1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
4 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
18 #include <linux/of_dma.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
22 #include <dt-bindings/dma/nbpfaxi.h>
24 #include "dmaengine.h"
26 #define NBPF_REG_CHAN_OFFSET 0
27 #define NBPF_REG_CHAN_SIZE 0x40
29 /* Channel Current Transaction Byte register */
30 #define NBPF_CHAN_CUR_TR_BYTE 0x20
32 /* Channel Status register */
33 #define NBPF_CHAN_STAT 0x24
34 #define NBPF_CHAN_STAT_EN 1
35 #define NBPF_CHAN_STAT_TACT 4
36 #define NBPF_CHAN_STAT_ERR 0x10
37 #define NBPF_CHAN_STAT_END 0x20
38 #define NBPF_CHAN_STAT_TC 0x40
39 #define NBPF_CHAN_STAT_DER 0x400
41 /* Channel Control register */
42 #define NBPF_CHAN_CTRL 0x28
43 #define NBPF_CHAN_CTRL_SETEN 1
44 #define NBPF_CHAN_CTRL_CLREN 2
45 #define NBPF_CHAN_CTRL_STG 4
46 #define NBPF_CHAN_CTRL_SWRST 8
47 #define NBPF_CHAN_CTRL_CLRRQ 0x10
48 #define NBPF_CHAN_CTRL_CLREND 0x20
49 #define NBPF_CHAN_CTRL_CLRTC 0x40
50 #define NBPF_CHAN_CTRL_SETSUS 0x100
51 #define NBPF_CHAN_CTRL_CLRSUS 0x200
53 /* Channel Configuration register */
54 #define NBPF_CHAN_CFG 0x2c
55 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
56 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
57 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
58 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
59 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
60 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
61 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
62 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
63 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
64 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
65 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
66 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
67 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
68 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
69 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
70 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
71 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
72 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
74 #define NBPF_CHAN_NXLA 0x38
75 #define NBPF_CHAN_CRLA 0x3c
77 /* Link Header field */
78 #define NBPF_HEADER_LV 1
79 #define NBPF_HEADER_LE 2
80 #define NBPF_HEADER_WBD 4
81 #define NBPF_HEADER_DIM 8
83 #define NBPF_CTRL 0x300
84 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
85 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
87 #define NBPF_DSTAT_ER 0x314
88 #define NBPF_DSTAT_END 0x318
90 #define NBPF_DMA_BUSWIDTHS \
91 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
92 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
93 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
94 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
95 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
103 * We've got 3 types of objects, used to describe DMA transfers:
104 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
105 * in it, used to communicate with the user
106 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
107 * queuing, these must be DMAable, using either the streaming DMA API or
108 * allocated from coherent memory - one per SG segment
109 * 3. one per SG segment descriptors, used to manage HW link descriptors from
110 * (2). They do not have to be DMAable. They can either be (a) allocated
111 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
112 * separately. Even if allocated separately it would be best to link them
113 * to link descriptors once during channel resource allocation and always
114 * use them as a single object.
115 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
116 * treated as a single SG segment descriptor.
119 struct nbpf_link_reg
{
123 u32 transaction_size
;
134 struct nbpf_link_desc
{
135 struct nbpf_link_reg
*hwdesc
;
136 dma_addr_t hwdesc_dma_addr
;
137 struct nbpf_desc
*desc
;
138 struct list_head node
;
142 * struct nbpf_desc - DMA transfer descriptor
143 * @async_tx: dmaengine object
144 * @user_wait: waiting for a user ack
145 * @length: total transfer length
146 * @chan: associated DMAC channel
147 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
148 * @node: member in channel descriptor lists
151 struct dma_async_tx_descriptor async_tx
;
154 struct nbpf_channel
*chan
;
156 struct list_head node
;
159 /* Take a wild guess: allocate 4 segments per descriptor */
160 #define NBPF_SEGMENTS_PER_DESC 4
161 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
162 (sizeof(struct nbpf_desc) + \
163 NBPF_SEGMENTS_PER_DESC * \
164 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
165 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
167 struct nbpf_desc_page
{
168 struct list_head node
;
169 struct nbpf_desc desc
[NBPF_DESCS_PER_PAGE
];
170 struct nbpf_link_desc ldesc
[NBPF_SEGMENTS_PER_PAGE
];
171 struct nbpf_link_reg hwdesc
[NBPF_SEGMENTS_PER_PAGE
];
175 * struct nbpf_channel - one DMAC channel
176 * @dma_chan: standard dmaengine channel object
177 * @tasklet: channel specific tasklet used for callbacks
178 * @base: register address base
182 * @slave_src_addr: source address for slave DMA
183 * @slave_src_width: source slave data size in bytes
184 * @slave_src_burst: maximum source slave burst size in bytes
185 * @slave_dst_addr: destination address for slave DMA
186 * @slave_dst_width: destination slave data size in bytes
187 * @slave_dst_burst: maximum destination slave burst size in bytes
188 * @terminal: DMA terminal, assigned to this channel
189 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
190 * @flags: configuration flags from DT
191 * @lock: protect descriptor lists
192 * @free_links: list of free link descriptors
193 * @free: list of free descriptors
194 * @queued: list of queued descriptors
195 * @active: list of descriptors, scheduled for processing
196 * @done: list of completed descriptors, waiting post-processing
197 * @desc_page: list of additionally allocated descriptor pages - if any
198 * @running: linked descriptor of running transaction
199 * @paused: are translations on this channel paused?
201 struct nbpf_channel
{
202 struct dma_chan dma_chan
;
203 struct tasklet_struct tasklet
;
205 struct nbpf_device
*nbpf
;
208 dma_addr_t slave_src_addr
;
209 size_t slave_src_width
;
210 size_t slave_src_burst
;
211 dma_addr_t slave_dst_addr
;
212 size_t slave_dst_width
;
213 size_t slave_dst_burst
;
214 unsigned int terminal
;
218 struct list_head free_links
;
219 struct list_head free
;
220 struct list_head queued
;
221 struct list_head active
;
222 struct list_head done
;
223 struct list_head desc_page
;
224 struct nbpf_desc
*running
;
229 struct dma_device dma_dev
;
231 u32 max_burst_mem_read
;
232 u32 max_burst_mem_write
;
234 const struct nbpf_config
*config
;
236 struct nbpf_channel chan
[];
251 static struct nbpf_config nbpf_cfg
[] = {
290 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
293 * dmaengine drivers seem to have a lot in common and instead of sharing more
294 * code, they reimplement those common algorithms independently. In this driver
295 * we try to separate the hardware-specific part from the (largely) generic
296 * part. This improves code readability and makes it possible in the future to
297 * reuse the generic code in form of a helper library. That generic code should
298 * be suitable for various DMA controllers, using transfer descriptors in RAM
299 * and pushing one SG list at a time to the DMA controller.
302 /* Hardware-specific part */
304 static inline u32
nbpf_chan_read(struct nbpf_channel
*chan
,
307 u32 data
= ioread32(chan
->base
+ offset
);
308 dev_dbg(chan
->dma_chan
.device
->dev
, "%s(0x%p + 0x%x) = 0x%x\n",
309 __func__
, chan
->base
, offset
, data
);
313 static inline void nbpf_chan_write(struct nbpf_channel
*chan
,
314 unsigned int offset
, u32 data
)
316 iowrite32(data
, chan
->base
+ offset
);
317 dev_dbg(chan
->dma_chan
.device
->dev
, "%s(0x%p + 0x%x) = 0x%x\n",
318 __func__
, chan
->base
, offset
, data
);
321 static inline u32
nbpf_read(struct nbpf_device
*nbpf
,
324 u32 data
= ioread32(nbpf
->base
+ offset
);
325 dev_dbg(nbpf
->dma_dev
.dev
, "%s(0x%p + 0x%x) = 0x%x\n",
326 __func__
, nbpf
->base
, offset
, data
);
330 static inline void nbpf_write(struct nbpf_device
*nbpf
,
331 unsigned int offset
, u32 data
)
333 iowrite32(data
, nbpf
->base
+ offset
);
334 dev_dbg(nbpf
->dma_dev
.dev
, "%s(0x%p + 0x%x) = 0x%x\n",
335 __func__
, nbpf
->base
, offset
, data
);
338 static void nbpf_chan_halt(struct nbpf_channel
*chan
)
340 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_CLREN
);
343 static bool nbpf_status_get(struct nbpf_channel
*chan
)
345 u32 status
= nbpf_read(chan
->nbpf
, NBPF_DSTAT_END
);
347 return status
& BIT(chan
- chan
->nbpf
->chan
);
350 static void nbpf_status_ack(struct nbpf_channel
*chan
)
352 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_CLREND
);
355 static u32
nbpf_error_get(struct nbpf_device
*nbpf
)
357 return nbpf_read(nbpf
, NBPF_DSTAT_ER
);
360 static struct nbpf_channel
*nbpf_error_get_channel(struct nbpf_device
*nbpf
, u32 error
)
362 return nbpf
->chan
+ __ffs(error
);
365 static void nbpf_error_clear(struct nbpf_channel
*chan
)
370 /* Stop the channel, make sure DMA has been aborted */
371 nbpf_chan_halt(chan
);
373 for (i
= 1000; i
; i
--) {
374 status
= nbpf_chan_read(chan
, NBPF_CHAN_STAT
);
375 if (!(status
& NBPF_CHAN_STAT_TACT
))
381 dev_err(chan
->dma_chan
.device
->dev
,
382 "%s(): abort timeout, channel status 0x%x\n", __func__
, status
);
384 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_SWRST
);
387 static int nbpf_start(struct nbpf_desc
*desc
)
389 struct nbpf_channel
*chan
= desc
->chan
;
390 struct nbpf_link_desc
*ldesc
= list_first_entry(&desc
->sg
, struct nbpf_link_desc
, node
);
392 nbpf_chan_write(chan
, NBPF_CHAN_NXLA
, (u32
)ldesc
->hwdesc_dma_addr
);
393 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_SETEN
| NBPF_CHAN_CTRL_CLRSUS
);
394 chan
->paused
= false;
396 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
397 if (ldesc
->hwdesc
->config
& NBPF_CHAN_CFG_TM
)
398 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_STG
);
400 dev_dbg(chan
->nbpf
->dma_dev
.dev
, "%s(): next 0x%x, cur 0x%x\n", __func__
,
401 nbpf_chan_read(chan
, NBPF_CHAN_NXLA
), nbpf_chan_read(chan
, NBPF_CHAN_CRLA
));
406 static void nbpf_chan_prepare(struct nbpf_channel
*chan
)
408 chan
->dmarq_cfg
= (chan
->flags
& NBPF_SLAVE_RQ_HIGH
? NBPF_CHAN_CFG_HIEN
: 0) |
409 (chan
->flags
& NBPF_SLAVE_RQ_LOW
? NBPF_CHAN_CFG_LOEN
: 0) |
410 (chan
->flags
& NBPF_SLAVE_RQ_LEVEL
?
411 NBPF_CHAN_CFG_LVL
| (NBPF_CHAN_CFG_AM
& 0x200) : 0) |
415 static void nbpf_chan_prepare_default(struct nbpf_channel
*chan
)
417 /* Don't output DMAACK */
418 chan
->dmarq_cfg
= NBPF_CHAN_CFG_AM
& 0x400;
423 static void nbpf_chan_configure(struct nbpf_channel
*chan
)
426 * We assume, that only the link mode and DMA request line configuration
427 * have to be set in the configuration register manually. Dynamic
428 * per-transfer configuration will be loaded from transfer descriptors.
430 nbpf_chan_write(chan
, NBPF_CHAN_CFG
, NBPF_CHAN_CFG_DMS
| chan
->dmarq_cfg
);
433 static u32
nbpf_xfer_ds(struct nbpf_device
*nbpf
, size_t size
,
434 enum dma_transfer_direction direction
)
436 int max_burst
= nbpf
->config
->buffer_size
* 8;
438 if (nbpf
->max_burst_mem_read
|| nbpf
->max_burst_mem_write
) {
441 max_burst
= min_not_zero(nbpf
->max_burst_mem_read
,
442 nbpf
->max_burst_mem_write
);
445 if (nbpf
->max_burst_mem_read
)
446 max_burst
= nbpf
->max_burst_mem_read
;
449 if (nbpf
->max_burst_mem_write
)
450 max_burst
= nbpf
->max_burst_mem_write
;
458 /* Maximum supported bursts depend on the buffer size */
459 return min_t(int, __ffs(size
), ilog2(max_burst
));
462 static size_t nbpf_xfer_size(struct nbpf_device
*nbpf
,
463 enum dma_slave_buswidth width
, u32 burst
)
471 case DMA_SLAVE_BUSWIDTH_8_BYTES
:
475 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
479 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
484 pr_warn("%s(): invalid bus width %u\n", __func__
, width
);
486 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
490 return nbpf_xfer_ds(nbpf
, size
, DMA_TRANS_NONE
);
494 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
495 * i.e. it isn't known in advance how many bytes will be received. Therefore
496 * the slave driver has to provide a "large enough" buffer and either read the
497 * buffer, when it is full, or detect, that some data has arrived, then wait for
498 * a timeout, if no more data arrives - receive what's already there. We want to
499 * handle such slaves in a special way to allow an optimised mode for other
500 * users, for whom the amount of data is known in advance. So far there's no way
501 * to recognise such slaves. We use a data-width check to distinguish between
502 * the SD host and the PL011 UART.
505 static int nbpf_prep_one(struct nbpf_link_desc
*ldesc
,
506 enum dma_transfer_direction direction
,
507 dma_addr_t src
, dma_addr_t dst
, size_t size
, bool last
)
509 struct nbpf_link_reg
*hwdesc
= ldesc
->hwdesc
;
510 struct nbpf_desc
*desc
= ldesc
->desc
;
511 struct nbpf_channel
*chan
= desc
->chan
;
512 struct device
*dev
= chan
->dma_chan
.device
->dev
;
513 size_t mem_xfer
, slave_xfer
;
516 hwdesc
->header
= NBPF_HEADER_WBD
| NBPF_HEADER_LV
|
517 (last
? NBPF_HEADER_LE
: 0);
519 hwdesc
->src_addr
= src
;
520 hwdesc
->dst_addr
= dst
;
521 hwdesc
->transaction_size
= size
;
524 * set config: SAD, DAD, DDS, SDS, etc.
525 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
526 * but it is important to have transaction size a multiple of both
527 * receiver and transmitter transfer sizes. It is also possible to use
528 * different RAM and device transfer sizes, and it does work well with
529 * some devices, e.g. with V08R07S01E SD host controllers, which can use
530 * 128 byte transfers. But this doesn't work with other devices,
531 * especially when the transaction size is unknown. This is the case,
532 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
533 * the transaction size of 4K and if fewer bytes are received, it
534 * pauses DMA and reads out data received via DMA as well as those left
535 * in the Rx FIFO. For this to work with the RAM side using burst
536 * transfers we enable the SBE bit and terminate the transfer in our
537 * .device_pause handler.
539 mem_xfer
= nbpf_xfer_ds(chan
->nbpf
, size
, direction
);
543 can_burst
= chan
->slave_src_width
>= 3;
544 slave_xfer
= min(mem_xfer
, can_burst
?
545 chan
->slave_src_burst
: chan
->slave_src_width
);
547 * Is the slave narrower than 64 bits, i.e. isn't using the full
548 * bus width and cannot use bursts?
550 if (mem_xfer
> chan
->slave_src_burst
&& !can_burst
)
551 mem_xfer
= chan
->slave_src_burst
;
552 /* Device-to-RAM DMA is unreliable without REQD set */
553 hwdesc
->config
= NBPF_CHAN_CFG_SAD
| (NBPF_CHAN_CFG_DDS
& (mem_xfer
<< 16)) |
554 (NBPF_CHAN_CFG_SDS
& (slave_xfer
<< 12)) | NBPF_CHAN_CFG_REQD
|
559 slave_xfer
= min(mem_xfer
, chan
->slave_dst_width
>= 3 ?
560 chan
->slave_dst_burst
: chan
->slave_dst_width
);
561 hwdesc
->config
= NBPF_CHAN_CFG_DAD
| (NBPF_CHAN_CFG_SDS
& (mem_xfer
<< 12)) |
562 (NBPF_CHAN_CFG_DDS
& (slave_xfer
<< 16)) | NBPF_CHAN_CFG_REQD
;
566 hwdesc
->config
= NBPF_CHAN_CFG_TCM
| NBPF_CHAN_CFG_TM
|
567 (NBPF_CHAN_CFG_SDS
& (mem_xfer
<< 12)) |
568 (NBPF_CHAN_CFG_DDS
& (mem_xfer
<< 16));
575 hwdesc
->config
|= chan
->dmarq_cfg
| (last
? 0 : NBPF_CHAN_CFG_DEM
) |
578 dev_dbg(dev
, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
579 __func__
, &ldesc
->hwdesc_dma_addr
, hwdesc
->header
,
580 hwdesc
->config
, size
, &src
, &dst
);
582 dma_sync_single_for_device(dev
, ldesc
->hwdesc_dma_addr
, sizeof(*hwdesc
),
588 static size_t nbpf_bytes_left(struct nbpf_channel
*chan
)
590 return nbpf_chan_read(chan
, NBPF_CHAN_CUR_TR_BYTE
);
593 static void nbpf_configure(struct nbpf_device
*nbpf
)
595 nbpf_write(nbpf
, NBPF_CTRL
, NBPF_CTRL_LVINT
);
600 /* DMA ENGINE functions */
601 static void nbpf_issue_pending(struct dma_chan
*dchan
)
603 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
606 dev_dbg(dchan
->device
->dev
, "Entry %s()\n", __func__
);
608 spin_lock_irqsave(&chan
->lock
, flags
);
609 if (list_empty(&chan
->queued
))
612 list_splice_tail_init(&chan
->queued
, &chan
->active
);
614 if (!chan
->running
) {
615 struct nbpf_desc
*desc
= list_first_entry(&chan
->active
,
616 struct nbpf_desc
, node
);
617 if (!nbpf_start(desc
))
618 chan
->running
= desc
;
622 spin_unlock_irqrestore(&chan
->lock
, flags
);
625 static enum dma_status
nbpf_tx_status(struct dma_chan
*dchan
,
626 dma_cookie_t cookie
, struct dma_tx_state
*state
)
628 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
629 enum dma_status status
= dma_cookie_status(dchan
, cookie
, state
);
632 dma_cookie_t running
;
635 spin_lock_irqsave(&chan
->lock
, flags
);
636 running
= chan
->running
? chan
->running
->async_tx
.cookie
: -EINVAL
;
638 if (cookie
== running
) {
639 state
->residue
= nbpf_bytes_left(chan
);
640 dev_dbg(dchan
->device
->dev
, "%s(): residue %u\n", __func__
,
642 } else if (status
== DMA_IN_PROGRESS
) {
643 struct nbpf_desc
*desc
;
646 list_for_each_entry(desc
, &chan
->active
, node
)
647 if (desc
->async_tx
.cookie
== cookie
) {
653 list_for_each_entry(desc
, &chan
->queued
, node
)
654 if (desc
->async_tx
.cookie
== cookie
) {
660 state
->residue
= found
? desc
->length
: 0;
663 spin_unlock_irqrestore(&chan
->lock
, flags
);
672 static dma_cookie_t
nbpf_tx_submit(struct dma_async_tx_descriptor
*tx
)
674 struct nbpf_desc
*desc
= container_of(tx
, struct nbpf_desc
, async_tx
);
675 struct nbpf_channel
*chan
= desc
->chan
;
679 spin_lock_irqsave(&chan
->lock
, flags
);
680 cookie
= dma_cookie_assign(tx
);
681 list_add_tail(&desc
->node
, &chan
->queued
);
682 spin_unlock_irqrestore(&chan
->lock
, flags
);
684 dev_dbg(chan
->dma_chan
.device
->dev
, "Entry %s(%d)\n", __func__
, cookie
);
689 static int nbpf_desc_page_alloc(struct nbpf_channel
*chan
)
691 struct dma_chan
*dchan
= &chan
->dma_chan
;
692 struct nbpf_desc_page
*dpage
= (void *)get_zeroed_page(GFP_KERNEL
| GFP_DMA
);
693 struct nbpf_link_desc
*ldesc
;
694 struct nbpf_link_reg
*hwdesc
;
695 struct nbpf_desc
*desc
;
699 struct device
*dev
= dchan
->device
->dev
;
704 dev_dbg(dev
, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
705 __func__
, NBPF_DESCS_PER_PAGE
, NBPF_SEGMENTS_PER_PAGE
, sizeof(*dpage
));
707 for (i
= 0, ldesc
= dpage
->ldesc
, hwdesc
= dpage
->hwdesc
;
708 i
< ARRAY_SIZE(dpage
->ldesc
);
709 i
++, ldesc
++, hwdesc
++) {
710 ldesc
->hwdesc
= hwdesc
;
711 list_add_tail(&ldesc
->node
, &lhead
);
712 ldesc
->hwdesc_dma_addr
= dma_map_single(dchan
->device
->dev
,
713 hwdesc
, sizeof(*hwdesc
), DMA_TO_DEVICE
);
715 dev_dbg(dev
, "%s(): mapped 0x%p to %pad\n", __func__
,
716 hwdesc
, &ldesc
->hwdesc_dma_addr
);
719 for (i
= 0, desc
= dpage
->desc
;
720 i
< ARRAY_SIZE(dpage
->desc
);
722 dma_async_tx_descriptor_init(&desc
->async_tx
, dchan
);
723 desc
->async_tx
.tx_submit
= nbpf_tx_submit
;
725 INIT_LIST_HEAD(&desc
->sg
);
726 list_add_tail(&desc
->node
, &head
);
730 * This function cannot be called from interrupt context, so, no need to
733 spin_lock_irq(&chan
->lock
);
734 list_splice_tail(&lhead
, &chan
->free_links
);
735 list_splice_tail(&head
, &chan
->free
);
736 list_add(&dpage
->node
, &chan
->desc_page
);
737 spin_unlock_irq(&chan
->lock
);
739 return ARRAY_SIZE(dpage
->desc
);
742 static void nbpf_desc_put(struct nbpf_desc
*desc
)
744 struct nbpf_channel
*chan
= desc
->chan
;
745 struct nbpf_link_desc
*ldesc
, *tmp
;
748 spin_lock_irqsave(&chan
->lock
, flags
);
749 list_for_each_entry_safe(ldesc
, tmp
, &desc
->sg
, node
)
750 list_move(&ldesc
->node
, &chan
->free_links
);
752 list_add(&desc
->node
, &chan
->free
);
753 spin_unlock_irqrestore(&chan
->lock
, flags
);
756 static void nbpf_scan_acked(struct nbpf_channel
*chan
)
758 struct nbpf_desc
*desc
, *tmp
;
762 spin_lock_irqsave(&chan
->lock
, flags
);
763 list_for_each_entry_safe(desc
, tmp
, &chan
->done
, node
)
764 if (async_tx_test_ack(&desc
->async_tx
) && desc
->user_wait
) {
765 list_move(&desc
->node
, &head
);
766 desc
->user_wait
= false;
768 spin_unlock_irqrestore(&chan
->lock
, flags
);
770 list_for_each_entry_safe(desc
, tmp
, &head
, node
) {
771 list_del(&desc
->node
);
777 * We have to allocate descriptors with the channel lock dropped. This means,
778 * before we re-acquire the lock buffers can be taken already, so we have to
779 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
782 static struct nbpf_desc
*nbpf_desc_get(struct nbpf_channel
*chan
, size_t len
)
784 struct nbpf_desc
*desc
= NULL
;
785 struct nbpf_link_desc
*ldesc
, *prev
= NULL
;
787 nbpf_scan_acked(chan
);
789 spin_lock_irq(&chan
->lock
);
794 if (list_empty(&chan
->free
)) {
795 /* No more free descriptors */
796 spin_unlock_irq(&chan
->lock
);
797 ret
= nbpf_desc_page_alloc(chan
);
800 spin_lock_irq(&chan
->lock
);
803 desc
= list_first_entry(&chan
->free
, struct nbpf_desc
, node
);
804 list_del(&desc
->node
);
807 if (list_empty(&chan
->free_links
)) {
808 /* No more free link descriptors */
809 spin_unlock_irq(&chan
->lock
);
810 ret
= nbpf_desc_page_alloc(chan
);
815 spin_lock_irq(&chan
->lock
);
819 ldesc
= list_first_entry(&chan
->free_links
,
820 struct nbpf_link_desc
, node
);
823 prev
->hwdesc
->next
= (u32
)ldesc
->hwdesc_dma_addr
;
826 list_move_tail(&ldesc
->node
, &desc
->sg
);
832 prev
->hwdesc
->next
= 0;
834 spin_unlock_irq(&chan
->lock
);
839 static void nbpf_chan_idle(struct nbpf_channel
*chan
)
841 struct nbpf_desc
*desc
, *tmp
;
845 spin_lock_irqsave(&chan
->lock
, flags
);
847 list_splice_init(&chan
->done
, &head
);
848 list_splice_init(&chan
->active
, &head
);
849 list_splice_init(&chan
->queued
, &head
);
851 chan
->running
= NULL
;
853 spin_unlock_irqrestore(&chan
->lock
, flags
);
855 list_for_each_entry_safe(desc
, tmp
, &head
, node
) {
856 dev_dbg(chan
->nbpf
->dma_dev
.dev
, "%s(): force-free desc %p cookie %d\n",
857 __func__
, desc
, desc
->async_tx
.cookie
);
858 list_del(&desc
->node
);
863 static int nbpf_pause(struct dma_chan
*dchan
)
865 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
867 dev_dbg(dchan
->device
->dev
, "Entry %s\n", __func__
);
870 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_SETSUS
);
871 /* See comment in nbpf_prep_one() */
872 nbpf_chan_write(chan
, NBPF_CHAN_CTRL
, NBPF_CHAN_CTRL_CLREN
);
877 static int nbpf_terminate_all(struct dma_chan
*dchan
)
879 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
881 dev_dbg(dchan
->device
->dev
, "Entry %s\n", __func__
);
882 dev_dbg(dchan
->device
->dev
, "Terminating\n");
884 nbpf_chan_halt(chan
);
885 nbpf_chan_idle(chan
);
890 static int nbpf_config(struct dma_chan
*dchan
,
891 struct dma_slave_config
*config
)
893 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
895 dev_dbg(dchan
->device
->dev
, "Entry %s\n", __func__
);
898 * We could check config->slave_id to match chan->terminal here,
899 * but with DT they would be coming from the same source, so
900 * such a check would be superfluous
903 chan
->slave_dst_addr
= config
->dst_addr
;
904 chan
->slave_dst_width
= nbpf_xfer_size(chan
->nbpf
,
905 config
->dst_addr_width
, 1);
906 chan
->slave_dst_burst
= nbpf_xfer_size(chan
->nbpf
,
907 config
->dst_addr_width
,
908 config
->dst_maxburst
);
909 chan
->slave_src_addr
= config
->src_addr
;
910 chan
->slave_src_width
= nbpf_xfer_size(chan
->nbpf
,
911 config
->src_addr_width
, 1);
912 chan
->slave_src_burst
= nbpf_xfer_size(chan
->nbpf
,
913 config
->src_addr_width
,
914 config
->src_maxburst
);
919 static struct dma_async_tx_descriptor
*nbpf_prep_sg(struct nbpf_channel
*chan
,
920 struct scatterlist
*src_sg
, struct scatterlist
*dst_sg
,
921 size_t len
, enum dma_transfer_direction direction
,
924 struct nbpf_link_desc
*ldesc
;
925 struct scatterlist
*mem_sg
;
926 struct nbpf_desc
*desc
;
927 bool inc_src
, inc_dst
;
951 desc
= nbpf_desc_get(chan
, len
);
955 desc
->async_tx
.flags
= flags
;
956 desc
->async_tx
.cookie
= -EBUSY
;
957 desc
->user_wait
= false;
960 * This is a private descriptor list, and we own the descriptor. No need
963 list_for_each_entry(ldesc
, &desc
->sg
, node
) {
964 int ret
= nbpf_prep_one(ldesc
, direction
,
965 sg_dma_address(src_sg
),
966 sg_dma_address(dst_sg
),
973 data_len
+= sg_dma_len(mem_sg
);
975 src_sg
= sg_next(src_sg
);
977 dst_sg
= sg_next(dst_sg
);
978 mem_sg
= direction
== DMA_DEV_TO_MEM
? dst_sg
: src_sg
;
982 desc
->length
= data_len
;
984 /* The user has to return the descriptor to us ASAP via .tx_submit() */
985 return &desc
->async_tx
;
988 static struct dma_async_tx_descriptor
*nbpf_prep_memcpy(
989 struct dma_chan
*dchan
, dma_addr_t dst
, dma_addr_t src
,
990 size_t len
, unsigned long flags
)
992 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
993 struct scatterlist dst_sg
;
994 struct scatterlist src_sg
;
996 sg_init_table(&dst_sg
, 1);
997 sg_init_table(&src_sg
, 1);
999 sg_dma_address(&dst_sg
) = dst
;
1000 sg_dma_address(&src_sg
) = src
;
1002 sg_dma_len(&dst_sg
) = len
;
1003 sg_dma_len(&src_sg
) = len
;
1005 dev_dbg(dchan
->device
->dev
, "%s(): %zu @ %pad -> %pad\n",
1006 __func__
, len
, &src
, &dst
);
1008 return nbpf_prep_sg(chan
, &src_sg
, &dst_sg
, 1,
1009 DMA_MEM_TO_MEM
, flags
);
1012 static struct dma_async_tx_descriptor
*nbpf_prep_slave_sg(
1013 struct dma_chan
*dchan
, struct scatterlist
*sgl
, unsigned int sg_len
,
1014 enum dma_transfer_direction direction
, unsigned long flags
, void *context
)
1016 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
1017 struct scatterlist slave_sg
;
1019 dev_dbg(dchan
->device
->dev
, "Entry %s()\n", __func__
);
1021 sg_init_table(&slave_sg
, 1);
1023 switch (direction
) {
1024 case DMA_MEM_TO_DEV
:
1025 sg_dma_address(&slave_sg
) = chan
->slave_dst_addr
;
1026 return nbpf_prep_sg(chan
, sgl
, &slave_sg
, sg_len
,
1029 case DMA_DEV_TO_MEM
:
1030 sg_dma_address(&slave_sg
) = chan
->slave_src_addr
;
1031 return nbpf_prep_sg(chan
, &slave_sg
, sgl
, sg_len
,
1039 static int nbpf_alloc_chan_resources(struct dma_chan
*dchan
)
1041 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
1044 INIT_LIST_HEAD(&chan
->free
);
1045 INIT_LIST_HEAD(&chan
->free_links
);
1046 INIT_LIST_HEAD(&chan
->queued
);
1047 INIT_LIST_HEAD(&chan
->active
);
1048 INIT_LIST_HEAD(&chan
->done
);
1050 ret
= nbpf_desc_page_alloc(chan
);
1054 dev_dbg(dchan
->device
->dev
, "Entry %s(): terminal %u\n", __func__
,
1057 nbpf_chan_configure(chan
);
1062 static void nbpf_free_chan_resources(struct dma_chan
*dchan
)
1064 struct nbpf_channel
*chan
= nbpf_to_chan(dchan
);
1065 struct nbpf_desc_page
*dpage
, *tmp
;
1067 dev_dbg(dchan
->device
->dev
, "Entry %s()\n", __func__
);
1069 nbpf_chan_halt(chan
);
1070 nbpf_chan_idle(chan
);
1071 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1072 nbpf_chan_prepare_default(chan
);
1074 list_for_each_entry_safe(dpage
, tmp
, &chan
->desc_page
, node
) {
1075 struct nbpf_link_desc
*ldesc
;
1077 list_del(&dpage
->node
);
1078 for (i
= 0, ldesc
= dpage
->ldesc
;
1079 i
< ARRAY_SIZE(dpage
->ldesc
);
1081 dma_unmap_single(dchan
->device
->dev
, ldesc
->hwdesc_dma_addr
,
1082 sizeof(*ldesc
->hwdesc
), DMA_TO_DEVICE
);
1083 free_page((unsigned long)dpage
);
1087 static struct dma_chan
*nbpf_of_xlate(struct of_phandle_args
*dma_spec
,
1088 struct of_dma
*ofdma
)
1090 struct nbpf_device
*nbpf
= ofdma
->of_dma_data
;
1091 struct dma_chan
*dchan
;
1092 struct nbpf_channel
*chan
;
1094 if (dma_spec
->args_count
!= 2)
1097 dchan
= dma_get_any_slave_channel(&nbpf
->dma_dev
);
1101 dev_dbg(dchan
->device
->dev
, "Entry %s(%pOFn)\n", __func__
,
1104 chan
= nbpf_to_chan(dchan
);
1106 chan
->terminal
= dma_spec
->args
[0];
1107 chan
->flags
= dma_spec
->args
[1];
1109 nbpf_chan_prepare(chan
);
1110 nbpf_chan_configure(chan
);
1115 static void nbpf_chan_tasklet(struct tasklet_struct
*t
)
1117 struct nbpf_channel
*chan
= from_tasklet(chan
, t
, tasklet
);
1118 struct nbpf_desc
*desc
, *tmp
;
1119 struct dmaengine_desc_callback cb
;
1121 while (!list_empty(&chan
->done
)) {
1122 bool found
= false, must_put
, recycling
= false;
1124 spin_lock_irq(&chan
->lock
);
1126 list_for_each_entry_safe(desc
, tmp
, &chan
->done
, node
) {
1127 if (!desc
->user_wait
) {
1128 /* Newly completed descriptor, have to process */
1131 } else if (async_tx_test_ack(&desc
->async_tx
)) {
1133 * This descriptor was waiting for a user ACK,
1134 * it can be recycled now.
1136 list_del(&desc
->node
);
1137 spin_unlock_irq(&chan
->lock
);
1138 nbpf_desc_put(desc
);
1148 /* This can happen if TERMINATE_ALL has been called */
1149 spin_unlock_irq(&chan
->lock
);
1153 dma_cookie_complete(&desc
->async_tx
);
1156 * With released lock we cannot dereference desc, maybe it's
1157 * still on the "done" list
1159 if (async_tx_test_ack(&desc
->async_tx
)) {
1160 list_del(&desc
->node
);
1163 desc
->user_wait
= true;
1167 dmaengine_desc_get_callback(&desc
->async_tx
, &cb
);
1169 /* ack and callback completed descriptor */
1170 spin_unlock_irq(&chan
->lock
);
1172 dmaengine_desc_callback_invoke(&cb
, NULL
);
1175 nbpf_desc_put(desc
);
1179 static irqreturn_t
nbpf_chan_irq(int irq
, void *dev
)
1181 struct nbpf_channel
*chan
= dev
;
1182 bool done
= nbpf_status_get(chan
);
1183 struct nbpf_desc
*desc
;
1190 nbpf_status_ack(chan
);
1192 dev_dbg(&chan
->dma_chan
.dev
->device
, "%s()\n", __func__
);
1194 spin_lock(&chan
->lock
);
1195 desc
= chan
->running
;
1196 if (WARN_ON(!desc
)) {
1204 list_move_tail(&desc
->node
, &chan
->done
);
1205 chan
->running
= NULL
;
1207 if (!list_empty(&chan
->active
)) {
1208 desc
= list_first_entry(&chan
->active
,
1209 struct nbpf_desc
, node
);
1210 if (!nbpf_start(desc
))
1211 chan
->running
= desc
;
1215 spin_unlock(&chan
->lock
);
1218 tasklet_schedule(&chan
->tasklet
);
1223 static irqreturn_t
nbpf_err_irq(int irq
, void *dev
)
1225 struct nbpf_device
*nbpf
= dev
;
1226 u32 error
= nbpf_error_get(nbpf
);
1228 dev_warn(nbpf
->dma_dev
.dev
, "DMA error IRQ %u\n", irq
);
1234 struct nbpf_channel
*chan
= nbpf_error_get_channel(nbpf
, error
);
1235 /* On error: abort all queued transfers, no callback */
1236 nbpf_error_clear(chan
);
1237 nbpf_chan_idle(chan
);
1238 error
= nbpf_error_get(nbpf
);
1244 static int nbpf_chan_probe(struct nbpf_device
*nbpf
, int n
)
1246 struct dma_device
*dma_dev
= &nbpf
->dma_dev
;
1247 struct nbpf_channel
*chan
= nbpf
->chan
+ n
;
1251 chan
->base
= nbpf
->base
+ NBPF_REG_CHAN_OFFSET
+ NBPF_REG_CHAN_SIZE
* n
;
1252 INIT_LIST_HEAD(&chan
->desc_page
);
1253 spin_lock_init(&chan
->lock
);
1254 chan
->dma_chan
.device
= dma_dev
;
1255 dma_cookie_init(&chan
->dma_chan
);
1256 nbpf_chan_prepare_default(chan
);
1258 dev_dbg(dma_dev
->dev
, "%s(): channel %d: -> %p\n", __func__
, n
, chan
->base
);
1260 snprintf(chan
->name
, sizeof(chan
->name
), "nbpf %d", n
);
1262 tasklet_setup(&chan
->tasklet
, nbpf_chan_tasklet
);
1263 ret
= devm_request_irq(dma_dev
->dev
, chan
->irq
,
1264 nbpf_chan_irq
, IRQF_SHARED
,
1269 /* Add the channel to DMA device channel list */
1270 list_add_tail(&chan
->dma_chan
.device_node
,
1271 &dma_dev
->channels
);
1276 static const struct of_device_id nbpf_match
[] = {
1277 {.compatible
= "renesas,nbpfaxi64dmac1b4", .data
= &nbpf_cfg
[NBPF1B4
]},
1278 {.compatible
= "renesas,nbpfaxi64dmac1b8", .data
= &nbpf_cfg
[NBPF1B8
]},
1279 {.compatible
= "renesas,nbpfaxi64dmac1b16", .data
= &nbpf_cfg
[NBPF1B16
]},
1280 {.compatible
= "renesas,nbpfaxi64dmac4b4", .data
= &nbpf_cfg
[NBPF4B4
]},
1281 {.compatible
= "renesas,nbpfaxi64dmac4b8", .data
= &nbpf_cfg
[NBPF4B8
]},
1282 {.compatible
= "renesas,nbpfaxi64dmac4b16", .data
= &nbpf_cfg
[NBPF4B16
]},
1283 {.compatible
= "renesas,nbpfaxi64dmac8b4", .data
= &nbpf_cfg
[NBPF8B4
]},
1284 {.compatible
= "renesas,nbpfaxi64dmac8b8", .data
= &nbpf_cfg
[NBPF8B8
]},
1285 {.compatible
= "renesas,nbpfaxi64dmac8b16", .data
= &nbpf_cfg
[NBPF8B16
]},
1288 MODULE_DEVICE_TABLE(of
, nbpf_match
);
1290 static int nbpf_probe(struct platform_device
*pdev
)
1292 struct device
*dev
= &pdev
->dev
;
1293 struct device_node
*np
= dev
->of_node
;
1294 struct nbpf_device
*nbpf
;
1295 struct dma_device
*dma_dev
;
1296 const struct nbpf_config
*cfg
;
1298 int ret
, irq
, eirq
, i
;
1299 int irqbuf
[9] /* maximum 8 channels + error IRQ */;
1300 unsigned int irqs
= 0;
1302 BUILD_BUG_ON(sizeof(struct nbpf_desc_page
) > PAGE_SIZE
);
1308 cfg
= of_device_get_match_data(dev
);
1309 num_channels
= cfg
->num_channels
;
1311 nbpf
= devm_kzalloc(dev
, struct_size(nbpf
, chan
, num_channels
),
1316 dma_dev
= &nbpf
->dma_dev
;
1319 nbpf
->base
= devm_platform_ioremap_resource(pdev
, 0);
1320 if (IS_ERR(nbpf
->base
))
1321 return PTR_ERR(nbpf
->base
);
1323 nbpf
->clk
= devm_clk_get(dev
, NULL
);
1324 if (IS_ERR(nbpf
->clk
))
1325 return PTR_ERR(nbpf
->clk
);
1327 of_property_read_u32(np
, "max-burst-mem-read",
1328 &nbpf
->max_burst_mem_read
);
1329 of_property_read_u32(np
, "max-burst-mem-write",
1330 &nbpf
->max_burst_mem_write
);
1334 for (i
= 0; irqs
< ARRAY_SIZE(irqbuf
); i
++) {
1335 irq
= platform_get_irq_optional(pdev
, i
);
1336 if (irq
< 0 && irq
!= -ENXIO
)
1339 irqbuf
[irqs
++] = irq
;
1343 * 3 IRQ resource schemes are supported:
1344 * 1. 1 shared IRQ for error and all channels
1345 * 2. 2 IRQs: one for error and one shared for all channels
1346 * 3. 1 IRQ for error and an own IRQ for each channel
1348 if (irqs
!= 1 && irqs
!= 2 && irqs
!= num_channels
+ 1)
1354 for (i
= 0; i
<= num_channels
; i
++)
1355 nbpf
->chan
[i
].irq
= irqbuf
[0];
1357 eirq
= platform_get_irq_byname(pdev
, "error");
1361 if (irqs
== num_channels
+ 1) {
1362 struct nbpf_channel
*chan
;
1364 for (i
= 0, chan
= nbpf
->chan
; i
<= num_channels
;
1366 /* Skip the error IRQ */
1367 if (irqbuf
[i
] == eirq
)
1369 chan
->irq
= irqbuf
[i
];
1372 if (chan
!= nbpf
->chan
+ num_channels
)
1375 /* 2 IRQs and more than one channel */
1376 if (irqbuf
[0] == eirq
)
1381 for (i
= 0; i
<= num_channels
; i
++)
1382 nbpf
->chan
[i
].irq
= irq
;
1386 ret
= devm_request_irq(dev
, eirq
, nbpf_err_irq
,
1387 IRQF_SHARED
, "dma error", nbpf
);
1392 INIT_LIST_HEAD(&dma_dev
->channels
);
1394 /* Create DMA Channel */
1395 for (i
= 0; i
< num_channels
; i
++) {
1396 ret
= nbpf_chan_probe(nbpf
, i
);
1401 dma_cap_set(DMA_MEMCPY
, dma_dev
->cap_mask
);
1402 dma_cap_set(DMA_SLAVE
, dma_dev
->cap_mask
);
1403 dma_cap_set(DMA_PRIVATE
, dma_dev
->cap_mask
);
1405 /* Common and MEMCPY operations */
1406 dma_dev
->device_alloc_chan_resources
1407 = nbpf_alloc_chan_resources
;
1408 dma_dev
->device_free_chan_resources
= nbpf_free_chan_resources
;
1409 dma_dev
->device_prep_dma_memcpy
= nbpf_prep_memcpy
;
1410 dma_dev
->device_tx_status
= nbpf_tx_status
;
1411 dma_dev
->device_issue_pending
= nbpf_issue_pending
;
1414 * If we drop support for unaligned MEMCPY buffer addresses and / or
1415 * lengths by setting
1416 * dma_dev->copy_align = 4;
1417 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1421 /* Compulsory for DMA_SLAVE fields */
1422 dma_dev
->device_prep_slave_sg
= nbpf_prep_slave_sg
;
1423 dma_dev
->device_config
= nbpf_config
;
1424 dma_dev
->device_pause
= nbpf_pause
;
1425 dma_dev
->device_terminate_all
= nbpf_terminate_all
;
1427 dma_dev
->src_addr_widths
= NBPF_DMA_BUSWIDTHS
;
1428 dma_dev
->dst_addr_widths
= NBPF_DMA_BUSWIDTHS
;
1429 dma_dev
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1431 platform_set_drvdata(pdev
, nbpf
);
1433 ret
= clk_prepare_enable(nbpf
->clk
);
1437 nbpf_configure(nbpf
);
1439 ret
= dma_async_device_register(dma_dev
);
1443 ret
= of_dma_controller_register(np
, nbpf_of_xlate
, nbpf
);
1445 goto e_dma_dev_unreg
;
1450 dma_async_device_unregister(dma_dev
);
1452 clk_disable_unprepare(nbpf
->clk
);
1457 static void nbpf_remove(struct platform_device
*pdev
)
1459 struct nbpf_device
*nbpf
= platform_get_drvdata(pdev
);
1462 devm_free_irq(&pdev
->dev
, nbpf
->eirq
, nbpf
);
1464 for (i
= 0; i
< nbpf
->config
->num_channels
; i
++) {
1465 struct nbpf_channel
*chan
= nbpf
->chan
+ i
;
1467 devm_free_irq(&pdev
->dev
, chan
->irq
, chan
);
1469 tasklet_kill(&chan
->tasklet
);
1472 of_dma_controller_free(pdev
->dev
.of_node
);
1473 dma_async_device_unregister(&nbpf
->dma_dev
);
1474 clk_disable_unprepare(nbpf
->clk
);
1477 static const struct platform_device_id nbpf_ids
[] = {
1478 {"nbpfaxi64dmac1b4", (kernel_ulong_t
)&nbpf_cfg
[NBPF1B4
]},
1479 {"nbpfaxi64dmac1b8", (kernel_ulong_t
)&nbpf_cfg
[NBPF1B8
]},
1480 {"nbpfaxi64dmac1b16", (kernel_ulong_t
)&nbpf_cfg
[NBPF1B16
]},
1481 {"nbpfaxi64dmac4b4", (kernel_ulong_t
)&nbpf_cfg
[NBPF4B4
]},
1482 {"nbpfaxi64dmac4b8", (kernel_ulong_t
)&nbpf_cfg
[NBPF4B8
]},
1483 {"nbpfaxi64dmac4b16", (kernel_ulong_t
)&nbpf_cfg
[NBPF4B16
]},
1484 {"nbpfaxi64dmac8b4", (kernel_ulong_t
)&nbpf_cfg
[NBPF8B4
]},
1485 {"nbpfaxi64dmac8b8", (kernel_ulong_t
)&nbpf_cfg
[NBPF8B8
]},
1486 {"nbpfaxi64dmac8b16", (kernel_ulong_t
)&nbpf_cfg
[NBPF8B16
]},
1489 MODULE_DEVICE_TABLE(platform
, nbpf_ids
);
1492 static int nbpf_runtime_suspend(struct device
*dev
)
1494 struct nbpf_device
*nbpf
= dev_get_drvdata(dev
);
1495 clk_disable_unprepare(nbpf
->clk
);
1499 static int nbpf_runtime_resume(struct device
*dev
)
1501 struct nbpf_device
*nbpf
= dev_get_drvdata(dev
);
1502 return clk_prepare_enable(nbpf
->clk
);
1506 static const struct dev_pm_ops nbpf_pm_ops
= {
1507 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend
, nbpf_runtime_resume
, NULL
)
1510 static struct platform_driver nbpf_driver
= {
1513 .of_match_table
= nbpf_match
,
1516 .id_table
= nbpf_ids
,
1517 .probe
= nbpf_probe
,
1518 .remove
= nbpf_remove
,
1521 module_platform_driver(nbpf_driver
);
1523 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1524 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1525 MODULE_LICENSE("GPL v2");