1 // SPDX-License-Identifier: GPL-2.0+
3 // drivers/dma/imx-sdma.c
5 // This file contains a driver for the Freescale Smart DMA engine
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
9 // Based on code from Freescale:
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/genalloc.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/firmware.h>
30 #include <linux/slab.h>
31 #include <linux/platform_device.h>
32 #include <linux/dmaengine.h>
34 #include <linux/of_address.h>
35 #include <linux/of_dma.h>
36 #include <linux/workqueue.h>
39 #include <linux/dma/imx-dma.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
44 #include "dmaengine.h"
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
77 #define SDMA_DONE0_CONFIG 0x1000
80 * Buffer descriptor status values.
91 * Data Node descriptor status values.
93 #define DND_END_OF_FRAME 0x80
94 #define DND_END_OF_XFER 0x40
96 #define DND_UNUSED 0x01
99 * IPCV2 descriptor status values.
101 #define BD_IPCV2_END_OF_FRAME 0x40
103 #define IPCV2_MAX_NODES 50
105 * Error bit set in the CCB status field by the SDMA,
106 * in setbd routine, in case of a transfer error
108 #define DATA_ERROR 0x10000000
111 * Buffer descriptor commands.
116 #define C0_SETCTX 0x07
117 #define C0_GETCTX 0x03
118 #define C0_SETDM 0x01
119 #define C0_SETPM 0x04
120 #define C0_GETDM 0x02
121 #define C0_GETPM 0x08
123 * Change endianness indicator in the BD command field
125 #define CHANGE_ENDIANNESS 0x80
128 * p_2_p watermark_level description
129 * Bits Name Description
130 * 0-7 Lower WML Lower watermark level
131 * 8 PS 1: Pad Swallowing
132 * 0: No Pad Swallowing
135 * 10 SPDIF If this bit is set both source
136 * and destination are on SPBA
137 * 11 Source Bit(SP) 1: Source on SPBA
139 * 12 Destination Bit(DP) 1: Destination on SPBA
140 * 0: Destination on AIPS
141 * 13 Source FIFO 1: Source is dual FIFO
142 * 0: Source is single FIFO
143 * 14 Destination FIFO 1: Destination is dual FIFO
144 * 0: Destination is single FIFO
145 * 15 --------- MUST BE 0
146 * 16-23 Higher WML HWML
147 * 24-27 N Total number of samples after
148 * which Pad adding/Swallowing
149 * must be done. It must be odd.
150 * 28 Lower WML Event(LWE) SDMA events reg to check for
152 * 0: LWE in EVENTS register
153 * 1: LWE in EVENTS2 register
154 * 29 Higher WML Event(HWE) SDMA events reg to check for
156 * 0: HWE in EVENTS register
157 * 1: HWE in EVENTS2 register
158 * 30 --------- MUST BE 0
159 * 31 CONT 1: Amount of samples to be
160 * transferred is unknown and
161 * script will keep on
162 * transferring samples as long as
163 * both events are detected and
164 * script must be manually stopped
166 * 0: The amount of samples to be
167 * transferred is equal to the
168 * count field of mode word
170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
171 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
176 #define SDMA_WATERMARK_LEVEL_SD BIT(13)
177 #define SDMA_WATERMARK_LEVEL_DD BIT(14)
178 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
179 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
180 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
181 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
183 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
184 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
185 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
186 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
188 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
189 BIT(DMA_MEM_TO_DEV) | \
192 #define SDMA_WATERMARK_LEVEL_N_FIFOS GENMASK(15, 12)
193 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS GENMASK(19, 16)
194 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO GENMASK(31, 28)
195 #define SDMA_WATERMARK_LEVEL_SW_DONE BIT(23)
197 #define SDMA_DONE0_CONFIG_DONE_SEL BIT(7)
198 #define SDMA_DONE0_CONFIG_DONE_DIS BIT(6)
201 * struct sdma_script_start_addrs - SDMA script start pointers
203 * start addresses of the different functions in the physical
204 * address space of the SDMA engine.
206 struct sdma_script_start_addrs
{
209 s32 ap_2_ap_fixed_addr
;
211 s32 loopback_on_dsp_side_addr
;
212 s32 mcu_interrupt_only_addr
;
222 s32 uartsh_2_per_addr
;
223 s32 uartsh_2_mcu_addr
;
234 s32 spdif_2_mcu_addr
;
235 s32 mcu_2_spdif_addr
;
237 s32 ext_mem_2_ipu_addr
;
238 s32 descrambler_addr
;
241 s32 ram_code_start_addr
;
242 /* End of v1 array */
243 union { s32 v1_end
; s32 mcu_2_ssish_addr
; };
244 s32 ssish_2_mcu_addr
;
246 /* End of v2 array */
247 union { s32 v2_end
; s32 zcanfd_2_mcu_addr
; };
248 s32 zqspi_2_mcu_addr
;
249 s32 mcu_2_ecspi_addr
;
252 s32 uart_2_mcu_rom_addr
;
253 s32 uartsh_2_mcu_rom_addr
;
256 /* End of v3 array */
257 union { s32 v3_end
; s32 mcu_2_zqspi_addr
; };
258 /* End of v4 array */
263 * Mode/Count of data node descriptors - IPCv2
265 struct sdma_mode_count
{
266 #define SDMA_BD_MAX_CNT 0xffff
267 u32 count
: 16; /* size of the buffer pointed by this BD */
268 u32 status
: 8; /* E,R,I,C,W,D status bits stored here */
269 u32 command
: 8; /* command mostly used for channel 0 */
275 struct sdma_buffer_descriptor
{
276 struct sdma_mode_count mode
;
277 u32 buffer_addr
; /* address of the buffer described */
278 u32 ext_buffer_addr
; /* extended buffer address */
279 } __attribute__ ((packed
));
282 * struct sdma_channel_control - Channel control Block
284 * @current_bd_ptr: current buffer descriptor processed
285 * @base_bd_ptr: first element of buffer descriptor array
286 * @unused: padding. The SDMA engine expects an array of 128 byte
289 struct sdma_channel_control
{
293 } __attribute__ ((packed
));
296 * struct sdma_state_registers - SDMA context for a channel
298 * @pc: program counter
300 * @t: test bit: status of arithmetic & test instruction
301 * @rpc: return program counter
303 * @sf: source fault while loading data
304 * @spc: loop start program counter
306 * @df: destination fault while storing data
307 * @epc: loop end program counter
310 struct sdma_state_registers
{
322 } __attribute__ ((packed
));
325 * struct sdma_context_data - sdma context specific to a channel
327 * @channel_state: channel state bits
328 * @gReg: general registers
329 * @mda: burst dma destination address register
330 * @msa: burst dma source address register
331 * @ms: burst dma status register
332 * @md: burst dma data register
333 * @pda: peripheral dma destination address register
334 * @psa: peripheral dma source address register
335 * @ps: peripheral dma status register
336 * @pd: peripheral dma data register
337 * @ca: CRC polynomial register
338 * @cs: CRC accumulator register
339 * @dda: dedicated core destination address register
340 * @dsa: dedicated core source address register
341 * @ds: dedicated core status register
342 * @dd: dedicated core data register
343 * @scratch0: 1st word of dedicated ram for context switch
344 * @scratch1: 2nd word of dedicated ram for context switch
345 * @scratch2: 3rd word of dedicated ram for context switch
346 * @scratch3: 4th word of dedicated ram for context switch
347 * @scratch4: 5th word of dedicated ram for context switch
348 * @scratch5: 6th word of dedicated ram for context switch
349 * @scratch6: 7th word of dedicated ram for context switch
350 * @scratch7: 8th word of dedicated ram for context switch
352 struct sdma_context_data
{
353 struct sdma_state_registers channel_state
;
377 } __attribute__ ((packed
));
383 * struct sdma_desc - descriptor structor for one transfer
384 * @vd: descriptor for virt dma
385 * @num_bd: number of descriptors currently handling
386 * @bd_phys: physical address of bd
387 * @buf_tail: ID of the buffer that was processed
388 * @buf_ptail: ID of the previous buffer that was processed
389 * @period_len: period length, used in cyclic.
390 * @chn_real_count: the real count updated from bd->mode.count
391 * @chn_count: the transfer count set
392 * @sdmac: sdma_channel pointer
393 * @bd: pointer of allocate bd
396 struct virt_dma_desc vd
;
399 unsigned int buf_tail
;
400 unsigned int buf_ptail
;
401 unsigned int period_len
;
402 unsigned int chn_real_count
;
403 unsigned int chn_count
;
404 struct sdma_channel
*sdmac
;
405 struct sdma_buffer_descriptor
*bd
;
409 * struct sdma_channel - housekeeping for a SDMA channel
411 * @vc: virt_dma base structure
412 * @desc: sdma description including vd and other special member
413 * @sdma: pointer to the SDMA engine for this channel
414 * @channel: the channel number, matches dmaengine chan_id + 1
415 * @direction: transfer type. Needed for setting SDMA script
416 * @slave_config: Slave configuration
417 * @peripheral_type: Peripheral type. Needed for setting SDMA script
418 * @event_id0: aka dma request line
419 * @event_id1: for channels that use 2 events
420 * @word_size: peripheral access size
421 * @pc_from_device: script address for those device_2_memory
422 * @pc_to_device: script address for those memory_2_device
423 * @device_to_device: script address for those device_2_device
424 * @pc_to_pc: script address for those memory_2_memory
425 * @flags: loop mode or not
426 * @per_address: peripheral source or destination address in common case
427 * destination address in p_2_p case
428 * @per_address2: peripheral source address in p_2_p case
429 * @event_mask: event mask used in p_2_p script
430 * @watermark_level: value for gReg[7], some script will extend it from
431 * basic watermark such as p_2_p
432 * @shp_addr: value for gReg[6]
433 * @per_addr: value for gReg[2]
434 * @status: status of dma channel
435 * @data: specific sdma interface structure
436 * @terminate_worker: used to call back into terminate work function
437 * @terminated: terminated list
438 * @is_ram_script: flag for script in ram
439 * @n_fifos_src: number of source device fifos
440 * @n_fifos_dst: number of destination device fifos
441 * @sw_done: software done flag
442 * @stride_fifos_src: stride for source device FIFOs
443 * @stride_fifos_dst: stride for destination device FIFOs
444 * @words_per_fifo: copy number of words one time for one FIFO
446 struct sdma_channel
{
447 struct virt_dma_chan vc
;
448 struct sdma_desc
*desc
;
449 struct sdma_engine
*sdma
;
450 unsigned int channel
;
451 enum dma_transfer_direction direction
;
452 struct dma_slave_config slave_config
;
453 enum sdma_peripheral_type peripheral_type
;
454 unsigned int event_id0
;
455 unsigned int event_id1
;
456 enum dma_slave_buswidth word_size
;
457 unsigned int pc_from_device
, pc_to_device
;
458 unsigned int device_to_device
;
459 unsigned int pc_to_pc
;
461 dma_addr_t per_address
, per_address2
;
462 unsigned long event_mask
[2];
463 unsigned long watermark_level
;
464 u32 shp_addr
, per_addr
;
465 enum dma_status status
;
466 struct imx_dma_data data
;
467 struct work_struct terminate_worker
;
468 struct list_head terminated
;
470 unsigned int n_fifos_src
;
471 unsigned int n_fifos_dst
;
472 unsigned int stride_fifos_src
;
473 unsigned int stride_fifos_dst
;
474 unsigned int words_per_fifo
;
478 #define IMX_DMA_SG_LOOP BIT(0)
480 #define MAX_DMA_CHANNELS 32
481 #define MXC_SDMA_DEFAULT_PRIORITY 1
482 #define MXC_SDMA_MIN_PRIORITY 1
483 #define MXC_SDMA_MAX_PRIORITY 7
485 #define SDMA_FIRMWARE_MAGIC 0x414d4453
488 * struct sdma_firmware_header - Layout of the firmware image
491 * @version_major: increased whenever layout of struct
492 * sdma_script_start_addrs changes.
493 * @version_minor: firmware minor version (for binary compatible changes)
494 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
495 * @num_script_addrs: Number of script addresses in this image
496 * @ram_code_start: offset of SDMA ram image in this firmware image
497 * @ram_code_size: size of SDMA ram image
499 struct sdma_firmware_header
{
503 u32 script_addrs_start
;
504 u32 num_script_addrs
;
509 struct sdma_driver_data
{
512 struct sdma_script_start_addrs
*script_addrs
;
515 * ecspi ERR009165 fixed should be done in sdma script
516 * and it has been fixed in soc from i.mx6ul.
517 * please get more information from the below link:
518 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
525 struct sdma_channel channel
[MAX_DMA_CHANNELS
];
526 struct sdma_channel_control
*channel_control
;
528 struct sdma_context_data
*context
;
529 dma_addr_t context_phys
;
530 struct dma_device dma_device
;
533 spinlock_t channel_0_lock
;
535 struct sdma_script_start_addrs
*script_addrs
;
536 const struct sdma_driver_data
*drvdata
;
541 struct sdma_buffer_descriptor
*bd0
;
542 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
545 struct gen_pool
*iram_pool
;
548 static int sdma_config_write(struct dma_chan
*chan
,
549 struct dma_slave_config
*dmaengine_cfg
,
550 enum dma_transfer_direction direction
);
552 static struct sdma_driver_data sdma_imx31
= {
553 .chnenbl0
= SDMA_CHNENBL0_IMX31
,
557 static struct sdma_script_start_addrs sdma_script_imx25
= {
559 .uart_2_mcu_addr
= 904,
560 .per_2_app_addr
= 1255,
561 .mcu_2_app_addr
= 834,
562 .uartsh_2_mcu_addr
= 1120,
563 .per_2_shp_addr
= 1329,
564 .mcu_2_shp_addr
= 1048,
565 .ata_2_mcu_addr
= 1560,
566 .mcu_2_ata_addr
= 1479,
567 .app_2_per_addr
= 1189,
568 .app_2_mcu_addr
= 770,
569 .shp_2_per_addr
= 1407,
570 .shp_2_mcu_addr
= 979,
573 static struct sdma_driver_data sdma_imx25
= {
574 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
576 .script_addrs
= &sdma_script_imx25
,
579 static struct sdma_driver_data sdma_imx35
= {
580 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
584 static struct sdma_script_start_addrs sdma_script_imx51
= {
586 .uart_2_mcu_addr
= 817,
587 .mcu_2_app_addr
= 747,
588 .mcu_2_shp_addr
= 961,
589 .ata_2_mcu_addr
= 1473,
590 .mcu_2_ata_addr
= 1392,
591 .app_2_per_addr
= 1033,
592 .app_2_mcu_addr
= 683,
593 .shp_2_per_addr
= 1251,
594 .shp_2_mcu_addr
= 892,
597 static struct sdma_driver_data sdma_imx51
= {
598 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
600 .script_addrs
= &sdma_script_imx51
,
603 static struct sdma_script_start_addrs sdma_script_imx53
= {
605 .app_2_mcu_addr
= 683,
606 .mcu_2_app_addr
= 747,
607 .uart_2_mcu_addr
= 817,
608 .shp_2_mcu_addr
= 891,
609 .mcu_2_shp_addr
= 960,
610 .uartsh_2_mcu_addr
= 1032,
611 .spdif_2_mcu_addr
= 1100,
612 .mcu_2_spdif_addr
= 1134,
613 .firi_2_mcu_addr
= 1193,
614 .mcu_2_firi_addr
= 1290,
617 static struct sdma_driver_data sdma_imx53
= {
618 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
620 .script_addrs
= &sdma_script_imx53
,
623 static struct sdma_script_start_addrs sdma_script_imx6q
= {
625 .uart_2_mcu_addr
= 817,
626 .mcu_2_app_addr
= 747,
627 .per_2_per_addr
= 6331,
628 .uartsh_2_mcu_addr
= 1032,
629 .mcu_2_shp_addr
= 960,
630 .app_2_mcu_addr
= 683,
631 .shp_2_mcu_addr
= 891,
632 .spdif_2_mcu_addr
= 1100,
633 .mcu_2_spdif_addr
= 1134,
636 static struct sdma_driver_data sdma_imx6q
= {
637 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
639 .script_addrs
= &sdma_script_imx6q
,
642 static struct sdma_driver_data sdma_imx6ul
= {
643 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
645 .script_addrs
= &sdma_script_imx6q
,
649 static struct sdma_script_start_addrs sdma_script_imx7d
= {
651 .uart_2_mcu_addr
= 819,
652 .mcu_2_app_addr
= 749,
653 .uartsh_2_mcu_addr
= 1034,
654 .mcu_2_shp_addr
= 962,
655 .app_2_mcu_addr
= 685,
656 .shp_2_mcu_addr
= 893,
657 .spdif_2_mcu_addr
= 1102,
658 .mcu_2_spdif_addr
= 1136,
661 static struct sdma_driver_data sdma_imx7d
= {
662 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
664 .script_addrs
= &sdma_script_imx7d
,
667 static struct sdma_driver_data sdma_imx8mq
= {
668 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
670 .script_addrs
= &sdma_script_imx7d
,
674 static const struct of_device_id sdma_dt_ids
[] = {
675 { .compatible
= "fsl,imx6q-sdma", .data
= &sdma_imx6q
, },
676 { .compatible
= "fsl,imx53-sdma", .data
= &sdma_imx53
, },
677 { .compatible
= "fsl,imx51-sdma", .data
= &sdma_imx51
, },
678 { .compatible
= "fsl,imx35-sdma", .data
= &sdma_imx35
, },
679 { .compatible
= "fsl,imx31-sdma", .data
= &sdma_imx31
, },
680 { .compatible
= "fsl,imx25-sdma", .data
= &sdma_imx25
, },
681 { .compatible
= "fsl,imx7d-sdma", .data
= &sdma_imx7d
, },
682 { .compatible
= "fsl,imx6ul-sdma", .data
= &sdma_imx6ul
, },
683 { .compatible
= "fsl,imx8mq-sdma", .data
= &sdma_imx8mq
, },
686 MODULE_DEVICE_TABLE(of
, sdma_dt_ids
);
688 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
689 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
690 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
691 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
693 static inline u32
chnenbl_ofs(struct sdma_engine
*sdma
, unsigned int event
)
695 u32 chnenbl0
= sdma
->drvdata
->chnenbl0
;
696 return chnenbl0
+ event
* 4;
699 static int sdma_config_ownership(struct sdma_channel
*sdmac
,
700 bool event_override
, bool mcu_override
, bool dsp_override
)
702 struct sdma_engine
*sdma
= sdmac
->sdma
;
703 int channel
= sdmac
->channel
;
704 unsigned long evt
, mcu
, dsp
;
706 if (event_override
&& mcu_override
&& dsp_override
)
709 evt
= readl_relaxed(sdma
->regs
+ SDMA_H_EVTOVR
);
710 mcu
= readl_relaxed(sdma
->regs
+ SDMA_H_HOSTOVR
);
711 dsp
= readl_relaxed(sdma
->regs
+ SDMA_H_DSPOVR
);
714 __clear_bit(channel
, &dsp
);
716 __set_bit(channel
, &dsp
);
719 __clear_bit(channel
, &evt
);
721 __set_bit(channel
, &evt
);
724 __clear_bit(channel
, &mcu
);
726 __set_bit(channel
, &mcu
);
728 writel_relaxed(evt
, sdma
->regs
+ SDMA_H_EVTOVR
);
729 writel_relaxed(mcu
, sdma
->regs
+ SDMA_H_HOSTOVR
);
730 writel_relaxed(dsp
, sdma
->regs
+ SDMA_H_DSPOVR
);
735 static int is_sdma_channel_enabled(struct sdma_engine
*sdma
, int channel
)
737 return !!(readl(sdma
->regs
+ SDMA_H_STATSTOP
) & BIT(channel
));
740 static void sdma_enable_channel(struct sdma_engine
*sdma
, int channel
)
742 writel(BIT(channel
), sdma
->regs
+ SDMA_H_START
);
746 * sdma_run_channel0 - run a channel and wait till it's done
748 static int sdma_run_channel0(struct sdma_engine
*sdma
)
753 sdma_enable_channel(sdma
, 0);
755 ret
= readl_relaxed_poll_timeout_atomic(sdma
->regs
+ SDMA_H_STATSTOP
,
756 reg
, !(reg
& 1), 1, 500);
758 dev_err(sdma
->dev
, "Timeout waiting for CH0 ready\n");
760 /* Set bits of CONFIG register with dynamic context switching */
761 reg
= readl(sdma
->regs
+ SDMA_H_CONFIG
);
762 if ((reg
& SDMA_H_CONFIG_CSM
) == 0) {
763 reg
|= SDMA_H_CONFIG_CSM
;
764 writel_relaxed(reg
, sdma
->regs
+ SDMA_H_CONFIG
);
770 static int sdma_load_script(struct sdma_engine
*sdma
, void *buf
, int size
,
773 struct sdma_buffer_descriptor
*bd0
= sdma
->bd0
;
779 buf_virt
= dma_alloc_coherent(sdma
->dev
, size
, &buf_phys
, GFP_KERNEL
);
783 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
785 bd0
->mode
.command
= C0_SETPM
;
786 bd0
->mode
.status
= BD_DONE
| BD_WRAP
| BD_EXTD
;
787 bd0
->mode
.count
= size
/ 2;
788 bd0
->buffer_addr
= buf_phys
;
789 bd0
->ext_buffer_addr
= address
;
791 memcpy(buf_virt
, buf
, size
);
793 ret
= sdma_run_channel0(sdma
);
795 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
797 dma_free_coherent(sdma
->dev
, size
, buf_virt
, buf_phys
);
802 static void sdma_event_enable(struct sdma_channel
*sdmac
, unsigned int event
)
804 struct sdma_engine
*sdma
= sdmac
->sdma
;
805 int channel
= sdmac
->channel
;
807 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
809 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
810 __set_bit(channel
, &val
);
811 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
813 /* Set SDMA_DONEx_CONFIG is sw_done enabled */
814 if (sdmac
->sw_done
) {
815 val
= readl_relaxed(sdma
->regs
+ SDMA_DONE0_CONFIG
);
816 val
|= SDMA_DONE0_CONFIG_DONE_SEL
;
817 val
&= ~SDMA_DONE0_CONFIG_DONE_DIS
;
818 writel_relaxed(val
, sdma
->regs
+ SDMA_DONE0_CONFIG
);
822 static void sdma_event_disable(struct sdma_channel
*sdmac
, unsigned int event
)
824 struct sdma_engine
*sdma
= sdmac
->sdma
;
825 int channel
= sdmac
->channel
;
826 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
829 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
830 __clear_bit(channel
, &val
);
831 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
834 static struct sdma_desc
*to_sdma_desc(struct dma_async_tx_descriptor
*t
)
836 return container_of(t
, struct sdma_desc
, vd
.tx
);
839 static void sdma_start_desc(struct sdma_channel
*sdmac
)
841 struct virt_dma_desc
*vd
= vchan_next_desc(&sdmac
->vc
);
842 struct sdma_desc
*desc
;
843 struct sdma_engine
*sdma
= sdmac
->sdma
;
844 int channel
= sdmac
->channel
;
850 sdmac
->desc
= desc
= to_sdma_desc(&vd
->tx
);
854 sdma
->channel_control
[channel
].base_bd_ptr
= desc
->bd_phys
;
855 sdma
->channel_control
[channel
].current_bd_ptr
= desc
->bd_phys
;
856 sdma_enable_channel(sdma
, sdmac
->channel
);
859 static void sdma_update_channel_loop(struct sdma_channel
*sdmac
)
861 struct sdma_buffer_descriptor
*bd
;
863 enum dma_status old_status
= sdmac
->status
;
866 * loop mode. Iterate over descriptors, re-setup them and
867 * call callback function.
869 while (sdmac
->desc
) {
870 struct sdma_desc
*desc
= sdmac
->desc
;
872 bd
= &desc
->bd
[desc
->buf_tail
];
874 if (bd
->mode
.status
& BD_DONE
)
877 if (bd
->mode
.status
& BD_RROR
) {
878 bd
->mode
.status
&= ~BD_RROR
;
879 sdmac
->status
= DMA_ERROR
;
884 * We use bd->mode.count to calculate the residue, since contains
885 * the number of bytes present in the current buffer descriptor.
888 desc
->chn_real_count
= bd
->mode
.count
;
889 bd
->mode
.count
= desc
->period_len
;
890 desc
->buf_ptail
= desc
->buf_tail
;
891 desc
->buf_tail
= (desc
->buf_tail
+ 1) % desc
->num_bd
;
894 * The callback is called from the interrupt context in order
895 * to reduce latency and to avoid the risk of altering the
896 * SDMA transaction status by the time the client tasklet is
899 spin_unlock(&sdmac
->vc
.lock
);
900 dmaengine_desc_get_callback_invoke(&desc
->vd
.tx
, NULL
);
901 spin_lock(&sdmac
->vc
.lock
);
903 /* Assign buffer ownership to SDMA */
904 bd
->mode
.status
|= BD_DONE
;
907 sdmac
->status
= old_status
;
911 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
912 * owned buffer is available (i.e. BD_DONE was set too late).
914 if (sdmac
->desc
&& !is_sdma_channel_enabled(sdmac
->sdma
, sdmac
->channel
)) {
915 dev_warn(sdmac
->sdma
->dev
, "restart cyclic channel %d\n", sdmac
->channel
);
916 sdma_enable_channel(sdmac
->sdma
, sdmac
->channel
);
920 static void mxc_sdma_handle_channel_normal(struct sdma_channel
*data
)
922 struct sdma_channel
*sdmac
= (struct sdma_channel
*) data
;
923 struct sdma_buffer_descriptor
*bd
;
926 sdmac
->desc
->chn_real_count
= 0;
928 * non loop mode. Iterate over all descriptors, collect
929 * errors and call callback function
931 for (i
= 0; i
< sdmac
->desc
->num_bd
; i
++) {
932 bd
= &sdmac
->desc
->bd
[i
];
934 if (bd
->mode
.status
& (BD_DONE
| BD_RROR
))
936 sdmac
->desc
->chn_real_count
+= bd
->mode
.count
;
940 sdmac
->status
= DMA_ERROR
;
942 sdmac
->status
= DMA_COMPLETE
;
945 static irqreturn_t
sdma_int_handler(int irq
, void *dev_id
)
947 struct sdma_engine
*sdma
= dev_id
;
950 stat
= readl_relaxed(sdma
->regs
+ SDMA_H_INTR
);
951 writel_relaxed(stat
, sdma
->regs
+ SDMA_H_INTR
);
952 /* channel 0 is special and not handled here, see run_channel0() */
956 int channel
= fls(stat
) - 1;
957 struct sdma_channel
*sdmac
= &sdma
->channel
[channel
];
958 struct sdma_desc
*desc
;
960 spin_lock(&sdmac
->vc
.lock
);
963 if (sdmac
->flags
& IMX_DMA_SG_LOOP
) {
964 if (sdmac
->peripheral_type
!= IMX_DMATYPE_HDMI
)
965 sdma_update_channel_loop(sdmac
);
967 vchan_cyclic_callback(&desc
->vd
);
969 mxc_sdma_handle_channel_normal(sdmac
);
970 vchan_cookie_complete(&desc
->vd
);
971 sdma_start_desc(sdmac
);
975 spin_unlock(&sdmac
->vc
.lock
);
976 __clear_bit(channel
, &stat
);
983 * sets the pc of SDMA script according to the peripheral type
985 static int sdma_get_pc(struct sdma_channel
*sdmac
,
986 enum sdma_peripheral_type peripheral_type
)
988 struct sdma_engine
*sdma
= sdmac
->sdma
;
989 int per_2_emi
= 0, emi_2_per
= 0;
991 * These are needed once we start to support transfers between
992 * two peripherals or memory-to-memory transfers
994 int per_2_per
= 0, emi_2_emi
= 0;
996 sdmac
->pc_from_device
= 0;
997 sdmac
->pc_to_device
= 0;
998 sdmac
->device_to_device
= 0;
1000 sdmac
->is_ram_script
= false;
1002 switch (peripheral_type
) {
1003 case IMX_DMATYPE_MEMORY
:
1004 emi_2_emi
= sdma
->script_addrs
->ap_2_ap_addr
;
1006 case IMX_DMATYPE_DSP
:
1007 emi_2_per
= sdma
->script_addrs
->bp_2_ap_addr
;
1008 per_2_emi
= sdma
->script_addrs
->ap_2_bp_addr
;
1010 case IMX_DMATYPE_FIRI
:
1011 per_2_emi
= sdma
->script_addrs
->firi_2_mcu_addr
;
1012 emi_2_per
= sdma
->script_addrs
->mcu_2_firi_addr
;
1014 case IMX_DMATYPE_UART
:
1015 per_2_emi
= sdma
->script_addrs
->uart_2_mcu_addr
;
1016 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
1018 case IMX_DMATYPE_UART_SP
:
1019 per_2_emi
= sdma
->script_addrs
->uartsh_2_mcu_addr
;
1020 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
1022 case IMX_DMATYPE_ATA
:
1023 per_2_emi
= sdma
->script_addrs
->ata_2_mcu_addr
;
1024 emi_2_per
= sdma
->script_addrs
->mcu_2_ata_addr
;
1026 case IMX_DMATYPE_CSPI
:
1027 per_2_emi
= sdma
->script_addrs
->app_2_mcu_addr
;
1029 /* Use rom script mcu_2_app if ERR009165 fixed */
1030 if (sdmac
->sdma
->drvdata
->ecspi_fixed
) {
1031 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
1033 emi_2_per
= sdma
->script_addrs
->mcu_2_ecspi_addr
;
1034 sdmac
->is_ram_script
= true;
1038 case IMX_DMATYPE_EXT
:
1039 case IMX_DMATYPE_SSI
:
1040 case IMX_DMATYPE_SAI
:
1041 per_2_emi
= sdma
->script_addrs
->app_2_mcu_addr
;
1042 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
1044 case IMX_DMATYPE_SSI_DUAL
:
1045 per_2_emi
= sdma
->script_addrs
->ssish_2_mcu_addr
;
1046 emi_2_per
= sdma
->script_addrs
->mcu_2_ssish_addr
;
1047 sdmac
->is_ram_script
= true;
1049 case IMX_DMATYPE_SSI_SP
:
1050 case IMX_DMATYPE_MMC
:
1051 case IMX_DMATYPE_SDHC
:
1052 case IMX_DMATYPE_CSPI_SP
:
1053 case IMX_DMATYPE_ESAI
:
1054 case IMX_DMATYPE_MSHC_SP
:
1055 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
1056 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
1058 case IMX_DMATYPE_ASRC
:
1059 per_2_emi
= sdma
->script_addrs
->asrc_2_mcu_addr
;
1060 emi_2_per
= sdma
->script_addrs
->asrc_2_mcu_addr
;
1061 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
1062 sdmac
->is_ram_script
= true;
1064 case IMX_DMATYPE_ASRC_SP
:
1065 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
1066 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
1067 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
1069 case IMX_DMATYPE_MSHC
:
1070 per_2_emi
= sdma
->script_addrs
->mshc_2_mcu_addr
;
1071 emi_2_per
= sdma
->script_addrs
->mcu_2_mshc_addr
;
1073 case IMX_DMATYPE_CCM
:
1074 per_2_emi
= sdma
->script_addrs
->dptc_dvfs_addr
;
1076 case IMX_DMATYPE_SPDIF
:
1077 per_2_emi
= sdma
->script_addrs
->spdif_2_mcu_addr
;
1078 emi_2_per
= sdma
->script_addrs
->mcu_2_spdif_addr
;
1080 case IMX_DMATYPE_IPU_MEMORY
:
1081 emi_2_per
= sdma
->script_addrs
->ext_mem_2_ipu_addr
;
1083 case IMX_DMATYPE_MULTI_SAI
:
1084 per_2_emi
= sdma
->script_addrs
->sai_2_mcu_addr
;
1085 emi_2_per
= sdma
->script_addrs
->mcu_2_sai_addr
;
1087 case IMX_DMATYPE_I2C
:
1088 per_2_emi
= sdma
->script_addrs
->i2c_2_mcu_addr
;
1089 emi_2_per
= sdma
->script_addrs
->mcu_2_i2c_addr
;
1090 sdmac
->is_ram_script
= true;
1092 case IMX_DMATYPE_HDMI
:
1093 emi_2_per
= sdma
->script_addrs
->hdmi_dma_addr
;
1094 sdmac
->is_ram_script
= true;
1097 dev_err(sdma
->dev
, "Unsupported transfer type %d\n",
1102 sdmac
->pc_from_device
= per_2_emi
;
1103 sdmac
->pc_to_device
= emi_2_per
;
1104 sdmac
->device_to_device
= per_2_per
;
1105 sdmac
->pc_to_pc
= emi_2_emi
;
1110 static int sdma_load_context(struct sdma_channel
*sdmac
)
1112 struct sdma_engine
*sdma
= sdmac
->sdma
;
1113 int channel
= sdmac
->channel
;
1115 struct sdma_context_data
*context
= sdma
->context
;
1116 struct sdma_buffer_descriptor
*bd0
= sdma
->bd0
;
1118 unsigned long flags
;
1120 if (sdmac
->direction
== DMA_DEV_TO_MEM
)
1121 load_address
= sdmac
->pc_from_device
;
1122 else if (sdmac
->direction
== DMA_DEV_TO_DEV
)
1123 load_address
= sdmac
->device_to_device
;
1124 else if (sdmac
->direction
== DMA_MEM_TO_MEM
)
1125 load_address
= sdmac
->pc_to_pc
;
1127 load_address
= sdmac
->pc_to_device
;
1129 if (load_address
< 0)
1130 return load_address
;
1132 dev_dbg(sdma
->dev
, "load_address = %d\n", load_address
);
1133 dev_dbg(sdma
->dev
, "wml = 0x%08x\n", (u32
)sdmac
->watermark_level
);
1134 dev_dbg(sdma
->dev
, "shp_addr = 0x%08x\n", sdmac
->shp_addr
);
1135 dev_dbg(sdma
->dev
, "per_addr = 0x%08x\n", sdmac
->per_addr
);
1136 dev_dbg(sdma
->dev
, "event_mask0 = 0x%08x\n", (u32
)sdmac
->event_mask
[0]);
1137 dev_dbg(sdma
->dev
, "event_mask1 = 0x%08x\n", (u32
)sdmac
->event_mask
[1]);
1139 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
1141 memset(context
, 0, sizeof(*context
));
1142 context
->channel_state
.pc
= load_address
;
1144 /* Send by context the event mask,base address for peripheral
1145 * and watermark level
1147 if (sdmac
->peripheral_type
== IMX_DMATYPE_HDMI
) {
1148 context
->gReg
[4] = sdmac
->per_addr
;
1149 context
->gReg
[6] = sdmac
->shp_addr
;
1151 context
->gReg
[0] = sdmac
->event_mask
[1];
1152 context
->gReg
[1] = sdmac
->event_mask
[0];
1153 context
->gReg
[2] = sdmac
->per_addr
;
1154 context
->gReg
[6] = sdmac
->shp_addr
;
1155 context
->gReg
[7] = sdmac
->watermark_level
;
1158 bd0
->mode
.command
= C0_SETDM
;
1159 bd0
->mode
.status
= BD_DONE
| BD_WRAP
| BD_EXTD
;
1160 bd0
->mode
.count
= sizeof(*context
) / 4;
1161 bd0
->buffer_addr
= sdma
->context_phys
;
1162 bd0
->ext_buffer_addr
= 2048 + (sizeof(*context
) / 4) * channel
;
1163 ret
= sdma_run_channel0(sdma
);
1165 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
1170 static struct sdma_channel
*to_sdma_chan(struct dma_chan
*chan
)
1172 return container_of(chan
, struct sdma_channel
, vc
.chan
);
1175 static int sdma_disable_channel(struct dma_chan
*chan
)
1177 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1178 struct sdma_engine
*sdma
= sdmac
->sdma
;
1179 int channel
= sdmac
->channel
;
1181 writel_relaxed(BIT(channel
), sdma
->regs
+ SDMA_H_STATSTOP
);
1182 sdmac
->status
= DMA_ERROR
;
1186 static void sdma_channel_terminate_work(struct work_struct
*work
)
1188 struct sdma_channel
*sdmac
= container_of(work
, struct sdma_channel
,
1191 * According to NXP R&D team a delay of one BD SDMA cost time
1192 * (maximum is 1ms) should be added after disable of the channel
1193 * bit, to ensure SDMA core has really been stopped after SDMA
1194 * clients call .device_terminate_all.
1196 usleep_range(1000, 2000);
1198 vchan_dma_desc_free_list(&sdmac
->vc
, &sdmac
->terminated
);
1201 static int sdma_terminate_all(struct dma_chan
*chan
)
1203 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1204 unsigned long flags
;
1206 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1208 sdma_disable_channel(chan
);
1211 vchan_terminate_vdesc(&sdmac
->desc
->vd
);
1213 * move out current descriptor into terminated list so that
1214 * it could be free in sdma_channel_terminate_work alone
1215 * later without potential involving next descriptor raised
1216 * up before the last descriptor terminated.
1218 vchan_get_all_descriptors(&sdmac
->vc
, &sdmac
->terminated
);
1220 schedule_work(&sdmac
->terminate_worker
);
1223 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1228 static void sdma_channel_synchronize(struct dma_chan
*chan
)
1230 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1232 vchan_synchronize(&sdmac
->vc
);
1234 flush_work(&sdmac
->terminate_worker
);
1237 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel
*sdmac
)
1239 struct sdma_engine
*sdma
= sdmac
->sdma
;
1241 int lwml
= sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_LWML
;
1242 int hwml
= (sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_HWML
) >> 16;
1244 set_bit(sdmac
->event_id0
% 32, &sdmac
->event_mask
[1]);
1245 set_bit(sdmac
->event_id1
% 32, &sdmac
->event_mask
[0]);
1247 if (sdmac
->event_id0
> 31)
1248 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_LWE
;
1250 if (sdmac
->event_id1
> 31)
1251 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_HWE
;
1254 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1255 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1256 * r0(event_mask[1]) and r1(event_mask[0]).
1259 sdmac
->watermark_level
&= ~(SDMA_WATERMARK_LEVEL_LWML
|
1260 SDMA_WATERMARK_LEVEL_HWML
);
1261 sdmac
->watermark_level
|= hwml
;
1262 sdmac
->watermark_level
|= lwml
<< 16;
1263 swap(sdmac
->event_mask
[0], sdmac
->event_mask
[1]);
1266 if (sdmac
->per_address2
>= sdma
->spba_start_addr
&&
1267 sdmac
->per_address2
<= sdma
->spba_end_addr
)
1268 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_SP
;
1270 if (sdmac
->per_address
>= sdma
->spba_start_addr
&&
1271 sdmac
->per_address
<= sdma
->spba_end_addr
)
1272 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_DP
;
1274 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_CONT
;
1277 * Limitation: The p2p script support dual fifos in maximum,
1278 * So when fifo number is larger than 1, force enable dual
1281 if (sdmac
->n_fifos_src
> 1)
1282 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_SD
;
1283 if (sdmac
->n_fifos_dst
> 1)
1284 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_DD
;
1287 static void sdma_set_watermarklevel_for_sais(struct sdma_channel
*sdmac
)
1289 unsigned int n_fifos
;
1290 unsigned int stride_fifos
;
1291 unsigned int words_per_fifo
;
1294 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_SW_DONE
;
1296 if (sdmac
->direction
== DMA_DEV_TO_MEM
) {
1297 n_fifos
= sdmac
->n_fifos_src
;
1298 stride_fifos
= sdmac
->stride_fifos_src
;
1300 n_fifos
= sdmac
->n_fifos_dst
;
1301 stride_fifos
= sdmac
->stride_fifos_dst
;
1304 words_per_fifo
= sdmac
->words_per_fifo
;
1306 sdmac
->watermark_level
|=
1307 FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS
, n_fifos
);
1308 sdmac
->watermark_level
|=
1309 FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS
, stride_fifos
);
1311 sdmac
->watermark_level
|=
1312 FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO
, (words_per_fifo
- 1));
1315 static int sdma_config_channel(struct dma_chan
*chan
)
1317 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1320 sdma_disable_channel(chan
);
1322 sdmac
->event_mask
[0] = 0;
1323 sdmac
->event_mask
[1] = 0;
1324 sdmac
->shp_addr
= 0;
1325 sdmac
->per_addr
= 0;
1327 switch (sdmac
->peripheral_type
) {
1328 case IMX_DMATYPE_DSP
:
1329 sdma_config_ownership(sdmac
, false, true, true);
1331 case IMX_DMATYPE_MEMORY
:
1332 sdma_config_ownership(sdmac
, false, true, false);
1335 sdma_config_ownership(sdmac
, true, true, false);
1339 ret
= sdma_get_pc(sdmac
, sdmac
->peripheral_type
);
1343 if ((sdmac
->peripheral_type
!= IMX_DMATYPE_MEMORY
) &&
1344 (sdmac
->peripheral_type
!= IMX_DMATYPE_DSP
)) {
1345 /* Handle multiple event channels differently */
1346 if (sdmac
->event_id1
) {
1347 if (sdmac
->peripheral_type
== IMX_DMATYPE_ASRC_SP
||
1348 sdmac
->peripheral_type
== IMX_DMATYPE_ASRC
)
1349 sdma_set_watermarklevel_for_p2p(sdmac
);
1351 if (sdmac
->peripheral_type
==
1352 IMX_DMATYPE_MULTI_SAI
)
1353 sdma_set_watermarklevel_for_sais(sdmac
);
1355 __set_bit(sdmac
->event_id0
, sdmac
->event_mask
);
1359 sdmac
->shp_addr
= sdmac
->per_address
;
1360 sdmac
->per_addr
= sdmac
->per_address2
;
1362 sdmac
->watermark_level
= 0; /* FIXME: M3_BASE_ADDRESS */
1368 static int sdma_set_channel_priority(struct sdma_channel
*sdmac
,
1369 unsigned int priority
)
1371 struct sdma_engine
*sdma
= sdmac
->sdma
;
1372 int channel
= sdmac
->channel
;
1374 if (priority
< MXC_SDMA_MIN_PRIORITY
1375 || priority
> MXC_SDMA_MAX_PRIORITY
) {
1379 writel_relaxed(priority
, sdma
->regs
+ SDMA_CHNPRI_0
+ 4 * channel
);
1384 static int sdma_request_channel0(struct sdma_engine
*sdma
)
1388 if (sdma
->iram_pool
)
1389 sdma
->bd0
= gen_pool_dma_alloc(sdma
->iram_pool
,
1390 sizeof(struct sdma_buffer_descriptor
),
1393 sdma
->bd0
= dma_alloc_coherent(sdma
->dev
,
1394 sizeof(struct sdma_buffer_descriptor
),
1395 &sdma
->bd0_phys
, GFP_NOWAIT
);
1401 sdma
->channel_control
[0].base_bd_ptr
= sdma
->bd0_phys
;
1402 sdma
->channel_control
[0].current_bd_ptr
= sdma
->bd0_phys
;
1404 sdma_set_channel_priority(&sdma
->channel
[0], MXC_SDMA_DEFAULT_PRIORITY
);
1412 static int sdma_alloc_bd(struct sdma_desc
*desc
)
1414 u32 bd_size
= desc
->num_bd
* sizeof(struct sdma_buffer_descriptor
);
1415 struct sdma_engine
*sdma
= desc
->sdmac
->sdma
;
1418 if (sdma
->iram_pool
)
1419 desc
->bd
= gen_pool_dma_alloc(sdma
->iram_pool
, bd_size
, &desc
->bd_phys
);
1421 desc
->bd
= dma_alloc_coherent(sdma
->dev
, bd_size
, &desc
->bd_phys
, GFP_NOWAIT
);
1431 static void sdma_free_bd(struct sdma_desc
*desc
)
1433 u32 bd_size
= desc
->num_bd
* sizeof(struct sdma_buffer_descriptor
);
1434 struct sdma_engine
*sdma
= desc
->sdmac
->sdma
;
1436 if (sdma
->iram_pool
)
1437 gen_pool_free(sdma
->iram_pool
, (unsigned long)desc
->bd
, bd_size
);
1439 dma_free_coherent(desc
->sdmac
->sdma
->dev
, bd_size
, desc
->bd
, desc
->bd_phys
);
1442 static void sdma_desc_free(struct virt_dma_desc
*vd
)
1444 struct sdma_desc
*desc
= container_of(vd
, struct sdma_desc
, vd
);
1450 static int sdma_alloc_chan_resources(struct dma_chan
*chan
)
1452 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1453 struct imx_dma_data
*data
= chan
->private;
1454 struct imx_dma_data mem_data
;
1458 * MEMCPY may never setup chan->private by filter function such as
1459 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1460 * Please note in any other slave case, you have to setup chan->private
1461 * with 'struct imx_dma_data' in your own filter function if you want to
1462 * request dma channel by dma_request_channel() rather than
1463 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1464 * to warn you to correct your filter function.
1467 dev_dbg(sdmac
->sdma
->dev
, "MEMCPY in case?\n");
1468 mem_data
.priority
= 2;
1469 mem_data
.peripheral_type
= IMX_DMATYPE_MEMORY
;
1470 mem_data
.dma_request
= 0;
1471 mem_data
.dma_request2
= 0;
1474 ret
= sdma_get_pc(sdmac
, IMX_DMATYPE_MEMORY
);
1479 switch (data
->priority
) {
1483 case DMA_PRIO_MEDIUM
:
1492 sdmac
->peripheral_type
= data
->peripheral_type
;
1493 sdmac
->event_id0
= data
->dma_request
;
1494 sdmac
->event_id1
= data
->dma_request2
;
1496 ret
= clk_enable(sdmac
->sdma
->clk_ipg
);
1499 ret
= clk_enable(sdmac
->sdma
->clk_ahb
);
1501 goto disable_clk_ipg
;
1503 ret
= sdma_set_channel_priority(sdmac
, prio
);
1505 goto disable_clk_ahb
;
1510 clk_disable(sdmac
->sdma
->clk_ahb
);
1512 clk_disable(sdmac
->sdma
->clk_ipg
);
1516 static void sdma_free_chan_resources(struct dma_chan
*chan
)
1518 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1519 struct sdma_engine
*sdma
= sdmac
->sdma
;
1521 sdma_terminate_all(chan
);
1523 sdma_channel_synchronize(chan
);
1525 sdma_event_disable(sdmac
, sdmac
->event_id0
);
1526 if (sdmac
->event_id1
)
1527 sdma_event_disable(sdmac
, sdmac
->event_id1
);
1529 sdmac
->event_id0
= 0;
1530 sdmac
->event_id1
= 0;
1532 sdma_set_channel_priority(sdmac
, 0);
1534 clk_disable(sdma
->clk_ipg
);
1535 clk_disable(sdma
->clk_ahb
);
1538 static struct sdma_desc
*sdma_transfer_init(struct sdma_channel
*sdmac
,
1539 enum dma_transfer_direction direction
, u32 bds
)
1541 struct sdma_desc
*desc
;
1543 if (!sdmac
->sdma
->fw_loaded
&& sdmac
->is_ram_script
) {
1544 dev_warn_once(sdmac
->sdma
->dev
, "sdma firmware not ready!\n");
1548 desc
= kzalloc((sizeof(*desc
)), GFP_NOWAIT
);
1552 sdmac
->status
= DMA_IN_PROGRESS
;
1553 sdmac
->direction
= direction
;
1556 desc
->chn_count
= 0;
1557 desc
->chn_real_count
= 0;
1559 desc
->buf_ptail
= 0;
1560 desc
->sdmac
= sdmac
;
1563 if (bds
&& sdma_alloc_bd(desc
))
1566 /* No slave_config called in MEMCPY case, so do here */
1567 if (direction
== DMA_MEM_TO_MEM
)
1568 sdma_config_ownership(sdmac
, false, true, false);
1570 if (sdma_load_context(sdmac
))
1583 static struct dma_async_tx_descriptor
*sdma_prep_memcpy(
1584 struct dma_chan
*chan
, dma_addr_t dma_dst
,
1585 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
1587 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1588 struct sdma_engine
*sdma
= sdmac
->sdma
;
1589 int channel
= sdmac
->channel
;
1592 struct sdma_buffer_descriptor
*bd
;
1593 struct sdma_desc
*desc
;
1598 dev_dbg(sdma
->dev
, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1599 &dma_src
, &dma_dst
, len
, channel
);
1601 desc
= sdma_transfer_init(sdmac
, DMA_MEM_TO_MEM
,
1602 len
/ SDMA_BD_MAX_CNT
+ 1);
1607 count
= min_t(size_t, len
, SDMA_BD_MAX_CNT
);
1609 bd
->buffer_addr
= dma_src
;
1610 bd
->ext_buffer_addr
= dma_dst
;
1611 bd
->mode
.count
= count
;
1612 desc
->chn_count
+= count
;
1613 bd
->mode
.command
= 0;
1620 param
= BD_DONE
| BD_EXTD
| BD_CONT
;
1628 dev_dbg(sdma
->dev
, "entry %d: count: %zd dma: 0x%x %s%s\n",
1629 i
, count
, bd
->buffer_addr
,
1630 param
& BD_WRAP
? "wrap" : "",
1631 param
& BD_INTR
? " intr" : "");
1633 bd
->mode
.status
= param
;
1636 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1639 static struct dma_async_tx_descriptor
*sdma_prep_slave_sg(
1640 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1641 unsigned int sg_len
, enum dma_transfer_direction direction
,
1642 unsigned long flags
, void *context
)
1644 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1645 struct sdma_engine
*sdma
= sdmac
->sdma
;
1647 int channel
= sdmac
->channel
;
1648 struct scatterlist
*sg
;
1649 struct sdma_desc
*desc
;
1651 sdma_config_write(chan
, &sdmac
->slave_config
, direction
);
1653 desc
= sdma_transfer_init(sdmac
, direction
, sg_len
);
1657 dev_dbg(sdma
->dev
, "setting up %d entries for channel %d.\n",
1660 for_each_sg(sgl
, sg
, sg_len
, i
) {
1661 struct sdma_buffer_descriptor
*bd
= &desc
->bd
[i
];
1664 bd
->buffer_addr
= sg
->dma_address
;
1666 count
= sg_dma_len(sg
);
1668 if (count
> SDMA_BD_MAX_CNT
) {
1669 dev_err(sdma
->dev
, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1670 channel
, count
, SDMA_BD_MAX_CNT
);
1674 bd
->mode
.count
= count
;
1675 desc
->chn_count
+= count
;
1677 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
1680 switch (sdmac
->word_size
) {
1681 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1682 bd
->mode
.command
= 0;
1683 if (count
& 3 || sg
->dma_address
& 3)
1686 case DMA_SLAVE_BUSWIDTH_3_BYTES
:
1687 bd
->mode
.command
= 3;
1689 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1690 bd
->mode
.command
= 2;
1691 if (count
& 1 || sg
->dma_address
& 1)
1694 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1695 bd
->mode
.command
= 1;
1701 param
= BD_DONE
| BD_EXTD
| BD_CONT
;
1703 if (i
+ 1 == sg_len
) {
1709 dev_dbg(sdma
->dev
, "entry %d: count: %d dma: %#llx %s%s\n",
1710 i
, count
, (u64
)sg
->dma_address
,
1711 param
& BD_WRAP
? "wrap" : "",
1712 param
& BD_INTR
? " intr" : "");
1714 bd
->mode
.status
= param
;
1717 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1722 sdmac
->status
= DMA_ERROR
;
1726 static struct dma_async_tx_descriptor
*sdma_prep_dma_cyclic(
1727 struct dma_chan
*chan
, dma_addr_t dma_addr
, size_t buf_len
,
1728 size_t period_len
, enum dma_transfer_direction direction
,
1729 unsigned long flags
)
1731 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1732 struct sdma_engine
*sdma
= sdmac
->sdma
;
1733 int num_periods
= 0;
1734 int channel
= sdmac
->channel
;
1736 struct sdma_desc
*desc
;
1738 dev_dbg(sdma
->dev
, "%s channel: %d\n", __func__
, channel
);
1740 if (sdmac
->peripheral_type
!= IMX_DMATYPE_HDMI
)
1741 num_periods
= buf_len
/ period_len
;
1743 sdma_config_write(chan
, &sdmac
->slave_config
, direction
);
1745 desc
= sdma_transfer_init(sdmac
, direction
, num_periods
);
1749 desc
->period_len
= period_len
;
1751 sdmac
->flags
|= IMX_DMA_SG_LOOP
;
1753 if (period_len
> SDMA_BD_MAX_CNT
) {
1754 dev_err(sdma
->dev
, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1755 channel
, period_len
, SDMA_BD_MAX_CNT
);
1759 if (sdmac
->peripheral_type
== IMX_DMATYPE_HDMI
)
1760 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1762 while (buf
< buf_len
) {
1763 struct sdma_buffer_descriptor
*bd
= &desc
->bd
[i
];
1766 bd
->buffer_addr
= dma_addr
;
1768 bd
->mode
.count
= period_len
;
1770 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
1772 if (sdmac
->word_size
== DMA_SLAVE_BUSWIDTH_4_BYTES
)
1773 bd
->mode
.command
= 0;
1775 bd
->mode
.command
= sdmac
->word_size
;
1777 param
= BD_DONE
| BD_EXTD
| BD_CONT
| BD_INTR
;
1778 if (i
+ 1 == num_periods
)
1781 dev_dbg(sdma
->dev
, "entry %d: count: %zu dma: %#llx %s%s\n",
1782 i
, period_len
, (u64
)dma_addr
,
1783 param
& BD_WRAP
? "wrap" : "",
1784 param
& BD_INTR
? " intr" : "");
1786 bd
->mode
.status
= param
;
1788 dma_addr
+= period_len
;
1794 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1799 sdmac
->status
= DMA_ERROR
;
1803 static int sdma_config_write(struct dma_chan
*chan
,
1804 struct dma_slave_config
*dmaengine_cfg
,
1805 enum dma_transfer_direction direction
)
1807 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1809 if (direction
== DMA_DEV_TO_MEM
) {
1810 sdmac
->per_address
= dmaengine_cfg
->src_addr
;
1811 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
*
1812 dmaengine_cfg
->src_addr_width
;
1813 sdmac
->word_size
= dmaengine_cfg
->src_addr_width
;
1814 } else if (direction
== DMA_DEV_TO_DEV
) {
1815 sdmac
->per_address2
= dmaengine_cfg
->src_addr
;
1816 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1817 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
&
1818 SDMA_WATERMARK_LEVEL_LWML
;
1819 sdmac
->watermark_level
|= (dmaengine_cfg
->dst_maxburst
<< 16) &
1820 SDMA_WATERMARK_LEVEL_HWML
;
1821 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1822 } else if (sdmac
->peripheral_type
== IMX_DMATYPE_HDMI
) {
1823 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1824 sdmac
->per_address2
= dmaengine_cfg
->src_addr
;
1825 sdmac
->watermark_level
= 0;
1827 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1828 sdmac
->watermark_level
= dmaengine_cfg
->dst_maxburst
*
1829 dmaengine_cfg
->dst_addr_width
;
1830 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1832 sdmac
->direction
= direction
;
1833 return sdma_config_channel(chan
);
1836 static int sdma_config(struct dma_chan
*chan
,
1837 struct dma_slave_config
*dmaengine_cfg
)
1839 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1840 struct sdma_engine
*sdma
= sdmac
->sdma
;
1842 memcpy(&sdmac
->slave_config
, dmaengine_cfg
, sizeof(*dmaengine_cfg
));
1844 if (dmaengine_cfg
->peripheral_config
) {
1845 struct sdma_peripheral_config
*sdmacfg
= dmaengine_cfg
->peripheral_config
;
1846 if (dmaengine_cfg
->peripheral_size
!= sizeof(struct sdma_peripheral_config
)) {
1847 dev_err(sdma
->dev
, "Invalid peripheral size %zu, expected %zu\n",
1848 dmaengine_cfg
->peripheral_size
,
1849 sizeof(struct sdma_peripheral_config
));
1852 sdmac
->n_fifos_src
= sdmacfg
->n_fifos_src
;
1853 sdmac
->n_fifos_dst
= sdmacfg
->n_fifos_dst
;
1854 sdmac
->stride_fifos_src
= sdmacfg
->stride_fifos_src
;
1855 sdmac
->stride_fifos_dst
= sdmacfg
->stride_fifos_dst
;
1856 sdmac
->words_per_fifo
= sdmacfg
->words_per_fifo
;
1857 sdmac
->sw_done
= sdmacfg
->sw_done
;
1860 /* Set ENBLn earlier to make sure dma request triggered after that */
1861 if (sdmac
->event_id0
>= sdmac
->sdma
->drvdata
->num_events
)
1863 sdma_event_enable(sdmac
, sdmac
->event_id0
);
1865 if (sdmac
->event_id1
) {
1866 if (sdmac
->event_id1
>= sdmac
->sdma
->drvdata
->num_events
)
1868 sdma_event_enable(sdmac
, sdmac
->event_id1
);
1874 static enum dma_status
sdma_tx_status(struct dma_chan
*chan
,
1875 dma_cookie_t cookie
,
1876 struct dma_tx_state
*txstate
)
1878 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1879 struct sdma_desc
*desc
= NULL
;
1881 struct virt_dma_desc
*vd
;
1882 enum dma_status ret
;
1883 unsigned long flags
;
1885 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1886 if (ret
== DMA_COMPLETE
|| !txstate
)
1889 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1891 vd
= vchan_find_desc(&sdmac
->vc
, cookie
);
1893 desc
= to_sdma_desc(&vd
->tx
);
1894 else if (sdmac
->desc
&& sdmac
->desc
->vd
.tx
.cookie
== cookie
)
1898 if (sdmac
->flags
& IMX_DMA_SG_LOOP
)
1899 residue
= (desc
->num_bd
- desc
->buf_ptail
) *
1900 desc
->period_len
- desc
->chn_real_count
;
1902 residue
= desc
->chn_count
- desc
->chn_real_count
;
1907 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1909 dma_set_tx_state(txstate
, chan
->completed_cookie
, chan
->cookie
,
1912 return sdmac
->status
;
1915 static void sdma_issue_pending(struct dma_chan
*chan
)
1917 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1918 unsigned long flags
;
1920 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1921 if (vchan_issue_pending(&sdmac
->vc
) && !sdmac
->desc
)
1922 sdma_start_desc(sdmac
);
1923 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1926 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 \
1927 (offsetof(struct sdma_script_start_addrs, v1_end) / sizeof(s32))
1929 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 \
1930 (offsetof(struct sdma_script_start_addrs, v2_end) / sizeof(s32))
1932 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 \
1933 (offsetof(struct sdma_script_start_addrs, v3_end) / sizeof(s32))
1935 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 \
1936 (offsetof(struct sdma_script_start_addrs, v4_end) / sizeof(s32))
1938 static void sdma_add_scripts(struct sdma_engine
*sdma
,
1939 const struct sdma_script_start_addrs
*addr
)
1941 s32
*addr_arr
= (u32
*)addr
;
1942 s32
*saddr_arr
= (u32
*)sdma
->script_addrs
;
1945 /* use the default firmware in ROM if missing external firmware */
1946 if (!sdma
->script_number
)
1947 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
1949 if (sdma
->script_number
> sizeof(struct sdma_script_start_addrs
)
1952 "SDMA script number %d not match with firmware.\n",
1953 sdma
->script_number
);
1957 for (i
= 0; i
< sdma
->script_number
; i
++)
1958 if (addr_arr
[i
] > 0)
1959 saddr_arr
[i
] = addr_arr
[i
];
1962 * For compatibility with NXP internal legacy kernel before 4.19 which
1963 * is based on uart ram script and mainline kernel based on uart rom
1964 * script, both uart ram/rom scripts are present in newer sdma
1965 * firmware. Use the rom versions if they are present (V3 or newer).
1967 if (sdma
->script_number
>= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3
) {
1968 if (addr
->uart_2_mcu_rom_addr
)
1969 sdma
->script_addrs
->uart_2_mcu_addr
= addr
->uart_2_mcu_rom_addr
;
1970 if (addr
->uartsh_2_mcu_rom_addr
)
1971 sdma
->script_addrs
->uartsh_2_mcu_addr
= addr
->uartsh_2_mcu_rom_addr
;
1975 static void sdma_load_firmware(const struct firmware
*fw
, void *context
)
1977 struct sdma_engine
*sdma
= context
;
1978 const struct sdma_firmware_header
*header
;
1979 const struct sdma_script_start_addrs
*addr
;
1980 unsigned short *ram_code
;
1983 dev_info(sdma
->dev
, "external firmware not found, using ROM firmware\n");
1984 /* In this case we just use the ROM firmware. */
1988 if (fw
->size
< sizeof(*header
))
1991 header
= (struct sdma_firmware_header
*)fw
->data
;
1993 if (header
->magic
!= SDMA_FIRMWARE_MAGIC
)
1995 if (header
->ram_code_start
+ header
->ram_code_size
> fw
->size
)
1997 switch (header
->version_major
) {
1999 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
2002 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2
;
2005 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3
;
2008 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4
;
2011 dev_err(sdma
->dev
, "unknown firmware version\n");
2015 addr
= (void *)header
+ header
->script_addrs_start
;
2016 ram_code
= (void *)header
+ header
->ram_code_start
;
2018 clk_enable(sdma
->clk_ipg
);
2019 clk_enable(sdma
->clk_ahb
);
2020 /* download the RAM image for SDMA */
2021 sdma_load_script(sdma
, ram_code
,
2022 header
->ram_code_size
,
2023 addr
->ram_code_start_addr
);
2024 clk_disable(sdma
->clk_ipg
);
2025 clk_disable(sdma
->clk_ahb
);
2027 sdma_add_scripts(sdma
, addr
);
2029 sdma
->fw_loaded
= true;
2031 dev_info(sdma
->dev
, "loaded firmware %d.%d\n",
2032 header
->version_major
,
2033 header
->version_minor
);
2036 release_firmware(fw
);
2039 #define EVENT_REMAP_CELLS 3
2041 static int sdma_event_remap(struct sdma_engine
*sdma
)
2043 struct device_node
*np
= sdma
->dev
->of_node
;
2044 struct device_node
*gpr_np
= of_parse_phandle(np
, "gpr", 0);
2045 struct property
*event_remap
;
2047 char propname
[] = "fsl,sdma-event-remap";
2048 u32 reg
, val
, shift
, num_map
, i
;
2051 if (IS_ERR(np
) || !gpr_np
)
2054 event_remap
= of_find_property(np
, propname
, NULL
);
2055 num_map
= event_remap
? (event_remap
->length
/ sizeof(u32
)) : 0;
2057 dev_dbg(sdma
->dev
, "no event needs to be remapped\n");
2059 } else if (num_map
% EVENT_REMAP_CELLS
) {
2060 dev_err(sdma
->dev
, "the property %s must modulo %d\n",
2061 propname
, EVENT_REMAP_CELLS
);
2066 gpr
= syscon_node_to_regmap(gpr_np
);
2068 dev_err(sdma
->dev
, "failed to get gpr regmap\n");
2073 for (i
= 0; i
< num_map
; i
+= EVENT_REMAP_CELLS
) {
2074 ret
= of_property_read_u32_index(np
, propname
, i
, ®
);
2076 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
2081 ret
= of_property_read_u32_index(np
, propname
, i
+ 1, &shift
);
2083 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
2088 ret
= of_property_read_u32_index(np
, propname
, i
+ 2, &val
);
2090 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
2095 regmap_update_bits(gpr
, reg
, BIT(shift
), val
<< shift
);
2100 of_node_put(gpr_np
);
2105 static int sdma_get_firmware(struct sdma_engine
*sdma
,
2106 const char *fw_name
)
2110 ret
= firmware_request_nowait_nowarn(THIS_MODULE
, fw_name
, sdma
->dev
,
2111 GFP_KERNEL
, sdma
, sdma_load_firmware
);
2116 static int sdma_init(struct sdma_engine
*sdma
)
2119 dma_addr_t ccb_phys
;
2122 ret
= clk_enable(sdma
->clk_ipg
);
2125 ret
= clk_enable(sdma
->clk_ahb
);
2127 goto disable_clk_ipg
;
2129 if (sdma
->drvdata
->check_ratio
&&
2130 (clk_get_rate(sdma
->clk_ahb
) == clk_get_rate(sdma
->clk_ipg
)))
2131 sdma
->clk_ratio
= 1;
2133 /* Be sure SDMA has not started yet */
2134 writel_relaxed(0, sdma
->regs
+ SDMA_H_C0PTR
);
2136 ccbsize
= MAX_DMA_CHANNELS
* (sizeof(struct sdma_channel_control
)
2137 + sizeof(struct sdma_context_data
));
2139 if (sdma
->iram_pool
)
2140 sdma
->channel_control
= gen_pool_dma_alloc(sdma
->iram_pool
, ccbsize
, &ccb_phys
);
2142 sdma
->channel_control
= dma_alloc_coherent(sdma
->dev
, ccbsize
, &ccb_phys
,
2145 if (!sdma
->channel_control
) {
2150 sdma
->context
= (void *)sdma
->channel_control
+
2151 MAX_DMA_CHANNELS
* sizeof(struct sdma_channel_control
);
2152 sdma
->context_phys
= ccb_phys
+
2153 MAX_DMA_CHANNELS
* sizeof(struct sdma_channel_control
);
2155 /* disable all channels */
2156 for (i
= 0; i
< sdma
->drvdata
->num_events
; i
++)
2157 writel_relaxed(0, sdma
->regs
+ chnenbl_ofs(sdma
, i
));
2159 /* All channels have priority 0 */
2160 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++)
2161 writel_relaxed(0, sdma
->regs
+ SDMA_CHNPRI_0
+ i
* 4);
2163 ret
= sdma_request_channel0(sdma
);
2167 sdma_config_ownership(&sdma
->channel
[0], false, true, false);
2169 /* Set Command Channel (Channel Zero) */
2170 writel_relaxed(0x4050, sdma
->regs
+ SDMA_CHN0ADDR
);
2172 /* Set bits of CONFIG register but with static context switching */
2173 if (sdma
->clk_ratio
)
2174 writel_relaxed(SDMA_H_CONFIG_ACR
, sdma
->regs
+ SDMA_H_CONFIG
);
2176 writel_relaxed(0, sdma
->regs
+ SDMA_H_CONFIG
);
2178 writel_relaxed(ccb_phys
, sdma
->regs
+ SDMA_H_C0PTR
);
2180 /* Initializes channel's priorities */
2181 sdma_set_channel_priority(&sdma
->channel
[0], 7);
2183 clk_disable(sdma
->clk_ipg
);
2184 clk_disable(sdma
->clk_ahb
);
2189 clk_disable(sdma
->clk_ahb
);
2191 clk_disable(sdma
->clk_ipg
);
2192 dev_err(sdma
->dev
, "initialisation failed with %d\n", ret
);
2196 static bool sdma_filter_fn(struct dma_chan
*chan
, void *fn_param
)
2198 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
2199 struct imx_dma_data
*data
= fn_param
;
2201 if (!imx_dma_is_general_purpose(chan
))
2204 sdmac
->data
= *data
;
2205 chan
->private = &sdmac
->data
;
2210 static struct dma_chan
*sdma_xlate(struct of_phandle_args
*dma_spec
,
2211 struct of_dma
*ofdma
)
2213 struct sdma_engine
*sdma
= ofdma
->of_dma_data
;
2214 dma_cap_mask_t mask
= sdma
->dma_device
.cap_mask
;
2215 struct imx_dma_data data
;
2217 if (dma_spec
->args_count
!= 3)
2220 data
.dma_request
= dma_spec
->args
[0];
2221 data
.peripheral_type
= dma_spec
->args
[1];
2222 data
.priority
= dma_spec
->args
[2];
2224 * init dma_request2 to zero, which is not used by the dts.
2225 * For P2P, dma_request2 is init from dma_request_channel(),
2226 * chan->private will point to the imx_dma_data, and in
2227 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2228 * be set to sdmac->event_id1.
2230 data
.dma_request2
= 0;
2232 return __dma_request_channel(&mask
, sdma_filter_fn
, &data
,
2236 static int sdma_probe(struct platform_device
*pdev
)
2238 struct device_node
*np
= pdev
->dev
.of_node
;
2239 struct device_node
*spba_bus
;
2240 const char *fw_name
;
2243 struct resource spba_res
;
2245 struct sdma_engine
*sdma
;
2248 ret
= dma_coerce_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
2252 sdma
= devm_kzalloc(&pdev
->dev
, sizeof(*sdma
), GFP_KERNEL
);
2256 spin_lock_init(&sdma
->channel_0_lock
);
2258 sdma
->dev
= &pdev
->dev
;
2259 sdma
->drvdata
= of_device_get_match_data(sdma
->dev
);
2261 irq
= platform_get_irq(pdev
, 0);
2265 sdma
->regs
= devm_platform_ioremap_resource(pdev
, 0);
2266 if (IS_ERR(sdma
->regs
))
2267 return PTR_ERR(sdma
->regs
);
2269 sdma
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
2270 if (IS_ERR(sdma
->clk_ipg
))
2271 return PTR_ERR(sdma
->clk_ipg
);
2273 sdma
->clk_ahb
= devm_clk_get(&pdev
->dev
, "ahb");
2274 if (IS_ERR(sdma
->clk_ahb
))
2275 return PTR_ERR(sdma
->clk_ahb
);
2277 ret
= clk_prepare(sdma
->clk_ipg
);
2281 ret
= clk_prepare(sdma
->clk_ahb
);
2285 ret
= devm_request_irq(&pdev
->dev
, irq
, sdma_int_handler
, 0,
2286 dev_name(&pdev
->dev
), sdma
);
2292 sdma
->script_addrs
= kzalloc(sizeof(*sdma
->script_addrs
), GFP_KERNEL
);
2293 if (!sdma
->script_addrs
) {
2298 /* initially no scripts available */
2299 saddr_arr
= (s32
*)sdma
->script_addrs
;
2300 for (i
= 0; i
< sizeof(*sdma
->script_addrs
) / sizeof(s32
); i
++)
2301 saddr_arr
[i
] = -EINVAL
;
2303 dma_cap_set(DMA_SLAVE
, sdma
->dma_device
.cap_mask
);
2304 dma_cap_set(DMA_CYCLIC
, sdma
->dma_device
.cap_mask
);
2305 dma_cap_set(DMA_MEMCPY
, sdma
->dma_device
.cap_mask
);
2306 dma_cap_set(DMA_PRIVATE
, sdma
->dma_device
.cap_mask
);
2308 INIT_LIST_HEAD(&sdma
->dma_device
.channels
);
2309 /* Initialize channel parameters */
2310 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
2311 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
2316 sdmac
->vc
.desc_free
= sdma_desc_free
;
2317 INIT_LIST_HEAD(&sdmac
->terminated
);
2318 INIT_WORK(&sdmac
->terminate_worker
,
2319 sdma_channel_terminate_work
);
2321 * Add the channel to the DMAC list. Do not add channel 0 though
2322 * because we need it internally in the SDMA driver. This also means
2323 * that channel 0 in dmaengine counting matches sdma channel 1.
2326 vchan_init(&sdmac
->vc
, &sdma
->dma_device
);
2330 sdma
->iram_pool
= of_gen_pool_get(np
, "iram", 0);
2331 if (sdma
->iram_pool
)
2332 dev_info(&pdev
->dev
, "alloc bd from iram.\n");
2335 ret
= sdma_init(sdma
);
2339 ret
= sdma_event_remap(sdma
);
2343 if (sdma
->drvdata
->script_addrs
)
2344 sdma_add_scripts(sdma
, sdma
->drvdata
->script_addrs
);
2346 sdma
->dma_device
.dev
= &pdev
->dev
;
2348 sdma
->dma_device
.device_alloc_chan_resources
= sdma_alloc_chan_resources
;
2349 sdma
->dma_device
.device_free_chan_resources
= sdma_free_chan_resources
;
2350 sdma
->dma_device
.device_tx_status
= sdma_tx_status
;
2351 sdma
->dma_device
.device_prep_slave_sg
= sdma_prep_slave_sg
;
2352 sdma
->dma_device
.device_prep_dma_cyclic
= sdma_prep_dma_cyclic
;
2353 sdma
->dma_device
.device_config
= sdma_config
;
2354 sdma
->dma_device
.device_terminate_all
= sdma_terminate_all
;
2355 sdma
->dma_device
.device_synchronize
= sdma_channel_synchronize
;
2356 sdma
->dma_device
.src_addr_widths
= SDMA_DMA_BUSWIDTHS
;
2357 sdma
->dma_device
.dst_addr_widths
= SDMA_DMA_BUSWIDTHS
;
2358 sdma
->dma_device
.directions
= SDMA_DMA_DIRECTIONS
;
2359 sdma
->dma_device
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2360 sdma
->dma_device
.device_prep_dma_memcpy
= sdma_prep_memcpy
;
2361 sdma
->dma_device
.device_issue_pending
= sdma_issue_pending
;
2362 sdma
->dma_device
.copy_align
= 2;
2363 dma_set_max_seg_size(sdma
->dma_device
.dev
, SDMA_BD_MAX_CNT
);
2365 platform_set_drvdata(pdev
, sdma
);
2367 ret
= dma_async_device_register(&sdma
->dma_device
);
2369 dev_err(&pdev
->dev
, "unable to register\n");
2374 ret
= of_dma_controller_register(np
, sdma_xlate
, sdma
);
2376 dev_err(&pdev
->dev
, "failed to register controller\n");
2380 spba_bus
= of_find_compatible_node(NULL
, NULL
, "fsl,spba-bus");
2381 ret
= of_address_to_resource(spba_bus
, 0, &spba_res
);
2383 sdma
->spba_start_addr
= spba_res
.start
;
2384 sdma
->spba_end_addr
= spba_res
.end
;
2386 of_node_put(spba_bus
);
2390 * Because that device tree does not encode ROM script address,
2391 * the RAM script in firmware is mandatory for device tree
2392 * probe, otherwise it fails.
2394 ret
= of_property_read_string(np
, "fsl,sdma-ram-script-name",
2397 dev_warn(&pdev
->dev
, "failed to get firmware name\n");
2399 ret
= sdma_get_firmware(sdma
, fw_name
);
2401 dev_warn(&pdev
->dev
, "failed to get firmware from device tree\n");
2407 dma_async_device_unregister(&sdma
->dma_device
);
2409 kfree(sdma
->script_addrs
);
2411 clk_unprepare(sdma
->clk_ahb
);
2413 clk_unprepare(sdma
->clk_ipg
);
2417 static void sdma_remove(struct platform_device
*pdev
)
2419 struct sdma_engine
*sdma
= platform_get_drvdata(pdev
);
2422 devm_free_irq(&pdev
->dev
, sdma
->irq
, sdma
);
2423 dma_async_device_unregister(&sdma
->dma_device
);
2424 kfree(sdma
->script_addrs
);
2425 clk_unprepare(sdma
->clk_ahb
);
2426 clk_unprepare(sdma
->clk_ipg
);
2427 /* Kill the tasklet */
2428 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
2429 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
2431 tasklet_kill(&sdmac
->vc
.task
);
2432 sdma_free_chan_resources(&sdmac
->vc
.chan
);
2435 platform_set_drvdata(pdev
, NULL
);
2438 static struct platform_driver sdma_driver
= {
2441 .of_match_table
= sdma_dt_ids
,
2443 .remove
= sdma_remove
,
2444 .probe
= sdma_probe
,
2447 module_platform_driver(sdma_driver
);
2449 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2450 MODULE_DESCRIPTION("i.MX SDMA driver");
2451 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2452 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2454 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2455 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2457 MODULE_LICENSE("GPL");