1 // SPDX-License-Identifier: GPL-2.0
3 * Renesas R-Car Gen2/Gen3 DMA Controller Driver
5 * Copyright (C) 2014-2019 Renesas Electronics Inc.
7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
18 #include <linux/of_dma.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
25 #include "../dmaengine.h"
28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
29 * @node: entry in the parent's chunks list
30 * @src_addr: device source address
31 * @dst_addr: device destination address
32 * @size: transfer size in bytes
34 struct rcar_dmac_xfer_chunk
{
35 struct list_head node
;
43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
44 * @sar: value of the SAR register (source address)
45 * @dar: value of the DAR register (destination address)
46 * @tcr: value of the TCR register (transfer count)
48 struct rcar_dmac_hw_desc
{
53 } __attribute__((__packed__
));
56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
57 * @async_tx: base DMA asynchronous transaction descriptor
58 * @direction: direction of the DMA transfer
59 * @xfer_shift: log2 of the transfer size
60 * @chcr: value of the channel configuration register for this transfer
61 * @node: entry in the channel's descriptors lists
62 * @chunks: list of transfer chunks for this transfer
63 * @running: the transfer chunk being currently processed
64 * @nchunks: number of transfer chunks for this transfer
65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
66 * @hwdescs.mem: hardware descriptors memory for the transfer
67 * @hwdescs.dma: device address of the hardware descriptors memory
68 * @hwdescs.size: size of the hardware descriptors in bytes
69 * @size: transfer size in bytes
70 * @cyclic: when set indicates that the DMA transfer is cyclic
72 struct rcar_dmac_desc
{
73 struct dma_async_tx_descriptor async_tx
;
74 enum dma_transfer_direction direction
;
75 unsigned int xfer_shift
;
78 struct list_head node
;
79 struct list_head chunks
;
80 struct rcar_dmac_xfer_chunk
*running
;
85 struct rcar_dmac_hw_desc
*mem
;
94 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
97 * struct rcar_dmac_desc_page - One page worth of descriptors
98 * @node: entry in the channel's pages list
99 * @descs: array of DMA descriptors
100 * @chunks: array of transfer chunk descriptors
102 struct rcar_dmac_desc_page
{
103 struct list_head node
;
106 DECLARE_FLEX_ARRAY(struct rcar_dmac_desc
, descs
);
107 DECLARE_FLEX_ARRAY(struct rcar_dmac_xfer_chunk
, chunks
);
111 #define RCAR_DMAC_DESCS_PER_PAGE \
112 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
113 sizeof(struct rcar_dmac_desc))
114 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
115 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
116 sizeof(struct rcar_dmac_xfer_chunk))
119 * struct rcar_dmac_chan_slave - Slave configuration
120 * @slave_addr: slave memory address
121 * @xfer_size: size (in bytes) of hardware transfers
123 struct rcar_dmac_chan_slave
{
124 phys_addr_t slave_addr
;
125 unsigned int xfer_size
;
129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
130 * @addr: slave dma address
131 * @dir: direction of mapping
132 * @slave: slave configuration that is mapped
134 struct rcar_dmac_chan_map
{
136 enum dma_data_direction dir
;
137 struct rcar_dmac_chan_slave slave
;
141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
142 * @chan: base DMA channel object
143 * @iomem: channel I/O memory base
144 * @index: index of this channel in the controller
146 * @src: slave memory address and size on the source side
147 * @dst: slave memory address and size on the destination side
148 * @mid_rid: hardware MID/RID for the DMA client using this channel
149 * @lock: protects the channel CHCR register and the desc members
150 * @desc.free: list of free descriptors
151 * @desc.pending: list of pending descriptors (submitted with tx_submit)
152 * @desc.active: list of active descriptors (activated with issue_pending)
153 * @desc.done: list of completed descriptors
154 * @desc.wait: list of descriptors waiting for an ack
155 * @desc.running: the descriptor being processed (a member of the active list)
156 * @desc.chunks_free: list of free transfer chunk descriptors
157 * @desc.pages: list of pages used by allocated descriptors
159 struct rcar_dmac_chan
{
160 struct dma_chan chan
;
165 struct rcar_dmac_chan_slave src
;
166 struct rcar_dmac_chan_slave dst
;
167 struct rcar_dmac_chan_map map
;
173 struct list_head free
;
174 struct list_head pending
;
175 struct list_head active
;
176 struct list_head done
;
177 struct list_head wait
;
178 struct rcar_dmac_desc
*running
;
180 struct list_head chunks_free
;
182 struct list_head pages
;
186 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
189 * struct rcar_dmac - R-Car Gen2 DMA Controller
190 * @engine: base DMA engine object
191 * @dev: the hardware device
192 * @dmac_base: remapped base register block
193 * @chan_base: remapped channel register block (optional)
194 * @n_channels: number of available channels
195 * @channels: array of DMAC channels
196 * @channels_mask: bitfield of which DMA channels are managed by this driver
197 * @modules: bitmask of client modules in use
200 struct dma_device engine
;
202 void __iomem
*dmac_base
;
203 void __iomem
*chan_base
;
205 unsigned int n_channels
;
206 struct rcar_dmac_chan
*channels
;
209 DECLARE_BITMAP(modules
, 256);
212 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
214 #define for_each_rcar_dmac_chan(i, dmac, chan) \
215 for (i = 0, chan = &(dmac)->channels[0]; i < (dmac)->n_channels; i++, chan++) \
216 if (!((dmac)->channels_mask & BIT(i))) continue; else
219 * struct rcar_dmac_of_data - This driver's OF data
220 * @chan_offset_base: DMAC channels base offset
221 * @chan_offset_stride: DMAC channels offset stride
223 struct rcar_dmac_of_data
{
224 u32 chan_offset_base
;
225 u32 chan_offset_stride
;
228 /* -----------------------------------------------------------------------------
232 #define RCAR_DMAISTA 0x0020
233 #define RCAR_DMASEC 0x0030
234 #define RCAR_DMAOR 0x0060
235 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
236 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
237 #define RCAR_DMAOR_AE (1 << 2)
238 #define RCAR_DMAOR_DME (1 << 0)
239 #define RCAR_DMACHCLR 0x0080 /* Not on R-Car Gen4 */
240 #define RCAR_DMADPSEC 0x00a0
242 #define RCAR_DMASAR 0x0000
243 #define RCAR_DMADAR 0x0004
244 #define RCAR_DMATCR 0x0008
245 #define RCAR_DMATCR_MASK 0x00ffffff
246 #define RCAR_DMATSR 0x0028
247 #define RCAR_DMACHCR 0x000c
248 #define RCAR_DMACHCR_CAE (1 << 31)
249 #define RCAR_DMACHCR_CAIE (1 << 30)
250 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
251 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
252 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
253 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
254 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
255 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
256 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
257 #define RCAR_DMACHCR_DPB (1 << 22)
258 #define RCAR_DMACHCR_DSE (1 << 19)
259 #define RCAR_DMACHCR_DSIE (1 << 18)
260 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
261 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
262 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
263 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
264 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
265 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
266 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
267 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
268 #define RCAR_DMACHCR_DM_INC (1 << 14)
269 #define RCAR_DMACHCR_DM_DEC (2 << 14)
270 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
271 #define RCAR_DMACHCR_SM_INC (1 << 12)
272 #define RCAR_DMACHCR_SM_DEC (2 << 12)
273 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
274 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
275 #define RCAR_DMACHCR_IE (1 << 2)
276 #define RCAR_DMACHCR_TE (1 << 1)
277 #define RCAR_DMACHCR_DE (1 << 0)
278 #define RCAR_DMATCRB 0x0018
279 #define RCAR_DMATSRB 0x0038
280 #define RCAR_DMACHCRB 0x001c
281 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
282 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
283 #define RCAR_DMACHCRB_DPTR_SHIFT 16
284 #define RCAR_DMACHCRB_DRST (1 << 15)
285 #define RCAR_DMACHCRB_DTS (1 << 8)
286 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
287 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
288 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
289 #define RCAR_DMARS 0x0040
290 #define RCAR_DMABUFCR 0x0048
291 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
292 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
293 #define RCAR_DMADPBASE 0x0050
294 #define RCAR_DMADPBASE_MASK 0xfffffff0
295 #define RCAR_DMADPBASE_SEL (1 << 0)
296 #define RCAR_DMADPCR 0x0054
297 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
298 #define RCAR_DMAFIXSAR 0x0010
299 #define RCAR_DMAFIXDAR 0x0014
300 #define RCAR_DMAFIXDPBASE 0x0060
303 #define RCAR_GEN4_DMACHCLR 0x0100
305 /* Hardcode the MEMCPY transfer size to 4 bytes. */
306 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
308 /* -----------------------------------------------------------------------------
312 static void rcar_dmac_write(struct rcar_dmac
*dmac
, u32 reg
, u32 data
)
314 if (reg
== RCAR_DMAOR
)
315 writew(data
, dmac
->dmac_base
+ reg
);
317 writel(data
, dmac
->dmac_base
+ reg
);
320 static u32
rcar_dmac_read(struct rcar_dmac
*dmac
, u32 reg
)
322 if (reg
== RCAR_DMAOR
)
323 return readw(dmac
->dmac_base
+ reg
);
325 return readl(dmac
->dmac_base
+ reg
);
328 static u32
rcar_dmac_chan_read(struct rcar_dmac_chan
*chan
, u32 reg
)
330 if (reg
== RCAR_DMARS
)
331 return readw(chan
->iomem
+ reg
);
333 return readl(chan
->iomem
+ reg
);
336 static void rcar_dmac_chan_write(struct rcar_dmac_chan
*chan
, u32 reg
, u32 data
)
338 if (reg
== RCAR_DMARS
)
339 writew(data
, chan
->iomem
+ reg
);
341 writel(data
, chan
->iomem
+ reg
);
344 static void rcar_dmac_chan_clear(struct rcar_dmac
*dmac
,
345 struct rcar_dmac_chan
*chan
)
348 rcar_dmac_chan_write(chan
, RCAR_GEN4_DMACHCLR
, 1);
350 rcar_dmac_write(dmac
, RCAR_DMACHCLR
, BIT(chan
->index
));
353 static void rcar_dmac_chan_clear_all(struct rcar_dmac
*dmac
)
355 struct rcar_dmac_chan
*chan
;
358 if (dmac
->chan_base
) {
359 for_each_rcar_dmac_chan(i
, dmac
, chan
)
360 rcar_dmac_chan_write(chan
, RCAR_GEN4_DMACHCLR
, 1);
362 rcar_dmac_write(dmac
, RCAR_DMACHCLR
, dmac
->channels_mask
);
366 /* -----------------------------------------------------------------------------
367 * Initialization and configuration
370 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan
*chan
)
372 u32 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
374 return !!(chcr
& (RCAR_DMACHCR_DE
| RCAR_DMACHCR_TE
));
377 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan
*chan
)
379 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
380 u32 chcr
= desc
->chcr
;
382 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan
));
384 if (chan
->mid_rid
>= 0)
385 rcar_dmac_chan_write(chan
, RCAR_DMARS
, chan
->mid_rid
);
387 if (desc
->hwdescs
.use
) {
388 struct rcar_dmac_xfer_chunk
*chunk
=
389 list_first_entry(&desc
->chunks
,
390 struct rcar_dmac_xfer_chunk
, node
);
392 dev_dbg(chan
->chan
.device
->dev
,
393 "chan%u: queue desc %p: %u@%pad\n",
394 chan
->index
, desc
, desc
->nchunks
, &desc
->hwdescs
.dma
);
396 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
397 rcar_dmac_chan_write(chan
, RCAR_DMAFIXSAR
,
398 chunk
->src_addr
>> 32);
399 rcar_dmac_chan_write(chan
, RCAR_DMAFIXDAR
,
400 chunk
->dst_addr
>> 32);
401 rcar_dmac_chan_write(chan
, RCAR_DMAFIXDPBASE
,
402 desc
->hwdescs
.dma
>> 32);
404 rcar_dmac_chan_write(chan
, RCAR_DMADPBASE
,
405 (desc
->hwdescs
.dma
& 0xfffffff0) |
407 rcar_dmac_chan_write(chan
, RCAR_DMACHCRB
,
408 RCAR_DMACHCRB_DCNT(desc
->nchunks
- 1) |
412 * Errata: When descriptor memory is accessed through an IOMMU
413 * the DMADAR register isn't initialized automatically from the
414 * first descriptor at beginning of transfer by the DMAC like it
415 * should. Initialize it manually with the destination address
416 * of the first chunk.
418 rcar_dmac_chan_write(chan
, RCAR_DMADAR
,
419 chunk
->dst_addr
& 0xffffffff);
422 * Program the descriptor stage interrupt to occur after the end
423 * of the first stage.
425 rcar_dmac_chan_write(chan
, RCAR_DMADPCR
, RCAR_DMADPCR_DIPT(1));
427 chcr
|= RCAR_DMACHCR_RPT_SAR
| RCAR_DMACHCR_RPT_DAR
428 | RCAR_DMACHCR_RPT_TCR
| RCAR_DMACHCR_DPB
;
431 * If the descriptor isn't cyclic enable normal descriptor mode
432 * and the transfer completion interrupt.
435 chcr
|= RCAR_DMACHCR_DPM_ENABLED
| RCAR_DMACHCR_IE
;
437 * If the descriptor is cyclic and has a callback enable the
438 * descriptor stage interrupt in infinite repeat mode.
440 else if (desc
->async_tx
.callback
)
441 chcr
|= RCAR_DMACHCR_DPM_INFINITE
| RCAR_DMACHCR_DSIE
;
443 * Otherwise just select infinite repeat mode without any
447 chcr
|= RCAR_DMACHCR_DPM_INFINITE
;
449 struct rcar_dmac_xfer_chunk
*chunk
= desc
->running
;
451 dev_dbg(chan
->chan
.device
->dev
,
452 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
453 chan
->index
, chunk
, chunk
->size
, &chunk
->src_addr
,
456 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
457 rcar_dmac_chan_write(chan
, RCAR_DMAFIXSAR
,
458 chunk
->src_addr
>> 32);
459 rcar_dmac_chan_write(chan
, RCAR_DMAFIXDAR
,
460 chunk
->dst_addr
>> 32);
462 rcar_dmac_chan_write(chan
, RCAR_DMASAR
,
463 chunk
->src_addr
& 0xffffffff);
464 rcar_dmac_chan_write(chan
, RCAR_DMADAR
,
465 chunk
->dst_addr
& 0xffffffff);
466 rcar_dmac_chan_write(chan
, RCAR_DMATCR
,
467 chunk
->size
>> desc
->xfer_shift
);
469 chcr
|= RCAR_DMACHCR_DPM_DISABLED
| RCAR_DMACHCR_IE
;
472 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
,
473 chcr
| RCAR_DMACHCR_DE
| RCAR_DMACHCR_CAIE
);
476 static int rcar_dmac_init(struct rcar_dmac
*dmac
)
480 /* Clear all channels and enable the DMAC globally. */
481 rcar_dmac_chan_clear_all(dmac
);
482 rcar_dmac_write(dmac
, RCAR_DMAOR
,
483 RCAR_DMAOR_PRI_FIXED
| RCAR_DMAOR_DME
);
485 dmaor
= rcar_dmac_read(dmac
, RCAR_DMAOR
);
486 if ((dmaor
& (RCAR_DMAOR_AE
| RCAR_DMAOR_DME
)) != RCAR_DMAOR_DME
) {
487 dev_warn(dmac
->dev
, "DMAOR initialization failed.\n");
494 /* -----------------------------------------------------------------------------
495 * Descriptors submission
498 static dma_cookie_t
rcar_dmac_tx_submit(struct dma_async_tx_descriptor
*tx
)
500 struct rcar_dmac_chan
*chan
= to_rcar_dmac_chan(tx
->chan
);
501 struct rcar_dmac_desc
*desc
= to_rcar_dmac_desc(tx
);
505 spin_lock_irqsave(&chan
->lock
, flags
);
507 cookie
= dma_cookie_assign(tx
);
509 dev_dbg(chan
->chan
.device
->dev
, "chan%u: submit #%d@%p\n",
510 chan
->index
, tx
->cookie
, desc
);
512 list_add_tail(&desc
->node
, &chan
->desc
.pending
);
513 desc
->running
= list_first_entry(&desc
->chunks
,
514 struct rcar_dmac_xfer_chunk
, node
);
516 spin_unlock_irqrestore(&chan
->lock
, flags
);
521 /* -----------------------------------------------------------------------------
522 * Descriptors allocation and free
526 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
527 * @chan: the DMA channel
528 * @gfp: allocation flags
530 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan
*chan
, gfp_t gfp
)
532 struct rcar_dmac_desc_page
*page
;
537 page
= (void *)get_zeroed_page(gfp
);
541 for (i
= 0; i
< RCAR_DMAC_DESCS_PER_PAGE
; ++i
) {
542 struct rcar_dmac_desc
*desc
= &page
->descs
[i
];
544 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->chan
);
545 desc
->async_tx
.tx_submit
= rcar_dmac_tx_submit
;
546 INIT_LIST_HEAD(&desc
->chunks
);
548 list_add_tail(&desc
->node
, &list
);
551 spin_lock_irqsave(&chan
->lock
, flags
);
552 list_splice_tail(&list
, &chan
->desc
.free
);
553 list_add_tail(&page
->node
, &chan
->desc
.pages
);
554 spin_unlock_irqrestore(&chan
->lock
, flags
);
560 * rcar_dmac_desc_put - Release a DMA transfer descriptor
561 * @chan: the DMA channel
562 * @desc: the descriptor
564 * Put the descriptor and its transfer chunk descriptors back in the channel's
565 * free descriptors lists. The descriptor's chunks list will be reinitialized to
566 * an empty list as a result.
568 * The descriptor must have been removed from the channel's lists before calling
571 static void rcar_dmac_desc_put(struct rcar_dmac_chan
*chan
,
572 struct rcar_dmac_desc
*desc
)
576 spin_lock_irqsave(&chan
->lock
, flags
);
577 list_splice_tail_init(&desc
->chunks
, &chan
->desc
.chunks_free
);
578 list_add(&desc
->node
, &chan
->desc
.free
);
579 spin_unlock_irqrestore(&chan
->lock
, flags
);
582 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan
*chan
)
584 struct rcar_dmac_desc
*desc
, *_desc
;
589 * We have to temporarily move all descriptors from the wait list to a
590 * local list as iterating over the wait list, even with
591 * list_for_each_entry_safe, isn't safe if we release the channel lock
592 * around the rcar_dmac_desc_put() call.
594 spin_lock_irqsave(&chan
->lock
, flags
);
595 list_splice_init(&chan
->desc
.wait
, &list
);
596 spin_unlock_irqrestore(&chan
->lock
, flags
);
598 list_for_each_entry_safe(desc
, _desc
, &list
, node
) {
599 if (async_tx_test_ack(&desc
->async_tx
)) {
600 list_del(&desc
->node
);
601 rcar_dmac_desc_put(chan
, desc
);
605 if (list_empty(&list
))
608 /* Put the remaining descriptors back in the wait list. */
609 spin_lock_irqsave(&chan
->lock
, flags
);
610 list_splice(&list
, &chan
->desc
.wait
);
611 spin_unlock_irqrestore(&chan
->lock
, flags
);
615 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
616 * @chan: the DMA channel
618 * Locking: This function must be called in a non-atomic context.
620 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
623 static struct rcar_dmac_desc
*rcar_dmac_desc_get(struct rcar_dmac_chan
*chan
)
625 struct rcar_dmac_desc
*desc
;
629 /* Recycle acked descriptors before attempting allocation. */
630 rcar_dmac_desc_recycle_acked(chan
);
632 spin_lock_irqsave(&chan
->lock
, flags
);
634 while (list_empty(&chan
->desc
.free
)) {
636 * No free descriptors, allocate a page worth of them and try
637 * again, as someone else could race us to get the newly
638 * allocated descriptors. If the allocation fails return an
641 spin_unlock_irqrestore(&chan
->lock
, flags
);
642 ret
= rcar_dmac_desc_alloc(chan
, GFP_NOWAIT
);
645 spin_lock_irqsave(&chan
->lock
, flags
);
648 desc
= list_first_entry(&chan
->desc
.free
, struct rcar_dmac_desc
, node
);
649 list_del(&desc
->node
);
651 spin_unlock_irqrestore(&chan
->lock
, flags
);
657 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
658 * @chan: the DMA channel
659 * @gfp: allocation flags
661 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan
*chan
, gfp_t gfp
)
663 struct rcar_dmac_desc_page
*page
;
668 page
= (void *)get_zeroed_page(gfp
);
672 for (i
= 0; i
< RCAR_DMAC_XFER_CHUNKS_PER_PAGE
; ++i
) {
673 struct rcar_dmac_xfer_chunk
*chunk
= &page
->chunks
[i
];
675 list_add_tail(&chunk
->node
, &list
);
678 spin_lock_irqsave(&chan
->lock
, flags
);
679 list_splice_tail(&list
, &chan
->desc
.chunks_free
);
680 list_add_tail(&page
->node
, &chan
->desc
.pages
);
681 spin_unlock_irqrestore(&chan
->lock
, flags
);
687 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
688 * @chan: the DMA channel
690 * Locking: This function must be called in a non-atomic context.
692 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
693 * descriptor can be allocated.
695 static struct rcar_dmac_xfer_chunk
*
696 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan
*chan
)
698 struct rcar_dmac_xfer_chunk
*chunk
;
702 spin_lock_irqsave(&chan
->lock
, flags
);
704 while (list_empty(&chan
->desc
.chunks_free
)) {
706 * No free descriptors, allocate a page worth of them and try
707 * again, as someone else could race us to get the newly
708 * allocated descriptors. If the allocation fails return an
711 spin_unlock_irqrestore(&chan
->lock
, flags
);
712 ret
= rcar_dmac_xfer_chunk_alloc(chan
, GFP_NOWAIT
);
715 spin_lock_irqsave(&chan
->lock
, flags
);
718 chunk
= list_first_entry(&chan
->desc
.chunks_free
,
719 struct rcar_dmac_xfer_chunk
, node
);
720 list_del(&chunk
->node
);
722 spin_unlock_irqrestore(&chan
->lock
, flags
);
727 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan
*chan
,
728 struct rcar_dmac_desc
*desc
, size_t size
)
731 * dma_alloc_coherent() allocates memory in page size increments. To
732 * avoid reallocating the hardware descriptors when the allocated size
733 * wouldn't change align the requested size to a multiple of the page
736 size
= PAGE_ALIGN(size
);
738 if (desc
->hwdescs
.size
== size
)
741 if (desc
->hwdescs
.mem
) {
742 dma_free_coherent(chan
->chan
.device
->dev
, desc
->hwdescs
.size
,
743 desc
->hwdescs
.mem
, desc
->hwdescs
.dma
);
744 desc
->hwdescs
.mem
= NULL
;
745 desc
->hwdescs
.size
= 0;
751 desc
->hwdescs
.mem
= dma_alloc_coherent(chan
->chan
.device
->dev
, size
,
752 &desc
->hwdescs
.dma
, GFP_NOWAIT
);
753 if (!desc
->hwdescs
.mem
)
756 desc
->hwdescs
.size
= size
;
759 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan
*chan
,
760 struct rcar_dmac_desc
*desc
)
762 struct rcar_dmac_xfer_chunk
*chunk
;
763 struct rcar_dmac_hw_desc
*hwdesc
;
765 rcar_dmac_realloc_hwdesc(chan
, desc
, desc
->nchunks
* sizeof(*hwdesc
));
767 hwdesc
= desc
->hwdescs
.mem
;
771 list_for_each_entry(chunk
, &desc
->chunks
, node
) {
772 hwdesc
->sar
= chunk
->src_addr
;
773 hwdesc
->dar
= chunk
->dst_addr
;
774 hwdesc
->tcr
= chunk
->size
>> desc
->xfer_shift
;
781 /* -----------------------------------------------------------------------------
784 static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan
*chan
)
790 * Ensure that the setting of the DE bit is actually 0 after
793 for (i
= 0; i
< 1024; i
++) {
794 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
795 if (!(chcr
& RCAR_DMACHCR_DE
))
800 dev_err(chan
->chan
.device
->dev
, "CHCR DE check error\n");
803 static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan
*chan
)
805 u32 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
807 /* set DE=0 and flush remaining data */
808 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
, (chcr
& ~RCAR_DMACHCR_DE
));
810 /* make sure all remaining data was flushed */
811 rcar_dmac_chcr_de_barrier(chan
);
814 static void rcar_dmac_chan_halt(struct rcar_dmac_chan
*chan
)
816 u32 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
818 chcr
&= ~(RCAR_DMACHCR_DSE
| RCAR_DMACHCR_DSIE
| RCAR_DMACHCR_IE
|
819 RCAR_DMACHCR_TE
| RCAR_DMACHCR_DE
|
820 RCAR_DMACHCR_CAE
| RCAR_DMACHCR_CAIE
);
821 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
, chcr
);
822 rcar_dmac_chcr_de_barrier(chan
);
825 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan
*chan
)
827 struct rcar_dmac_desc
*desc
, *_desc
;
831 spin_lock_irqsave(&chan
->lock
, flags
);
833 /* Move all non-free descriptors to the local lists. */
834 list_splice_init(&chan
->desc
.pending
, &descs
);
835 list_splice_init(&chan
->desc
.active
, &descs
);
836 list_splice_init(&chan
->desc
.done
, &descs
);
837 list_splice_init(&chan
->desc
.wait
, &descs
);
839 chan
->desc
.running
= NULL
;
841 spin_unlock_irqrestore(&chan
->lock
, flags
);
843 list_for_each_entry_safe(desc
, _desc
, &descs
, node
) {
844 list_del(&desc
->node
);
845 rcar_dmac_desc_put(chan
, desc
);
849 static void rcar_dmac_stop_all_chan(struct rcar_dmac
*dmac
)
851 struct rcar_dmac_chan
*chan
;
854 /* Stop all channels. */
855 for_each_rcar_dmac_chan(i
, dmac
, chan
) {
856 /* Stop and reinitialize the channel. */
857 spin_lock_irq(&chan
->lock
);
858 rcar_dmac_chan_halt(chan
);
859 spin_unlock_irq(&chan
->lock
);
863 static int rcar_dmac_chan_pause(struct dma_chan
*chan
)
866 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
868 spin_lock_irqsave(&rchan
->lock
, flags
);
869 rcar_dmac_clear_chcr_de(rchan
);
870 spin_unlock_irqrestore(&rchan
->lock
, flags
);
875 /* -----------------------------------------------------------------------------
876 * Descriptors preparation
879 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan
*chan
,
880 struct rcar_dmac_desc
*desc
)
882 static const u32 chcr_ts
[] = {
883 RCAR_DMACHCR_TS_1B
, RCAR_DMACHCR_TS_2B
,
884 RCAR_DMACHCR_TS_4B
, RCAR_DMACHCR_TS_8B
,
885 RCAR_DMACHCR_TS_16B
, RCAR_DMACHCR_TS_32B
,
889 unsigned int xfer_size
;
892 switch (desc
->direction
) {
894 chcr
= RCAR_DMACHCR_DM_INC
| RCAR_DMACHCR_SM_FIXED
895 | RCAR_DMACHCR_RS_DMARS
;
896 xfer_size
= chan
->src
.xfer_size
;
900 chcr
= RCAR_DMACHCR_DM_FIXED
| RCAR_DMACHCR_SM_INC
901 | RCAR_DMACHCR_RS_DMARS
;
902 xfer_size
= chan
->dst
.xfer_size
;
907 chcr
= RCAR_DMACHCR_DM_INC
| RCAR_DMACHCR_SM_INC
908 | RCAR_DMACHCR_RS_AUTO
;
909 xfer_size
= RCAR_DMAC_MEMCPY_XFER_SIZE
;
913 desc
->xfer_shift
= ilog2(xfer_size
);
914 desc
->chcr
= chcr
| chcr_ts
[desc
->xfer_shift
];
918 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
920 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
921 * converted to scatter-gather to guarantee consistent locking and a correct
922 * list manipulation. For slave DMA direction carries the usual meaning, and,
923 * logically, the SG list is RAM and the addr variable contains slave address,
924 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
925 * and the SG list contains only one element and points at the source buffer.
927 static struct dma_async_tx_descriptor
*
928 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan
*chan
, struct scatterlist
*sgl
,
929 unsigned int sg_len
, dma_addr_t dev_addr
,
930 enum dma_transfer_direction dir
, unsigned long dma_flags
,
933 struct rcar_dmac_xfer_chunk
*chunk
;
934 struct rcar_dmac_desc
*desc
;
935 struct scatterlist
*sg
;
936 unsigned int nchunks
= 0;
937 unsigned int max_chunk_size
;
938 unsigned int full_size
= 0;
939 bool cross_boundary
= false;
941 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
946 desc
= rcar_dmac_desc_get(chan
);
950 desc
->async_tx
.flags
= dma_flags
;
951 desc
->async_tx
.cookie
= -EBUSY
;
953 desc
->cyclic
= cyclic
;
954 desc
->direction
= dir
;
956 rcar_dmac_chan_configure_desc(chan
, desc
);
958 max_chunk_size
= RCAR_DMATCR_MASK
<< desc
->xfer_shift
;
961 * Allocate and fill the transfer chunk descriptors. We own the only
962 * reference to the DMA descriptor, there's no need for locking.
964 for_each_sg(sgl
, sg
, sg_len
, i
) {
965 dma_addr_t mem_addr
= sg_dma_address(sg
);
966 unsigned int len
= sg_dma_len(sg
);
970 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
972 high_dev_addr
= dev_addr
>> 32;
973 high_mem_addr
= mem_addr
>> 32;
976 if ((dev_addr
>> 32 != high_dev_addr
) ||
977 (mem_addr
>> 32 != high_mem_addr
))
978 cross_boundary
= true;
981 unsigned int size
= min(len
, max_chunk_size
);
983 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
985 * Prevent individual transfers from crossing 4GB
988 if (dev_addr
>> 32 != (dev_addr
+ size
- 1) >> 32) {
989 size
= ALIGN(dev_addr
, 1ULL << 32) - dev_addr
;
990 cross_boundary
= true;
992 if (mem_addr
>> 32 != (mem_addr
+ size
- 1) >> 32) {
993 size
= ALIGN(mem_addr
, 1ULL << 32) - mem_addr
;
994 cross_boundary
= true;
998 chunk
= rcar_dmac_xfer_chunk_get(chan
);
1000 rcar_dmac_desc_put(chan
, desc
);
1004 if (dir
== DMA_DEV_TO_MEM
) {
1005 chunk
->src_addr
= dev_addr
;
1006 chunk
->dst_addr
= mem_addr
;
1008 chunk
->src_addr
= mem_addr
;
1009 chunk
->dst_addr
= dev_addr
;
1014 dev_dbg(chan
->chan
.device
->dev
,
1015 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
1016 chan
->index
, chunk
, desc
, i
, sg
, size
, len
,
1017 &chunk
->src_addr
, &chunk
->dst_addr
);
1020 if (dir
== DMA_MEM_TO_MEM
)
1025 list_add_tail(&chunk
->node
, &desc
->chunks
);
1030 desc
->nchunks
= nchunks
;
1031 desc
->size
= full_size
;
1034 * Use hardware descriptor lists if possible when more than one chunk
1035 * needs to be transferred (otherwise they don't make much sense).
1037 * Source/Destination address should be located in same 4GiB region
1038 * in the 40bit address space when it uses Hardware descriptor,
1039 * and cross_boundary is checking it.
1041 desc
->hwdescs
.use
= !cross_boundary
&& nchunks
> 1;
1042 if (desc
->hwdescs
.use
) {
1043 if (rcar_dmac_fill_hwdesc(chan
, desc
) < 0)
1044 desc
->hwdescs
.use
= false;
1047 return &desc
->async_tx
;
1050 /* -----------------------------------------------------------------------------
1051 * DMA engine operations
1054 static int rcar_dmac_alloc_chan_resources(struct dma_chan
*chan
)
1056 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1059 INIT_LIST_HEAD(&rchan
->desc
.chunks_free
);
1060 INIT_LIST_HEAD(&rchan
->desc
.pages
);
1062 /* Preallocate descriptors. */
1063 ret
= rcar_dmac_xfer_chunk_alloc(rchan
, GFP_KERNEL
);
1067 ret
= rcar_dmac_desc_alloc(rchan
, GFP_KERNEL
);
1071 return pm_runtime_get_sync(chan
->device
->dev
);
1074 static void rcar_dmac_free_chan_resources(struct dma_chan
*chan
)
1076 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1077 struct rcar_dmac
*dmac
= to_rcar_dmac(chan
->device
);
1078 struct rcar_dmac_chan_map
*map
= &rchan
->map
;
1079 struct rcar_dmac_desc_page
*page
, *_page
;
1080 struct rcar_dmac_desc
*desc
;
1083 /* Protect against ISR */
1084 spin_lock_irq(&rchan
->lock
);
1085 rcar_dmac_chan_halt(rchan
);
1086 spin_unlock_irq(&rchan
->lock
);
1089 * Now no new interrupts will occur, but one might already be
1090 * running. Wait for it to finish before freeing resources.
1092 synchronize_irq(rchan
->irq
);
1094 if (rchan
->mid_rid
>= 0) {
1095 /* The caller is holding dma_list_mutex */
1096 clear_bit(rchan
->mid_rid
, dmac
->modules
);
1097 rchan
->mid_rid
= -EINVAL
;
1100 list_splice_init(&rchan
->desc
.free
, &list
);
1101 list_splice_init(&rchan
->desc
.pending
, &list
);
1102 list_splice_init(&rchan
->desc
.active
, &list
);
1103 list_splice_init(&rchan
->desc
.done
, &list
);
1104 list_splice_init(&rchan
->desc
.wait
, &list
);
1106 rchan
->desc
.running
= NULL
;
1108 list_for_each_entry(desc
, &list
, node
)
1109 rcar_dmac_realloc_hwdesc(rchan
, desc
, 0);
1111 list_for_each_entry_safe(page
, _page
, &rchan
->desc
.pages
, node
) {
1112 list_del(&page
->node
);
1113 free_page((unsigned long)page
);
1116 /* Remove slave mapping if present. */
1117 if (map
->slave
.xfer_size
) {
1118 dma_unmap_resource(chan
->device
->dev
, map
->addr
,
1119 map
->slave
.xfer_size
, map
->dir
, 0);
1120 map
->slave
.xfer_size
= 0;
1123 pm_runtime_put(chan
->device
->dev
);
1126 static struct dma_async_tx_descriptor
*
1127 rcar_dmac_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dma_dest
,
1128 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
1130 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1131 struct scatterlist sgl
;
1136 sg_init_table(&sgl
, 1);
1137 sg_set_page(&sgl
, pfn_to_page(PFN_DOWN(dma_src
)), len
,
1138 offset_in_page(dma_src
));
1139 sg_dma_address(&sgl
) = dma_src
;
1140 sg_dma_len(&sgl
) = len
;
1142 return rcar_dmac_chan_prep_sg(rchan
, &sgl
, 1, dma_dest
,
1143 DMA_MEM_TO_MEM
, flags
, false);
1146 static int rcar_dmac_map_slave_addr(struct dma_chan
*chan
,
1147 enum dma_transfer_direction dir
)
1149 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1150 struct rcar_dmac_chan_map
*map
= &rchan
->map
;
1151 phys_addr_t dev_addr
;
1153 enum dma_data_direction dev_dir
;
1155 if (dir
== DMA_DEV_TO_MEM
) {
1156 dev_addr
= rchan
->src
.slave_addr
;
1157 dev_size
= rchan
->src
.xfer_size
;
1158 dev_dir
= DMA_TO_DEVICE
;
1160 dev_addr
= rchan
->dst
.slave_addr
;
1161 dev_size
= rchan
->dst
.xfer_size
;
1162 dev_dir
= DMA_FROM_DEVICE
;
1165 /* Reuse current map if possible. */
1166 if (dev_addr
== map
->slave
.slave_addr
&&
1167 dev_size
== map
->slave
.xfer_size
&&
1168 dev_dir
== map
->dir
)
1171 /* Remove old mapping if present. */
1172 if (map
->slave
.xfer_size
)
1173 dma_unmap_resource(chan
->device
->dev
, map
->addr
,
1174 map
->slave
.xfer_size
, map
->dir
, 0);
1175 map
->slave
.xfer_size
= 0;
1177 /* Create new slave address map. */
1178 map
->addr
= dma_map_resource(chan
->device
->dev
, dev_addr
, dev_size
,
1181 if (dma_mapping_error(chan
->device
->dev
, map
->addr
)) {
1182 dev_err(chan
->device
->dev
,
1183 "chan%u: failed to map %zx@%pap", rchan
->index
,
1184 dev_size
, &dev_addr
);
1188 dev_dbg(chan
->device
->dev
, "chan%u: map %zx@%pap to %pad dir: %s\n",
1189 rchan
->index
, dev_size
, &dev_addr
, &map
->addr
,
1190 dev_dir
== DMA_TO_DEVICE
? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1192 map
->slave
.slave_addr
= dev_addr
;
1193 map
->slave
.xfer_size
= dev_size
;
1199 static struct dma_async_tx_descriptor
*
1200 rcar_dmac_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
1201 unsigned int sg_len
, enum dma_transfer_direction dir
,
1202 unsigned long flags
, void *context
)
1204 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1206 /* Someone calling slave DMA on a generic channel? */
1207 if (rchan
->mid_rid
< 0 || !sg_len
|| !sg_dma_len(sgl
)) {
1208 dev_warn(chan
->device
->dev
,
1209 "%s: bad parameter: len=%d, id=%d\n",
1210 __func__
, sg_len
, rchan
->mid_rid
);
1214 if (rcar_dmac_map_slave_addr(chan
, dir
))
1217 return rcar_dmac_chan_prep_sg(rchan
, sgl
, sg_len
, rchan
->map
.addr
,
1221 #define RCAR_DMAC_MAX_SG_LEN 32
1223 static struct dma_async_tx_descriptor
*
1224 rcar_dmac_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t buf_addr
,
1225 size_t buf_len
, size_t period_len
,
1226 enum dma_transfer_direction dir
, unsigned long flags
)
1228 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1229 struct dma_async_tx_descriptor
*desc
;
1230 struct scatterlist
*sgl
;
1231 unsigned int sg_len
;
1234 /* Someone calling slave DMA on a generic channel? */
1235 if (rchan
->mid_rid
< 0 || buf_len
< period_len
) {
1236 dev_warn(chan
->device
->dev
,
1237 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1238 __func__
, buf_len
, period_len
, rchan
->mid_rid
);
1242 if (rcar_dmac_map_slave_addr(chan
, dir
))
1245 sg_len
= buf_len
/ period_len
;
1246 if (sg_len
> RCAR_DMAC_MAX_SG_LEN
) {
1247 dev_err(chan
->device
->dev
,
1248 "chan%u: sg length %d exceeds limit %d",
1249 rchan
->index
, sg_len
, RCAR_DMAC_MAX_SG_LEN
);
1254 * Allocate the sg list dynamically as it would consume too much stack
1257 sgl
= kmalloc_array(sg_len
, sizeof(*sgl
), GFP_NOWAIT
);
1261 sg_init_table(sgl
, sg_len
);
1263 for (i
= 0; i
< sg_len
; ++i
) {
1264 dma_addr_t src
= buf_addr
+ (period_len
* i
);
1266 sg_set_page(&sgl
[i
], pfn_to_page(PFN_DOWN(src
)), period_len
,
1267 offset_in_page(src
));
1268 sg_dma_address(&sgl
[i
]) = src
;
1269 sg_dma_len(&sgl
[i
]) = period_len
;
1272 desc
= rcar_dmac_chan_prep_sg(rchan
, sgl
, sg_len
, rchan
->map
.addr
,
1279 static int rcar_dmac_device_config(struct dma_chan
*chan
,
1280 struct dma_slave_config
*cfg
)
1282 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1285 * We could lock this, but you shouldn't be configuring the
1286 * channel, while using it...
1288 rchan
->src
.slave_addr
= cfg
->src_addr
;
1289 rchan
->dst
.slave_addr
= cfg
->dst_addr
;
1290 rchan
->src
.xfer_size
= cfg
->src_addr_width
;
1291 rchan
->dst
.xfer_size
= cfg
->dst_addr_width
;
1296 static int rcar_dmac_chan_terminate_all(struct dma_chan
*chan
)
1298 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1299 unsigned long flags
;
1301 spin_lock_irqsave(&rchan
->lock
, flags
);
1302 rcar_dmac_chan_halt(rchan
);
1303 spin_unlock_irqrestore(&rchan
->lock
, flags
);
1306 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1310 rcar_dmac_chan_reinit(rchan
);
1315 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan
*chan
,
1316 dma_cookie_t cookie
)
1318 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
1319 struct rcar_dmac_xfer_chunk
*running
= NULL
;
1320 struct rcar_dmac_xfer_chunk
*chunk
;
1321 enum dma_status status
;
1322 unsigned int residue
= 0;
1323 unsigned int dptr
= 0;
1332 * If the cookie corresponds to a descriptor that has been completed
1333 * there is no residue. The same check has already been performed by the
1334 * caller but without holding the channel lock, so the descriptor could
1337 status
= dma_cookie_status(&chan
->chan
, cookie
, NULL
);
1338 if (status
== DMA_COMPLETE
)
1342 * If the cookie doesn't correspond to the currently running transfer
1343 * then the descriptor hasn't been processed yet, and the residue is
1344 * equal to the full descriptor size.
1345 * Also, a client driver is possible to call this function before
1346 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1347 * will be the next descriptor, and the done list will appear. So, if
1348 * the argument cookie matches the done list's cookie, we can assume
1349 * the residue is zero.
1351 if (cookie
!= desc
->async_tx
.cookie
) {
1352 list_for_each_entry(desc
, &chan
->desc
.done
, node
) {
1353 if (cookie
== desc
->async_tx
.cookie
)
1356 list_for_each_entry(desc
, &chan
->desc
.pending
, node
) {
1357 if (cookie
== desc
->async_tx
.cookie
)
1360 list_for_each_entry(desc
, &chan
->desc
.active
, node
) {
1361 if (cookie
== desc
->async_tx
.cookie
)
1366 * No descriptor found for the cookie, there's thus no residue.
1367 * This shouldn't happen if the calling driver passes a correct
1370 WARN(1, "No descriptor for cookie!");
1375 * We need to read two registers.
1376 * Make sure the control register does not skip to next chunk
1377 * while reading the counter.
1378 * Trying it 3 times should be enough: Initial read, retry, retry
1381 for (i
= 0; i
< 3; i
++) {
1382 chcrb
= rcar_dmac_chan_read(chan
, RCAR_DMACHCRB
) &
1383 RCAR_DMACHCRB_DPTR_MASK
;
1384 tcrb
= rcar_dmac_chan_read(chan
, RCAR_DMATCRB
);
1385 /* Still the same? */
1386 if (chcrb
== (rcar_dmac_chan_read(chan
, RCAR_DMACHCRB
) &
1387 RCAR_DMACHCRB_DPTR_MASK
))
1390 WARN_ONCE(i
>= 3, "residue might be not continuous!");
1393 * In descriptor mode the descriptor running pointer is not maintained
1394 * by the interrupt handler, find the running descriptor from the
1395 * descriptor pointer field in the CHCRB register. In non-descriptor
1396 * mode just use the running descriptor pointer.
1398 if (desc
->hwdescs
.use
) {
1399 dptr
= chcrb
>> RCAR_DMACHCRB_DPTR_SHIFT
;
1401 dptr
= desc
->nchunks
;
1403 WARN_ON(dptr
>= desc
->nchunks
);
1405 running
= desc
->running
;
1408 /* Compute the size of all chunks still to be transferred. */
1409 list_for_each_entry_reverse(chunk
, &desc
->chunks
, node
) {
1410 if (chunk
== running
|| ++dptr
== desc
->nchunks
)
1413 residue
+= chunk
->size
;
1416 /* Add the residue for the current chunk. */
1417 residue
+= tcrb
<< desc
->xfer_shift
;
1422 static enum dma_status
rcar_dmac_tx_status(struct dma_chan
*chan
,
1423 dma_cookie_t cookie
,
1424 struct dma_tx_state
*txstate
)
1426 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1427 enum dma_status status
;
1428 unsigned long flags
;
1429 unsigned int residue
;
1432 status
= dma_cookie_status(chan
, cookie
, txstate
);
1433 if (status
== DMA_COMPLETE
|| !txstate
)
1436 spin_lock_irqsave(&rchan
->lock
, flags
);
1437 residue
= rcar_dmac_chan_get_residue(rchan
, cookie
);
1438 cyclic
= rchan
->desc
.running
? rchan
->desc
.running
->cyclic
: false;
1439 spin_unlock_irqrestore(&rchan
->lock
, flags
);
1441 /* if there's no residue, the cookie is complete */
1442 if (!residue
&& !cyclic
)
1443 return DMA_COMPLETE
;
1445 dma_set_residue(txstate
, residue
);
1450 static void rcar_dmac_issue_pending(struct dma_chan
*chan
)
1452 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1453 unsigned long flags
;
1455 spin_lock_irqsave(&rchan
->lock
, flags
);
1457 if (list_empty(&rchan
->desc
.pending
))
1460 /* Append the pending list to the active list. */
1461 list_splice_tail_init(&rchan
->desc
.pending
, &rchan
->desc
.active
);
1464 * If no transfer is running pick the first descriptor from the active
1465 * list and start the transfer.
1467 if (!rchan
->desc
.running
) {
1468 struct rcar_dmac_desc
*desc
;
1470 desc
= list_first_entry(&rchan
->desc
.active
,
1471 struct rcar_dmac_desc
, node
);
1472 rchan
->desc
.running
= desc
;
1474 rcar_dmac_chan_start_xfer(rchan
);
1478 spin_unlock_irqrestore(&rchan
->lock
, flags
);
1481 static void rcar_dmac_device_synchronize(struct dma_chan
*chan
)
1483 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1485 synchronize_irq(rchan
->irq
);
1488 /* -----------------------------------------------------------------------------
1492 static irqreturn_t
rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan
*chan
)
1494 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
1497 if (WARN_ON(!desc
|| !desc
->cyclic
)) {
1499 * This should never happen, there should always be a running
1500 * cyclic descriptor when a descriptor stage end interrupt is
1501 * triggered. Warn and return.
1506 /* Program the interrupt pointer to the next stage. */
1507 stage
= (rcar_dmac_chan_read(chan
, RCAR_DMACHCRB
) &
1508 RCAR_DMACHCRB_DPTR_MASK
) >> RCAR_DMACHCRB_DPTR_SHIFT
;
1509 rcar_dmac_chan_write(chan
, RCAR_DMADPCR
, RCAR_DMADPCR_DIPT(stage
));
1511 return IRQ_WAKE_THREAD
;
1514 static irqreturn_t
rcar_dmac_isr_transfer_end(struct rcar_dmac_chan
*chan
)
1516 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
1517 irqreturn_t ret
= IRQ_WAKE_THREAD
;
1519 if (WARN_ON_ONCE(!desc
)) {
1521 * This should never happen, there should always be a running
1522 * descriptor when a transfer end interrupt is triggered. Warn
1529 * The transfer end interrupt isn't generated for each chunk when using
1530 * descriptor mode. Only update the running chunk pointer in
1531 * non-descriptor mode.
1533 if (!desc
->hwdescs
.use
) {
1535 * If we haven't completed the last transfer chunk simply move
1536 * to the next one. Only wake the IRQ thread if the transfer is
1539 if (!list_is_last(&desc
->running
->node
, &desc
->chunks
)) {
1540 desc
->running
= list_next_entry(desc
->running
, node
);
1547 * We've completed the last transfer chunk. If the transfer is
1548 * cyclic, move back to the first one.
1552 list_first_entry(&desc
->chunks
,
1553 struct rcar_dmac_xfer_chunk
,
1559 /* The descriptor is complete, move it to the done list. */
1560 list_move_tail(&desc
->node
, &chan
->desc
.done
);
1562 /* Queue the next descriptor, if any. */
1563 if (!list_empty(&chan
->desc
.active
))
1564 chan
->desc
.running
= list_first_entry(&chan
->desc
.active
,
1565 struct rcar_dmac_desc
,
1568 chan
->desc
.running
= NULL
;
1571 if (chan
->desc
.running
)
1572 rcar_dmac_chan_start_xfer(chan
);
1577 static irqreturn_t
rcar_dmac_isr_channel(int irq
, void *dev
)
1579 u32 mask
= RCAR_DMACHCR_DSE
| RCAR_DMACHCR_TE
;
1580 struct rcar_dmac_chan
*chan
= dev
;
1581 irqreturn_t ret
= IRQ_NONE
;
1582 bool reinit
= false;
1585 spin_lock(&chan
->lock
);
1587 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
1588 if (chcr
& RCAR_DMACHCR_CAE
) {
1589 struct rcar_dmac
*dmac
= to_rcar_dmac(chan
->chan
.device
);
1592 * We don't need to call rcar_dmac_chan_halt()
1593 * because channel is already stopped in error case.
1594 * We need to clear register and check DE bit as recovery.
1596 rcar_dmac_chan_clear(dmac
, chan
);
1597 rcar_dmac_chcr_de_barrier(chan
);
1602 if (chcr
& RCAR_DMACHCR_TE
)
1603 mask
|= RCAR_DMACHCR_DE
;
1604 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
, chcr
& ~mask
);
1605 if (mask
& RCAR_DMACHCR_DE
)
1606 rcar_dmac_chcr_de_barrier(chan
);
1608 if (chcr
& RCAR_DMACHCR_DSE
)
1609 ret
|= rcar_dmac_isr_desc_stage_end(chan
);
1611 if (chcr
& RCAR_DMACHCR_TE
)
1612 ret
|= rcar_dmac_isr_transfer_end(chan
);
1615 spin_unlock(&chan
->lock
);
1618 dev_err(chan
->chan
.device
->dev
, "Channel Address Error\n");
1620 rcar_dmac_chan_reinit(chan
);
1627 static irqreturn_t
rcar_dmac_isr_channel_thread(int irq
, void *dev
)
1629 struct rcar_dmac_chan
*chan
= dev
;
1630 struct rcar_dmac_desc
*desc
;
1631 struct dmaengine_desc_callback cb
;
1633 spin_lock_irq(&chan
->lock
);
1635 /* For cyclic transfers notify the user after every chunk. */
1636 if (chan
->desc
.running
&& chan
->desc
.running
->cyclic
) {
1637 desc
= chan
->desc
.running
;
1638 dmaengine_desc_get_callback(&desc
->async_tx
, &cb
);
1640 if (dmaengine_desc_callback_valid(&cb
)) {
1641 spin_unlock_irq(&chan
->lock
);
1642 dmaengine_desc_callback_invoke(&cb
, NULL
);
1643 spin_lock_irq(&chan
->lock
);
1648 * Call the callback function for all descriptors on the done list and
1649 * move them to the ack wait list.
1651 while (!list_empty(&chan
->desc
.done
)) {
1652 desc
= list_first_entry(&chan
->desc
.done
, struct rcar_dmac_desc
,
1654 dma_cookie_complete(&desc
->async_tx
);
1655 list_del(&desc
->node
);
1657 dmaengine_desc_get_callback(&desc
->async_tx
, &cb
);
1658 if (dmaengine_desc_callback_valid(&cb
)) {
1659 spin_unlock_irq(&chan
->lock
);
1661 * We own the only reference to this descriptor, we can
1662 * safely dereference it without holding the channel
1665 dmaengine_desc_callback_invoke(&cb
, NULL
);
1666 spin_lock_irq(&chan
->lock
);
1669 list_add_tail(&desc
->node
, &chan
->desc
.wait
);
1672 spin_unlock_irq(&chan
->lock
);
1674 /* Recycle all acked descriptors. */
1675 rcar_dmac_desc_recycle_acked(chan
);
1680 /* -----------------------------------------------------------------------------
1681 * OF xlate and channel filter
1684 static bool rcar_dmac_chan_filter(struct dma_chan
*chan
, void *arg
)
1686 struct rcar_dmac
*dmac
= to_rcar_dmac(chan
->device
);
1687 struct of_phandle_args
*dma_spec
= arg
;
1690 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1691 * function knows from which device it wants to allocate a channel from,
1692 * and would be perfectly capable of selecting the channel it wants.
1693 * Forcing it to call dma_request_channel() and iterate through all
1694 * channels from all controllers is just pointless.
1696 if (chan
->device
->device_config
!= rcar_dmac_device_config
)
1699 return !test_and_set_bit(dma_spec
->args
[0], dmac
->modules
);
1702 static struct dma_chan
*rcar_dmac_of_xlate(struct of_phandle_args
*dma_spec
,
1703 struct of_dma
*ofdma
)
1705 struct rcar_dmac_chan
*rchan
;
1706 struct dma_chan
*chan
;
1707 dma_cap_mask_t mask
;
1709 if (dma_spec
->args_count
!= 1)
1712 /* Only slave DMA channels can be allocated via DT */
1714 dma_cap_set(DMA_SLAVE
, mask
);
1716 chan
= __dma_request_channel(&mask
, rcar_dmac_chan_filter
, dma_spec
,
1721 rchan
= to_rcar_dmac_chan(chan
);
1722 rchan
->mid_rid
= dma_spec
->args
[0];
1727 /* -----------------------------------------------------------------------------
1732 static int rcar_dmac_runtime_suspend(struct device
*dev
)
1737 static int rcar_dmac_runtime_resume(struct device
*dev
)
1739 struct rcar_dmac
*dmac
= dev_get_drvdata(dev
);
1741 return rcar_dmac_init(dmac
);
1745 static const struct dev_pm_ops rcar_dmac_pm
= {
1747 * TODO for system sleep/resume:
1748 * - Wait for the current transfer to complete and stop the device,
1749 * - Resume transfers, if any.
1751 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1752 pm_runtime_force_resume
)
1753 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend
, rcar_dmac_runtime_resume
,
1757 /* -----------------------------------------------------------------------------
1761 static int rcar_dmac_chan_probe(struct rcar_dmac
*dmac
,
1762 struct rcar_dmac_chan
*rchan
)
1764 struct platform_device
*pdev
= to_platform_device(dmac
->dev
);
1765 struct dma_chan
*chan
= &rchan
->chan
;
1766 char pdev_irqname
[5];
1770 rchan
->mid_rid
= -EINVAL
;
1772 spin_lock_init(&rchan
->lock
);
1774 INIT_LIST_HEAD(&rchan
->desc
.free
);
1775 INIT_LIST_HEAD(&rchan
->desc
.pending
);
1776 INIT_LIST_HEAD(&rchan
->desc
.active
);
1777 INIT_LIST_HEAD(&rchan
->desc
.done
);
1778 INIT_LIST_HEAD(&rchan
->desc
.wait
);
1780 /* Request the channel interrupt. */
1781 sprintf(pdev_irqname
, "ch%u", rchan
->index
);
1782 rchan
->irq
= platform_get_irq_byname(pdev
, pdev_irqname
);
1786 irqname
= devm_kasprintf(dmac
->dev
, GFP_KERNEL
, "%s:%u",
1787 dev_name(dmac
->dev
), rchan
->index
);
1792 * Initialize the DMA engine channel and add it to the DMA engine
1795 chan
->device
= &dmac
->engine
;
1796 dma_cookie_init(chan
);
1798 list_add_tail(&chan
->device_node
, &dmac
->engine
.channels
);
1800 ret
= devm_request_threaded_irq(dmac
->dev
, rchan
->irq
,
1801 rcar_dmac_isr_channel
,
1802 rcar_dmac_isr_channel_thread
, 0,
1805 dev_err(dmac
->dev
, "failed to request IRQ %u (%d)\n",
1813 #define RCAR_DMAC_MAX_CHANNELS 32
1815 static int rcar_dmac_parse_of(struct device
*dev
, struct rcar_dmac
*dmac
)
1817 struct device_node
*np
= dev
->of_node
;
1820 ret
= of_property_read_u32(np
, "dma-channels", &dmac
->n_channels
);
1822 dev_err(dev
, "unable to read dma-channels property\n");
1826 /* The hardware and driver don't support more than 32 bits in CHCLR */
1827 if (dmac
->n_channels
<= 0 ||
1828 dmac
->n_channels
>= RCAR_DMAC_MAX_CHANNELS
) {
1829 dev_err(dev
, "invalid number of channels %u\n",
1835 * If the driver is unable to read dma-channel-mask property,
1836 * the driver assumes that it can use all channels.
1838 dmac
->channels_mask
= GENMASK(dmac
->n_channels
- 1, 0);
1839 of_property_read_u32(np
, "dma-channel-mask", &dmac
->channels_mask
);
1841 /* If the property has out-of-channel mask, this driver clears it */
1842 dmac
->channels_mask
&= GENMASK(dmac
->n_channels
- 1, 0);
1847 static int rcar_dmac_probe(struct platform_device
*pdev
)
1849 const enum dma_slave_buswidth widths
= DMA_SLAVE_BUSWIDTH_1_BYTE
|
1850 DMA_SLAVE_BUSWIDTH_2_BYTES
| DMA_SLAVE_BUSWIDTH_4_BYTES
|
1851 DMA_SLAVE_BUSWIDTH_8_BYTES
| DMA_SLAVE_BUSWIDTH_16_BYTES
|
1852 DMA_SLAVE_BUSWIDTH_32_BYTES
| DMA_SLAVE_BUSWIDTH_64_BYTES
;
1853 const struct rcar_dmac_of_data
*data
;
1854 struct rcar_dmac_chan
*chan
;
1855 struct dma_device
*engine
;
1856 void __iomem
*chan_base
;
1857 struct rcar_dmac
*dmac
;
1861 data
= of_device_get_match_data(&pdev
->dev
);
1865 dmac
= devm_kzalloc(&pdev
->dev
, sizeof(*dmac
), GFP_KERNEL
);
1869 dmac
->dev
= &pdev
->dev
;
1870 platform_set_drvdata(pdev
, dmac
);
1871 dma_set_max_seg_size(dmac
->dev
, RCAR_DMATCR_MASK
);
1873 ret
= dma_set_mask_and_coherent(dmac
->dev
, DMA_BIT_MASK(40));
1877 ret
= rcar_dmac_parse_of(&pdev
->dev
, dmac
);
1882 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1883 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1884 * is connected to microTLB 0 on currently supported platforms, so we
1885 * can't use it with the IPMMU. As the IOMMU API operates at the device
1886 * level we can't disable it selectively, so ignore channel 0 for now if
1887 * the device is part of an IOMMU group.
1889 if (device_iommu_mapped(&pdev
->dev
))
1890 dmac
->channels_mask
&= ~BIT(0);
1892 dmac
->channels
= devm_kcalloc(&pdev
->dev
, dmac
->n_channels
,
1893 sizeof(*dmac
->channels
), GFP_KERNEL
);
1894 if (!dmac
->channels
)
1897 /* Request resources. */
1898 dmac
->dmac_base
= devm_platform_ioremap_resource(pdev
, 0);
1899 if (IS_ERR(dmac
->dmac_base
))
1900 return PTR_ERR(dmac
->dmac_base
);
1902 if (!data
->chan_offset_base
) {
1903 dmac
->chan_base
= devm_platform_ioremap_resource(pdev
, 1);
1904 if (IS_ERR(dmac
->chan_base
))
1905 return PTR_ERR(dmac
->chan_base
);
1907 chan_base
= dmac
->chan_base
;
1909 chan_base
= dmac
->dmac_base
+ data
->chan_offset_base
;
1912 for_each_rcar_dmac_chan(i
, dmac
, chan
) {
1914 chan
->iomem
= chan_base
+ i
* data
->chan_offset_stride
;
1917 /* Enable runtime PM and initialize the device. */
1918 pm_runtime_enable(&pdev
->dev
);
1919 ret
= pm_runtime_resume_and_get(&pdev
->dev
);
1921 dev_err(&pdev
->dev
, "runtime PM get sync failed (%d)\n", ret
);
1922 goto err_pm_disable
;
1925 ret
= rcar_dmac_init(dmac
);
1926 pm_runtime_put(&pdev
->dev
);
1929 dev_err(&pdev
->dev
, "failed to reset device\n");
1930 goto err_pm_disable
;
1933 /* Initialize engine */
1934 engine
= &dmac
->engine
;
1936 dma_cap_set(DMA_MEMCPY
, engine
->cap_mask
);
1937 dma_cap_set(DMA_SLAVE
, engine
->cap_mask
);
1939 engine
->dev
= &pdev
->dev
;
1940 engine
->copy_align
= ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE
);
1942 engine
->src_addr_widths
= widths
;
1943 engine
->dst_addr_widths
= widths
;
1944 engine
->directions
= BIT(DMA_MEM_TO_DEV
) | BIT(DMA_DEV_TO_MEM
);
1945 engine
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1947 engine
->device_alloc_chan_resources
= rcar_dmac_alloc_chan_resources
;
1948 engine
->device_free_chan_resources
= rcar_dmac_free_chan_resources
;
1949 engine
->device_prep_dma_memcpy
= rcar_dmac_prep_dma_memcpy
;
1950 engine
->device_prep_slave_sg
= rcar_dmac_prep_slave_sg
;
1951 engine
->device_prep_dma_cyclic
= rcar_dmac_prep_dma_cyclic
;
1952 engine
->device_config
= rcar_dmac_device_config
;
1953 engine
->device_pause
= rcar_dmac_chan_pause
;
1954 engine
->device_terminate_all
= rcar_dmac_chan_terminate_all
;
1955 engine
->device_tx_status
= rcar_dmac_tx_status
;
1956 engine
->device_issue_pending
= rcar_dmac_issue_pending
;
1957 engine
->device_synchronize
= rcar_dmac_device_synchronize
;
1959 INIT_LIST_HEAD(&engine
->channels
);
1961 for_each_rcar_dmac_chan(i
, dmac
, chan
) {
1962 ret
= rcar_dmac_chan_probe(dmac
, chan
);
1964 goto err_pm_disable
;
1967 /* Register the DMAC as a DMA provider for DT. */
1968 ret
= of_dma_controller_register(pdev
->dev
.of_node
, rcar_dmac_of_xlate
,
1971 goto err_pm_disable
;
1974 * Register the DMA engine device.
1976 * Default transfer size of 32 bytes requires 32-byte alignment.
1978 ret
= dma_async_device_register(engine
);
1985 of_dma_controller_free(pdev
->dev
.of_node
);
1987 pm_runtime_disable(&pdev
->dev
);
1991 static void rcar_dmac_remove(struct platform_device
*pdev
)
1993 struct rcar_dmac
*dmac
= platform_get_drvdata(pdev
);
1995 of_dma_controller_free(pdev
->dev
.of_node
);
1996 dma_async_device_unregister(&dmac
->engine
);
1998 pm_runtime_disable(&pdev
->dev
);
2001 static void rcar_dmac_shutdown(struct platform_device
*pdev
)
2003 struct rcar_dmac
*dmac
= platform_get_drvdata(pdev
);
2005 rcar_dmac_stop_all_chan(dmac
);
2008 static const struct rcar_dmac_of_data rcar_dmac_data
= {
2009 .chan_offset_base
= 0x8000,
2010 .chan_offset_stride
= 0x80,
2013 static const struct rcar_dmac_of_data rcar_gen4_dmac_data
= {
2014 .chan_offset_base
= 0x0,
2015 .chan_offset_stride
= 0x1000,
2018 static const struct of_device_id rcar_dmac_of_ids
[] = {
2020 .compatible
= "renesas,rcar-dmac",
2021 .data
= &rcar_dmac_data
,
2023 .compatible
= "renesas,rcar-gen4-dmac",
2024 .data
= &rcar_gen4_dmac_data
,
2026 .compatible
= "renesas,dmac-r8a779a0",
2027 .data
= &rcar_gen4_dmac_data
,
2031 MODULE_DEVICE_TABLE(of
, rcar_dmac_of_ids
);
2033 static struct platform_driver rcar_dmac_driver
= {
2035 .pm
= &rcar_dmac_pm
,
2036 .name
= "rcar-dmac",
2037 .of_match_table
= rcar_dmac_of_ids
,
2039 .probe
= rcar_dmac_probe
,
2040 .remove
= rcar_dmac_remove
,
2041 .shutdown
= rcar_dmac_shutdown
,
2044 module_platform_driver(rcar_dmac_driver
);
2046 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
2047 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
2048 MODULE_LICENSE("GPL v2");