pc(struct sdma_channel *sdmac,
986 enum sdma_peripheral_type peripheral_type)
988 struct sdma_engine *sdma = sdmac->sdma;
989 int per_2_emi = 0, emi_2_per = 0;
991 * These are needed once we start to support transfers between
992 * two peripherals or memory-to-memory transfers
994 int per_2_per = 0, emi_2_emi = 0;
996 sdmac->pc_from_device = 0;
997 sdmac->pc_to_device = 0;
998 sdmac->device_to_device = 0;
999 sdmac->pc_to_pc = 0;
1000 sdmac->is_ram_script = false;
1002 switch (peripheral_type) {
1003 case IMX_DMATYPE_MEMORY:
1004 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
1005 break;
1006 case IMX_DMATYPE_DSP:
1007 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
1008 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1009 break;
1010 case IMX_DMATYPE_FIRI:
1011 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1012 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1013 break;
1014 case IMX_DMATYPE_UART:
1015 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1016 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1017 break;
1018 case IMX_DMATYPE_UART_SP:
1019 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1020 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1021 break;
1022 case IMX_DMATYPE_ATA:
1023 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1024 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1025 break;
1026 case IMX_DMATYPE_CSPI:
1027 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1029 /* Use rom script mcu_2_app if ERR009165 fixed */
1030 if (sdmac->sdma->drvdata->ecspi_fixed) {
1031 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1032 } else {
1033 emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1034 sdmac->is_ram_script = true;
1037 break;
1038 case IMX_DMATYPE_EXT:
1039 case IMX_DMATYPE_SSI:
1040 case IMX_DMATYPE_SAI:
1041 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1042 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1043 break;
1044 case IMX_DMATYPE_SSI_DUAL:
1045 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1046 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1047 sdmac->is_ram_script = true;
1048 break;
1049 case IMX_DMATYPE_SSI_SP:
1050 case IMX_DMATYPE_MMC:
1051 case IMX_DMATYPE_SDHC:
1052 case IMX_DMATYPE_CSPI_SP:
1053 case IMX_DMATYPE_ESAI:
1054 case IMX_DMATYPE_MSHC_SP:
1055 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1056 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1057 break;
1058 case IMX_DMATYPE_ASRC:
1059 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1060 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1061 per_2_per = sdma->script_addrs->per_2_per_addr;
1062 sdmac->is_ram_script = true;
1063 break;
1064 case IMX_DMATYPE_ASRC_SP:
1065 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1066 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1067 per_2_per = sdma->script_addrs->per_2_per_addr;
1068 break;
1069 case IMX_DMATYPE_MSHC:
1070 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1071 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1072 break;
1073 case IMX_DMATYPE_CCM:
1074 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1075 break;
1076 case IMX_DMATYPE_SPDIF:
1077 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1078 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1079 break;
1080 case IMX_DMATYPE_IPU_MEMORY:
1081 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1082 break;
1083 case IMX_DMATYPE_MULTI_SAI:
1084 per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1085 emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1086 break;
1087 case IMX_DMATYPE_I2C:
1088 per_2_emi = sdma->script_addrs->i2c_2_mcu_addr;
1089 emi_2_per = sdma->script_addrs->mcu_2_i2c_addr;
1090 sdmac->is_ram_script = true;
1091 break;
1092 case IMX_DMATYPE_HDMI:
1093 emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1094 sdmac->is_ram_script = true;
1095 break;
1096 default:
1097 dev_err(sdma->dev, "Unsupported transfer type %d\n",
1098 peripheral_type);
1099 return -EINVAL;
1102 sdmac->pc_from_device = per_2_emi;
1103 sdmac->pc_to_device = emi_2_per;
1104 sdmac->device_to_device = per_2_per;
1105 sdmac->pc_to_pc = emi_2_emi;
1107 return 0;
1110 static int sdma_load_context(struct sdma_channel *sdmac)
1112 struct sdma_engine *sdma = sdmac->sdma;
1113 int channel = sdmac->channel;
1114 int load_address;
1115 struct sdma_context_data *context = sdma->context;
1116 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1117 int ret;
1118 unsigned long flags;
1120 if (sdmac->direction == DMA_DEV_TO_MEM)
1121 load_address = sdmac->pc_from_device;
1122 else if (sdmac->direction == DMA_DEV_TO_DEV)
1123 load_address = sdmac->device_to_device;
1124 else if (sdmac->direction == DMA_MEM_TO_MEM)
1125 load_address = sdmac->pc_to_pc;
1126 else
1127 load_address = sdmac->pc_to_device;
1129 if (load_address < 0)
1130 return load_address;
1132 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1133 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1134 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1135 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1136 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1137 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1139 spin_lock_irqsave(&sdma->channel_0_lock, flags);
1141 memset(context, 0, sizeof(*context));
1142 context->channel_state.pc = load_address;
1144 /* Send by context the event mask,base address for peripheral
1145 * and watermark level
1147 if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1148 context->gReg[4] = sdmac->per_addr;
1149 context->gReg[6] = sdmac->shp_addr;
1150 } else {
1151 context->gReg[0] = sdmac->event_mask[1];
1152 context->gReg[1] = sdmac->event_mask[0];
1153 context->gReg[2] = sdmac->per_addr;
1154 context->gReg[6] = sdmac->shp_addr;
1155 context->gReg[7] = sdmac->watermark_level;
1158 bd0->mode.command = C0_SETDM;
1159 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1160 bd0->mode.count = sizeof(*context) / 4;
1161 bd0->buffer_addr = sdma->context_phys;
1162 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1163 ret = sdma_run_channel0(sdma);
1165 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1167 return ret;
1170 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1172 return container_of(chan, struct sdma_channel, vc.chan);
1175 static int sdma_disable_channel(struct dma_chan *chan)
1177 struct sdma_channel *sdmac = to_sdma_chan(chan);
1178 struct sdma_engine *sdma = sdmac->sdma;
1179 int channel = sdmac->channel;
1181 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1182 sdmac->status = DMA_ERROR;
1184 return 0;
1186 static void sdma_channel_terminate_work(struct work_struct *work)
1188 struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1189 terminate_worker);
1191 * According to NXP R&D team a delay of one BD SDMA cost time
1192 * (maximum is 1ms) should be added after disable of the channel
1193 * bit, to ensure SDMA core has really been stopped after SDMA
1194 * clients call .device_terminate_all.
1196 usleep_range(1000, 2000);
1198 vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1201 static int sdma_terminate_all(struct dma_chan *chan)
1203 struct sdma_channel *sdmac = to_sdma_chan(chan);
1204 unsigned long flags;
1206 spin_lock_irqsave(&sdmac->vc.lock, flags);
1208 sdma_disable_channel(chan);
1210 if (sdmac->desc) {
1211 vchan_terminate_vdesc(&sdmac->desc->vd);
1213 * move out current descriptor into terminated list so that
1214 * it could be free in sdma_channel_terminate_work alone
1215 * later without potential involving next descriptor raised
1216 * up before the last descriptor terminated.
1218 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1219 sdmac->desc = NULL;
1220 schedule_work(&sdmac->terminate_worker);
1223 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1225 return 0;
1228 static void sdma_channel_synchronize(struct dma_chan *chan)
1230 struct sdma_channel *sdmac = to_sdma_chan(chan);
1232 vchan_synchronize(&sdmac->vc);
1234 flush_work(&sdmac->terminate_worker);
1237 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1239 struct sdma_engine *sdma = sdmac->sdma;
1241 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1242 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1244 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1245 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1247 if (sdmac->event_id0 > 31)
1248 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1250 if (sdmac->event_id1 > 31)
1251 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1254 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1255 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1256 * r0(event_mask[1]) and r1(event_mask[0]).
1258 if (lwml > hwml) {
1259 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1260 SDMA_WATERMARK_LEVEL_HWML);
1261 sdmac->watermark_level |= hwml;
1262 sdmac->watermark_level |= lwml << 16;
1263 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1266 if (sdmac->per_address2 >= sdma->spba_start_addr &&
1267 sdmac->per_address2 <= sdma->spba_end_addr)
1268 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1270 if (sdmac->per_address >= sdma->spba_start_addr &&
1271 sdmac->per_address <= sdma->spba_end_addr)
1272 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1274 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1277 * Limitation: The p2p script support dual fifos in maximum,
1278 * So when fifo number is larger than 1, force enable dual
1279 * fifos.
1281 if (sdmac->n_fifos_src > 1)
1282 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SD;
1283 if (sdmac->n_fifos_dst > 1)
1284 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DD;
1287 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1289 unsigned int n_fifos;
1290 unsigned int stride_fifos;
1291 unsigned int words_per_fifo;
1293 if (sdmac->sw_done)
1294 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1296 if (sdmac->direction == DMA_DEV_TO_MEM) {
1297 n_fifos = sdmac->n_fifos_src;
1298 stride_fifos = sdmac->stride_fifos_src;
1299 } else {
1300 n_fifos = sdmac->n_fifos_dst;
1301 stride_fifos = sdmac->stride_fifos_dst;
1304 words_per_fifo = sdmac->words_per_fifo;
1306 sdmac->watermark_level |=
1307 FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1308 sdmac->watermark_level |=
1309 FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1310 if (words_per_fifo)
1311 sdmac->watermark_level |=
1312 FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1315 static int sdma_config_channel(struct dma_chan *chan)
1317 struct sdma_channel *sdmac = to_sdma_chan(chan);
1318 int ret;
1320 sdma_disable_channel(chan);
1322 sdmac->event_mask[0] = 0;
1323 sdmac->event_mask[1] = 0;
1324 sdmac->shp_addr = 0;
1325 sdmac->per_addr = 0;
1327 switch (sdmac->peripheral_type) {
1328 case IMX_DMATYPE_DSP:
1329 sdma_config_ownership(sdmac, false, true, true);
1330 break;
1331 case IMX_DMATYPE_MEMORY:
1332 sdma_config_ownership(sdmac, false, true, false);
1333 break;
1334 default:
1335 sdma_config_ownership(sdmac, true, true, false);
1336 break;
1339 ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1340 if (ret)
1341 return ret;
1343 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1344 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1345 /* Handle multiple event channels differently */
1346 if (sdmac->event_id1) {
1347 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1348 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1349 sdma_set_watermarklevel_for_p2p(sdmac);
1350 } else {
1351 if (sdmac->peripheral_type ==
1352 IMX_DMATYPE_MULTI_SAI)
1353 sdma_set_watermarklevel_for_sais(sdmac);
1355 __set_bit(sdmac->event_id0, sdmac->event_mask);
1358 /* Address */
1359 sdmac->shp_addr = sdmac->per_address;
1360 sdmac->per_addr = sdmac->per_address2;
1361 } else {
1362 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1365 return 0;
1368 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1369 unsigned int priority)
1371 struct sdma_engine *sdma = sdmac->sdma;
1372 int channel = sdmac->channel;
1374 if (priority < MXC_SDMA_MIN_PRIORITY
1375 || priority > MXC_SDMA_MAX_PRIORITY) {
1376 return -EINVAL;
1379 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1381 return 0;
1384 static int sdma_request_channel0(struct sdma_engine *sdma)
1386 int ret = -EBUSY;
1388 if (sdma->iram_pool)
1389 sdma->bd0 = gen_pool_dma_alloc(sdma->iram_pool,
1390 sizeof(struct sdma_buffer_descriptor),
1391 &sdma->bd0_phys);
1392 else
1393 sdma->bd0 = dma_alloc_coherent(sdma->dev,
1394 sizeof(struct sdma_buffer_descriptor),
1395 &sdma->bd0_phys, GFP_NOWAIT);
1396 if (!sdma->bd0) {
1397 ret = -ENOMEM;
1398 goto out;
1401 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1402 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1404 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1405 return 0;
1406 out:
1408 return ret;
1412 static int sdma_alloc_bd(struct sdma_desc *desc)
1414 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1415 struct sdma_engine *sdma = desc->sdmac->sdma;
1416 int ret = 0;
1418 if (sdma->iram_pool)
1419 desc->bd = gen_pool_dma_alloc(sdma->iram_pool, bd_size, &desc->bd_phys);
1420 else
1421 desc->bd = dma_alloc_coherent(sdma->dev, bd_size, &desc->bd_phys, GFP_NOWAIT);
1423 if (!desc->bd) {
1424 ret = -ENOMEM;
1425 goto out;
1427 out:
1428 return ret;
1431 static void sdma_free_bd(struct sdma_desc *desc)
1433 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1434 struct sdma_engine *sdma = desc->sdmac->sdma;
1436 if (sdma->iram_pool)
1437 gen_pool_free(sdma->iram_pool, (unsigned long)desc->bd, bd_size);
1438 else
1439 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, desc->bd_phys);
1442 static void sdma_desc_free(struct virt_dma_desc *vd)
1444 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1446 sdma_free_bd(desc);
1447 kfree(desc);
1450 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1452 struct sdma_channel *sdmac = to_sdma_chan(chan);
1453 struct imx_dma_data *data = chan->private;
1454 struct imx_dma_data mem_data;
1455 int prio, ret;
1458 * MEMCPY may never setup chan->private by filter function such as
1459 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1460 * Please note in any other slave case, you have to setup chan->private
1461 * with 'struct imx_dma_data' in your own filter function if you want to
1462 * request dma channel by dma_request_channel() rather than
1463 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1464 * to warn you to correct your filter function.
1466 if (!data) {
1467 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1468 mem_data.priority = 2;
1469 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1470 mem_data.dma_request = 0;
1471 mem_data.dma_request2 = 0;
1472 data = &mem_data;
1474 ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1475 if (ret)
1476 return ret;
1479 switch (data->priority) {
1480 case DMA_PRIO_HIGH:
1481 prio = 3;
1482 break;
1483 case DMA_PRIO_MEDIUM:
1484 prio = 2;
1485 break;
1486 case DMA_PRIO_LOW:
1487 default:
1488 prio = 1;
1489 break;
1492 sdmac->peripheral_type = data->peripheral_type;
1493 sdmac->event_id0 = data->dma_request;
1494 sdmac->event_id1 = data->dma_request2;
1496 ret = clk_enable(sdmac->sdma->clk_ipg);
1497 if (ret)
1498 return ret;
1499 ret = clk_enable(sdmac->sdma->clk_ahb);
1500 if (ret)
1501 goto disable_clk_ipg;
1503 ret = sdma_set_channel_priority(sdmac, prio);
1504 if (ret)
1505 goto disable_clk_ahb;
1507 return 0;
1509 disable_clk_ahb:
1510 clk_disable(sdmac->sdma->clk_ahb);
1511 disable_clk_ipg:
1512 clk_disable(sdmac->sdma->clk_ipg);
1513 return ret;
1516 static void sdma_free_chan_resources(struct dma_chan *chan)
1518 struct sdma_channel *sdmac = to_sdma_chan(chan);
1519 struct sdma_engine *sdma = sdmac->sdma;
1521 sdma_terminate_all(chan);
1523 sdma_channel_synchronize(chan);
1525 sdma_event_disable(sdmac, sdmac->event_id0);
1526 if (sdmac->event_id1)
1527 sdma_event_disable(sdmac, sdmac->event_id1);
1529 sdmac->event_id0 = 0;
1530 sdmac->event_id1 = 0;
1532 sdma_set_channel_priority(sdmac, 0);
1534 clk_disable(sdma->clk_ipg);
1535 clk_disable(sdma->clk_ahb);
1538 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1539 enum dma_transfer_direction direction, u32 bds)
1541 struct sdma_desc *desc;
1543 if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1544 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1545 goto err_out;
1548 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1549 if (!desc)
1550 goto err_out;
1552 sdmac->status = DMA_IN_PROGRESS;
1553 sdmac->direction = direction;
1554 sdmac->flags = 0;
1556 desc->chn_count = 0;
1557 desc->chn_real_count = 0;
1558 desc->buf_tail = 0;
1559 desc->buf_ptail = 0;
1560 desc->sdmac = sdmac;
1561 desc->num_bd = bds;
1563 if (bds && sdma_alloc_bd(desc))
1564 goto err_desc_out;
1566 /* No slave_config called in MEMCPY case, so do here */
1567 if (direction == DMA_MEM_TO_MEM)
1568 sdma_config_ownership(sdmac, false, true, false);
1570 if (sdma_load_context(sdmac))
1571 goto err_bd_out;
1573 return desc;
1575 err_bd_out:
1576 sdma_free_bd(desc);
1577 err_desc_out:
1578 kfree(desc);
1579 err_out:
1580 return NULL;
1583 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1584 struct dma_chan *chan, dma_addr_t dma_dst,
1585 dma_addr_t dma_src, size_t len, unsigned long flags)
1587 struct sdma_channel *sdmac = to_sdma_chan(chan);
1588 struct sdma_engine *sdma = sdmac->sdma;
1589 int channel = sdmac->channel;
1590 size_t count;
1591 int i = 0, param;
1592 struct sdma_buffer_descriptor *bd;
1593 struct sdma_desc *desc;
1595 if (!chan || !len)
1596 return NULL;
1598 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1599 &dma_src, &dma_dst, len, channel);
1601 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1602 len / SDMA_BD_MAX_CNT + 1);
1603 if (!desc)
1604 return NULL;
1606 do {
1607 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1608 bd = &desc->bd[i];
1609 bd->buffer_addr = dma_src;
1610 bd->ext_buffer_addr = dma_dst;
1611 bd->mode.count = count;
1612 desc->chn_count += count;
1613 bd->mode.command = 0;
1615 dma_src += count;
1616 dma_dst += count;
1617 len -= count;
1618 i++;
1620 param = BD_DONE | BD_EXTD | BD_CONT;
1621 /* last bd */
1622 if (!len) {
1623 param |= BD_INTR;
1624 param |= BD_LAST;
1625 param &= ~BD_CONT;
1628 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1629 i, count, bd->buffer_addr,
1630 param & BD_WRAP ? "wrap" : "",
1631 param & BD_INTR ? " intr" : "");
1633 bd->mode.status = param;
1634 } while (len);
1636 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1639 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1640 struct dma_chan *chan, struct scatterlist *sgl,
1641 unsigned int sg_len, enum dma_transfer_direction direction,
1642 unsigned long flags, void *context)
1644 struct sdma_channel *sdmac = to_sdma_chan(chan);
1645 struct sdma_engine *sdma = sdmac->sdma;
1646 int i, count;
1647 int channel = sdmac->channel;
1648 struct scatterlist *sg;
1649 struct sdma_desc *desc;
1651 sdma_config_write(chan, &sdmac->slave_config, direction);
1653 desc = sdma_transfer_init(sdmac, direction, sg_len);
1654 if (!desc)
1655 goto err_out;
1657 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1658 sg_len, channel);
1660 for_each_sg(sgl, sg, sg_len, i) {
1661 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1662 int param;
1664 bd->buffer_addr = sg->dma_address;
1666 count = sg_dma_len(sg);
1668 if (count > SDMA_BD_MAX_CNT) {
1669 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1670 channel, count, SDMA_BD_MAX_CNT);
1671 goto err_bd_out;
1674 bd->mode.count = count;
1675 desc->chn_count += count;
1677 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1678 goto err_bd_out;
1680 switch (sdmac->word_size) {
1681 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1682 bd->mode.command = 0;
1683 if (count & 3 || sg->dma_address & 3)
1684 goto err_bd_out;
1685 break;
1686 case DMA_SLAVE_BUSWIDTH_3_BYTES:
1687 bd->mode.command = 3;
1688 break;
1689 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1690 bd->mode.command = 2;
1691 if (count & 1 || sg->dma_address & 1)
1692 goto err_bd_out;
1693 break;
1694 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1695 bd->mode.command = 1;
1696 break;
1697 default:
1698 goto err_bd_out;
1701 param = BD_DONE | BD_EXTD | BD_CONT;
1703 if (i + 1 == sg_len) {
1704 param |= BD_INTR;
1705 param |= BD_LAST;
1706 param &= ~BD_CONT;
1709 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1710 i, count, (u64)sg->dma_address,
1711 param & BD_WRAP ? "wrap" : "",
1712 param & BD_INTR ? " intr" : "");
1714 bd->mode.status = param;
1717 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1718 err_bd_out:
1719 sdma_free_bd(desc);
1720 kfree(desc);
1721 err_out:
1722 sdmac->status = DMA_ERROR;
1723 return NULL;
1726 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1727 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1728 size_t period_len, enum dma_transfer_direction direction,
1729 unsigned long flags)
1731 struct sdma_channel *sdmac = to_sdma_chan(chan);
1732 struct sdma_engine *sdma = sdmac->sdma;
1733 int num_periods = 0;
1734 int channel = sdmac->channel;
1735 int i = 0, buf = 0;
1736 struct sdma_desc *desc;
1738 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1740 if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1741 num_periods = buf_len / period_len;
1743 sdma_config_write(chan, &sdmac->slave_config, direction);
1745 desc = sdma_transfer_init(sdmac, direction, num_periods);
1746 if (!desc)
1747 goto err_out;
1749 desc->period_len = period_len;
1751 sdmac->flags |= IMX_DMA_SG_LOOP;
1753 if (period_len > SDMA_BD_MAX_CNT) {
1754 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1755 channel, period_len, SDMA_BD_MAX_CNT);
1756 goto err_bd_out;
1759 if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1760 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1762 while (buf < buf_len) {
1763 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1764 int param;
1766 bd->buffer_addr = dma_addr;
1768 bd->mode.count = period_len;
1770 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1771 goto err_bd_out;
1772 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1773 bd->mode.command = 0;
1774 else
1775 bd->mode.command = sdmac->word_size;
1777 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1778 if (i + 1 == num_periods)
1779 param |= BD_WRAP;
1781 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1782 i, period_len, (u64)dma_addr,
1783 param & BD_WRAP ? "wrap" : "",
1784 param & BD_INTR ? " intr" : "");
1786 bd->mode.status = param;
1788 dma_addr += period_len;
1789 buf += period_len;
1791 i++;
1794 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1795 err_bd_out:
1796 sdma_free_bd(desc);
1797 kfree(desc);
1798 err_out:
1799 sdmac->status = DMA_ERROR;
1800 return NULL;
1803 static int sdma_config_write(struct dma_chan *chan,
1804 struct dma_slave_config *dmaengine_cfg,
1805 enum dma_transfer_direction direction)
1807 struct sdma_channel *sdmac = to_sdma_chan(chan);
1809 if (direction == DMA_DEV_TO_MEM) {
1810 sdmac->per_address = dmaengine_cfg->src_addr;
1811 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1812 dmaengine_cfg->src_addr_width;
1813 sdmac->word_size = dmaengine_cfg->src_addr_width;
1814 } else if (direction == DMA_DEV_TO_DEV) {
1815 sdmac->per_address2 = dmaengine_cfg->src_addr;
1816 sdmac->per_address = dmaengine_cfg->dst_addr;
1817 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1818 SDMA_WATERMARK_LEVEL_LWML;
1819 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1820 SDMA_WATERMARK_LEVEL_HWML;
1821 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1822 } else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1823 sdmac->per_address = dmaengine_cfg->dst_addr;
1824 sdmac->per_address2 = dmaengine_cfg->src_addr;
1825 sdmac->watermark_level = 0;
1826 } else {
1827 sdmac->per_address = dmaengine_cfg->dst_addr;
1828 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1829 dmaengine_cfg->dst_addr_width;
1830 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1832 sdmac->direction = direction;
1833 return sdma_config_channel(chan);
1836 static int sdma_config(struct dma_chan *chan,
1837 struct dma_slave_config *dmaengine_cfg)
1839 struct sdma_channel *sdmac = to_sdma_chan(chan);
1840 struct sdma_engine *sdma = sdmac->sdma;
1842 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1844 if (dmaengine_cfg->peripheral_config) {
1845 struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1846 if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1847 dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1848 dmaengine_cfg->peripheral_size,
1849 sizeof(struct sdma_peripheral_config));
1850 return -EINVAL;
1852 sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1853 sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1854 sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1855 sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1856 sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1857 sdmac->sw_done = sdmacfg->sw_done;
1860 /* Set ENBLn earlier to make sure dma request triggered after that */
1861 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1862 return -EINVAL;
1863 sdma_event_enable(sdmac, sdmac->event_id0);
1865 if (sdmac->event_id1) {
1866 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1867 return -EINVAL;
1868 sdma_event_enable(sdmac, sdmac->event_id1);
1871 return 0;
1874 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1875 dma_cookie_t cookie,
1876 struct dma_tx_state *txstate)
1878 struct sdma_channel *sdmac = to_sdma_chan(chan);
1879 struct sdma_desc *desc = NULL;
1880 u32 residue;
1881 struct virt_dma_desc *vd;
1882 enum dma_status ret;
1883 unsigned long flags;
1885 ret = dma_cookie_status(chan, cookie, txstate);
1886 if (ret == DMA_COMPLETE || !txstate)
1887 return ret;
1889 spin_lock_irqsave(&sdmac->vc.lock, flags);
1891 vd = vchan_find_desc(&sdmac->vc, cookie);
1892 if (vd)
1893 desc = to_sdma_desc(&vd->tx);
1894 else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1895 desc = sdmac->desc;
1897 if (desc) {
1898 if (sdmac->flags & IMX_DMA_SG_LOOP)
1899 residue = (desc->num_bd - desc->buf_ptail) *
1900 desc->period_len - desc->chn_real_count;
1901 else
1902 residue = desc->chn_count - desc->chn_real_count;
1903 } else {
1904 residue = 0;
1907 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1909 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1910 residue);
1912 return sdmac->status;
1915 static void sdma_issue_pending(struct dma_chan *chan)
1917 struct sdma_channel *sdmac = to_sdma_chan(chan);
1918 unsigned long flags;
1920 spin_lock_irqsave(&sdmac->vc.lock, flags);
1921 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1922 sdma_start_desc(sdmac);
1923 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1926 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 \
1927 (offsetof(struct sdma_script_start_addrs, v1_end) / sizeof(s32))
1929 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 \
1930 (offsetof(struct sdma_script_start_addrs, v2_end) / sizeof(s32))
1932 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 \
1933 (offsetof(struct sdma_script_start_addrs, v3_end) / sizeof(s32))
1935 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 \
1936 (offsetof(struct sdma_script_start_addrs, v4_end) / sizeof(s32))
1938 static void sdma_add_scripts(struct sdma_engine *sdma,
1939 const struct sdma_script_start_addrs *addr)
1941 s32 *addr_arr = (u32 *)addr;
1942 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1943 int i;
1945 /* use the default firmware in ROM if missing external firmware */
1946 if (!sdma->script_number)
1947 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1949 if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1950 / sizeof(s32)) {
1951 dev_err(sdma->dev,
1952 "SDMA script number %d not match with firmware.\n",
1953 sdma->script_number);
1954 return;
1957 for (i = 0; i < sdma->script_number; i++)
1958 if (addr_arr[i] > 0)
1959 saddr_arr[i] = addr_arr[i];
1962 * For compatibility with NXP internal legacy kernel before 4.19 which
1963 * is based on uart ram script and mainline kernel based on uart rom
1964 * script, both uart ram/rom scripts are present in newer sdma
1965 * firmware. Use the rom versions if they are present (V3 or newer).
1967 if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1968 if (addr->uart_2_mcu_rom_addr)
1969 sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1970 if (addr->uartsh_2_mcu_rom_addr)
1971 sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1975 static void sdma_load_firmware(const struct firmware *fw, void *context)
1977 struct sdma_engine *sdma = context;
1978 const struct sdma_firmware_header *header;
1979 const struct sdma_script_start_addrs *addr;
1980 unsigned short *ram_code;
1982 if (!fw) {
1983 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1984 /* In this case we just use the ROM firmware. */
1985 return;
1988 if (fw->size < sizeof(*header))
1989 goto err_firmware;
1991 header = (struct sdma_firmware_header *)fw->data;
1993 if (header->magic != SDMA_FIRMWARE_MAGIC)
1994 goto err_firmware;
1995 if (header->ram_code_start + header->ram_code_size > fw->size)
1996 goto err_firmware;
1997 switch (header->version_major) {
1998 case 1:
1999 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
2000 break;
2001 case 2:
2002 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
2003 break;
2004 case 3:
2005 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
2006 break;
2007 case 4:
2008 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
2009 break;
2010 default:
2011 dev_err(sdma->dev, "unknown firmware version\n");
2012 goto err_firmware;
2015 addr = (void *)header + header->script_addrs_start;
2016 ram_code = (void *)header + header->ram_code_start;
2018 clk_enable(sdma->clk_ipg);
2019 clk_enable(sdma->clk_ahb);
2020 /* download the RAM image for SDMA */
2021 sdma_load_script(sdma, ram_code,
2022 header->ram_code_size,
2023 addr->ram_code_start_addr);
2024 clk_disable(sdma->clk_ipg);
2025 clk_disable(sdma->clk_ahb);
2027 sdma_add_scripts(sdma, addr);
2029 sdma->fw_loaded = true;
2031 dev_info(sdma->dev, "loaded firmware %d.%d\n",
2032 header->version_major,
2033 header->version_minor);
2035 err_firmware:
2036 release_firmware(fw);
2039 #define EVENT_REMAP_CELLS 3
2041 static int sdma_event_remap(struct sdma_engine *sdma)
2043 struct device_node *np = sdma->dev->of_node;
2044 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
2045 struct property *event_remap;
2046 struct regmap *gpr;
2047 char propname[] = "fsl,sdma-event-remap";
2048 u32 reg, val, shift, num_map, i;
2049 int ret = 0;
2051 if (IS_ERR(np) || !gpr_np)
2052 goto out;
2054 event_remap = of_find_property(np, propname, NULL);
2055 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2056 if (!num_map) {
2057 dev_dbg(sdma->dev, "no event needs to be remapped\n");
2058 goto out;
2059 } else if (num_map % EVENT_REMAP_CELLS) {
2060 dev_err(sdma->dev, "the property %s must modulo %d\n",
2061 propname, EVENT_REMAP_CELLS);
2062 ret = -EINVAL;
2063 goto out;
2066 gpr = syscon_node_to_regmap(gpr_np);
2067 if (IS_ERR(gpr)) {
2068 dev_err(sdma->dev, "failed to get gpr regmap\n");
2069 ret = PTR_ERR(gpr);
2070 goto out;
2073 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2074 ret = of_property_read_u32_index(np, propname, i, &reg);
2075 if (ret) {
2076 dev_err(sdma->dev, "failed to read property %s index %d\n",
2077 propname, i);
2078 goto out;
2081 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2082 if (ret) {
2083 dev_err(sdma->dev, "failed to read property %s index %d\n",
2084 propname, i + 1);
2085 goto out;
2088 ret = of_property_read_u32_index(np, propname, i + 2, &val);
2089 if (ret) {
2090 dev_err(sdma->dev, "failed to read property %s index %d\n",
2091 propname, i + 2);
2092 goto out;
2095 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2098 out:
2099 if (gpr_np)
2100 of_node_put(gpr_np);
2102 return ret;
2105 static int sdma_get_firmware(struct sdma_engine *sdma,
2106 const char *fw_name)
2108 int ret;
2110 ret = firmware_request_nowait_nowarn(THIS_MODULE, fw_name, sdma->dev,
2111 GFP_KERNEL, sdma, sdma_load_firmware);
2113 return ret;
2116 static int sdma_init(struct sdma_engine *sdma)
2118 int i, ret;
2119 dma_addr_t ccb_phys;
2120 int ccbsize;
2122 ret = clk_enable(sdma->clk_ipg);
2123 if (ret)
2124 return ret;
2125 ret = clk_enable(sdma->clk_ahb);
2126 if (ret)
2127 goto disable_clk_ipg;
2129 if (sdma->drvdata->check_ratio &&
2130 (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2131 sdma->clk_ratio = 1;
2133 /* Be sure SDMA has not started yet */
2134 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2136 ccbsize = MAX_DMA_CHANNELS * (sizeof(struct sdma_channel_control)
2137 + sizeof(struct sdma_context_data));
2139 if (sdma->iram_pool)
2140 sdma->channel_control = gen_pool_dma_alloc(sdma->iram_pool, ccbsize, &ccb_phys);
2141 else
2142 sdma->channel_control = dma_alloc_coherent(sdma->dev, ccbsize, &ccb_phys,
2143 GFP_KERNEL);
2145 if (!sdma->channel_control) {
2146 ret = -ENOMEM;
2147 goto err_dma_alloc;
2150 sdma->context = (void *)sdma->channel_control +
2151 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2152 sdma->context_phys = ccb_phys +
2153 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2155 /* disable all channels */
2156 for (i = 0; i < sdma->drvdata->num_events; i++)
2157 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2159 /* All channels have priority 0 */
2160 for (i = 0; i < MAX_DMA_CHANNELS; i++)
2161 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2163 ret = sdma_request_channel0(sdma);
2164 if (ret)
2165 goto err_dma_alloc;
2167 sdma_config_ownership(&sdma->channel[0], false, true, false);
2169 /* Set Command Channel (Channel Zero) */
2170 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2172 /* Set bits of CONFIG register but with static context switching */
2173 if (sdma->clk_ratio)
2174 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2175 else
2176 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2178 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2180 /* Initializes channel's priorities */
2181 sdma_set_channel_priority(&sdma->channel[0], 7);
2183 clk_disable(sdma->clk_ipg);
2184 clk_disable(sdma->clk_ahb);
2186 return 0;
2188 err_dma_alloc:
2189 clk_disable(sdma->clk_ahb);
2190 disable_clk_ipg:
2191 clk_disable(sdma->clk_ipg);
2192 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2193 return ret;
2196 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2198 struct sdma_channel *sdmac = to_sdma_chan(chan);
2199 struct imx_dma_data *data = fn_param;
2201 if (!imx_dma_is_general_purpose(chan))
2202 return false;
2204 sdmac->data = *data;
2205 chan->private = &sdmac->data;
2207 return true;
2210 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2211 struct of_dma *ofdma)
2213 struct sdma_engine *sdma = ofdma->of_dma_data;
2214 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2215 struct imx_dma_data data;
2217 if (dma_spec->args_count != 3)
2218 return NULL;
2220 data.dma_request = dma_spec->args[0];
2221 data.peripheral_type = dma_spec->args[1];
2222 data.priority = dma_spec->args[2];
2224 * init dma_request2 to zero, which is not used by the dts.
2225 * For P2P, dma_request2 is init from dma_request_channel(),
2226 * chan->private will point to the imx_dma_data, and in
2227 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2228 * be set to sdmac->event_id1.
2230 data.dma_request2 = 0;
2232 return __dma_request_channel(&mask, sdma_filter_fn, &data,
2233 ofdma->of_node);
2236 static int sdma_probe(struct platform_device *pdev)
2238 struct device_node *np = pdev->dev.of_node;
2239 struct device_node *spba_bus;
2240 const char *fw_name;
2241 int ret;
2242 int irq;
2243 struct resource spba_res;
2244 int i;
2245 struct sdma_engine *sdma;
2246 s32 *saddr_arr;
2248 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2249 if (ret)
2250 return ret;
2252 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2253 if (!sdma)
2254 return -ENOMEM;
2256 spin_lock_init(&sdma->channel_0_lock);
2258 sdma->dev = &pdev->dev;
2259 sdma->drvdata = of_device_get_match_data(sdma->dev);
2261 irq = platform_get_irq(pdev, 0);
2262 if (irq < 0)
2263 return irq;
2265 sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2266 if (IS_ERR(sdma->regs))
2267 return PTR_ERR(sdma->regs);
2269 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2270 if (IS_ERR(sdma->clk_ipg))
2271 return PTR_ERR(sdma->clk_ipg);
2273 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2274 if (IS_ERR(sdma->clk_ahb))
2275 return PTR_ERR(sdma->clk_ahb);
2277 ret = clk_prepare(sdma->clk_ipg);
2278 if (ret)
2279 return ret;
2281 ret = clk_prepare(sdma->clk_ahb);
2282 if (ret)
2283 goto err_clk;
2285 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2286 dev_name(&pdev->dev), sdma);
2287 if (ret)
2288 goto err_irq;
2290 sdma->irq = irq;
2292 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2293 if (!sdma->script_addrs) {
2294 ret = -ENOMEM;
2295 goto err_irq;
2298 /* initially no scripts available */
2299 saddr_arr = (s32 *)sdma->script_addrs;
2300 for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2301 saddr_arr[i] = -EINVAL;
2303 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2304 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2305 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2306 dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2308 INIT_LIST_HEAD(&sdma->dma_device.channels);
2309 /* Initialize channel parameters */
2310 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2311 struct sdma_channel *sdmac = &sdma->channel[i];
2313 sdmac->sdma = sdma;
2315 sdmac->channel = i;
2316 sdmac->vc.desc_free = sdma_desc_free;
2317 INIT_LIST_HEAD(&sdmac->terminated);
2318 INIT_WORK(&sdmac->terminate_worker,
2319 sdma_channel_terminate_work);
2321 * Add the channel to the DMAC list. Do not add channel 0 though
2322 * because we need it internally in the SDMA driver. This also means
2323 * that channel 0 in dmaengine counting matches sdma channel 1.
2325 if (i)
2326 vchan_init(&sdmac->vc, &sdma->dma_device);
2329 if (np) {
2330 sdma->iram_pool = of_gen_pool_get(np, "iram", 0);
2331 if (sdma->iram_pool)
2332 dev_info(&pdev->dev, "alloc bd from iram.\n");
2335 ret = sdma_init(sdma);
2336 if (ret)
2337 goto err_init;
2339 ret = sdma_event_remap(sdma);
2340 if (ret)
2341 goto err_init;
2343 if (sdma->drvdata->script_addrs)
2344 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2346 sdma->dma_device.dev = &pdev->dev;
2348 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2349 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2350 sdma->dma_device.device_tx_status = sdma_tx_status;
2351 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2352 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2353 sdma->dma_device.device_config = sdma_config;
2354 sdma->dma_device.device_terminate_all = sdma_terminate_all;
2355 sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2356 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2357 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2358 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2359 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2360 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2361 sdma->dma_device.device_issue_pending = sdma_issue_pending;
2362 sdma->dma_device.copy_align = 2;
2363 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2365 platform_set_drvdata(pdev, sdma);
2367 ret = dma_async_device_register(&sdma->dma_device);
2368 if (ret) {
2369 dev_err(&pdev->dev, "unable to register\n");
2370 goto err_init;
2373 if (np) {
2374 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2375 if (ret) {
2376 dev_err(&pdev->dev, "failed to register controller\n");
2377 goto err_register;
2380 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2381 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2382 if (!ret) {
2383 sdma->spba_start_addr = spba_res.start;
2384 sdma->spba_end_addr = spba_res.end;
2386 of_node_put(spba_bus);
2390 * Because that device tree does not encode ROM script address,
2391 * the RAM script in firmware is mandatory for device tree
2392 * probe, otherwise it fails.
2394 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2395 &fw_name);
2396 if (ret) {
2397 dev_warn(&pdev->dev, "failed to get firmware name\n");
2398 } else {
2399 ret = sdma_get_firmware(sdma, fw_name);
2400 if (ret)
2401 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2404 return 0;
2406 err_register:
2407 dma_async_device_unregister(&sdma->dma_device);
2408 err_init:
2409 kfree(sdma->script_addrs);
2410 err_irq:
2411 clk_unprepare(sdma->clk_ahb);
2412 err_clk:
2413 clk_unprepare(sdma->clk_ipg);
2414 return ret;
2417 static void sdma_remove(struct platform_device *pdev)
2419 struct sdma_engine *sdma = platform_get_drvdata(pdev);
2420 int i;
2422 devm_free_irq(&pdev->dev, sdma->irq, sdma);
2423 dma_async_device_unregister(&sdma->dma_device);
2424 kfree(sdma->script_addrs);
2425 clk_unprepare(sdma->clk_ahb);
2426 clk_unprepare(sdma->clk_ipg);
2427 /* Kill the tasklet */
2428 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2429 struct sdma_channel *sdmac = &sdma->channel[i];
2431 tasklet_kill(&sdmac->vc.task);
2432 sdma_free_chan_resources(&sdmac->vc.chan);
2435 platform_set_drvdata(pdev, NULL);
2438 static struct platform_driver sdma_driver = {
2439 .driver = {
2440 .name = "imx-sdma",
2441 .of_match_table = sdma_dt_ids,
2443 .remove = sdma_remove,
2444 .probe = sdma_probe,
2447 module_platform_driver(sdma_driver);
2449 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2450 MODULE_DESCRIPTION("i.MX SDMA driver");
2451 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2452 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2453 #endif
2454 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2455 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2456 #endif
2457 MODULE_LICENSE("GPL");