1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Ericsson AB 2007-2008
4 * Copyright (C) ST-Ericsson SA 2008-2010
5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
22 #include <linux/of_address.h>
23 #include <linux/of_dma.h>
24 #include <linux/amba/bus.h>
25 #include <linux/regulator/consumer.h>
27 #include "dmaengine.h"
28 #include "ste_dma40.h"
29 #include "ste_dma40_ll.h"
32 * struct stedma40_platform_data - Configuration struct for the dma device.
34 * @disabled_channels: A vector, ending with -1, that marks physical channels
35 * that are for different reasons not available for the driver.
36 * @soft_lli_chans: A vector, that marks physical channels will use LLI by SW
37 * which avoids HW bug that exists in some versions of the controller.
38 * SoftLLI introduces relink overhead that could impact performance for
40 * @num_of_soft_lli_chans: The number of channels that needs to be configured
42 * @use_esram_lcla: flag for mapping the lcla into esram region
43 * @num_of_memcpy_chans: The number of channels reserved for memcpy.
44 * @num_of_phy_chans: The number of physical channels implemented in HW.
45 * 0 means reading the number of channels from DMA HW but this is only valid
46 * for 'multiple of 4' channels, like 8.
48 struct stedma40_platform_data
{
49 int disabled_channels
[STEDMA40_MAX_PHYS
];
51 int num_of_soft_lli_chans
;
53 int num_of_memcpy_chans
;
57 #define D40_NAME "dma40"
59 #define D40_PHY_CHAN -1
61 /* For masking out/in 2 bit channel positions */
62 #define D40_CHAN_POS(chan) (2 * (chan / 2))
63 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
65 /* Maximum iterations taken before giving up suspending a channel */
66 #define D40_SUSPEND_MAX_IT 500
69 #define DMA40_AUTOSUSPEND_DELAY 100
71 /* Hardware requirement on LCLA alignment */
72 #define LCLA_ALIGNMENT 0x40000
74 /* Max number of links per event group */
75 #define D40_LCLA_LINK_PER_EVENT_GRP 128
76 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
78 /* Max number of logical channels per physical channel */
79 #define D40_MAX_LOG_CHAN_PER_PHY 32
81 /* Attempts before giving up to trying to get pages that are aligned */
82 #define MAX_LCLA_ALLOC_ATTEMPTS 256
84 /* Bit markings for allocation map */
85 #define D40_ALLOC_FREE BIT(31)
86 #define D40_ALLOC_PHY BIT(30)
87 #define D40_ALLOC_LOG_FREE 0
89 #define D40_MEMCPY_MAX_CHANS 8
91 /* Reserved event lines for memcpy only. */
92 #define DB8500_DMA_MEMCPY_EV_0 51
93 #define DB8500_DMA_MEMCPY_EV_1 56
94 #define DB8500_DMA_MEMCPY_EV_2 57
95 #define DB8500_DMA_MEMCPY_EV_3 58
96 #define DB8500_DMA_MEMCPY_EV_4 59
97 #define DB8500_DMA_MEMCPY_EV_5 60
99 static int dma40_memcpy_channels
[] = {
100 DB8500_DMA_MEMCPY_EV_0
,
101 DB8500_DMA_MEMCPY_EV_1
,
102 DB8500_DMA_MEMCPY_EV_2
,
103 DB8500_DMA_MEMCPY_EV_3
,
104 DB8500_DMA_MEMCPY_EV_4
,
105 DB8500_DMA_MEMCPY_EV_5
,
108 /* Default configuration for physical memcpy */
109 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy
= {
110 .mode
= STEDMA40_MODE_PHYSICAL
,
111 .dir
= DMA_MEM_TO_MEM
,
113 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
114 .src_info
.psize
= STEDMA40_PSIZE_PHY_1
,
115 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
117 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
118 .dst_info
.psize
= STEDMA40_PSIZE_PHY_1
,
119 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
122 /* Default configuration for logical memcpy */
123 static const struct stedma40_chan_cfg dma40_memcpy_conf_log
= {
124 .mode
= STEDMA40_MODE_LOGICAL
,
125 .dir
= DMA_MEM_TO_MEM
,
127 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
128 .src_info
.psize
= STEDMA40_PSIZE_LOG_1
,
129 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
131 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
132 .dst_info
.psize
= STEDMA40_PSIZE_LOG_1
,
133 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
137 * enum d40_command - The different commands and/or statuses.
139 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
140 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
141 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
142 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
147 D40_DMA_SUSPEND_REQ
= 2,
148 D40_DMA_SUSPENDED
= 3
152 * enum d40_events - The different Event Enables for the event lines.
154 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
155 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
156 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
157 * @D40_ROUND_EVENTLINE: Status check for event line.
161 D40_DEACTIVATE_EVENTLINE
= 0,
162 D40_ACTIVATE_EVENTLINE
= 1,
163 D40_SUSPEND_REQ_EVENTLINE
= 2,
164 D40_ROUND_EVENTLINE
= 3
168 * These are the registers that has to be saved and later restored
169 * when the DMA hw is powered off.
170 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
172 static __maybe_unused u32 d40_backup_regs
[] = {
181 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
184 * since 9540 and 8540 has the same HW revision
185 * use v4a for 9540 or earlier
186 * use v4b for 8540 or later
188 * DB8500ed has revision 0
189 * DB8500v1 has revision 2
190 * DB8500v2 has revision 3
191 * AP9540v1 has revision 4
192 * DB8540v1 has revision 4
193 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
195 static u32 d40_backup_regs_v4a
[] = {
214 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
216 static u32 d40_backup_regs_v4b
[] = {
239 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
241 static __maybe_unused u32 d40_backup_regs_chan
[] = {
252 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
253 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
256 * struct d40_interrupt_lookup - lookup table for interrupt handler
258 * @src: Interrupt mask register.
259 * @clr: Interrupt clear register.
260 * @is_error: true if this is an error interrupt.
261 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
262 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
264 struct d40_interrupt_lookup
{
272 static struct d40_interrupt_lookup il_v4a
[] = {
273 {D40_DREG_LCTIS0
, D40_DREG_LCICR0
, false, 0},
274 {D40_DREG_LCTIS1
, D40_DREG_LCICR1
, false, 32},
275 {D40_DREG_LCTIS2
, D40_DREG_LCICR2
, false, 64},
276 {D40_DREG_LCTIS3
, D40_DREG_LCICR3
, false, 96},
277 {D40_DREG_LCEIS0
, D40_DREG_LCICR0
, true, 0},
278 {D40_DREG_LCEIS1
, D40_DREG_LCICR1
, true, 32},
279 {D40_DREG_LCEIS2
, D40_DREG_LCICR2
, true, 64},
280 {D40_DREG_LCEIS3
, D40_DREG_LCICR3
, true, 96},
281 {D40_DREG_PCTIS
, D40_DREG_PCICR
, false, D40_PHY_CHAN
},
282 {D40_DREG_PCEIS
, D40_DREG_PCICR
, true, D40_PHY_CHAN
},
285 static struct d40_interrupt_lookup il_v4b
[] = {
286 {D40_DREG_CLCTIS1
, D40_DREG_CLCICR1
, false, 0},
287 {D40_DREG_CLCTIS2
, D40_DREG_CLCICR2
, false, 32},
288 {D40_DREG_CLCTIS3
, D40_DREG_CLCICR3
, false, 64},
289 {D40_DREG_CLCTIS4
, D40_DREG_CLCICR4
, false, 96},
290 {D40_DREG_CLCTIS5
, D40_DREG_CLCICR5
, false, 128},
291 {D40_DREG_CLCEIS1
, D40_DREG_CLCICR1
, true, 0},
292 {D40_DREG_CLCEIS2
, D40_DREG_CLCICR2
, true, 32},
293 {D40_DREG_CLCEIS3
, D40_DREG_CLCICR3
, true, 64},
294 {D40_DREG_CLCEIS4
, D40_DREG_CLCICR4
, true, 96},
295 {D40_DREG_CLCEIS5
, D40_DREG_CLCICR5
, true, 128},
296 {D40_DREG_CPCTIS
, D40_DREG_CPCICR
, false, D40_PHY_CHAN
},
297 {D40_DREG_CPCEIS
, D40_DREG_CPCICR
, true, D40_PHY_CHAN
},
301 * struct d40_reg_val - simple lookup struct
303 * @reg: The register.
304 * @val: The value that belongs to the register in reg.
311 static __initdata
struct d40_reg_val dma_init_reg_v4a
[] = {
312 /* Clock every part of the DMA block from start */
313 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
315 /* Interrupts on all logical channels */
316 { .reg
= D40_DREG_LCMIS0
, .val
= 0xFFFFFFFF},
317 { .reg
= D40_DREG_LCMIS1
, .val
= 0xFFFFFFFF},
318 { .reg
= D40_DREG_LCMIS2
, .val
= 0xFFFFFFFF},
319 { .reg
= D40_DREG_LCMIS3
, .val
= 0xFFFFFFFF},
320 { .reg
= D40_DREG_LCICR0
, .val
= 0xFFFFFFFF},
321 { .reg
= D40_DREG_LCICR1
, .val
= 0xFFFFFFFF},
322 { .reg
= D40_DREG_LCICR2
, .val
= 0xFFFFFFFF},
323 { .reg
= D40_DREG_LCICR3
, .val
= 0xFFFFFFFF},
324 { .reg
= D40_DREG_LCTIS0
, .val
= 0xFFFFFFFF},
325 { .reg
= D40_DREG_LCTIS1
, .val
= 0xFFFFFFFF},
326 { .reg
= D40_DREG_LCTIS2
, .val
= 0xFFFFFFFF},
327 { .reg
= D40_DREG_LCTIS3
, .val
= 0xFFFFFFFF}
329 static __initdata
struct d40_reg_val dma_init_reg_v4b
[] = {
330 /* Clock every part of the DMA block from start */
331 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
333 /* Interrupts on all logical channels */
334 { .reg
= D40_DREG_CLCMIS1
, .val
= 0xFFFFFFFF},
335 { .reg
= D40_DREG_CLCMIS2
, .val
= 0xFFFFFFFF},
336 { .reg
= D40_DREG_CLCMIS3
, .val
= 0xFFFFFFFF},
337 { .reg
= D40_DREG_CLCMIS4
, .val
= 0xFFFFFFFF},
338 { .reg
= D40_DREG_CLCMIS5
, .val
= 0xFFFFFFFF},
339 { .reg
= D40_DREG_CLCICR1
, .val
= 0xFFFFFFFF},
340 { .reg
= D40_DREG_CLCICR2
, .val
= 0xFFFFFFFF},
341 { .reg
= D40_DREG_CLCICR3
, .val
= 0xFFFFFFFF},
342 { .reg
= D40_DREG_CLCICR4
, .val
= 0xFFFFFFFF},
343 { .reg
= D40_DREG_CLCICR5
, .val
= 0xFFFFFFFF},
344 { .reg
= D40_DREG_CLCTIS1
, .val
= 0xFFFFFFFF},
345 { .reg
= D40_DREG_CLCTIS2
, .val
= 0xFFFFFFFF},
346 { .reg
= D40_DREG_CLCTIS3
, .val
= 0xFFFFFFFF},
347 { .reg
= D40_DREG_CLCTIS4
, .val
= 0xFFFFFFFF},
348 { .reg
= D40_DREG_CLCTIS5
, .val
= 0xFFFFFFFF}
352 * struct d40_lli_pool - Structure for keeping LLIs in memory
354 * @base: Pointer to memory area when the pre_alloc_lli's are not large
355 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
356 * pre_alloc_lli is used.
357 * @dma_addr: DMA address, if mapped
358 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
359 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
360 * one buffer to one buffer.
362 struct d40_lli_pool
{
366 /* Space for dst and src, plus an extra for padding */
367 u8 pre_alloc_lli
[3 * sizeof(struct d40_phy_lli
)];
371 * struct d40_desc - A descriptor is one DMA job.
373 * @lli_phy: LLI settings for physical channel. Both src and dst=
374 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
375 * lli_len equals one.
376 * @lli_log: Same as above but for logical channels.
377 * @lli_pool: The pool with two entries pre-allocated.
378 * @lli_len: Number of llis of current descriptor.
379 * @lli_current: Number of transferred llis.
380 * @lcla_alloc: Number of LCLA entries allocated.
381 * @txd: DMA engine struct. Used for among other things for communication
384 * @is_in_client_list: true if the client owns this descriptor.
385 * @cyclic: true if this is a cyclic job
387 * This descriptor is used for both logical and physical transfers.
391 struct d40_phy_lli_bidir lli_phy
;
393 struct d40_log_lli_bidir lli_log
;
395 struct d40_lli_pool lli_pool
;
400 struct dma_async_tx_descriptor txd
;
401 struct list_head node
;
403 bool is_in_client_list
;
408 * struct d40_lcla_pool - LCLA pool settings and data.
410 * @base: The virtual address of LCLA. 18 bit aligned.
411 * @dma_addr: DMA address, if mapped
412 * @base_unaligned: The original kmalloc pointer, if kmalloc is used.
413 * This pointer is only there for clean-up on error.
414 * @pages: The number of pages needed for all physical channels.
415 * Only used later for clean-up on error
416 * @lock: Lock to protect the content in this struct.
417 * @alloc_map: big map over which LCLA entry is own by which job.
419 struct d40_lcla_pool
{
422 void *base_unaligned
;
425 struct d40_desc
**alloc_map
;
429 * struct d40_phy_res - struct for handling eventlines mapped to physical
432 * @lock: A lock protection this entity.
433 * @reserved: True if used by secure world or otherwise.
434 * @num: The physical channel number of this entity.
435 * @allocated_src: Bit mapped to show which src event line's are mapped to
436 * this physical channel. Can also be free or physically allocated.
437 * @allocated_dst: Same as for src but is dst.
438 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
440 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
454 * struct d40_chan - Struct that describes a channel.
456 * @lock: A spinlock to protect this struct.
457 * @log_num: The logical number, if any of this channel.
458 * @pending_tx: The number of pending transfers. Used between interrupt handler
460 * @busy: Set to true when transfer is ongoing on this channel.
461 * @phy_chan: Pointer to physical channel which this instance runs on. If this
462 * point is NULL, then the channel is not allocated.
463 * @chan: DMA engine handle.
464 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
465 * transfer and call client callback.
466 * @client: Cliented owned descriptor list.
467 * @pending_queue: Submitted jobs, to be issued by issue_pending()
468 * @active: Active descriptor.
469 * @done: Completed jobs
470 * @queue: Queued jobs.
471 * @prepare_queue: Prepared jobs.
472 * @dma_cfg: The client configuration of this dma channel.
473 * @slave_config: DMA slave configuration.
474 * @configured: whether the dma_cfg configuration is valid
475 * @base: Pointer to the device instance struct.
476 * @src_def_cfg: Default cfg register setting for src.
477 * @dst_def_cfg: Default cfg register setting for dst.
478 * @log_def: Default logical channel settings.
479 * @lcpa: Pointer to dst and src lcpa settings.
480 * @runtime_addr: runtime configured address.
481 * @runtime_direction: runtime configured direction.
483 * This struct can either "be" a logical or a physical channel.
490 struct d40_phy_res
*phy_chan
;
491 struct dma_chan chan
;
492 struct tasklet_struct tasklet
;
493 struct list_head client
;
494 struct list_head pending_queue
;
495 struct list_head active
;
496 struct list_head done
;
497 struct list_head queue
;
498 struct list_head prepare_queue
;
499 struct stedma40_chan_cfg dma_cfg
;
500 struct dma_slave_config slave_config
;
502 struct d40_base
*base
;
503 /* Default register configurations */
506 struct d40_def_lcsp log_def
;
507 struct d40_log_lli_full
*lcpa
;
508 /* Runtime reconfiguration */
509 dma_addr_t runtime_addr
;
510 enum dma_transfer_direction runtime_direction
;
514 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
517 * @backup: the pointer to the registers address array for backup
518 * @backup_size: the size of the registers address array for backup
519 * @realtime_en: the realtime enable register
520 * @realtime_clear: the realtime clear register
521 * @high_prio_en: the high priority enable register
522 * @high_prio_clear: the high priority clear register
523 * @interrupt_en: the interrupt enable register
524 * @interrupt_clear: the interrupt clear register
525 * @il: the pointer to struct d40_interrupt_lookup
526 * @il_size: the size of d40_interrupt_lookup array
527 * @init_reg: the pointer to the struct d40_reg_val
528 * @init_reg_size: the size of d40_reg_val array
530 struct d40_gen_dmac
{
539 struct d40_interrupt_lookup
*il
;
541 struct d40_reg_val
*init_reg
;
546 * struct d40_base - The big global struct, one for each probe'd instance.
548 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
549 * @execmd_lock: Lock for execute command usage since several channels share
550 * the same physical register.
551 * @dev: The device structure.
552 * @virtbase: The virtual base address of the DMA's register.
553 * @rev: silicon revision detected.
554 * @clk: Pointer to the DMA clock structure.
555 * @irq: The IRQ number.
556 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
558 * @num_phy_chans: The number of physical channels. Read from HW. This
559 * is the number of available channels for this driver, not counting "Secure
560 * mode" allocated physical channels.
561 * @num_log_chans: The number of logical channels. Calculated from
563 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
564 * @dma_slave: dma_device channels that can do only do slave transfers.
565 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
566 * @phy_chans: Room for all possible physical channels in system.
567 * @log_chans: Room for all possible logical channels in system.
568 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
569 * to log_chans entries.
570 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
571 * to phy_chans entries.
572 * @plat_data: Pointer to provided platform_data which is the driver
574 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
575 * @phy_res: Vector containing all physical channels.
576 * @lcla_pool: lcla pool settings and data.
577 * @lcpa_base: The virtual mapped address of LCPA.
578 * @phy_lcpa: The physical address of the LCPA.
579 * @lcpa_size: The size of the LCPA area.
580 * @desc_slab: cache for descriptors.
581 * @reg_val_backup: Here the values of some hardware registers are stored
582 * before the DMA is powered off. They are restored when the power is back on.
583 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
585 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
586 * @regs_interrupt: Scratch space for registers during interrupt.
587 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
588 * @gen_dmac: the struct for generic registers values to represent u8500/8540
592 spinlock_t interrupt_lock
;
593 spinlock_t execmd_lock
;
595 void __iomem
*virtbase
;
599 int num_memcpy_chans
;
602 struct dma_device dma_both
;
603 struct dma_device dma_slave
;
604 struct dma_device dma_memcpy
;
605 struct d40_chan
*phy_chans
;
606 struct d40_chan
*log_chans
;
607 struct d40_chan
**lookup_log_chans
;
608 struct d40_chan
**lookup_phy_chans
;
609 struct stedma40_platform_data
*plat_data
;
610 struct regulator
*lcpa_regulator
;
611 /* Physical half channels */
612 struct d40_phy_res
*phy_res
;
613 struct d40_lcla_pool lcla_pool
;
616 resource_size_t lcpa_size
;
617 struct kmem_cache
*desc_slab
;
618 u32 reg_val_backup
[BACKUP_REGS_SZ
];
619 u32 reg_val_backup_v4
[BACKUP_REGS_SZ_MAX
];
620 u32
*reg_val_backup_chan
;
622 u16 gcc_pwr_off_mask
;
623 struct d40_gen_dmac gen_dmac
;
626 static struct device
*chan2dev(struct d40_chan
*d40c
)
628 return &d40c
->chan
.dev
->device
;
631 static bool chan_is_physical(struct d40_chan
*chan
)
633 return chan
->log_num
== D40_PHY_CHAN
;
636 static bool chan_is_logical(struct d40_chan
*chan
)
638 return !chan_is_physical(chan
);
641 static void __iomem
*chan_base(struct d40_chan
*chan
)
643 return chan
->base
->virtbase
+ D40_DREG_PCBASE
+
644 chan
->phy_chan
->num
* D40_DREG_PCDELTA
;
647 #define d40_err(dev, format, arg...) \
648 dev_err(dev, "[%s] " format, __func__, ## arg)
650 #define chan_err(d40c, format, arg...) \
651 d40_err(chan2dev(d40c), format, ## arg)
653 static int d40_set_runtime_config_write(struct dma_chan
*chan
,
654 struct dma_slave_config
*config
,
655 enum dma_transfer_direction direction
);
657 static int d40_pool_lli_alloc(struct d40_chan
*d40c
, struct d40_desc
*d40d
,
660 bool is_log
= chan_is_logical(d40c
);
665 align
= sizeof(struct d40_log_lli
);
667 align
= sizeof(struct d40_phy_lli
);
670 base
= d40d
->lli_pool
.pre_alloc_lli
;
671 d40d
->lli_pool
.size
= sizeof(d40d
->lli_pool
.pre_alloc_lli
);
672 d40d
->lli_pool
.base
= NULL
;
674 d40d
->lli_pool
.size
= lli_len
* 2 * align
;
676 base
= kmalloc(d40d
->lli_pool
.size
+ align
, GFP_NOWAIT
);
677 d40d
->lli_pool
.base
= base
;
679 if (d40d
->lli_pool
.base
== NULL
)
684 d40d
->lli_log
.src
= PTR_ALIGN(base
, align
);
685 d40d
->lli_log
.dst
= d40d
->lli_log
.src
+ lli_len
;
687 d40d
->lli_pool
.dma_addr
= 0;
689 d40d
->lli_phy
.src
= PTR_ALIGN(base
, align
);
690 d40d
->lli_phy
.dst
= d40d
->lli_phy
.src
+ lli_len
;
692 d40d
->lli_pool
.dma_addr
= dma_map_single(d40c
->base
->dev
,
697 if (dma_mapping_error(d40c
->base
->dev
,
698 d40d
->lli_pool
.dma_addr
)) {
699 kfree(d40d
->lli_pool
.base
);
700 d40d
->lli_pool
.base
= NULL
;
701 d40d
->lli_pool
.dma_addr
= 0;
709 static void d40_pool_lli_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
711 if (d40d
->lli_pool
.dma_addr
)
712 dma_unmap_single(d40c
->base
->dev
, d40d
->lli_pool
.dma_addr
,
713 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
715 kfree(d40d
->lli_pool
.base
);
716 d40d
->lli_pool
.base
= NULL
;
717 d40d
->lli_pool
.size
= 0;
718 d40d
->lli_log
.src
= NULL
;
719 d40d
->lli_log
.dst
= NULL
;
720 d40d
->lli_phy
.src
= NULL
;
721 d40d
->lli_phy
.dst
= NULL
;
724 static int d40_lcla_alloc_one(struct d40_chan
*d40c
,
725 struct d40_desc
*d40d
)
731 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
734 * Allocate both src and dst at the same time, therefore the half
735 * start on 1 since 0 can't be used since zero is used as end marker.
737 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
738 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
740 if (!d40c
->base
->lcla_pool
.alloc_map
[idx
]) {
741 d40c
->base
->lcla_pool
.alloc_map
[idx
] = d40d
;
748 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
753 static int d40_lcla_free_all(struct d40_chan
*d40c
,
754 struct d40_desc
*d40d
)
760 if (chan_is_physical(d40c
))
763 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
765 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
766 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
768 if (d40c
->base
->lcla_pool
.alloc_map
[idx
] == d40d
) {
769 d40c
->base
->lcla_pool
.alloc_map
[idx
] = NULL
;
771 if (d40d
->lcla_alloc
== 0) {
778 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
784 static void d40_desc_remove(struct d40_desc
*d40d
)
786 list_del(&d40d
->node
);
789 static struct d40_desc
*d40_desc_get(struct d40_chan
*d40c
)
791 struct d40_desc
*desc
= NULL
;
793 if (!list_empty(&d40c
->client
)) {
797 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
) {
798 if (async_tx_test_ack(&d
->txd
)) {
801 memset(desc
, 0, sizeof(*desc
));
808 desc
= kmem_cache_zalloc(d40c
->base
->desc_slab
, GFP_NOWAIT
);
811 INIT_LIST_HEAD(&desc
->node
);
816 static void d40_desc_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
819 d40_pool_lli_free(d40c
, d40d
);
820 d40_lcla_free_all(d40c
, d40d
);
821 kmem_cache_free(d40c
->base
->desc_slab
, d40d
);
824 static void d40_desc_submit(struct d40_chan
*d40c
, struct d40_desc
*desc
)
826 list_add_tail(&desc
->node
, &d40c
->active
);
829 static void d40_phy_lli_load(struct d40_chan
*chan
, struct d40_desc
*desc
)
831 struct d40_phy_lli
*lli_dst
= desc
->lli_phy
.dst
;
832 struct d40_phy_lli
*lli_src
= desc
->lli_phy
.src
;
833 void __iomem
*base
= chan_base(chan
);
835 writel(lli_src
->reg_cfg
, base
+ D40_CHAN_REG_SSCFG
);
836 writel(lli_src
->reg_elt
, base
+ D40_CHAN_REG_SSELT
);
837 writel(lli_src
->reg_ptr
, base
+ D40_CHAN_REG_SSPTR
);
838 writel(lli_src
->reg_lnk
, base
+ D40_CHAN_REG_SSLNK
);
840 writel(lli_dst
->reg_cfg
, base
+ D40_CHAN_REG_SDCFG
);
841 writel(lli_dst
->reg_elt
, base
+ D40_CHAN_REG_SDELT
);
842 writel(lli_dst
->reg_ptr
, base
+ D40_CHAN_REG_SDPTR
);
843 writel(lli_dst
->reg_lnk
, base
+ D40_CHAN_REG_SDLNK
);
846 static void d40_desc_done(struct d40_chan
*d40c
, struct d40_desc
*desc
)
848 list_add_tail(&desc
->node
, &d40c
->done
);
851 static void d40_log_lli_to_lcxa(struct d40_chan
*chan
, struct d40_desc
*desc
)
853 struct d40_lcla_pool
*pool
= &chan
->base
->lcla_pool
;
854 struct d40_log_lli_bidir
*lli
= &desc
->lli_log
;
855 int lli_current
= desc
->lli_current
;
856 int lli_len
= desc
->lli_len
;
857 bool cyclic
= desc
->cyclic
;
858 int curr_lcla
= -EINVAL
;
860 bool use_esram_lcla
= chan
->base
->plat_data
->use_esram_lcla
;
864 * We may have partially running cyclic transfers, in case we did't get
865 * enough LCLA entries.
867 linkback
= cyclic
&& lli_current
== 0;
870 * For linkback, we need one LCLA even with only one link, because we
871 * can't link back to the one in LCPA space
873 if (linkback
|| (lli_len
- lli_current
> 1)) {
875 * If the channel is expected to use only soft_lli don't
876 * allocate a lcla. This is to avoid a HW issue that exists
877 * in some controller during a peripheral to memory transfer
878 * that uses linked lists.
880 if (!(chan
->phy_chan
->use_soft_lli
&&
881 chan
->dma_cfg
.dir
== DMA_DEV_TO_MEM
))
882 curr_lcla
= d40_lcla_alloc_one(chan
, desc
);
884 first_lcla
= curr_lcla
;
888 * For linkback, we normally load the LCPA in the loop since we need to
889 * link it to the second LCLA and not the first. However, if we
890 * couldn't even get a first LCLA, then we have to run in LCPA and
893 if (!linkback
|| curr_lcla
== -EINVAL
) {
894 unsigned int flags
= 0;
896 if (curr_lcla
== -EINVAL
)
897 flags
|= LLI_TERM_INT
;
899 d40_log_lli_lcpa_write(chan
->lcpa
,
900 &lli
->dst
[lli_current
],
901 &lli
->src
[lli_current
],
910 for (; lli_current
< lli_len
; lli_current
++) {
911 unsigned int lcla_offset
= chan
->phy_chan
->num
* 1024 +
913 struct d40_log_lli
*lcla
= pool
->base
+ lcla_offset
;
914 unsigned int flags
= 0;
917 if (lli_current
+ 1 < lli_len
)
918 next_lcla
= d40_lcla_alloc_one(chan
, desc
);
920 next_lcla
= linkback
? first_lcla
: -EINVAL
;
922 if (cyclic
|| next_lcla
== -EINVAL
)
923 flags
|= LLI_TERM_INT
;
925 if (linkback
&& curr_lcla
== first_lcla
) {
926 /* First link goes in both LCPA and LCLA */
927 d40_log_lli_lcpa_write(chan
->lcpa
,
928 &lli
->dst
[lli_current
],
929 &lli
->src
[lli_current
],
934 * One unused LCLA in the cyclic case if the very first
937 d40_log_lli_lcla_write(lcla
,
938 &lli
->dst
[lli_current
],
939 &lli
->src
[lli_current
],
943 * Cache maintenance is not needed if lcla is
946 if (!use_esram_lcla
) {
947 dma_sync_single_range_for_device(chan
->base
->dev
,
948 pool
->dma_addr
, lcla_offset
,
949 2 * sizeof(struct d40_log_lli
),
952 curr_lcla
= next_lcla
;
954 if (curr_lcla
== -EINVAL
|| curr_lcla
== first_lcla
) {
960 desc
->lli_current
= lli_current
;
963 static void d40_desc_load(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
965 if (chan_is_physical(d40c
)) {
966 d40_phy_lli_load(d40c
, d40d
);
967 d40d
->lli_current
= d40d
->lli_len
;
969 d40_log_lli_to_lcxa(d40c
, d40d
);
972 static struct d40_desc
*d40_first_active_get(struct d40_chan
*d40c
)
974 return list_first_entry_or_null(&d40c
->active
, struct d40_desc
, node
);
977 /* remove desc from current queue and add it to the pending_queue */
978 static void d40_desc_queue(struct d40_chan
*d40c
, struct d40_desc
*desc
)
980 d40_desc_remove(desc
);
981 desc
->is_in_client_list
= false;
982 list_add_tail(&desc
->node
, &d40c
->pending_queue
);
985 static struct d40_desc
*d40_first_pending(struct d40_chan
*d40c
)
987 return list_first_entry_or_null(&d40c
->pending_queue
, struct d40_desc
,
991 static struct d40_desc
*d40_first_queued(struct d40_chan
*d40c
)
993 return list_first_entry_or_null(&d40c
->queue
, struct d40_desc
, node
);
996 static struct d40_desc
*d40_first_done(struct d40_chan
*d40c
)
998 return list_first_entry_or_null(&d40c
->done
, struct d40_desc
, node
);
1001 static int d40_psize_2_burst_size(bool is_log
, int psize
)
1004 if (psize
== STEDMA40_PSIZE_LOG_1
)
1007 if (psize
== STEDMA40_PSIZE_PHY_1
)
1015 * The dma only supports transmitting packages up to
1016 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1018 * Calculate the total number of dma elements required to send the entire sg list.
1020 static int d40_size_2_dmalen(int size
, u32 data_width1
, u32 data_width2
)
1023 u32 max_w
= max(data_width1
, data_width2
);
1024 u32 min_w
= min(data_width1
, data_width2
);
1025 u32 seg_max
= ALIGN(STEDMA40_MAX_SEG_SIZE
* min_w
, max_w
);
1027 if (seg_max
> STEDMA40_MAX_SEG_SIZE
)
1030 if (!IS_ALIGNED(size
, max_w
))
1033 if (size
<= seg_max
)
1036 dmalen
= size
/ seg_max
;
1037 if (dmalen
* seg_max
< size
)
1043 static int d40_sg_2_dmalen(struct scatterlist
*sgl
, int sg_len
,
1044 u32 data_width1
, u32 data_width2
)
1046 struct scatterlist
*sg
;
1051 for_each_sg(sgl
, sg
, sg_len
, i
) {
1052 ret
= d40_size_2_dmalen(sg_dma_len(sg
),
1053 data_width1
, data_width2
);
1061 static int __d40_execute_command_phy(struct d40_chan
*d40c
,
1062 enum d40_command command
)
1066 void __iomem
*active_reg
;
1068 unsigned long flags
;
1071 if (command
== D40_DMA_STOP
) {
1072 ret
= __d40_execute_command_phy(d40c
, D40_DMA_SUSPEND_REQ
);
1077 spin_lock_irqsave(&d40c
->base
->execmd_lock
, flags
);
1079 if (d40c
->phy_chan
->num
% 2 == 0)
1080 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1082 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1084 if (command
== D40_DMA_SUSPEND_REQ
) {
1085 status
= (readl(active_reg
) &
1086 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1087 D40_CHAN_POS(d40c
->phy_chan
->num
);
1089 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
1093 wmask
= 0xffffffff & ~(D40_CHAN_POS_MASK(d40c
->phy_chan
->num
));
1094 writel(wmask
| (command
<< D40_CHAN_POS(d40c
->phy_chan
->num
)),
1097 if (command
== D40_DMA_SUSPEND_REQ
) {
1099 for (i
= 0 ; i
< D40_SUSPEND_MAX_IT
; i
++) {
1100 status
= (readl(active_reg
) &
1101 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1102 D40_CHAN_POS(d40c
->phy_chan
->num
);
1106 * Reduce the number of bus accesses while
1107 * waiting for the DMA to suspend.
1111 if (status
== D40_DMA_STOP
||
1112 status
== D40_DMA_SUSPENDED
)
1116 if (i
== D40_SUSPEND_MAX_IT
) {
1118 "unable to suspend the chl %d (log: %d) status %x\n",
1119 d40c
->phy_chan
->num
, d40c
->log_num
,
1127 spin_unlock_irqrestore(&d40c
->base
->execmd_lock
, flags
);
1131 static void d40_term_all(struct d40_chan
*d40c
)
1133 struct d40_desc
*d40d
;
1134 struct d40_desc
*_d
;
1136 /* Release completed descriptors */
1137 while ((d40d
= d40_first_done(d40c
))) {
1138 d40_desc_remove(d40d
);
1139 d40_desc_free(d40c
, d40d
);
1142 /* Release active descriptors */
1143 while ((d40d
= d40_first_active_get(d40c
))) {
1144 d40_desc_remove(d40d
);
1145 d40_desc_free(d40c
, d40d
);
1148 /* Release queued descriptors waiting for transfer */
1149 while ((d40d
= d40_first_queued(d40c
))) {
1150 d40_desc_remove(d40d
);
1151 d40_desc_free(d40c
, d40d
);
1154 /* Release pending descriptors */
1155 while ((d40d
= d40_first_pending(d40c
))) {
1156 d40_desc_remove(d40d
);
1157 d40_desc_free(d40c
, d40d
);
1160 /* Release client owned descriptors */
1161 if (!list_empty(&d40c
->client
))
1162 list_for_each_entry_safe(d40d
, _d
, &d40c
->client
, node
) {
1163 d40_desc_remove(d40d
);
1164 d40_desc_free(d40c
, d40d
);
1167 /* Release descriptors in prepare queue */
1168 if (!list_empty(&d40c
->prepare_queue
))
1169 list_for_each_entry_safe(d40d
, _d
,
1170 &d40c
->prepare_queue
, node
) {
1171 d40_desc_remove(d40d
);
1172 d40_desc_free(d40c
, d40d
);
1175 d40c
->pending_tx
= 0;
1178 static void __d40_config_set_event(struct d40_chan
*d40c
,
1179 enum d40_events event_type
, u32 event
,
1182 void __iomem
*addr
= chan_base(d40c
) + reg
;
1186 switch (event_type
) {
1188 case D40_DEACTIVATE_EVENTLINE
:
1190 writel((D40_DEACTIVATE_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1191 | ~D40_EVENTLINE_MASK(event
), addr
);
1194 case D40_SUSPEND_REQ_EVENTLINE
:
1195 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1196 D40_EVENTLINE_POS(event
);
1198 if (status
== D40_DEACTIVATE_EVENTLINE
||
1199 status
== D40_SUSPEND_REQ_EVENTLINE
)
1202 writel((D40_SUSPEND_REQ_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1203 | ~D40_EVENTLINE_MASK(event
), addr
);
1205 for (tries
= 0 ; tries
< D40_SUSPEND_MAX_IT
; tries
++) {
1207 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1208 D40_EVENTLINE_POS(event
);
1212 * Reduce the number of bus accesses while
1213 * waiting for the DMA to suspend.
1217 if (status
== D40_DEACTIVATE_EVENTLINE
)
1221 if (tries
== D40_SUSPEND_MAX_IT
) {
1223 "unable to stop the event_line chl %d (log: %d)"
1224 "status %x\n", d40c
->phy_chan
->num
,
1225 d40c
->log_num
, status
);
1229 case D40_ACTIVATE_EVENTLINE
:
1231 * The hardware sometimes doesn't register the enable when src and dst
1232 * event lines are active on the same logical channel. Retry to ensure
1233 * it does. Usually only one retry is sufficient.
1237 writel((D40_ACTIVATE_EVENTLINE
<<
1238 D40_EVENTLINE_POS(event
)) |
1239 ~D40_EVENTLINE_MASK(event
), addr
);
1241 if (readl(addr
) & D40_EVENTLINE_MASK(event
))
1246 dev_dbg(chan2dev(d40c
),
1247 "[%s] workaround enable S%cLNK (%d tries)\n",
1248 __func__
, reg
== D40_CHAN_REG_SSLNK
? 'S' : 'D',
1254 case D40_ROUND_EVENTLINE
:
1261 static void d40_config_set_event(struct d40_chan
*d40c
,
1262 enum d40_events event_type
)
1264 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
1266 /* Enable event line connected to device (or memcpy) */
1267 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
1268 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
1269 __d40_config_set_event(d40c
, event_type
, event
,
1270 D40_CHAN_REG_SSLNK
);
1272 if (d40c
->dma_cfg
.dir
!= DMA_DEV_TO_MEM
)
1273 __d40_config_set_event(d40c
, event_type
, event
,
1274 D40_CHAN_REG_SDLNK
);
1277 static u32
d40_chan_has_events(struct d40_chan
*d40c
)
1279 void __iomem
*chanbase
= chan_base(d40c
);
1282 val
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
1283 val
|= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
1289 __d40_execute_command_log(struct d40_chan
*d40c
, enum d40_command command
)
1291 unsigned long flags
;
1294 void __iomem
*active_reg
;
1296 if (d40c
->phy_chan
->num
% 2 == 0)
1297 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1299 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1302 spin_lock_irqsave(&d40c
->phy_chan
->lock
, flags
);
1306 case D40_DMA_SUSPEND_REQ
:
1308 active_status
= (readl(active_reg
) &
1309 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1310 D40_CHAN_POS(d40c
->phy_chan
->num
);
1312 if (active_status
== D40_DMA_RUN
)
1313 d40_config_set_event(d40c
, D40_SUSPEND_REQ_EVENTLINE
);
1315 d40_config_set_event(d40c
, D40_DEACTIVATE_EVENTLINE
);
1317 if (!d40_chan_has_events(d40c
) && (command
== D40_DMA_STOP
))
1318 ret
= __d40_execute_command_phy(d40c
, command
);
1324 d40_config_set_event(d40c
, D40_ACTIVATE_EVENTLINE
);
1325 ret
= __d40_execute_command_phy(d40c
, command
);
1328 case D40_DMA_SUSPENDED
:
1333 spin_unlock_irqrestore(&d40c
->phy_chan
->lock
, flags
);
1337 static int d40_channel_execute_command(struct d40_chan
*d40c
,
1338 enum d40_command command
)
1340 if (chan_is_logical(d40c
))
1341 return __d40_execute_command_log(d40c
, command
);
1343 return __d40_execute_command_phy(d40c
, command
);
1346 static u32
d40_get_prmo(struct d40_chan
*d40c
)
1348 static const unsigned int phy_map
[] = {
1349 [STEDMA40_PCHAN_BASIC_MODE
]
1350 = D40_DREG_PRMO_PCHAN_BASIC
,
1351 [STEDMA40_PCHAN_MODULO_MODE
]
1352 = D40_DREG_PRMO_PCHAN_MODULO
,
1353 [STEDMA40_PCHAN_DOUBLE_DST_MODE
]
1354 = D40_DREG_PRMO_PCHAN_DOUBLE_DST
,
1356 static const unsigned int log_map
[] = {
1357 [STEDMA40_LCHAN_SRC_PHY_DST_LOG
]
1358 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG
,
1359 [STEDMA40_LCHAN_SRC_LOG_DST_PHY
]
1360 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY
,
1361 [STEDMA40_LCHAN_SRC_LOG_DST_LOG
]
1362 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG
,
1365 if (chan_is_physical(d40c
))
1366 return phy_map
[d40c
->dma_cfg
.mode_opt
];
1368 return log_map
[d40c
->dma_cfg
.mode_opt
];
1371 static void d40_config_write(struct d40_chan
*d40c
)
1376 /* Odd addresses are even addresses + 4 */
1377 addr_base
= (d40c
->phy_chan
->num
% 2) * 4;
1378 /* Setup channel mode to logical or physical */
1379 var
= ((u32
)(chan_is_logical(d40c
)) + 1) <<
1380 D40_CHAN_POS(d40c
->phy_chan
->num
);
1381 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMSE
+ addr_base
);
1383 /* Setup operational mode option register */
1384 var
= d40_get_prmo(d40c
) << D40_CHAN_POS(d40c
->phy_chan
->num
);
1386 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMOE
+ addr_base
);
1388 if (chan_is_logical(d40c
)) {
1389 int lidx
= (d40c
->phy_chan
->num
<< D40_SREG_ELEM_LOG_LIDX_POS
)
1390 & D40_SREG_ELEM_LOG_LIDX_MASK
;
1391 void __iomem
*chanbase
= chan_base(d40c
);
1393 /* Set default config for CFG reg */
1394 writel(d40c
->src_def_cfg
, chanbase
+ D40_CHAN_REG_SSCFG
);
1395 writel(d40c
->dst_def_cfg
, chanbase
+ D40_CHAN_REG_SDCFG
);
1397 /* Set LIDX for lcla */
1398 writel(lidx
, chanbase
+ D40_CHAN_REG_SSELT
);
1399 writel(lidx
, chanbase
+ D40_CHAN_REG_SDELT
);
1401 /* Clear LNK which will be used by d40_chan_has_events() */
1402 writel(0, chanbase
+ D40_CHAN_REG_SSLNK
);
1403 writel(0, chanbase
+ D40_CHAN_REG_SDLNK
);
1407 static u32
d40_residue(struct d40_chan
*d40c
)
1411 if (chan_is_logical(d40c
))
1412 num_elt
= (readl(&d40c
->lcpa
->lcsp2
) & D40_MEM_LCSP2_ECNT_MASK
)
1413 >> D40_MEM_LCSP2_ECNT_POS
;
1415 u32 val
= readl(chan_base(d40c
) + D40_CHAN_REG_SDELT
);
1416 num_elt
= (val
& D40_SREG_ELEM_PHY_ECNT_MASK
)
1417 >> D40_SREG_ELEM_PHY_ECNT_POS
;
1420 return num_elt
* d40c
->dma_cfg
.dst_info
.data_width
;
1423 static bool d40_tx_is_linked(struct d40_chan
*d40c
)
1427 if (chan_is_logical(d40c
))
1428 is_link
= readl(&d40c
->lcpa
->lcsp3
) & D40_MEM_LCSP3_DLOS_MASK
;
1430 is_link
= readl(chan_base(d40c
) + D40_CHAN_REG_SDLNK
)
1431 & D40_SREG_LNK_PHYS_LNK_MASK
;
1436 static int d40_pause(struct dma_chan
*chan
)
1438 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
1440 unsigned long flags
;
1442 if (d40c
->phy_chan
== NULL
) {
1443 chan_err(d40c
, "Channel is not allocated!\n");
1450 spin_lock_irqsave(&d40c
->lock
, flags
);
1451 pm_runtime_get_sync(d40c
->base
->dev
);
1453 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
1455 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1456 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1457 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1461 static int d40_resume(struct dma_chan
*chan
)
1463 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
1465 unsigned long flags
;
1467 if (d40c
->phy_chan
== NULL
) {
1468 chan_err(d40c
, "Channel is not allocated!\n");
1475 spin_lock_irqsave(&d40c
->lock
, flags
);
1476 pm_runtime_get_sync(d40c
->base
->dev
);
1478 /* If bytes left to transfer or linked tx resume job */
1479 if (d40_residue(d40c
) || d40_tx_is_linked(d40c
))
1480 res
= d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1482 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1483 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1484 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1488 static dma_cookie_t
d40_tx_submit(struct dma_async_tx_descriptor
*tx
)
1490 struct d40_chan
*d40c
= container_of(tx
->chan
,
1493 struct d40_desc
*d40d
= container_of(tx
, struct d40_desc
, txd
);
1494 unsigned long flags
;
1495 dma_cookie_t cookie
;
1497 spin_lock_irqsave(&d40c
->lock
, flags
);
1498 cookie
= dma_cookie_assign(tx
);
1499 d40_desc_queue(d40c
, d40d
);
1500 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1505 static int d40_start(struct d40_chan
*d40c
)
1507 return d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1510 static struct d40_desc
*d40_queue_start(struct d40_chan
*d40c
)
1512 struct d40_desc
*d40d
;
1515 /* Start queued jobs, if any */
1516 d40d
= d40_first_queued(d40c
);
1521 pm_runtime_get_sync(d40c
->base
->dev
);
1524 /* Remove from queue */
1525 d40_desc_remove(d40d
);
1527 /* Add to active queue */
1528 d40_desc_submit(d40c
, d40d
);
1530 /* Initiate DMA job */
1531 d40_desc_load(d40c
, d40d
);
1534 err
= d40_start(d40c
);
1543 /* called from interrupt context */
1544 static void dma_tc_handle(struct d40_chan
*d40c
)
1546 struct d40_desc
*d40d
;
1548 /* Get first active entry from list */
1549 d40d
= d40_first_active_get(d40c
);
1556 * If this was a paritially loaded list, we need to reloaded
1557 * it, and only when the list is completed. We need to check
1558 * for done because the interrupt will hit for every link, and
1559 * not just the last one.
1561 if (d40d
->lli_current
< d40d
->lli_len
1562 && !d40_tx_is_linked(d40c
)
1563 && !d40_residue(d40c
)) {
1564 d40_lcla_free_all(d40c
, d40d
);
1565 d40_desc_load(d40c
, d40d
);
1566 (void) d40_start(d40c
);
1568 if (d40d
->lli_current
== d40d
->lli_len
)
1569 d40d
->lli_current
= 0;
1572 d40_lcla_free_all(d40c
, d40d
);
1574 if (d40d
->lli_current
< d40d
->lli_len
) {
1575 d40_desc_load(d40c
, d40d
);
1577 (void) d40_start(d40c
);
1581 if (d40_queue_start(d40c
) == NULL
) {
1584 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1585 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1588 d40_desc_remove(d40d
);
1589 d40_desc_done(d40c
, d40d
);
1593 tasklet_schedule(&d40c
->tasklet
);
1597 static void dma_tasklet(struct tasklet_struct
*t
)
1599 struct d40_chan
*d40c
= from_tasklet(d40c
, t
, tasklet
);
1600 struct d40_desc
*d40d
;
1601 unsigned long flags
;
1602 bool callback_active
;
1603 struct dmaengine_desc_callback cb
;
1605 spin_lock_irqsave(&d40c
->lock
, flags
);
1607 /* Get first entry from the done list */
1608 d40d
= d40_first_done(d40c
);
1610 /* Check if we have reached here for cyclic job */
1611 d40d
= d40_first_active_get(d40c
);
1612 if (d40d
== NULL
|| !d40d
->cyclic
)
1613 goto check_pending_tx
;
1617 dma_cookie_complete(&d40d
->txd
);
1620 * If terminating a channel pending_tx is set to zero.
1621 * This prevents any finished active jobs to return to the client.
1623 if (d40c
->pending_tx
== 0) {
1624 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1628 /* Callback to client */
1629 callback_active
= !!(d40d
->txd
.flags
& DMA_PREP_INTERRUPT
);
1630 dmaengine_desc_get_callback(&d40d
->txd
, &cb
);
1632 if (!d40d
->cyclic
) {
1633 if (async_tx_test_ack(&d40d
->txd
)) {
1634 d40_desc_remove(d40d
);
1635 d40_desc_free(d40c
, d40d
);
1636 } else if (!d40d
->is_in_client_list
) {
1637 d40_desc_remove(d40d
);
1638 d40_lcla_free_all(d40c
, d40d
);
1639 list_add_tail(&d40d
->node
, &d40c
->client
);
1640 d40d
->is_in_client_list
= true;
1646 if (d40c
->pending_tx
)
1647 tasklet_schedule(&d40c
->tasklet
);
1649 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1651 if (callback_active
)
1652 dmaengine_desc_callback_invoke(&cb
, NULL
);
1656 /* Rescue maneuver if receiving double interrupts */
1657 if (d40c
->pending_tx
> 0)
1659 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1662 static irqreturn_t
d40_handle_interrupt(int irq
, void *data
)
1668 struct d40_chan
*d40c
;
1669 struct d40_base
*base
= data
;
1670 u32
*regs
= base
->regs_interrupt
;
1671 struct d40_interrupt_lookup
*il
= base
->gen_dmac
.il
;
1672 u32 il_size
= base
->gen_dmac
.il_size
;
1674 spin_lock(&base
->interrupt_lock
);
1676 /* Read interrupt status of both logical and physical channels */
1677 for (i
= 0; i
< il_size
; i
++)
1678 regs
[i
] = readl(base
->virtbase
+ il
[i
].src
);
1682 chan
= find_next_bit((unsigned long *)regs
,
1683 BITS_PER_LONG
* il_size
, chan
+ 1);
1685 /* No more set bits found? */
1686 if (chan
== BITS_PER_LONG
* il_size
)
1689 row
= chan
/ BITS_PER_LONG
;
1690 idx
= chan
& (BITS_PER_LONG
- 1);
1692 if (il
[row
].offset
== D40_PHY_CHAN
)
1693 d40c
= base
->lookup_phy_chans
[idx
];
1695 d40c
= base
->lookup_log_chans
[il
[row
].offset
+ idx
];
1699 * No error because this can happen if something else
1700 * in the system is using the channel.
1706 writel(BIT(idx
), base
->virtbase
+ il
[row
].clr
);
1708 spin_lock(&d40c
->lock
);
1710 if (!il
[row
].is_error
)
1711 dma_tc_handle(d40c
);
1713 d40_err(base
->dev
, "IRQ chan: %ld offset %d idx %d\n",
1714 chan
, il
[row
].offset
, idx
);
1716 spin_unlock(&d40c
->lock
);
1719 spin_unlock(&base
->interrupt_lock
);
1724 static int d40_validate_conf(struct d40_chan
*d40c
,
1725 struct stedma40_chan_cfg
*conf
)
1728 bool is_log
= conf
->mode
== STEDMA40_MODE_LOGICAL
;
1731 chan_err(d40c
, "Invalid direction.\n");
1735 if ((is_log
&& conf
->dev_type
> d40c
->base
->num_log_chans
) ||
1736 (!is_log
&& conf
->dev_type
> d40c
->base
->num_phy_chans
) ||
1737 (conf
->dev_type
< 0)) {
1738 chan_err(d40c
, "Invalid device type (%d)\n", conf
->dev_type
);
1742 if (conf
->dir
== DMA_DEV_TO_DEV
) {
1744 * DMAC HW supports it. Will be added to this driver,
1745 * in case any dma client requires it.
1747 chan_err(d40c
, "periph to periph not supported\n");
1751 if (d40_psize_2_burst_size(is_log
, conf
->src_info
.psize
) *
1752 conf
->src_info
.data_width
!=
1753 d40_psize_2_burst_size(is_log
, conf
->dst_info
.psize
) *
1754 conf
->dst_info
.data_width
) {
1756 * The DMAC hardware only supports
1757 * src (burst x width) == dst (burst x width)
1760 chan_err(d40c
, "src (burst x width) != dst (burst x width)\n");
1767 static bool d40_alloc_mask_set(struct d40_phy_res
*phy
,
1768 bool is_src
, int log_event_line
, bool is_log
,
1771 unsigned long flags
;
1772 spin_lock_irqsave(&phy
->lock
, flags
);
1774 *first_user
= ((phy
->allocated_src
| phy
->allocated_dst
)
1778 /* Physical interrupts are masked per physical full channel */
1779 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1780 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1781 phy
->allocated_dst
= D40_ALLOC_PHY
;
1782 phy
->allocated_src
= D40_ALLOC_PHY
;
1785 goto not_found_unlock
;
1788 /* Logical channel */
1790 if (phy
->allocated_src
== D40_ALLOC_PHY
)
1791 goto not_found_unlock
;
1793 if (phy
->allocated_src
== D40_ALLOC_FREE
)
1794 phy
->allocated_src
= D40_ALLOC_LOG_FREE
;
1796 if (!(phy
->allocated_src
& BIT(log_event_line
))) {
1797 phy
->allocated_src
|= BIT(log_event_line
);
1800 goto not_found_unlock
;
1802 if (phy
->allocated_dst
== D40_ALLOC_PHY
)
1803 goto not_found_unlock
;
1805 if (phy
->allocated_dst
== D40_ALLOC_FREE
)
1806 phy
->allocated_dst
= D40_ALLOC_LOG_FREE
;
1808 if (!(phy
->allocated_dst
& BIT(log_event_line
))) {
1809 phy
->allocated_dst
|= BIT(log_event_line
);
1814 spin_unlock_irqrestore(&phy
->lock
, flags
);
1817 spin_unlock_irqrestore(&phy
->lock
, flags
);
1821 static bool d40_alloc_mask_free(struct d40_phy_res
*phy
, bool is_src
,
1824 unsigned long flags
;
1825 bool is_free
= false;
1827 spin_lock_irqsave(&phy
->lock
, flags
);
1828 if (!log_event_line
) {
1829 phy
->allocated_dst
= D40_ALLOC_FREE
;
1830 phy
->allocated_src
= D40_ALLOC_FREE
;
1835 /* Logical channel */
1837 phy
->allocated_src
&= ~BIT(log_event_line
);
1838 if (phy
->allocated_src
== D40_ALLOC_LOG_FREE
)
1839 phy
->allocated_src
= D40_ALLOC_FREE
;
1841 phy
->allocated_dst
&= ~BIT(log_event_line
);
1842 if (phy
->allocated_dst
== D40_ALLOC_LOG_FREE
)
1843 phy
->allocated_dst
= D40_ALLOC_FREE
;
1846 is_free
= ((phy
->allocated_src
| phy
->allocated_dst
) ==
1849 spin_unlock_irqrestore(&phy
->lock
, flags
);
1854 static int d40_allocate_channel(struct d40_chan
*d40c
, bool *first_phy_user
)
1856 int dev_type
= d40c
->dma_cfg
.dev_type
;
1859 struct d40_phy_res
*phys
;
1865 bool is_log
= d40c
->dma_cfg
.mode
== STEDMA40_MODE_LOGICAL
;
1867 phys
= d40c
->base
->phy_res
;
1868 num_phy_chans
= d40c
->base
->num_phy_chans
;
1870 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
1871 log_num
= 2 * dev_type
;
1873 } else if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
1874 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1875 /* dst event lines are used for logical memcpy */
1876 log_num
= 2 * dev_type
+ 1;
1881 event_group
= D40_TYPE_TO_GROUP(dev_type
);
1882 event_line
= D40_TYPE_TO_EVENT(dev_type
);
1885 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1886 /* Find physical half channel */
1887 if (d40c
->dma_cfg
.use_fixed_channel
) {
1888 i
= d40c
->dma_cfg
.phy_channel
;
1889 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1894 for (i
= 0; i
< num_phy_chans
; i
++) {
1895 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1902 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1903 int phy_num
= j
+ event_group
* 2;
1904 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1905 if (d40_alloc_mask_set(&phys
[i
],
1915 d40c
->phy_chan
= &phys
[i
];
1916 d40c
->log_num
= D40_PHY_CHAN
;
1922 /* Find logical channel */
1923 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1924 int phy_num
= j
+ event_group
* 2;
1926 if (d40c
->dma_cfg
.use_fixed_channel
) {
1927 i
= d40c
->dma_cfg
.phy_channel
;
1929 if ((i
!= phy_num
) && (i
!= phy_num
+ 1)) {
1930 dev_err(chan2dev(d40c
),
1931 "invalid fixed phy channel %d\n", i
);
1935 if (d40_alloc_mask_set(&phys
[i
], is_src
, event_line
,
1936 is_log
, first_phy_user
))
1939 dev_err(chan2dev(d40c
),
1940 "could not allocate fixed phy channel %d\n", i
);
1945 * Spread logical channels across all available physical rather
1946 * than pack every logical channel at the first available phy
1950 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1951 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1957 for (i
= phy_num
+ 1; i
>= phy_num
; i
--) {
1958 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1968 d40c
->phy_chan
= &phys
[i
];
1969 d40c
->log_num
= log_num
;
1973 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = d40c
;
1975 d40c
->base
->lookup_phy_chans
[d40c
->phy_chan
->num
] = d40c
;
1981 static int d40_config_memcpy(struct d40_chan
*d40c
)
1983 dma_cap_mask_t cap
= d40c
->chan
.device
->cap_mask
;
1985 if (dma_has_cap(DMA_MEMCPY
, cap
) && !dma_has_cap(DMA_SLAVE
, cap
)) {
1986 d40c
->dma_cfg
= dma40_memcpy_conf_log
;
1987 d40c
->dma_cfg
.dev_type
= dma40_memcpy_channels
[d40c
->chan
.chan_id
];
1989 d40_log_cfg(&d40c
->dma_cfg
,
1990 &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
1992 } else if (dma_has_cap(DMA_MEMCPY
, cap
) &&
1993 dma_has_cap(DMA_SLAVE
, cap
)) {
1994 d40c
->dma_cfg
= dma40_memcpy_conf_phy
;
1996 /* Generate interrupt at end of transfer or relink. */
1997 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_TIM_POS
);
1999 /* Generate interrupt on error. */
2000 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
2001 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
2004 chan_err(d40c
, "No memcpy\n");
2011 static int d40_free_dma(struct d40_chan
*d40c
)
2015 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
2016 struct d40_phy_res
*phy
= d40c
->phy_chan
;
2019 /* Terminate all queued and active transfers */
2023 chan_err(d40c
, "phy == null\n");
2027 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
2028 phy
->allocated_dst
== D40_ALLOC_FREE
) {
2029 chan_err(d40c
, "channel already free\n");
2033 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2034 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
)
2036 else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2039 chan_err(d40c
, "Unknown direction\n");
2043 pm_runtime_get_sync(d40c
->base
->dev
);
2044 res
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2046 chan_err(d40c
, "stop failed\n");
2047 goto mark_last_busy
;
2050 d40_alloc_mask_free(phy
, is_src
, chan_is_logical(d40c
) ? event
: 0);
2052 if (chan_is_logical(d40c
))
2053 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = NULL
;
2055 d40c
->base
->lookup_phy_chans
[phy
->num
] = NULL
;
2058 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2059 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2063 d40c
->phy_chan
= NULL
;
2064 d40c
->configured
= false;
2066 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2067 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2071 static bool d40_is_paused(struct d40_chan
*d40c
)
2073 void __iomem
*chanbase
= chan_base(d40c
);
2074 bool is_paused
= false;
2075 unsigned long flags
;
2076 void __iomem
*active_reg
;
2078 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
2080 spin_lock_irqsave(&d40c
->lock
, flags
);
2082 if (chan_is_physical(d40c
)) {
2083 if (d40c
->phy_chan
->num
% 2 == 0)
2084 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
2086 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
2088 status
= (readl(active_reg
) &
2089 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
2090 D40_CHAN_POS(d40c
->phy_chan
->num
);
2091 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
2096 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2097 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
2098 status
= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
2099 } else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
2100 status
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
2102 chan_err(d40c
, "Unknown direction\n");
2106 status
= (status
& D40_EVENTLINE_MASK(event
)) >>
2107 D40_EVENTLINE_POS(event
);
2109 if (status
!= D40_DMA_RUN
)
2112 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2117 static u32
stedma40_residue(struct dma_chan
*chan
)
2119 struct d40_chan
*d40c
=
2120 container_of(chan
, struct d40_chan
, chan
);
2122 unsigned long flags
;
2124 spin_lock_irqsave(&d40c
->lock
, flags
);
2125 bytes_left
= d40_residue(d40c
);
2126 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2132 d40_prep_sg_log(struct d40_chan
*chan
, struct d40_desc
*desc
,
2133 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2134 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2135 dma_addr_t dst_dev_addr
)
2137 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2138 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2139 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2142 ret
= d40_log_sg_to_lli(sg_src
, sg_len
,
2145 chan
->log_def
.lcsp1
,
2146 src_info
->data_width
,
2147 dst_info
->data_width
);
2149 ret
= d40_log_sg_to_lli(sg_dst
, sg_len
,
2152 chan
->log_def
.lcsp3
,
2153 dst_info
->data_width
,
2154 src_info
->data_width
);
2156 return ret
< 0 ? ret
: 0;
2160 d40_prep_sg_phy(struct d40_chan
*chan
, struct d40_desc
*desc
,
2161 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2162 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2163 dma_addr_t dst_dev_addr
)
2165 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2166 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2167 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2168 unsigned long flags
= 0;
2172 flags
|= LLI_CYCLIC
| LLI_TERM_INT
;
2174 ret
= d40_phy_sg_to_lli(sg_src
, sg_len
, src_dev_addr
,
2176 virt_to_phys(desc
->lli_phy
.src
),
2178 src_info
, dst_info
, flags
);
2180 ret
= d40_phy_sg_to_lli(sg_dst
, sg_len
, dst_dev_addr
,
2182 virt_to_phys(desc
->lli_phy
.dst
),
2184 dst_info
, src_info
, flags
);
2186 dma_sync_single_for_device(chan
->base
->dev
, desc
->lli_pool
.dma_addr
,
2187 desc
->lli_pool
.size
, DMA_TO_DEVICE
);
2189 return ret
< 0 ? ret
: 0;
2192 static struct d40_desc
*
2193 d40_prep_desc(struct d40_chan
*chan
, struct scatterlist
*sg
,
2194 unsigned int sg_len
, unsigned long dma_flags
)
2196 struct stedma40_chan_cfg
*cfg
;
2197 struct d40_desc
*desc
;
2200 desc
= d40_desc_get(chan
);
2204 cfg
= &chan
->dma_cfg
;
2205 desc
->lli_len
= d40_sg_2_dmalen(sg
, sg_len
, cfg
->src_info
.data_width
,
2206 cfg
->dst_info
.data_width
);
2207 if (desc
->lli_len
< 0) {
2208 chan_err(chan
, "Unaligned size\n");
2212 ret
= d40_pool_lli_alloc(chan
, desc
, desc
->lli_len
);
2214 chan_err(chan
, "Could not allocate lli\n");
2218 desc
->lli_current
= 0;
2219 desc
->txd
.flags
= dma_flags
;
2220 desc
->txd
.tx_submit
= d40_tx_submit
;
2222 dma_async_tx_descriptor_init(&desc
->txd
, &chan
->chan
);
2226 d40_desc_free(chan
, desc
);
2230 static struct dma_async_tx_descriptor
*
2231 d40_prep_sg(struct dma_chan
*dchan
, struct scatterlist
*sg_src
,
2232 struct scatterlist
*sg_dst
, unsigned int sg_len
,
2233 enum dma_transfer_direction direction
, unsigned long dma_flags
)
2235 struct d40_chan
*chan
= container_of(dchan
, struct d40_chan
, chan
);
2236 dma_addr_t src_dev_addr
;
2237 dma_addr_t dst_dev_addr
;
2238 struct d40_desc
*desc
;
2239 unsigned long flags
;
2242 if (!chan
->phy_chan
) {
2243 chan_err(chan
, "Cannot prepare unallocated channel\n");
2247 d40_set_runtime_config_write(dchan
, &chan
->slave_config
, direction
);
2249 spin_lock_irqsave(&chan
->lock
, flags
);
2251 desc
= d40_prep_desc(chan
, sg_src
, sg_len
, dma_flags
);
2255 if (sg_next(&sg_src
[sg_len
- 1]) == sg_src
)
2256 desc
->cyclic
= true;
2260 if (direction
== DMA_DEV_TO_MEM
)
2261 src_dev_addr
= chan
->runtime_addr
;
2262 else if (direction
== DMA_MEM_TO_DEV
)
2263 dst_dev_addr
= chan
->runtime_addr
;
2265 if (chan_is_logical(chan
))
2266 ret
= d40_prep_sg_log(chan
, desc
, sg_src
, sg_dst
,
2267 sg_len
, src_dev_addr
, dst_dev_addr
);
2269 ret
= d40_prep_sg_phy(chan
, desc
, sg_src
, sg_dst
,
2270 sg_len
, src_dev_addr
, dst_dev_addr
);
2273 chan_err(chan
, "Failed to prepare %s sg job: %d\n",
2274 chan_is_logical(chan
) ? "log" : "phy", ret
);
2279 * add descriptor to the prepare queue in order to be able
2280 * to free them later in terminate_all
2282 list_add_tail(&desc
->node
, &chan
->prepare_queue
);
2284 spin_unlock_irqrestore(&chan
->lock
, flags
);
2288 d40_desc_free(chan
, desc
);
2290 spin_unlock_irqrestore(&chan
->lock
, flags
);
2294 static bool stedma40_filter(struct dma_chan
*chan
, void *data
)
2296 struct stedma40_chan_cfg
*info
= data
;
2297 struct d40_chan
*d40c
=
2298 container_of(chan
, struct d40_chan
, chan
);
2302 err
= d40_validate_conf(d40c
, info
);
2304 d40c
->dma_cfg
= *info
;
2306 err
= d40_config_memcpy(d40c
);
2309 d40c
->configured
= true;
2314 static void __d40_set_prio_rt(struct d40_chan
*d40c
, int dev_type
, bool src
)
2316 bool realtime
= d40c
->dma_cfg
.realtime
;
2317 bool highprio
= d40c
->dma_cfg
.high_priority
;
2319 u32 event
= D40_TYPE_TO_EVENT(dev_type
);
2320 u32 group
= D40_TYPE_TO_GROUP(dev_type
);
2321 u32 bit
= BIT(event
);
2323 struct d40_gen_dmac
*dmac
= &d40c
->base
->gen_dmac
;
2325 rtreg
= realtime
? dmac
->realtime_en
: dmac
->realtime_clear
;
2327 * Due to a hardware bug, in some cases a logical channel triggered by
2328 * a high priority destination event line can generate extra packet
2331 * The workaround is to not set the high priority level for the
2332 * destination event lines that trigger logical channels.
2334 if (!src
&& chan_is_logical(d40c
))
2337 prioreg
= highprio
? dmac
->high_prio_en
: dmac
->high_prio_clear
;
2339 /* Destination event lines are stored in the upper halfword */
2343 writel(bit
, d40c
->base
->virtbase
+ prioreg
+ group
* 4);
2344 writel(bit
, d40c
->base
->virtbase
+ rtreg
+ group
* 4);
2347 static void d40_set_prio_realtime(struct d40_chan
*d40c
)
2349 if (d40c
->base
->rev
< 3)
2352 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
2353 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2354 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, true);
2356 if ((d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
) ||
2357 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2358 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, false);
2361 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2362 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2363 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2364 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2365 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2367 static struct dma_chan
*d40_xlate(struct of_phandle_args
*dma_spec
,
2368 struct of_dma
*ofdma
)
2370 struct stedma40_chan_cfg cfg
;
2374 memset(&cfg
, 0, sizeof(struct stedma40_chan_cfg
));
2377 dma_cap_set(DMA_SLAVE
, cap
);
2379 cfg
.dev_type
= dma_spec
->args
[0];
2380 flags
= dma_spec
->args
[2];
2382 switch (D40_DT_FLAGS_MODE(flags
)) {
2383 case 0: cfg
.mode
= STEDMA40_MODE_LOGICAL
; break;
2384 case 1: cfg
.mode
= STEDMA40_MODE_PHYSICAL
; break;
2387 switch (D40_DT_FLAGS_DIR(flags
)) {
2389 cfg
.dir
= DMA_MEM_TO_DEV
;
2390 cfg
.dst_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2393 cfg
.dir
= DMA_DEV_TO_MEM
;
2394 cfg
.src_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2398 if (D40_DT_FLAGS_FIXED_CHAN(flags
)) {
2399 cfg
.phy_channel
= dma_spec
->args
[1];
2400 cfg
.use_fixed_channel
= true;
2403 if (D40_DT_FLAGS_HIGH_PRIO(flags
))
2404 cfg
.high_priority
= true;
2406 return dma_request_channel(cap
, stedma40_filter
, &cfg
);
2409 /* DMA ENGINE functions */
2410 static int d40_alloc_chan_resources(struct dma_chan
*chan
)
2413 unsigned long flags
;
2414 struct d40_chan
*d40c
=
2415 container_of(chan
, struct d40_chan
, chan
);
2417 spin_lock_irqsave(&d40c
->lock
, flags
);
2419 dma_cookie_init(chan
);
2421 /* If no dma configuration is set use default configuration (memcpy) */
2422 if (!d40c
->configured
) {
2423 err
= d40_config_memcpy(d40c
);
2425 chan_err(d40c
, "Failed to configure memcpy channel\n");
2426 goto mark_last_busy
;
2430 err
= d40_allocate_channel(d40c
, &is_free_phy
);
2432 chan_err(d40c
, "Failed to allocate channel\n");
2433 d40c
->configured
= false;
2434 goto mark_last_busy
;
2437 pm_runtime_get_sync(d40c
->base
->dev
);
2439 d40_set_prio_realtime(d40c
);
2441 if (chan_is_logical(d40c
)) {
2442 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2443 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2444 d40c
->dma_cfg
.dev_type
* D40_LCPA_CHAN_SIZE
;
2446 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2447 d40c
->dma_cfg
.dev_type
*
2448 D40_LCPA_CHAN_SIZE
+ D40_LCPA_CHAN_DST_DELTA
;
2450 /* Unmask the Global Interrupt Mask. */
2451 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2452 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2455 dev_dbg(chan2dev(d40c
), "allocated %s channel (phy %d%s)\n",
2456 chan_is_logical(d40c
) ? "logical" : "physical",
2457 d40c
->phy_chan
->num
,
2458 d40c
->dma_cfg
.use_fixed_channel
? ", fixed" : "");
2462 * Only write channel configuration to the DMA if the physical
2463 * resource is free. In case of multiple logical channels
2464 * on the same physical resource, only the first write is necessary.
2467 d40_config_write(d40c
);
2469 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2470 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2471 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2475 static void d40_free_chan_resources(struct dma_chan
*chan
)
2477 struct d40_chan
*d40c
=
2478 container_of(chan
, struct d40_chan
, chan
);
2480 unsigned long flags
;
2482 if (d40c
->phy_chan
== NULL
) {
2483 chan_err(d40c
, "Cannot free unallocated channel\n");
2487 spin_lock_irqsave(&d40c
->lock
, flags
);
2489 err
= d40_free_dma(d40c
);
2492 chan_err(d40c
, "Failed to free channel\n");
2493 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2496 static struct dma_async_tx_descriptor
*d40_prep_memcpy(struct dma_chan
*chan
,
2500 unsigned long dma_flags
)
2502 struct scatterlist dst_sg
;
2503 struct scatterlist src_sg
;
2505 sg_init_table(&dst_sg
, 1);
2506 sg_init_table(&src_sg
, 1);
2508 sg_dma_address(&dst_sg
) = dst
;
2509 sg_dma_address(&src_sg
) = src
;
2511 sg_dma_len(&dst_sg
) = size
;
2512 sg_dma_len(&src_sg
) = size
;
2514 return d40_prep_sg(chan
, &src_sg
, &dst_sg
, 1,
2515 DMA_MEM_TO_MEM
, dma_flags
);
2518 static struct dma_async_tx_descriptor
*
2519 d40_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
2520 unsigned int sg_len
, enum dma_transfer_direction direction
,
2521 unsigned long dma_flags
, void *context
)
2523 if (!is_slave_direction(direction
))
2526 return d40_prep_sg(chan
, sgl
, sgl
, sg_len
, direction
, dma_flags
);
2529 static struct dma_async_tx_descriptor
*
2530 dma40_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
2531 size_t buf_len
, size_t period_len
,
2532 enum dma_transfer_direction direction
, unsigned long flags
)
2534 unsigned int periods
= buf_len
/ period_len
;
2535 struct dma_async_tx_descriptor
*txd
;
2536 struct scatterlist
*sg
;
2539 sg
= kcalloc(periods
+ 1, sizeof(struct scatterlist
), GFP_NOWAIT
);
2543 for (i
= 0; i
< periods
; i
++) {
2544 sg_dma_address(&sg
[i
]) = dma_addr
;
2545 sg_dma_len(&sg
[i
]) = period_len
;
2546 dma_addr
+= period_len
;
2549 sg_chain(sg
, periods
+ 1, sg
);
2551 txd
= d40_prep_sg(chan
, sg
, sg
, periods
, direction
,
2552 DMA_PREP_INTERRUPT
);
2559 static enum dma_status
d40_tx_status(struct dma_chan
*chan
,
2560 dma_cookie_t cookie
,
2561 struct dma_tx_state
*txstate
)
2563 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2564 enum dma_status ret
;
2566 if (d40c
->phy_chan
== NULL
) {
2567 chan_err(d40c
, "Cannot read status of unallocated channel\n");
2571 ret
= dma_cookie_status(chan
, cookie
, txstate
);
2572 if (ret
!= DMA_COMPLETE
&& txstate
)
2573 dma_set_residue(txstate
, stedma40_residue(chan
));
2575 if (d40_is_paused(d40c
))
2581 static void d40_issue_pending(struct dma_chan
*chan
)
2583 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2584 unsigned long flags
;
2586 if (d40c
->phy_chan
== NULL
) {
2587 chan_err(d40c
, "Channel is not allocated!\n");
2591 spin_lock_irqsave(&d40c
->lock
, flags
);
2593 list_splice_tail_init(&d40c
->pending_queue
, &d40c
->queue
);
2595 /* Busy means that queued jobs are already being processed */
2597 (void) d40_queue_start(d40c
);
2599 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2602 static int d40_terminate_all(struct dma_chan
*chan
)
2604 unsigned long flags
;
2605 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2608 if (d40c
->phy_chan
== NULL
) {
2609 chan_err(d40c
, "Channel is not allocated!\n");
2613 spin_lock_irqsave(&d40c
->lock
, flags
);
2615 pm_runtime_get_sync(d40c
->base
->dev
);
2616 ret
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2618 chan_err(d40c
, "Failed to stop channel\n");
2621 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2622 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2624 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2625 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2629 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2634 dma40_config_to_halfchannel(struct d40_chan
*d40c
,
2635 struct stedma40_half_channel_info
*info
,
2640 if (chan_is_logical(d40c
)) {
2642 psize
= STEDMA40_PSIZE_LOG_16
;
2643 else if (maxburst
>= 8)
2644 psize
= STEDMA40_PSIZE_LOG_8
;
2645 else if (maxburst
>= 4)
2646 psize
= STEDMA40_PSIZE_LOG_4
;
2648 psize
= STEDMA40_PSIZE_LOG_1
;
2651 psize
= STEDMA40_PSIZE_PHY_16
;
2652 else if (maxburst
>= 8)
2653 psize
= STEDMA40_PSIZE_PHY_8
;
2654 else if (maxburst
>= 4)
2655 psize
= STEDMA40_PSIZE_PHY_4
;
2657 psize
= STEDMA40_PSIZE_PHY_1
;
2660 info
->psize
= psize
;
2661 info
->flow_ctrl
= STEDMA40_NO_FLOW_CTRL
;
2666 static int d40_set_runtime_config(struct dma_chan
*chan
,
2667 struct dma_slave_config
*config
)
2669 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2671 memcpy(&d40c
->slave_config
, config
, sizeof(*config
));
2676 /* Runtime reconfiguration extension */
2677 static int d40_set_runtime_config_write(struct dma_chan
*chan
,
2678 struct dma_slave_config
*config
,
2679 enum dma_transfer_direction direction
)
2681 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2682 struct stedma40_chan_cfg
*cfg
= &d40c
->dma_cfg
;
2683 enum dma_slave_buswidth src_addr_width
, dst_addr_width
;
2684 dma_addr_t config_addr
;
2685 u32 src_maxburst
, dst_maxburst
;
2688 if (d40c
->phy_chan
== NULL
) {
2689 chan_err(d40c
, "Channel is not allocated!\n");
2693 src_addr_width
= config
->src_addr_width
;
2694 src_maxburst
= config
->src_maxburst
;
2695 dst_addr_width
= config
->dst_addr_width
;
2696 dst_maxburst
= config
->dst_maxburst
;
2698 if (direction
== DMA_DEV_TO_MEM
) {
2699 config_addr
= config
->src_addr
;
2701 if (cfg
->dir
!= DMA_DEV_TO_MEM
)
2702 dev_dbg(d40c
->base
->dev
,
2703 "channel was not configured for peripheral "
2704 "to memory transfer (%d) overriding\n",
2706 cfg
->dir
= DMA_DEV_TO_MEM
;
2708 /* Configure the memory side */
2709 if (dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2710 dst_addr_width
= src_addr_width
;
2711 if (dst_maxburst
== 0)
2712 dst_maxburst
= src_maxburst
;
2714 } else if (direction
== DMA_MEM_TO_DEV
) {
2715 config_addr
= config
->dst_addr
;
2717 if (cfg
->dir
!= DMA_MEM_TO_DEV
)
2718 dev_dbg(d40c
->base
->dev
,
2719 "channel was not configured for memory "
2720 "to peripheral transfer (%d) overriding\n",
2722 cfg
->dir
= DMA_MEM_TO_DEV
;
2724 /* Configure the memory side */
2725 if (src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2726 src_addr_width
= dst_addr_width
;
2727 if (src_maxburst
== 0)
2728 src_maxburst
= dst_maxburst
;
2730 dev_err(d40c
->base
->dev
,
2731 "unrecognized channel direction %d\n",
2736 if (config_addr
<= 0) {
2737 dev_err(d40c
->base
->dev
, "no address supplied\n");
2741 if (src_maxburst
* src_addr_width
!= dst_maxburst
* dst_addr_width
) {
2742 dev_err(d40c
->base
->dev
,
2743 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2751 if (src_maxburst
> 16) {
2753 dst_maxburst
= src_maxburst
* src_addr_width
/ dst_addr_width
;
2754 } else if (dst_maxburst
> 16) {
2756 src_maxburst
= dst_maxburst
* dst_addr_width
/ src_addr_width
;
2759 /* Only valid widths are; 1, 2, 4 and 8. */
2760 if (src_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2761 src_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2762 dst_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2763 dst_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2764 !is_power_of_2(src_addr_width
) ||
2765 !is_power_of_2(dst_addr_width
))
2768 cfg
->src_info
.data_width
= src_addr_width
;
2769 cfg
->dst_info
.data_width
= dst_addr_width
;
2771 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->src_info
,
2776 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->dst_info
,
2781 /* Fill in register values */
2782 if (chan_is_logical(d40c
))
2783 d40_log_cfg(cfg
, &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2785 d40_phy_cfg(cfg
, &d40c
->src_def_cfg
, &d40c
->dst_def_cfg
);
2787 /* These settings will take precedence later */
2788 d40c
->runtime_addr
= config_addr
;
2789 d40c
->runtime_direction
= direction
;
2790 dev_dbg(d40c
->base
->dev
,
2791 "configured channel %s for %s, data width %d/%d, "
2792 "maxburst %d/%d elements, LE, no flow control\n",
2793 dma_chan_name(chan
),
2794 (direction
== DMA_DEV_TO_MEM
) ? "RX" : "TX",
2795 src_addr_width
, dst_addr_width
,
2796 src_maxburst
, dst_maxburst
);
2801 /* Initialization functions */
2803 static void __init
d40_chan_init(struct d40_base
*base
, struct dma_device
*dma
,
2804 struct d40_chan
*chans
, int offset
,
2808 struct d40_chan
*d40c
;
2810 INIT_LIST_HEAD(&dma
->channels
);
2812 for (i
= offset
; i
< offset
+ num_chans
; i
++) {
2815 d40c
->chan
.device
= dma
;
2817 spin_lock_init(&d40c
->lock
);
2819 d40c
->log_num
= D40_PHY_CHAN
;
2821 INIT_LIST_HEAD(&d40c
->done
);
2822 INIT_LIST_HEAD(&d40c
->active
);
2823 INIT_LIST_HEAD(&d40c
->queue
);
2824 INIT_LIST_HEAD(&d40c
->pending_queue
);
2825 INIT_LIST_HEAD(&d40c
->client
);
2826 INIT_LIST_HEAD(&d40c
->prepare_queue
);
2828 tasklet_setup(&d40c
->tasklet
, dma_tasklet
);
2830 list_add_tail(&d40c
->chan
.device_node
,
2835 static void d40_ops_init(struct d40_base
*base
, struct dma_device
*dev
)
2837 if (dma_has_cap(DMA_SLAVE
, dev
->cap_mask
)) {
2838 dev
->device_prep_slave_sg
= d40_prep_slave_sg
;
2839 dev
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
2842 if (dma_has_cap(DMA_MEMCPY
, dev
->cap_mask
)) {
2843 dev
->device_prep_dma_memcpy
= d40_prep_memcpy
;
2844 dev
->directions
= BIT(DMA_MEM_TO_MEM
);
2846 * This controller can only access address at even
2847 * 32bit boundaries, i.e. 2^2
2849 dev
->copy_align
= DMAENGINE_ALIGN_4_BYTES
;
2852 if (dma_has_cap(DMA_CYCLIC
, dev
->cap_mask
))
2853 dev
->device_prep_dma_cyclic
= dma40_prep_dma_cyclic
;
2855 dev
->device_alloc_chan_resources
= d40_alloc_chan_resources
;
2856 dev
->device_free_chan_resources
= d40_free_chan_resources
;
2857 dev
->device_issue_pending
= d40_issue_pending
;
2858 dev
->device_tx_status
= d40_tx_status
;
2859 dev
->device_config
= d40_set_runtime_config
;
2860 dev
->device_pause
= d40_pause
;
2861 dev
->device_resume
= d40_resume
;
2862 dev
->device_terminate_all
= d40_terminate_all
;
2863 dev
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
2864 dev
->dev
= base
->dev
;
2867 static int __init
d40_dmaengine_init(struct d40_base
*base
,
2868 int num_reserved_chans
)
2872 d40_chan_init(base
, &base
->dma_slave
, base
->log_chans
,
2873 0, base
->num_log_chans
);
2875 dma_cap_zero(base
->dma_slave
.cap_mask
);
2876 dma_cap_set(DMA_SLAVE
, base
->dma_slave
.cap_mask
);
2877 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2879 d40_ops_init(base
, &base
->dma_slave
);
2881 err
= dmaenginem_async_device_register(&base
->dma_slave
);
2884 d40_err(base
->dev
, "Failed to register slave channels\n");
2888 d40_chan_init(base
, &base
->dma_memcpy
, base
->log_chans
,
2889 base
->num_log_chans
, base
->num_memcpy_chans
);
2891 dma_cap_zero(base
->dma_memcpy
.cap_mask
);
2892 dma_cap_set(DMA_MEMCPY
, base
->dma_memcpy
.cap_mask
);
2894 d40_ops_init(base
, &base
->dma_memcpy
);
2896 err
= dmaenginem_async_device_register(&base
->dma_memcpy
);
2900 "Failed to register memcpy only channels\n");
2904 d40_chan_init(base
, &base
->dma_both
, base
->phy_chans
,
2905 0, num_reserved_chans
);
2907 dma_cap_zero(base
->dma_both
.cap_mask
);
2908 dma_cap_set(DMA_SLAVE
, base
->dma_both
.cap_mask
);
2909 dma_cap_set(DMA_MEMCPY
, base
->dma_both
.cap_mask
);
2910 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2912 d40_ops_init(base
, &base
->dma_both
);
2913 err
= dmaenginem_async_device_register(&base
->dma_both
);
2917 "Failed to register logical and physical capable channels\n");
2925 /* Suspend resume functionality */
2926 #ifdef CONFIG_PM_SLEEP
2927 static int dma40_suspend(struct device
*dev
)
2929 struct d40_base
*base
= dev_get_drvdata(dev
);
2932 ret
= pm_runtime_force_suspend(dev
);
2936 if (base
->lcpa_regulator
)
2937 ret
= regulator_disable(base
->lcpa_regulator
);
2941 static int dma40_resume(struct device
*dev
)
2943 struct d40_base
*base
= dev_get_drvdata(dev
);
2946 if (base
->lcpa_regulator
) {
2947 ret
= regulator_enable(base
->lcpa_regulator
);
2952 return pm_runtime_force_resume(dev
);
2957 static void dma40_backup(void __iomem
*baseaddr
, u32
*backup
,
2958 u32
*regaddr
, int num
, bool save
)
2962 for (i
= 0; i
< num
; i
++) {
2963 void __iomem
*addr
= baseaddr
+ regaddr
[i
];
2966 backup
[i
] = readl_relaxed(addr
);
2968 writel_relaxed(backup
[i
], addr
);
2972 static void d40_save_restore_registers(struct d40_base
*base
, bool save
)
2976 /* Save/Restore channel specific registers */
2977 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2981 if (base
->phy_res
[i
].reserved
)
2984 addr
= base
->virtbase
+ D40_DREG_PCBASE
+ i
* D40_DREG_PCDELTA
;
2985 idx
= i
* ARRAY_SIZE(d40_backup_regs_chan
);
2987 dma40_backup(addr
, &base
->reg_val_backup_chan
[idx
],
2988 d40_backup_regs_chan
,
2989 ARRAY_SIZE(d40_backup_regs_chan
),
2993 /* Save/Restore global registers */
2994 dma40_backup(base
->virtbase
, base
->reg_val_backup
,
2995 d40_backup_regs
, ARRAY_SIZE(d40_backup_regs
),
2998 /* Save/Restore registers only existing on dma40 v3 and later */
2999 if (base
->gen_dmac
.backup
)
3000 dma40_backup(base
->virtbase
, base
->reg_val_backup_v4
,
3001 base
->gen_dmac
.backup
,
3002 base
->gen_dmac
.backup_size
,
3006 static int dma40_runtime_suspend(struct device
*dev
)
3008 struct d40_base
*base
= dev_get_drvdata(dev
);
3010 d40_save_restore_registers(base
, true);
3012 /* Don't disable/enable clocks for v1 due to HW bugs */
3014 writel_relaxed(base
->gcc_pwr_off_mask
,
3015 base
->virtbase
+ D40_DREG_GCC
);
3020 static int dma40_runtime_resume(struct device
*dev
)
3022 struct d40_base
*base
= dev_get_drvdata(dev
);
3024 d40_save_restore_registers(base
, false);
3026 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
,
3027 base
->virtbase
+ D40_DREG_GCC
);
3032 static const struct dev_pm_ops dma40_pm_ops
= {
3033 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend
, dma40_resume
)
3034 SET_RUNTIME_PM_OPS(dma40_runtime_suspend
,
3035 dma40_runtime_resume
,
3039 /* Initialization functions. */
3041 static int __init
d40_phy_res_init(struct d40_base
*base
)
3044 int num_phy_chans_avail
= 0;
3046 int odd_even_bit
= -2;
3047 int gcc
= D40_DREG_GCC_ENA
;
3049 val
[0] = readl(base
->virtbase
+ D40_DREG_PRSME
);
3050 val
[1] = readl(base
->virtbase
+ D40_DREG_PRSMO
);
3052 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3053 base
->phy_res
[i
].num
= i
;
3054 odd_even_bit
+= 2 * ((i
% 2) == 0);
3055 if (((val
[i
% 2] >> odd_even_bit
) & 3) == 1) {
3056 /* Mark security only channels as occupied */
3057 base
->phy_res
[i
].allocated_src
= D40_ALLOC_PHY
;
3058 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_PHY
;
3059 base
->phy_res
[i
].reserved
= true;
3060 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3062 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3067 base
->phy_res
[i
].allocated_src
= D40_ALLOC_FREE
;
3068 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_FREE
;
3069 base
->phy_res
[i
].reserved
= false;
3070 num_phy_chans_avail
++;
3072 spin_lock_init(&base
->phy_res
[i
].lock
);
3075 /* Mark disabled channels as occupied */
3076 for (i
= 0; base
->plat_data
->disabled_channels
[i
] != -1; i
++) {
3077 int chan
= base
->plat_data
->disabled_channels
[i
];
3079 base
->phy_res
[chan
].allocated_src
= D40_ALLOC_PHY
;
3080 base
->phy_res
[chan
].allocated_dst
= D40_ALLOC_PHY
;
3081 base
->phy_res
[chan
].reserved
= true;
3082 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3084 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3086 num_phy_chans_avail
--;
3089 /* Mark soft_lli channels */
3090 for (i
= 0; i
< base
->plat_data
->num_of_soft_lli_chans
; i
++) {
3091 int chan
= base
->plat_data
->soft_lli_chans
[i
];
3093 base
->phy_res
[chan
].use_soft_lli
= true;
3096 dev_info(base
->dev
, "%d of %d physical DMA channels available\n",
3097 num_phy_chans_avail
, base
->num_phy_chans
);
3099 /* Verify settings extended vs standard */
3100 val
[0] = readl(base
->virtbase
+ D40_DREG_PRTYP
);
3102 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3104 if (base
->phy_res
[i
].allocated_src
== D40_ALLOC_FREE
&&
3105 (val
[0] & 0x3) != 1)
3107 "[%s] INFO: channel %d is misconfigured (%d)\n",
3108 __func__
, i
, val
[0] & 0x3);
3110 val
[0] = val
[0] >> 2;
3114 * To keep things simple, Enable all clocks initially.
3115 * The clocks will get managed later post channel allocation.
3116 * The clocks for the event lines on which reserved channels exists
3117 * are not managed here.
3119 writel(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3120 base
->gcc_pwr_off_mask
= gcc
;
3122 return num_phy_chans_avail
;
3125 /* Called from the registered devm action */
3126 static void d40_drop_kmem_cache_action(void *d
)
3128 struct kmem_cache
*desc_slab
= d
;
3130 kmem_cache_destroy(desc_slab
);
3133 static int __init
d40_hw_detect_init(struct platform_device
*pdev
,
3134 struct d40_base
**retbase
)
3136 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3137 struct device
*dev
= &pdev
->dev
;
3139 void __iomem
*virtbase
;
3140 struct d40_base
*base
;
3143 int num_memcpy_chans
;
3150 clk
= devm_clk_get_enabled(dev
, NULL
);
3152 return PTR_ERR(clk
);
3154 /* Get IO for DMAC base address */
3155 virtbase
= devm_platform_ioremap_resource_byname(pdev
, "base");
3156 if (IS_ERR(virtbase
))
3157 return PTR_ERR(virtbase
);
3159 /* This is just a regular AMBA PrimeCell ID actually */
3160 for (pid
= 0, i
= 0; i
< 4; i
++)
3161 pid
|= (readl(virtbase
+ SZ_4K
- 0x20 + 4 * i
)
3163 for (cid
= 0, i
= 0; i
< 4; i
++)
3164 cid
|= (readl(virtbase
+ SZ_4K
- 0x10 + 4 * i
)
3167 if (cid
!= AMBA_CID
) {
3168 d40_err(dev
, "Unknown hardware! No PrimeCell ID\n");
3171 if (AMBA_MANF_BITS(pid
) != AMBA_VENDOR_ST
) {
3172 d40_err(dev
, "Unknown designer! Got %x wanted %x\n",
3173 AMBA_MANF_BITS(pid
),
3179 * DB8500ed has revision 0
3181 * DB8500v1 has revision 2
3182 * DB8500v2 has revision 3
3183 * AP9540v1 has revision 4
3184 * DB8540v1 has revision 4
3186 rev
= AMBA_REV_BITS(pid
);
3188 d40_err(dev
, "hardware revision: %d is not supported", rev
);
3192 /* The number of physical channels on this HW */
3193 if (plat_data
->num_of_phy_chans
)
3194 num_phy_chans
= plat_data
->num_of_phy_chans
;
3196 num_phy_chans
= 4 * (readl(virtbase
+ D40_DREG_ICFG
) & 0x7) + 4;
3198 /* The number of channels used for memcpy */
3199 if (plat_data
->num_of_memcpy_chans
)
3200 num_memcpy_chans
= plat_data
->num_of_memcpy_chans
;
3202 num_memcpy_chans
= ARRAY_SIZE(dma40_memcpy_channels
);
3204 num_log_chans
= num_phy_chans
* D40_MAX_LOG_CHAN_PER_PHY
;
3207 "hardware rev: %d with %d physical and %d logical channels\n",
3208 rev
, num_phy_chans
, num_log_chans
);
3210 base
= devm_kzalloc(dev
,
3211 ALIGN(sizeof(struct d40_base
), 4) +
3212 (num_phy_chans
+ num_log_chans
+ num_memcpy_chans
) *
3213 sizeof(struct d40_chan
), GFP_KERNEL
);
3220 base
->num_memcpy_chans
= num_memcpy_chans
;
3221 base
->num_phy_chans
= num_phy_chans
;
3222 base
->num_log_chans
= num_log_chans
;
3223 base
->virtbase
= virtbase
;
3224 base
->plat_data
= plat_data
;
3226 base
->phy_chans
= ((void *)base
) + ALIGN(sizeof(struct d40_base
), 4);
3227 base
->log_chans
= &base
->phy_chans
[num_phy_chans
];
3229 if (base
->plat_data
->num_of_phy_chans
== 14) {
3230 base
->gen_dmac
.backup
= d40_backup_regs_v4b
;
3231 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4B
;
3232 base
->gen_dmac
.interrupt_en
= D40_DREG_CPCMIS
;
3233 base
->gen_dmac
.interrupt_clear
= D40_DREG_CPCICR
;
3234 base
->gen_dmac
.realtime_en
= D40_DREG_CRSEG1
;
3235 base
->gen_dmac
.realtime_clear
= D40_DREG_CRCEG1
;
3236 base
->gen_dmac
.high_prio_en
= D40_DREG_CPSEG1
;
3237 base
->gen_dmac
.high_prio_clear
= D40_DREG_CPCEG1
;
3238 base
->gen_dmac
.il
= il_v4b
;
3239 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4b
);
3240 base
->gen_dmac
.init_reg
= dma_init_reg_v4b
;
3241 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4b
);
3243 if (base
->rev
>= 3) {
3244 base
->gen_dmac
.backup
= d40_backup_regs_v4a
;
3245 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4A
;
3247 base
->gen_dmac
.interrupt_en
= D40_DREG_PCMIS
;
3248 base
->gen_dmac
.interrupt_clear
= D40_DREG_PCICR
;
3249 base
->gen_dmac
.realtime_en
= D40_DREG_RSEG1
;
3250 base
->gen_dmac
.realtime_clear
= D40_DREG_RCEG1
;
3251 base
->gen_dmac
.high_prio_en
= D40_DREG_PSEG1
;
3252 base
->gen_dmac
.high_prio_clear
= D40_DREG_PCEG1
;
3253 base
->gen_dmac
.il
= il_v4a
;
3254 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4a
);
3255 base
->gen_dmac
.init_reg
= dma_init_reg_v4a
;
3256 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4a
);
3259 base
->phy_res
= devm_kcalloc(dev
, num_phy_chans
,
3260 sizeof(*base
->phy_res
),
3265 base
->lookup_phy_chans
= devm_kcalloc(dev
, num_phy_chans
,
3266 sizeof(*base
->lookup_phy_chans
),
3268 if (!base
->lookup_phy_chans
)
3271 base
->lookup_log_chans
= devm_kcalloc(dev
, num_log_chans
,
3272 sizeof(*base
->lookup_log_chans
),
3274 if (!base
->lookup_log_chans
)
3277 base
->reg_val_backup_chan
= devm_kmalloc_array(dev
, base
->num_phy_chans
,
3278 sizeof(d40_backup_regs_chan
),
3280 if (!base
->reg_val_backup_chan
)
3283 base
->lcla_pool
.alloc_map
= devm_kcalloc(dev
, num_phy_chans
3284 * D40_LCLA_LINK_PER_EVENT_GRP
,
3285 sizeof(*base
->lcla_pool
.alloc_map
),
3287 if (!base
->lcla_pool
.alloc_map
)
3290 base
->regs_interrupt
= devm_kmalloc_array(dev
, base
->gen_dmac
.il_size
,
3291 sizeof(*base
->regs_interrupt
),
3293 if (!base
->regs_interrupt
)
3296 base
->desc_slab
= kmem_cache_create(D40_NAME
, sizeof(struct d40_desc
),
3297 0, SLAB_HWCACHE_ALIGN
,
3299 if (!base
->desc_slab
)
3302 ret
= devm_add_action_or_reset(dev
, d40_drop_kmem_cache_action
,
3312 static void __init
d40_hw_init(struct d40_base
*base
)
3316 u32 prmseo
[2] = {0, 0};
3317 u32 activeo
[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3320 struct d40_reg_val
*dma_init_reg
= base
->gen_dmac
.init_reg
;
3321 u32 reg_size
= base
->gen_dmac
.init_reg_size
;
3323 for (i
= 0; i
< reg_size
; i
++)
3324 writel(dma_init_reg
[i
].val
,
3325 base
->virtbase
+ dma_init_reg
[i
].reg
);
3327 /* Configure all our dma channels to default settings */
3328 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3330 activeo
[i
% 2] = activeo
[i
% 2] << 2;
3332 if (base
->phy_res
[base
->num_phy_chans
- i
- 1].allocated_src
3334 activeo
[i
% 2] |= 3;
3338 /* Enable interrupt # */
3339 pcmis
= (pcmis
<< 1) | 1;
3341 /* Clear interrupt # */
3342 pcicr
= (pcicr
<< 1) | 1;
3344 /* Set channel to physical mode */
3345 prmseo
[i
% 2] = prmseo
[i
% 2] << 2;
3350 writel(prmseo
[1], base
->virtbase
+ D40_DREG_PRMSE
);
3351 writel(prmseo
[0], base
->virtbase
+ D40_DREG_PRMSO
);
3352 writel(activeo
[1], base
->virtbase
+ D40_DREG_ACTIVE
);
3353 writel(activeo
[0], base
->virtbase
+ D40_DREG_ACTIVO
);
3355 /* Write which interrupt to enable */
3356 writel(pcmis
, base
->virtbase
+ base
->gen_dmac
.interrupt_en
);
3358 /* Write which interrupt to clear */
3359 writel(pcicr
, base
->virtbase
+ base
->gen_dmac
.interrupt_clear
);
3361 /* These are __initdata and cannot be accessed after init */
3362 base
->gen_dmac
.init_reg
= NULL
;
3363 base
->gen_dmac
.init_reg_size
= 0;
3366 static int __init
d40_lcla_allocate(struct d40_base
*base
)
3368 struct d40_lcla_pool
*pool
= &base
->lcla_pool
;
3369 unsigned long *page_list
;
3374 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3375 * To full fill this hardware requirement without wasting 256 kb
3376 * we allocate pages until we get an aligned one.
3378 page_list
= kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS
,
3384 /* Calculating how many pages that are required */
3385 base
->lcla_pool
.pages
= SZ_1K
* base
->num_phy_chans
/ PAGE_SIZE
;
3387 for (i
= 0; i
< MAX_LCLA_ALLOC_ATTEMPTS
; i
++) {
3388 page_list
[i
] = __get_free_pages(GFP_KERNEL
,
3389 base
->lcla_pool
.pages
);
3390 if (!page_list
[i
]) {
3392 d40_err(base
->dev
, "Failed to allocate %d pages.\n",
3393 base
->lcla_pool
.pages
);
3396 for (j
= 0; j
< i
; j
++)
3397 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3398 goto free_page_list
;
3401 if ((virt_to_phys((void *)page_list
[i
]) &
3402 (LCLA_ALIGNMENT
- 1)) == 0)
3406 for (j
= 0; j
< i
; j
++)
3407 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3409 if (i
< MAX_LCLA_ALLOC_ATTEMPTS
) {
3410 base
->lcla_pool
.base
= (void *)page_list
[i
];
3413 * After many attempts and no success with finding the correct
3414 * alignment, try with allocating a big buffer.
3417 "[%s] Failed to get %d pages @ 18 bit align.\n",
3418 __func__
, base
->lcla_pool
.pages
);
3419 base
->lcla_pool
.base_unaligned
= kmalloc(SZ_1K
*
3420 base
->num_phy_chans
+
3423 if (!base
->lcla_pool
.base_unaligned
) {
3425 goto free_page_list
;
3428 base
->lcla_pool
.base
= PTR_ALIGN(base
->lcla_pool
.base_unaligned
,
3432 pool
->dma_addr
= dma_map_single(base
->dev
, pool
->base
,
3433 SZ_1K
* base
->num_phy_chans
,
3435 if (dma_mapping_error(base
->dev
, pool
->dma_addr
)) {
3438 goto free_page_list
;
3441 writel(virt_to_phys(base
->lcla_pool
.base
),
3442 base
->virtbase
+ D40_DREG_LCLA
);
3449 static int __init
d40_of_probe(struct device
*dev
,
3450 struct device_node
*np
)
3452 struct stedma40_platform_data
*pdata
;
3453 int num_phy
= 0, num_memcpy
= 0, num_disabled
= 0;
3456 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
3460 /* If absent this value will be obtained from h/w. */
3461 of_property_read_u32(np
, "dma-channels", &num_phy
);
3463 pdata
->num_of_phy_chans
= num_phy
;
3465 list
= of_get_property(np
, "memcpy-channels", &num_memcpy
);
3466 num_memcpy
/= sizeof(*list
);
3468 if (num_memcpy
> D40_MEMCPY_MAX_CHANS
|| num_memcpy
<= 0) {
3470 "Invalid number of memcpy channels specified (%d)\n",
3474 pdata
->num_of_memcpy_chans
= num_memcpy
;
3476 of_property_read_u32_array(np
, "memcpy-channels",
3477 dma40_memcpy_channels
,
3480 list
= of_get_property(np
, "disabled-channels", &num_disabled
);
3481 num_disabled
/= sizeof(*list
);
3483 if (num_disabled
>= STEDMA40_MAX_PHYS
|| num_disabled
< 0) {
3485 "Invalid number of disabled channels specified (%d)\n",
3490 of_property_read_u32_array(np
, "disabled-channels",
3491 pdata
->disabled_channels
,
3493 pdata
->disabled_channels
[num_disabled
] = -1;
3495 dev
->platform_data
= pdata
;
3500 static int __init
d40_probe(struct platform_device
*pdev
)
3502 struct device
*dev
= &pdev
->dev
;
3503 struct device_node
*np
= pdev
->dev
.of_node
;
3504 struct device_node
*np_lcpa
;
3505 struct d40_base
*base
;
3506 struct resource
*res
;
3507 struct resource res_lcpa
;
3508 int num_reserved_chans
;
3512 if (d40_of_probe(dev
, np
)) {
3514 goto report_failure
;
3517 ret
= d40_hw_detect_init(pdev
, &base
);
3519 goto report_failure
;
3521 num_reserved_chans
= d40_phy_res_init(base
);
3523 platform_set_drvdata(pdev
, base
);
3525 spin_lock_init(&base
->interrupt_lock
);
3526 spin_lock_init(&base
->execmd_lock
);
3528 /* Get IO for logical channel parameter address (LCPA) */
3529 np_lcpa
= of_parse_phandle(np
, "sram", 0);
3531 dev_err(dev
, "no LCPA SRAM node\n");
3533 goto report_failure
;
3535 /* This is no device so read the address directly from the node */
3536 ret
= of_address_to_resource(np_lcpa
, 0, &res_lcpa
);
3538 dev_err(dev
, "no LCPA SRAM resource\n");
3539 goto report_failure
;
3541 base
->lcpa_size
= resource_size(&res_lcpa
);
3542 base
->phy_lcpa
= res_lcpa
.start
;
3543 dev_info(dev
, "found LCPA SRAM at %pad, size %pa\n",
3544 &base
->phy_lcpa
, &base
->lcpa_size
);
3546 /* We make use of ESRAM memory for this. */
3547 val
= readl(base
->virtbase
+ D40_DREG_LCPA
);
3548 if (base
->phy_lcpa
!= val
&& val
!= 0) {
3550 "[%s] Mismatch LCPA dma 0x%x, def %08x\n",
3551 __func__
, val
, (u32
)base
->phy_lcpa
);
3553 writel(base
->phy_lcpa
, base
->virtbase
+ D40_DREG_LCPA
);
3555 base
->lcpa_base
= devm_ioremap(dev
, base
->phy_lcpa
, base
->lcpa_size
);
3556 if (!base
->lcpa_base
) {
3558 d40_err(dev
, "Failed to ioremap LCPA region\n");
3559 goto report_failure
;
3561 /* If lcla has to be located in ESRAM we don't need to allocate */
3562 if (base
->plat_data
->use_esram_lcla
) {
3563 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
3568 "No \"lcla_esram\" memory resource\n");
3569 goto report_failure
;
3571 base
->lcla_pool
.base
= devm_ioremap(dev
, res
->start
,
3572 resource_size(res
));
3573 if (!base
->lcla_pool
.base
) {
3575 d40_err(dev
, "Failed to ioremap LCLA region\n");
3576 goto report_failure
;
3578 writel(res
->start
, base
->virtbase
+ D40_DREG_LCLA
);
3581 ret
= d40_lcla_allocate(base
);
3583 d40_err(dev
, "Failed to allocate LCLA area\n");
3588 spin_lock_init(&base
->lcla_pool
.lock
);
3590 base
->irq
= platform_get_irq(pdev
, 0);
3591 if (base
->irq
< 0) {
3596 ret
= request_irq(base
->irq
, d40_handle_interrupt
, 0, D40_NAME
, base
);
3598 d40_err(dev
, "No IRQ defined\n");
3602 if (base
->plat_data
->use_esram_lcla
) {
3604 base
->lcpa_regulator
= regulator_get(base
->dev
, "lcla_esram");
3605 if (IS_ERR(base
->lcpa_regulator
)) {
3606 d40_err(dev
, "Failed to get lcpa_regulator\n");
3607 ret
= PTR_ERR(base
->lcpa_regulator
);
3608 base
->lcpa_regulator
= NULL
;
3612 ret
= regulator_enable(base
->lcpa_regulator
);
3615 "Failed to enable lcpa_regulator\n");
3616 regulator_put(base
->lcpa_regulator
);
3617 base
->lcpa_regulator
= NULL
;
3622 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3624 pm_runtime_irq_safe(base
->dev
);
3625 pm_runtime_set_autosuspend_delay(base
->dev
, DMA40_AUTOSUSPEND_DELAY
);
3626 pm_runtime_use_autosuspend(base
->dev
);
3627 pm_runtime_mark_last_busy(base
->dev
);
3628 pm_runtime_set_active(base
->dev
);
3629 pm_runtime_enable(base
->dev
);
3631 ret
= d40_dmaengine_init(base
, num_reserved_chans
);
3635 dma_set_max_seg_size(base
->dev
, STEDMA40_MAX_SEG_SIZE
);
3639 ret
= of_dma_controller_register(np
, d40_xlate
, NULL
);
3642 "could not register of_dma_controller\n");
3646 dev_info(base
->dev
, "initialized\n");
3650 if (base
->lcla_pool
.dma_addr
)
3651 dma_unmap_single(base
->dev
, base
->lcla_pool
.dma_addr
,
3652 SZ_1K
* base
->num_phy_chans
,
3655 if (!base
->lcla_pool
.base_unaligned
&& base
->lcla_pool
.base
)
3656 free_pages((unsigned long)base
->lcla_pool
.base
,
3657 base
->lcla_pool
.pages
);
3659 kfree(base
->lcla_pool
.base_unaligned
);
3661 if (base
->lcpa_regulator
) {
3662 regulator_disable(base
->lcpa_regulator
);
3663 regulator_put(base
->lcpa_regulator
);
3665 pm_runtime_disable(base
->dev
);
3668 d40_err(dev
, "probe failed\n");
3672 static const struct of_device_id d40_match
[] = {
3673 { .compatible
= "stericsson,dma40", },
3677 static struct platform_driver d40_driver
= {
3680 .pm
= &dma40_pm_ops
,
3681 .of_match_table
= d40_match
,
3685 static int __init
stedma40_init(void)
3687 return platform_driver_probe(&d40_driver
, d40_probe
);
3689 subsys_initcall(stedma40_init
);