2 * Intel 5400 class Memory Controllers kernel module (Seaburg)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Copyright (c) 2008 by:
8 * Ben Woodard <woodard@redhat.com>
9 * Mauro Carvalho Chehab
11 * Red Hat Inc. https://www.redhat.com
13 * Forked and adapted from the i5000_edac driver which was
14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
16 * This module is based on the following document:
18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19 * http://developer.intel.com/design/chipsets/datashts/313070.htm
21 * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
22 * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
23 * 4 dimm's, each with up to 8GB.
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <linux/pci_ids.h>
31 #include <linux/slab.h>
32 #include <linux/edac.h>
33 #include <linux/mmzone.h>
35 #include "edac_module.h"
38 * Alter this version for the I5400 module when modifications are made
40 #define I5400_REVISION " Ver: 1.0.0"
42 #define EDAC_MOD_STR "i5400_edac"
44 #define i5400_printk(level, fmt, arg...) \
45 edac_printk(level, "i5400", fmt, ##arg)
47 #define i5400_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
50 /* Limits for i5400 */
51 #define MAX_BRANCHES 2
52 #define CHANNELS_PER_BRANCH 2
53 #define DIMMS_PER_CHANNEL 4
54 #define MAX_CHANNELS (MAX_BRANCHES * CHANNELS_PER_BRANCH)
57 * Function 0: System Address
58 * Function 1: Memory Branch Map, Control, Errors Register
59 * Function 2: FSB Error Registers
61 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
62 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
63 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
64 * for device 21 (0,1).
67 /* OFFSETS for Function 0 */
68 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
69 #define MAXCH 0x56 /* Max Channel Number */
70 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
72 /* OFFSETS for Function 1 */
75 #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */
81 /* Fatal error registers */
82 #define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */
83 #define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */
85 #define NERR_FAT_FBD 0x9c
86 #define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */
88 /* Non-fatal error register */
89 #define NERR_NF_FBD 0xa4
91 /* Enable error mask */
92 #define EMASK_FBD 0xa8
97 #define MCERR_FBD 0xb8
99 /* No OFFSETS for Device 16 Function 2 */
103 * Function 0: Memory Map Branch 0
106 * Function 0: Memory Map Branch 1
109 /* OFFSETS for Function 0 */
110 #define AMBPRESENT_0 0x64
111 #define AMBPRESENT_1 0x66
117 /* OFFSETS for Function 1 */
118 #define NRECFGLOG 0x74
119 #define RECFGLOG 0x78
120 #define NRECMEMA 0xbe
121 #define NRECMEMB 0xc0
122 #define NRECFB_DIMMA 0xc4
123 #define NRECFB_DIMMB 0xc8
124 #define NRECFB_DIMMC 0xcc
125 #define NRECFB_DIMMD 0xd0
126 #define NRECFB_DIMME 0xd4
127 #define NRECFB_DIMMF 0xd8
131 #define RECFB_DIMMA 0xf8
132 #define RECFB_DIMMB 0xec
133 #define RECFB_DIMMC 0xf0
134 #define RECFB_DIMMD 0xf4
135 #define RECFB_DIMME 0xf8
136 #define RECFB_DIMMF 0xfC
139 * Error indicator bits and masks
140 * Error masks are according with Table 5-17 of i5400 datasheet
144 EMASK_M1
= 1<<0, /* Memory Write error on non-redundant retry */
145 EMASK_M2
= 1<<1, /* Memory or FB-DIMM configuration CRC read error */
146 EMASK_M3
= 1<<2, /* Reserved */
147 EMASK_M4
= 1<<3, /* Uncorrectable Data ECC on Replay */
148 EMASK_M5
= 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
149 EMASK_M6
= 1<<5, /* Unsupported on i5400 */
150 EMASK_M7
= 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
151 EMASK_M8
= 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
152 EMASK_M9
= 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
153 EMASK_M10
= 1<<9, /* Unsupported on i5400 */
154 EMASK_M11
= 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
155 EMASK_M12
= 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
156 EMASK_M13
= 1<<12, /* Memory Write error on first attempt */
157 EMASK_M14
= 1<<13, /* FB-DIMM Configuration Write error on first attempt */
158 EMASK_M15
= 1<<14, /* Memory or FB-DIMM configuration CRC read error */
159 EMASK_M16
= 1<<15, /* Channel Failed-Over Occurred */
160 EMASK_M17
= 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
161 EMASK_M18
= 1<<17, /* Unsupported on i5400 */
162 EMASK_M19
= 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
163 EMASK_M20
= 1<<19, /* Correctable Patrol Data ECC */
164 EMASK_M21
= 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
165 EMASK_M22
= 1<<21, /* SPD protocol Error */
166 EMASK_M23
= 1<<22, /* Non-Redundant Fast Reset Timeout */
167 EMASK_M24
= 1<<23, /* Refresh error */
168 EMASK_M25
= 1<<24, /* Memory Write error on redundant retry */
169 EMASK_M26
= 1<<25, /* Redundant Fast Reset Timeout */
170 EMASK_M27
= 1<<26, /* Correctable Counter Threshold Exceeded */
171 EMASK_M28
= 1<<27, /* DIMM-Spare Copy Completed */
172 EMASK_M29
= 1<<28, /* DIMM-Isolation Completed */
176 * Names to translate bit error into something useful
178 static const char *error_name
[] = {
179 [0] = "Memory Write error on non-redundant retry",
180 [1] = "Memory or FB-DIMM configuration CRC read error",
182 [3] = "Uncorrectable Data ECC on Replay",
183 [4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
184 /* M6 Unsupported on i5400 */
185 [6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
186 [7] = "Aliased Uncorrectable Patrol Data ECC",
187 [8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
188 /* M10 Unsupported on i5400 */
189 [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
190 [11] = "Non-Aliased Uncorrectable Patrol Data ECC",
191 [12] = "Memory Write error on first attempt",
192 [13] = "FB-DIMM Configuration Write error on first attempt",
193 [14] = "Memory or FB-DIMM configuration CRC read error",
194 [15] = "Channel Failed-Over Occurred",
195 [16] = "Correctable Non-Mirrored Demand Data ECC",
196 /* M18 Unsupported on i5400 */
197 [18] = "Correctable Resilver- or Spare-Copy Data ECC",
198 [19] = "Correctable Patrol Data ECC",
199 [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
200 [21] = "SPD protocol Error",
201 [22] = "Non-Redundant Fast Reset Timeout",
202 [23] = "Refresh error",
203 [24] = "Memory Write error on redundant retry",
204 [25] = "Redundant Fast Reset Timeout",
205 [26] = "Correctable Counter Threshold Exceeded",
206 [27] = "DIMM-Spare Copy Completed",
207 [28] = "DIMM-Isolation Completed",
211 #define ERROR_FAT_MASK (EMASK_M1 | \
215 /* Correctable errors */
216 #define ERROR_NF_CORRECTABLE (EMASK_M27 | \
222 #define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
224 #define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
225 #define ERROR_NF_NORTH_CRC (EMASK_M21)
227 /* Recoverable errors */
228 #define ERROR_NF_RECOVERABLE (EMASK_M26 | \
241 /* uncorrectable errors */
242 #define ERROR_NF_UNCORRECTABLE (EMASK_M4)
244 /* mask to all non-fatal errors */
245 #define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
246 ERROR_NF_UNCORRECTABLE | \
247 ERROR_NF_RECOVERABLE | \
248 ERROR_NF_DIMM_SPARE | \
249 ERROR_NF_SPD_PROTOCOL | \
253 * Define error masks for the several registers
256 /* Enable all fatal and non fatal errors */
257 #define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
259 /* mask for fatal error registers */
260 #define FERR_FAT_MASK ERROR_FAT_MASK
262 /* masks for non-fatal error register */
263 static inline int to_nf_mask(unsigned int mask
)
265 return (mask
& EMASK_M29
) | (mask
>> 3);
268 static inline int from_nf_ferr(unsigned int mask
)
270 return (mask
& EMASK_M29
) | /* Bit 28 */
271 (mask
& ((1 << 28) - 1) << 3); /* Bits 0 to 27 */
274 #define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK)
275 #define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE)
276 #define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE)
277 #define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL)
278 #define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC)
279 #define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE)
280 #define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE)
283 * Defines to extract the various fields from the
284 * MTRx - Memory Technology Registers
286 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10))
287 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9))
288 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4)
289 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
290 #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
291 #define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1)
292 #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
293 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
294 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
295 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
296 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
298 /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
299 static inline int extract_fbdchan_indx(u32 x
)
301 return (x
>>28) & 0x3;
304 /* Device name and register DID (Device ID) */
305 struct i5400_dev_info
{
306 const char *ctl_name
; /* name for this device */
307 u16 fsb_mapping_errors
; /* DID for the branchmap,control */
310 /* Table of devices attributes supported by this driver */
311 static const struct i5400_dev_info i5400_devs
[] = {
314 .fsb_mapping_errors
= PCI_DEVICE_ID_INTEL_5400_ERR
,
318 struct i5400_dimm_info
{
319 int megabytes
; /* size, 0 means not present */
322 /* driver private data structure */
324 struct pci_dev
*system_address
; /* 16.0 */
325 struct pci_dev
*branchmap_werrors
; /* 16.1 */
326 struct pci_dev
*fsb_error_regs
; /* 16.2 */
327 struct pci_dev
*branch_0
; /* 21.0 */
328 struct pci_dev
*branch_1
; /* 22.0 */
330 u16 tolm
; /* top of low memory */
332 u64 ambase
; /* AMB BAR */
341 u16 b0_mtr
[DIMMS_PER_CHANNEL
]; /* Memory Technlogy Reg */
342 u16 b0_ambpresent0
; /* Branch 0, Channel 0 */
343 u16 b0_ambpresent1
; /* Brnach 0, Channel 1 */
345 u16 b1_mtr
[DIMMS_PER_CHANNEL
]; /* Memory Technlogy Reg */
346 u16 b1_ambpresent0
; /* Branch 1, Channel 8 */
347 u16 b1_ambpresent1
; /* Branch 1, Channel 1 */
349 /* DIMM information matrix, allocating architecture maximums */
350 struct i5400_dimm_info dimm_info
[DIMMS_PER_CHANNEL
][MAX_CHANNELS
];
352 /* Actual values for this controller */
353 int maxch
; /* Max channels */
354 int maxdimmperch
; /* Max DIMMs per channel */
357 /* I5400 MCH error information retrieved from Hardware */
358 struct i5400_error_info
{
359 /* These registers are always read from the MC */
360 u32 ferr_fat_fbd
; /* First Errors Fatal */
361 u32 nerr_fat_fbd
; /* Next Errors Fatal */
362 u32 ferr_nf_fbd
; /* First Errors Non-Fatal */
363 u32 nerr_nf_fbd
; /* Next Errors Non-Fatal */
365 /* These registers are input ONLY if there was a Recoverable Error */
366 u32 redmemb
; /* Recoverable Mem Data Error log B */
367 u16 recmema
; /* Recoverable Mem Error log A */
368 u32 recmemb
; /* Recoverable Mem Error log B */
370 /* These registers are input ONLY if there was a Non-Rec Error */
371 u16 nrecmema
; /* Non-Recoverable Mem log A */
372 u32 nrecmemb
; /* Non-Recoverable Mem log B */
376 /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
377 5400 better to use an inline function than a macro in this case */
378 static inline int nrec_bank(struct i5400_error_info
*info
)
380 return ((info
->nrecmema
) >> 12) & 0x7;
382 static inline int nrec_rank(struct i5400_error_info
*info
)
384 return ((info
->nrecmema
) >> 8) & 0xf;
386 static inline int nrec_buf_id(struct i5400_error_info
*info
)
388 return ((info
->nrecmema
)) & 0xff;
390 static inline int nrec_rdwr(struct i5400_error_info
*info
)
392 return (info
->nrecmemb
) >> 31;
394 /* This applies to both NREC and REC string so it can be used with nrec_rdwr
396 static inline const char *rdwr_str(int rdwr
)
398 return rdwr
? "Write" : "Read";
400 static inline int nrec_cas(struct i5400_error_info
*info
)
402 return ((info
->nrecmemb
) >> 16) & 0x1fff;
404 static inline int nrec_ras(struct i5400_error_info
*info
)
406 return (info
->nrecmemb
) & 0xffff;
408 static inline int rec_bank(struct i5400_error_info
*info
)
410 return ((info
->recmema
) >> 12) & 0x7;
412 static inline int rec_rank(struct i5400_error_info
*info
)
414 return ((info
->recmema
) >> 8) & 0xf;
416 static inline int rec_rdwr(struct i5400_error_info
*info
)
418 return (info
->recmemb
) >> 31;
420 static inline int rec_cas(struct i5400_error_info
*info
)
422 return ((info
->recmemb
) >> 16) & 0x1fff;
424 static inline int rec_ras(struct i5400_error_info
*info
)
426 return (info
->recmemb
) & 0xffff;
429 static struct edac_pci_ctl_info
*i5400_pci
;
432 * i5400_get_error_info Retrieve the hardware error information from
433 * the hardware and cache it in the 'info'
436 static void i5400_get_error_info(struct mem_ctl_info
*mci
,
437 struct i5400_error_info
*info
)
439 struct i5400_pvt
*pvt
;
444 /* read in the 1st FATAL error register */
445 pci_read_config_dword(pvt
->branchmap_werrors
, FERR_FAT_FBD
, &value
);
447 /* Mask only the bits that the doc says are valid
449 value
&= (FERR_FAT_FBDCHAN
| FERR_FAT_MASK
);
451 /* If there is an error, then read in the
452 NEXT FATAL error register and the Memory Error Log Register A
454 if (value
& FERR_FAT_MASK
) {
455 info
->ferr_fat_fbd
= value
;
457 /* harvest the various error data we need */
458 pci_read_config_dword(pvt
->branchmap_werrors
,
459 NERR_FAT_FBD
, &info
->nerr_fat_fbd
);
460 pci_read_config_word(pvt
->branchmap_werrors
,
461 NRECMEMA
, &info
->nrecmema
);
462 pci_read_config_dword(pvt
->branchmap_werrors
,
463 NRECMEMB
, &info
->nrecmemb
);
465 /* Clear the error bits, by writing them back */
466 pci_write_config_dword(pvt
->branchmap_werrors
,
467 FERR_FAT_FBD
, value
);
469 info
->ferr_fat_fbd
= 0;
470 info
->nerr_fat_fbd
= 0;
475 /* read in the 1st NON-FATAL error register */
476 pci_read_config_dword(pvt
->branchmap_werrors
, FERR_NF_FBD
, &value
);
478 /* If there is an error, then read in the 1st NON-FATAL error
479 * register as well */
480 if (value
& FERR_NF_MASK
) {
481 info
->ferr_nf_fbd
= value
;
483 /* harvest the various error data we need */
484 pci_read_config_dword(pvt
->branchmap_werrors
,
485 NERR_NF_FBD
, &info
->nerr_nf_fbd
);
486 pci_read_config_word(pvt
->branchmap_werrors
,
487 RECMEMA
, &info
->recmema
);
488 pci_read_config_dword(pvt
->branchmap_werrors
,
489 RECMEMB
, &info
->recmemb
);
490 pci_read_config_dword(pvt
->branchmap_werrors
,
491 REDMEMB
, &info
->redmemb
);
493 /* Clear the error bits, by writing them back */
494 pci_write_config_dword(pvt
->branchmap_werrors
,
497 info
->ferr_nf_fbd
= 0;
498 info
->nerr_nf_fbd
= 0;
506 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
507 * struct i5400_error_info *info,
508 * int handle_errors);
510 * handle the Intel FATAL and unrecoverable errors, if any
512 static void i5400_proccess_non_recoverable_info(struct mem_ctl_info
*mci
,
513 struct i5400_error_info
*info
,
514 unsigned long allErrors
)
516 char msg
[EDAC_MC_LABEL_LEN
+ 1 + 90 + 80];
526 enum hw_event_mc_err_type tp_event
= HW_EVENT_ERR_UNCORRECTED
;
529 return; /* if no error, return now */
531 if (allErrors
& ERROR_FAT_MASK
) {
533 tp_event
= HW_EVENT_ERR_FATAL
;
534 } else if (allErrors
& FERR_NF_UNCORRECTABLE
)
535 type
= "NON-FATAL uncorrected";
537 type
= "NON-FATAL recoverable";
539 /* ONLY ONE of the possible error bits will be set, as per the docs */
541 branch
= extract_fbdchan_indx(info
->ferr_fat_fbd
);
544 /* Use the NON-Recoverable macros to extract data */
545 bank
= nrec_bank(info
);
546 rank
= nrec_rank(info
);
547 buf_id
= nrec_buf_id(info
);
548 rdwr
= nrec_rdwr(info
);
549 ras
= nrec_ras(info
);
550 cas
= nrec_cas(info
);
552 edac_dbg(0, "\t\t%s DIMM= %d Channels= %d,%d (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
553 type
, rank
, channel
, channel
+ 1, branch
>> 1, bank
,
554 buf_id
, rdwr_str(rdwr
), ras
, cas
);
556 /* Only 1 bit will be on */
557 errnum
= find_first_bit(&allErrors
, ARRAY_SIZE(error_name
));
559 /* Form out message */
560 snprintf(msg
, sizeof(msg
),
561 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
562 bank
, buf_id
, ras
, cas
, allErrors
, error_name
[errnum
]);
564 edac_mc_handle_error(tp_event
, mci
, 1, 0, 0, 0,
565 branch
>> 1, -1, rank
,
566 rdwr
? "Write error" : "Read error",
571 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
572 * struct i5400_error_info *info,
573 * int handle_errors);
575 * handle the Intel NON-FATAL errors, if any
577 static void i5400_process_nonfatal_error_info(struct mem_ctl_info
*mci
,
578 struct i5400_error_info
*info
)
580 char msg
[EDAC_MC_LABEL_LEN
+ 1 + 90 + 80];
581 unsigned long allErrors
;
590 /* mask off the Error bits that are possible */
591 allErrors
= from_nf_ferr(info
->ferr_nf_fbd
& FERR_NF_MASK
);
593 return; /* if no error, return now */
595 /* ONLY ONE of the possible error bits will be set, as per the docs */
597 if (allErrors
& (ERROR_NF_UNCORRECTABLE
| ERROR_NF_RECOVERABLE
)) {
598 i5400_proccess_non_recoverable_info(mci
, info
, allErrors
);
602 /* Correctable errors */
603 if (allErrors
& ERROR_NF_CORRECTABLE
) {
604 edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors
);
606 branch
= extract_fbdchan_indx(info
->ferr_nf_fbd
);
609 if (REC_ECC_LOCATOR_ODD(info
->redmemb
))
612 /* Convert channel to be based from zero, instead of
613 * from branch base of 0 */
616 bank
= rec_bank(info
);
617 rank
= rec_rank(info
);
618 rdwr
= rec_rdwr(info
);
622 /* Only 1 bit will be on */
623 errnum
= find_first_bit(&allErrors
, ARRAY_SIZE(error_name
));
625 edac_dbg(0, "\t\tDIMM= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
626 rank
, channel
, branch
>> 1, bank
,
627 rdwr_str(rdwr
), ras
, cas
);
629 /* Form out message */
630 snprintf(msg
, sizeof(msg
),
631 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
632 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
633 branch
>> 1, bank
, rdwr_str(rdwr
), ras
, cas
,
634 allErrors
, error_name
[errnum
]);
636 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED
, mci
, 1, 0, 0, 0,
637 branch
>> 1, channel
% 2, rank
,
638 rdwr
? "Write error" : "Read error",
644 /* Miscellaneous errors */
645 errnum
= find_first_bit(&allErrors
, ARRAY_SIZE(error_name
));
647 branch
= extract_fbdchan_indx(info
->ferr_nf_fbd
);
649 i5400_mc_printk(mci
, KERN_EMERG
,
650 "Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
651 branch
>> 1, allErrors
, error_name
[errnum
]);
655 * i5400_process_error_info Process the error info that is
656 * in the 'info' structure, previously retrieved from hardware
658 static void i5400_process_error_info(struct mem_ctl_info
*mci
,
659 struct i5400_error_info
*info
)
662 /* First handle any fatal errors that occurred */
663 allErrors
= (info
->ferr_fat_fbd
& FERR_FAT_MASK
);
664 i5400_proccess_non_recoverable_info(mci
, info
, allErrors
);
666 /* now handle any non-fatal errors that occurred */
667 i5400_process_nonfatal_error_info(mci
, info
);
671 * i5400_clear_error Retrieve any error from the hardware
672 * but do NOT process that error.
673 * Used for 'clearing' out of previous errors
674 * Called by the Core module.
676 static void i5400_clear_error(struct mem_ctl_info
*mci
)
678 struct i5400_error_info info
;
680 i5400_get_error_info(mci
, &info
);
684 * i5400_check_error Retrieve and process errors reported by the
685 * hardware. Called by the Core module.
687 static void i5400_check_error(struct mem_ctl_info
*mci
)
689 struct i5400_error_info info
;
691 i5400_get_error_info(mci
, &info
);
692 i5400_process_error_info(mci
, &info
);
696 * i5400_put_devices 'put' all the devices that we have
699 static void i5400_put_devices(struct mem_ctl_info
*mci
)
701 struct i5400_pvt
*pvt
;
705 /* Decrement usage count for devices */
706 pci_dev_put(pvt
->branch_1
);
707 pci_dev_put(pvt
->branch_0
);
708 pci_dev_put(pvt
->fsb_error_regs
);
709 pci_dev_put(pvt
->branchmap_werrors
);
713 * i5400_get_devices Find and perform 'get' operation on the MCH's
714 * device/functions we want to reference for this driver
716 * Need to 'get' device 16 func 1 and func 2
718 static int i5400_get_devices(struct mem_ctl_info
*mci
, int dev_idx
)
720 struct i5400_pvt
*pvt
;
721 struct pci_dev
*pdev
;
724 pvt
->branchmap_werrors
= NULL
;
725 pvt
->fsb_error_regs
= NULL
;
726 pvt
->branch_0
= NULL
;
727 pvt
->branch_1
= NULL
;
729 /* Attempt to 'get' the MCH register we want */
732 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
733 PCI_DEVICE_ID_INTEL_5400_ERR
, pdev
);
735 /* End of list, leave */
736 i5400_printk(KERN_ERR
,
737 "'system address,Process Bus' "
739 "vendor 0x%x device 0x%x ERR func 1 "
742 PCI_DEVICE_ID_INTEL_5400_ERR
);
746 /* Store device 16 func 1 */
747 if (PCI_FUNC(pdev
->devfn
) == 1)
750 pvt
->branchmap_werrors
= pdev
;
754 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
755 PCI_DEVICE_ID_INTEL_5400_ERR
, pdev
);
757 /* End of list, leave */
758 i5400_printk(KERN_ERR
,
759 "'system address,Process Bus' "
761 "vendor 0x%x device 0x%x ERR func 2 "
764 PCI_DEVICE_ID_INTEL_5400_ERR
);
766 pci_dev_put(pvt
->branchmap_werrors
);
770 /* Store device 16 func 2 */
771 if (PCI_FUNC(pdev
->devfn
) == 2)
774 pvt
->fsb_error_regs
= pdev
;
776 edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
777 pci_name(pvt
->system_address
),
778 pvt
->system_address
->vendor
, pvt
->system_address
->device
);
779 edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
780 pci_name(pvt
->branchmap_werrors
),
781 pvt
->branchmap_werrors
->vendor
,
782 pvt
->branchmap_werrors
->device
);
783 edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
784 pci_name(pvt
->fsb_error_regs
),
785 pvt
->fsb_error_regs
->vendor
, pvt
->fsb_error_regs
->device
);
787 pvt
->branch_0
= pci_get_device(PCI_VENDOR_ID_INTEL
,
788 PCI_DEVICE_ID_INTEL_5400_FBD0
, NULL
);
789 if (!pvt
->branch_0
) {
790 i5400_printk(KERN_ERR
,
791 "MC: 'BRANCH 0' device not found:"
792 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
793 PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_5400_FBD0
);
795 pci_dev_put(pvt
->fsb_error_regs
);
796 pci_dev_put(pvt
->branchmap_werrors
);
800 /* If this device claims to have more than 2 channels then
801 * fetch Branch 1's information
803 if (pvt
->maxch
< CHANNELS_PER_BRANCH
)
806 pvt
->branch_1
= pci_get_device(PCI_VENDOR_ID_INTEL
,
807 PCI_DEVICE_ID_INTEL_5400_FBD1
, NULL
);
808 if (!pvt
->branch_1
) {
809 i5400_printk(KERN_ERR
,
810 "MC: 'BRANCH 1' device not found:"
811 "vendor 0x%x device 0x%x Func 0 "
814 PCI_DEVICE_ID_INTEL_5400_FBD1
);
816 pci_dev_put(pvt
->branch_0
);
817 pci_dev_put(pvt
->fsb_error_regs
);
818 pci_dev_put(pvt
->branchmap_werrors
);
826 * determine_amb_present
828 * the information is contained in DIMMS_PER_CHANNEL different
829 * registers determining which of the DIMMS_PER_CHANNEL requires
830 * knowing which channel is in question
832 * 2 branches, each with 2 channels
833 * b0_ambpresent0 for channel '0'
834 * b0_ambpresent1 for channel '1'
835 * b1_ambpresent0 for channel '2'
836 * b1_ambpresent1 for channel '3'
838 static int determine_amb_present_reg(struct i5400_pvt
*pvt
, int channel
)
842 if (channel
< CHANNELS_PER_BRANCH
) {
844 amb_present
= pvt
->b0_ambpresent1
;
846 amb_present
= pvt
->b0_ambpresent0
;
849 amb_present
= pvt
->b1_ambpresent1
;
851 amb_present
= pvt
->b1_ambpresent0
;
858 * determine_mtr(pvt, dimm, channel)
860 * return the proper MTR register as determine by the dimm and desired channel
862 static int determine_mtr(struct i5400_pvt
*pvt
, int dimm
, int channel
)
867 /* There is one MTR for each slot pair of FB-DIMMs,
868 Each slot pair may be at branch 0 or branch 1.
872 if (n
>= DIMMS_PER_CHANNEL
) {
873 edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
878 if (channel
< CHANNELS_PER_BRANCH
)
879 mtr
= pvt
->b0_mtr
[n
];
881 mtr
= pvt
->b1_mtr
[n
];
888 static void decode_mtr(int slot_row
, u16 mtr
)
892 ans
= MTR_DIMMS_PRESENT(mtr
);
894 edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
895 slot_row
, mtr
, ans
? "" : "NOT ");
899 edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr
));
901 edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
902 MTR_DIMMS_ETHROTTLE(mtr
) ? "enabled" : "disabled");
904 edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr
));
905 edac_dbg(2, "\t\tNUMRANK: %s\n",
906 MTR_DIMM_RANK(mtr
) ? "double" : "single");
907 edac_dbg(2, "\t\tNUMROW: %s\n",
908 MTR_DIMM_ROWS(mtr
) == 0 ? "8,192 - 13 rows" :
909 MTR_DIMM_ROWS(mtr
) == 1 ? "16,384 - 14 rows" :
910 MTR_DIMM_ROWS(mtr
) == 2 ? "32,768 - 15 rows" :
912 edac_dbg(2, "\t\tNUMCOL: %s\n",
913 MTR_DIMM_COLS(mtr
) == 0 ? "1,024 - 10 columns" :
914 MTR_DIMM_COLS(mtr
) == 1 ? "2,048 - 11 columns" :
915 MTR_DIMM_COLS(mtr
) == 2 ? "4,096 - 12 columns" :
919 static void handle_channel(struct i5400_pvt
*pvt
, int dimm
, int channel
,
920 struct i5400_dimm_info
*dinfo
)
926 mtr
= determine_mtr(pvt
, dimm
, channel
);
927 if (MTR_DIMMS_PRESENT(mtr
)) {
928 amb_present_reg
= determine_amb_present_reg(pvt
, channel
);
930 /* Determine if there is a DIMM present in this DIMM slot */
931 if (amb_present_reg
& (1 << dimm
)) {
932 /* Start with the number of bits for a Bank
934 addrBits
= MTR_DRAM_BANKS_ADDR_BITS(mtr
);
935 /* Add thenumber of ROW bits */
936 addrBits
+= MTR_DIMM_ROWS_ADDR_BITS(mtr
);
937 /* add the number of COLUMN bits */
938 addrBits
+= MTR_DIMM_COLS_ADDR_BITS(mtr
);
939 /* add the number of RANK bits */
940 addrBits
+= MTR_DIMM_RANK(mtr
);
942 addrBits
+= 6; /* add 64 bits per DIMM */
943 addrBits
-= 20; /* divide by 2^^20 */
944 addrBits
-= 3; /* 8 bits per bytes */
946 dinfo
->megabytes
= 1 << addrBits
;
952 * calculate_dimm_size
954 * also will output a DIMM matrix map, if debug is enabled, for viewing
955 * how the DIMMs are populated
957 static void calculate_dimm_size(struct i5400_pvt
*pvt
)
959 struct i5400_dimm_info
*dinfo
;
961 char *p
, *mem_buffer
;
965 /* ================= Generate some debug output ================= */
967 mem_buffer
= p
= kmalloc(space
, GFP_KERNEL
);
969 i5400_printk(KERN_ERR
, "MC: %s:%s() kmalloc() failed\n",
974 /* Scan all the actual DIMMS
975 * and calculate the information for each DIMM
976 * Start with the highest dimm first, to display it first
977 * and work toward the 0th dimm
979 max_dimms
= pvt
->maxdimmperch
;
980 for (dimm
= max_dimms
- 1; dimm
>= 0; dimm
--) {
982 /* on an odd dimm, first output a 'boundary' marker,
983 * then reset the message buffer */
985 n
= snprintf(p
, space
, "---------------------------"
986 "-------------------------------");
989 edac_dbg(2, "%s\n", mem_buffer
);
993 n
= snprintf(p
, space
, "dimm %2d ", dimm
);
997 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
998 dinfo
= &pvt
->dimm_info
[dimm
][channel
];
999 handle_channel(pvt
, dimm
, channel
, dinfo
);
1000 n
= snprintf(p
, space
, "%4d MB | ", dinfo
->megabytes
);
1004 edac_dbg(2, "%s\n", mem_buffer
);
1009 /* Output the last bottom 'boundary' marker */
1010 n
= snprintf(p
, space
, "---------------------------"
1011 "-------------------------------");
1014 edac_dbg(2, "%s\n", mem_buffer
);
1018 /* now output the 'channel' labels */
1019 n
= snprintf(p
, space
, " ");
1022 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
1023 n
= snprintf(p
, space
, "channel %d | ", channel
);
1029 edac_dbg(2, "%s\n", mem_buffer
);
1033 n
= snprintf(p
, space
, " ");
1035 for (branch
= 0; branch
< MAX_BRANCHES
; branch
++) {
1036 n
= snprintf(p
, space
, " branch %d | ", branch
);
1041 /* output the last message and free buffer */
1042 edac_dbg(2, "%s\n", mem_buffer
);
1047 * i5400_get_mc_regs read in the necessary registers and
1050 * Fills in the private data members
1052 static void i5400_get_mc_regs(struct mem_ctl_info
*mci
)
1054 struct i5400_pvt
*pvt
;
1060 pvt
= mci
->pvt_info
;
1062 pci_read_config_dword(pvt
->system_address
, AMBASE
,
1063 &pvt
->u
.ambase_bottom
);
1064 pci_read_config_dword(pvt
->system_address
, AMBASE
+ sizeof(u32
),
1065 &pvt
->u
.ambase_top
);
1067 edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1068 (long unsigned int)pvt
->ambase
, pvt
->maxch
, pvt
->maxdimmperch
);
1070 /* Get the Branch Map regs */
1071 pci_read_config_word(pvt
->branchmap_werrors
, TOLM
, &pvt
->tolm
);
1073 edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1074 pvt
->tolm
, pvt
->tolm
);
1076 actual_tolm
= (u32
) ((1000l * pvt
->tolm
) >> (30 - 28));
1077 edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1078 actual_tolm
/1000, actual_tolm
% 1000, pvt
->tolm
<< 28);
1080 pci_read_config_word(pvt
->branchmap_werrors
, MIR0
, &pvt
->mir0
);
1081 pci_read_config_word(pvt
->branchmap_werrors
, MIR1
, &pvt
->mir1
);
1083 /* Get the MIR[0-1] regs */
1084 limit
= (pvt
->mir0
>> 4) & 0x0fff;
1085 way0
= pvt
->mir0
& 0x1;
1086 way1
= pvt
->mir0
& 0x2;
1087 edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
1089 limit
= (pvt
->mir1
>> 4) & 0xfff;
1090 way0
= pvt
->mir1
& 0x1;
1091 way1
= pvt
->mir1
& 0x2;
1092 edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
1095 /* Get the set of MTR[0-3] regs by each branch */
1096 for (slot_row
= 0; slot_row
< DIMMS_PER_CHANNEL
; slot_row
++) {
1097 int where
= MTR0
+ (slot_row
* sizeof(u16
));
1099 /* Branch 0 set of MTR registers */
1100 pci_read_config_word(pvt
->branch_0
, where
,
1101 &pvt
->b0_mtr
[slot_row
]);
1103 edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1104 slot_row
, where
, pvt
->b0_mtr
[slot_row
]);
1106 if (pvt
->maxch
< CHANNELS_PER_BRANCH
) {
1107 pvt
->b1_mtr
[slot_row
] = 0;
1111 /* Branch 1 set of MTR registers */
1112 pci_read_config_word(pvt
->branch_1
, where
,
1113 &pvt
->b1_mtr
[slot_row
]);
1114 edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1115 slot_row
, where
, pvt
->b1_mtr
[slot_row
]);
1118 /* Read and dump branch 0's MTRs */
1119 edac_dbg(2, "Memory Technology Registers:\n");
1120 edac_dbg(2, " Branch 0:\n");
1121 for (slot_row
= 0; slot_row
< DIMMS_PER_CHANNEL
; slot_row
++)
1122 decode_mtr(slot_row
, pvt
->b0_mtr
[slot_row
]);
1124 pci_read_config_word(pvt
->branch_0
, AMBPRESENT_0
,
1125 &pvt
->b0_ambpresent0
);
1126 edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt
->b0_ambpresent0
);
1127 pci_read_config_word(pvt
->branch_0
, AMBPRESENT_1
,
1128 &pvt
->b0_ambpresent1
);
1129 edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt
->b0_ambpresent1
);
1131 /* Only if we have 2 branchs (4 channels) */
1132 if (pvt
->maxch
< CHANNELS_PER_BRANCH
) {
1133 pvt
->b1_ambpresent0
= 0;
1134 pvt
->b1_ambpresent1
= 0;
1136 /* Read and dump branch 1's MTRs */
1137 edac_dbg(2, " Branch 1:\n");
1138 for (slot_row
= 0; slot_row
< DIMMS_PER_CHANNEL
; slot_row
++)
1139 decode_mtr(slot_row
, pvt
->b1_mtr
[slot_row
]);
1141 pci_read_config_word(pvt
->branch_1
, AMBPRESENT_0
,
1142 &pvt
->b1_ambpresent0
);
1143 edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1144 pvt
->b1_ambpresent0
);
1145 pci_read_config_word(pvt
->branch_1
, AMBPRESENT_1
,
1146 &pvt
->b1_ambpresent1
);
1147 edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1148 pvt
->b1_ambpresent1
);
1151 /* Go and determine the size of each DIMM and place in an
1153 calculate_dimm_size(pvt
);
1157 * i5400_init_dimms Initialize the 'dimms' table within
1158 * the mci control structure with the
1159 * addressing of memory.
1163 * 1 no actual memory found on this MC
1165 static int i5400_init_dimms(struct mem_ctl_info
*mci
)
1167 struct i5400_pvt
*pvt
;
1168 struct dimm_info
*dimm
;
1174 pvt
= mci
->pvt_info
;
1179 * FIXME: remove pvt->dimm_info[slot][channel] and use the 3
1182 for (channel
= 0; channel
< mci
->layers
[0].size
* mci
->layers
[1].size
;
1184 for (slot
= 0; slot
< mci
->layers
[2].size
; slot
++) {
1185 mtr
= determine_mtr(pvt
, slot
, channel
);
1187 /* if no DIMMS on this slot, continue */
1188 if (!MTR_DIMMS_PRESENT(mtr
))
1191 dimm
= edac_get_dimm(mci
, channel
/ 2, channel
% 2, slot
);
1193 size_mb
= pvt
->dimm_info
[slot
][channel
].megabytes
;
1195 edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1196 channel
/ 2, channel
% 2, slot
,
1197 size_mb
/ 1000, size_mb
% 1000);
1199 dimm
->nr_pages
= size_mb
<< 8;
1201 dimm
->dtype
= MTR_DRAM_WIDTH(mtr
) == 8 ?
1203 dimm
->mtype
= MEM_FB_DDR2
;
1205 * The eccc mechanism is SDDC (aka SECC), with
1206 * is similar to Chipkill.
1208 dimm
->edac_mode
= MTR_DRAM_WIDTH(mtr
) == 8 ?
1209 EDAC_S8ECD8ED
: EDAC_S4ECD4ED
;
1215 * When just one memory is provided, it should be at location (0,0,0).
1216 * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1219 mci
->dimms
[0]->edac_mode
= EDAC_SECDED
;
1221 return (ndimms
== 0);
1225 * i5400_enable_error_reporting
1226 * Turn on the memory reporting features of the hardware
1228 static void i5400_enable_error_reporting(struct mem_ctl_info
*mci
)
1230 struct i5400_pvt
*pvt
;
1233 pvt
= mci
->pvt_info
;
1235 /* Read the FBD Error Mask Register */
1236 pci_read_config_dword(pvt
->branchmap_werrors
, EMASK_FBD
,
1239 /* Enable with a '0' */
1240 fbd_error_mask
&= ~(ENABLE_EMASK_ALL
);
1242 pci_write_config_dword(pvt
->branchmap_werrors
, EMASK_FBD
,
1247 * i5400_probe1 Probe for ONE instance of device to see if it is
1250 * 0 for FOUND a device
1251 * < 0 for error code
1253 static int i5400_probe1(struct pci_dev
*pdev
, int dev_idx
)
1255 struct mem_ctl_info
*mci
;
1256 struct i5400_pvt
*pvt
;
1257 struct edac_mc_layer layers
[3];
1259 if (dev_idx
>= ARRAY_SIZE(i5400_devs
))
1262 edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1264 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1266 /* We only are looking for func 0 of the set */
1267 if (PCI_FUNC(pdev
->devfn
) != 0)
1271 * allocate a new MC control structure
1273 * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1275 layers
[0].type
= EDAC_MC_LAYER_BRANCH
;
1276 layers
[0].size
= MAX_BRANCHES
;
1277 layers
[0].is_virt_csrow
= false;
1278 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
1279 layers
[1].size
= CHANNELS_PER_BRANCH
;
1280 layers
[1].is_virt_csrow
= false;
1281 layers
[2].type
= EDAC_MC_LAYER_SLOT
;
1282 layers
[2].size
= DIMMS_PER_CHANNEL
;
1283 layers
[2].is_virt_csrow
= true;
1284 mci
= edac_mc_alloc(0, ARRAY_SIZE(layers
), layers
, sizeof(*pvt
));
1288 edac_dbg(0, "MC: mci = %p\n", mci
);
1290 mci
->pdev
= &pdev
->dev
; /* record ptr to the generic device */
1292 pvt
= mci
->pvt_info
;
1293 pvt
->system_address
= pdev
; /* Record this device in our private */
1294 pvt
->maxch
= MAX_CHANNELS
;
1295 pvt
->maxdimmperch
= DIMMS_PER_CHANNEL
;
1297 /* 'get' the pci devices we want to reserve for our use */
1298 if (i5400_get_devices(mci
, dev_idx
))
1301 /* Time to get serious */
1302 i5400_get_mc_regs(mci
); /* retrieve the hardware registers */
1305 mci
->mtype_cap
= MEM_FLAG_FB_DDR2
;
1306 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
1307 mci
->edac_cap
= EDAC_FLAG_NONE
;
1308 mci
->mod_name
= "i5400_edac.c";
1309 mci
->ctl_name
= i5400_devs
[dev_idx
].ctl_name
;
1310 mci
->dev_name
= pci_name(pdev
);
1311 mci
->ctl_page_to_phys
= NULL
;
1313 /* Set the function pointer to an actual operation function */
1314 mci
->edac_check
= i5400_check_error
;
1316 /* initialize the MC control structure 'dimms' table
1317 * with the mapping and control information */
1318 if (i5400_init_dimms(mci
)) {
1319 edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1320 mci
->edac_cap
= EDAC_FLAG_NONE
; /* no dimms found */
1322 edac_dbg(1, "MC: Enable error reporting now\n");
1323 i5400_enable_error_reporting(mci
);
1326 /* add this new MC control structure to EDAC's list of MCs */
1327 if (edac_mc_add_mc(mci
)) {
1328 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1329 /* FIXME: perhaps some code should go here that disables error
1330 * reporting if we just enabled it
1335 i5400_clear_error(mci
);
1337 /* allocating generic PCI control info */
1338 i5400_pci
= edac_pci_create_generic_ctl(&pdev
->dev
, EDAC_MOD_STR
);
1341 "%s(): Unable to create PCI control\n",
1344 "%s(): PCI error report via EDAC not setup\n",
1350 /* Error exit unwinding stack */
1353 i5400_put_devices(mci
);
1361 * i5400_init_one constructor for one instance of device
1367 static int i5400_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1371 edac_dbg(0, "MC:\n");
1373 /* wake up device */
1374 rc
= pci_enable_device(pdev
);
1378 /* now probe and enable the device */
1379 return i5400_probe1(pdev
, id
->driver_data
);
1383 * i5400_remove_one destructor for one instance of device
1386 static void i5400_remove_one(struct pci_dev
*pdev
)
1388 struct mem_ctl_info
*mci
;
1393 edac_pci_release_generic_ctl(i5400_pci
);
1395 mci
= edac_mc_del_mc(&pdev
->dev
);
1399 /* retrieve references to resources, and free those resources */
1400 i5400_put_devices(mci
);
1402 pci_disable_device(pdev
);
1408 * pci_device_id table for which devices we are looking for
1410 * The "E500P" device is the first device supported.
1412 static const struct pci_device_id i5400_pci_tbl
[] = {
1413 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_5400_ERR
)},
1414 {0,} /* 0 terminated list. */
1417 MODULE_DEVICE_TABLE(pci
, i5400_pci_tbl
);
1420 * i5400_driver pci_driver structure for this module
1423 static struct pci_driver i5400_driver
= {
1424 .name
= "i5400_edac",
1425 .probe
= i5400_init_one
,
1426 .remove
= i5400_remove_one
,
1427 .id_table
= i5400_pci_tbl
,
1431 * i5400_init Module entry function
1432 * Try to initialize this module for its devices
1434 static int __init
i5400_init(void)
1438 edac_dbg(2, "MC:\n");
1440 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1443 pci_rc
= pci_register_driver(&i5400_driver
);
1445 return (pci_rc
< 0) ? pci_rc
: 0;
1449 * i5400_exit() Module exit function
1450 * Unregister the driver
1452 static void __exit
i5400_exit(void)
1454 edac_dbg(2, "MC:\n");
1455 pci_unregister_driver(&i5400_driver
);
1458 module_init(i5400_init
);
1459 module_exit(i5400_exit
);
1461 MODULE_LICENSE("GPL");
1462 MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1463 MODULE_AUTHOR("Mauro Carvalho Chehab");
1464 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
1465 MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1468 module_param(edac_op_state
, int, 0444);
1469 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");