1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Pondicherry2 memory controller.
5 * Copyright (c) 2016, Intel Corporation.
7 * [Derived from sb_edac.c]
9 * Translation of system physical addresses to DIMM addresses
10 * is a two stage process:
12 * First the Pondicherry 2 memory controller handles slice and channel interleaving
13 * in "sys2pmi()". This is (almost) completley common between platforms.
15 * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
16 * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
19 #include <linux/bitmap.h>
20 #include <linux/delay.h>
21 #include <linux/edac.h>
22 #include <linux/init.h>
23 #include <linux/math64.h>
24 #include <linux/mmzone.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 #include <linux/pci_ids.h>
29 #include <linux/sizes.h>
30 #include <linux/slab.h>
31 #include <linux/smp.h>
33 #include <linux/platform_data/x86/p2sb.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/intel-family.h>
37 #include <asm/processor.h>
41 #include "edac_module.h"
42 #include "pnd2_edac.h"
44 #define EDAC_MOD_STR "pnd2_edac"
46 #define APL_NUM_CHANNELS 4
47 #define DNV_NUM_CHANNELS 2
48 #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */
52 DNV
, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
65 int dimm_geom
[APL_NUM_CHANNELS
];
70 * System address space is divided into multiple regions with
71 * different interleave rules in each. The as0/as1 regions
72 * have no interleaving at all. The as2 region is interleaved
73 * between two channels. The mot region is magic and may overlap
74 * other regions, with its interleave rules taking precedence.
75 * Addresses not in any of these regions are interleaved across
78 static struct region
{
84 static struct dunit_ops
{
90 int dimms_per_channel
;
91 int (*rd_reg
)(int port
, int off
, int op
, void *data
, size_t sz
, char *name
);
92 int (*get_registers
)(void);
93 int (*check_ecc
)(void);
94 void (*mk_region
)(char *name
, struct region
*rp
, void *asym
);
95 void (*get_dimm_config
)(struct mem_ctl_info
*mci
);
96 int (*pmi2mem
)(struct mem_ctl_info
*mci
, u64 pmiaddr
, u32 pmiidx
,
97 struct dram_addr
*daddr
, char *msg
);
100 static struct mem_ctl_info
*pnd2_mci
;
102 #define PND2_MSG_SIZE 256
105 #define pnd2_printk(level, fmt, arg...) \
106 edac_printk(level, "pnd2", fmt, ##arg)
108 #define pnd2_mc_printk(mci, level, fmt, arg...) \
109 edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)
111 #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
112 #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
113 #define SELECTOR_DISABLED (-1)
115 #define PMI_ADDRESS_WIDTH 31
116 #define PND_MAX_PHYS_BIT 39
118 #define APL_ASYMSHIFT 28
119 #define DNV_ASYMSHIFT 31
120 #define CH_HASH_MASK_LSB 6
121 #define SLICE_HASH_MASK_LSB 6
122 #define MOT_SLC_INTLV_BIT 12
123 #define LOG2_PMI_ADDR_GRANULARITY 5
126 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
127 #define U64_LSHIFT(val, s) ((u64)(val) << (s))
130 * On Apollo Lake we access memory controller registers via a
131 * side-band mailbox style interface in a hidden PCI device
132 * configuration space.
134 static struct pci_bus
*p2sb_bus
;
135 #define P2SB_DEVFN PCI_DEVFN(0xd, 0)
136 #define P2SB_ADDR_OFF 0xd0
137 #define P2SB_DATA_OFF 0xd4
138 #define P2SB_STAT_OFF 0xd8
139 #define P2SB_ROUT_OFF 0xda
140 #define P2SB_EADD_OFF 0xdc
141 #define P2SB_HIDE_OFF 0xe1
145 #define P2SB_READ(size, off, ptr) \
146 pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr)
147 #define P2SB_WRITE(size, off, val) \
148 pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val)
150 static bool p2sb_is_busy(u16
*status
)
152 P2SB_READ(word
, P2SB_STAT_OFF
, status
);
154 return !!(*status
& P2SB_BUSY
);
157 static int _apl_rd_reg(int port
, int off
, int op
, u32
*data
)
159 int retries
= 0xff, ret
;
163 /* Unhide the P2SB device, if it's hidden */
164 P2SB_READ(byte
, P2SB_HIDE_OFF
, &hidden
);
166 P2SB_WRITE(byte
, P2SB_HIDE_OFF
, 0);
168 if (p2sb_is_busy(&status
)) {
173 P2SB_WRITE(dword
, P2SB_ADDR_OFF
, (port
<< 24) | off
);
174 P2SB_WRITE(dword
, P2SB_DATA_OFF
, 0);
175 P2SB_WRITE(dword
, P2SB_EADD_OFF
, 0);
176 P2SB_WRITE(word
, P2SB_ROUT_OFF
, 0);
177 P2SB_WRITE(word
, P2SB_STAT_OFF
, (op
<< 8) | P2SB_BUSY
);
179 while (p2sb_is_busy(&status
)) {
180 if (retries
-- == 0) {
186 P2SB_READ(dword
, P2SB_DATA_OFF
, data
);
187 ret
= (status
>> 1) & GENMASK(1, 0);
189 /* Hide the P2SB device, if it was hidden before */
191 P2SB_WRITE(byte
, P2SB_HIDE_OFF
, hidden
);
196 static int apl_rd_reg(int port
, int off
, int op
, void *data
, size_t sz
, char *name
)
200 edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name
, port
, off
, op
);
203 ret
= _apl_rd_reg(port
, off
+ 4, op
, (u32
*)(data
+ 4));
206 ret
|= _apl_rd_reg(port
, off
, op
, (u32
*)data
);
207 pnd2_printk(KERN_DEBUG
, "%s=%x%08x ret=%d\n", name
,
208 sz
== 8 ? *((u32
*)(data
+ 4)) : 0, *((u32
*)data
), ret
);
215 static u64
get_mem_ctrl_hub_base_addr(void)
217 struct b_cr_mchbar_lo_pci lo
;
218 struct b_cr_mchbar_hi_pci hi
;
219 struct pci_dev
*pdev
;
221 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x1980, NULL
);
223 pci_read_config_dword(pdev
, 0x48, (u32
*)&lo
);
224 pci_read_config_dword(pdev
, 0x4c, (u32
*)&hi
);
231 edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
235 return U64_LSHIFT(hi
.base
, 32) | U64_LSHIFT(lo
.base
, 15);
238 #define DNV_MCHBAR_SIZE 0x8000
239 #define DNV_SB_PORT_SIZE 0x10000
240 static int dnv_rd_reg(int port
, int off
, int op
, void *data
, size_t sz
, char *name
)
242 struct pci_dev
*pdev
;
248 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x1980, NULL
);
252 pci_read_config_dword(pdev
, off
, data
);
255 /* MMIO via memory controller hub base address */
256 if (op
== 0 && port
== 0x4c) {
257 memset(&r
, 0, sizeof(r
));
259 r
.start
= get_mem_ctrl_hub_base_addr();
262 r
.end
= r
.start
+ DNV_MCHBAR_SIZE
- 1;
264 /* MMIO via sideband register base address */
265 ret
= p2sb_bar(NULL
, 0, &r
);
269 r
.start
+= (port
<< 16);
270 r
.end
= r
.start
+ DNV_SB_PORT_SIZE
- 1;
273 base
= ioremap(r
.start
, resource_size(&r
));
278 *(u64
*)data
= readq(base
+ off
);
280 *(u32
*)data
= readl(base
+ off
);
285 edac_dbg(2, "Read %s=%.8x_%.8x\n", name
,
286 (sz
== 8) ? *(u32
*)(data
+ 4) : 0, *(u32
*)data
);
291 #define RD_REGP(regp, regname, port) \
294 regname##_r_opcode, \
295 regp, sizeof(struct regname), \
298 #define RD_REG(regp, regname) \
299 ops->rd_reg(regname ## _port, \
301 regname##_r_opcode, \
302 regp, sizeof(struct regname), \
305 static u64 top_lm
, top_hm
;
306 static bool two_slices
;
307 static bool two_channels
; /* Both PMI channels in one slice enabled */
309 static u8 sym_chan_mask
;
310 static u8 asym_chan_mask
;
311 static unsigned long chan_mask
;
313 static int slice_selector
= -1;
314 static int chan_selector
= -1;
315 static u64 slice_hash_mask
;
316 static u64 chan_hash_mask
;
318 static void mk_region(char *name
, struct region
*rp
, u64 base
, u64 limit
)
323 edac_dbg(2, "Region:%s [%llx, %llx]\n", name
, base
, limit
);
326 static void mk_region_mask(char *name
, struct region
*rp
, u64 base
, u64 mask
)
329 pr_info(FW_BUG
"MOT mask cannot be zero\n");
332 if (mask
!= GENMASK_ULL(PND_MAX_PHYS_BIT
, __ffs(mask
))) {
333 pr_info(FW_BUG
"MOT mask is invalid\n");
337 pr_info(FW_BUG
"MOT region base/mask alignment error\n");
341 rp
->limit
= (base
| ~mask
) & GENMASK_ULL(PND_MAX_PHYS_BIT
, 0);
343 edac_dbg(2, "Region:%s [%llx, %llx]\n", name
, base
, rp
->limit
);
346 static bool in_region(struct region
*rp
, u64 addr
)
351 return rp
->base
<= addr
&& addr
<= rp
->limit
;
354 static int gen_sym_mask(struct b_cr_slice_channel_hash
*p
)
358 if (!p
->slice_0_mem_disabled
)
359 mask
|= p
->sym_slice0_channel_enabled
;
361 if (!p
->slice_1_disabled
)
362 mask
|= p
->sym_slice1_channel_enabled
<< 2;
364 if (p
->ch_1_disabled
|| p
->enable_pmi_dual_data_mode
)
370 static int gen_asym_mask(struct b_cr_slice_channel_hash
*p
,
371 struct b_cr_asym_mem_region0_mchbar
*as0
,
372 struct b_cr_asym_mem_region1_mchbar
*as1
,
373 struct b_cr_asym_2way_mem_region_mchbar
*as2way
)
375 const int intlv
[] = { 0x5, 0xA, 0x3, 0xC };
378 if (as2way
->asym_2way_interleave_enable
)
379 mask
= intlv
[as2way
->asym_2way_intlv_mode
];
380 if (as0
->slice0_asym_enable
)
381 mask
|= (1 << as0
->slice0_asym_channel_select
);
382 if (as1
->slice1_asym_enable
)
383 mask
|= (4 << as1
->slice1_asym_channel_select
);
384 if (p
->slice_0_mem_disabled
)
386 if (p
->slice_1_disabled
)
388 if (p
->ch_1_disabled
|| p
->enable_pmi_dual_data_mode
)
394 static struct b_cr_tolud_pci tolud
;
395 static struct b_cr_touud_lo_pci touud_lo
;
396 static struct b_cr_touud_hi_pci touud_hi
;
397 static struct b_cr_asym_mem_region0_mchbar asym0
;
398 static struct b_cr_asym_mem_region1_mchbar asym1
;
399 static struct b_cr_asym_2way_mem_region_mchbar asym_2way
;
400 static struct b_cr_mot_out_base_mchbar mot_base
;
401 static struct b_cr_mot_out_mask_mchbar mot_mask
;
402 static struct b_cr_slice_channel_hash chash
;
404 /* Apollo Lake dunit */
406 * Validated on board with just two DIMMs in the [0] and [2] positions
407 * in this array. Other port number matches documentation, but caution
410 static const int apl_dports
[APL_NUM_CHANNELS
] = { 0x18, 0x10, 0x11, 0x19 };
411 static struct d_cr_drp0 drp0
[APL_NUM_CHANNELS
];
413 /* Denverton dunit */
414 static const int dnv_dports
[DNV_NUM_CHANNELS
] = { 0x10, 0x12 };
415 static struct d_cr_dsch dsch
;
416 static struct d_cr_ecc_ctrl ecc_ctrl
[DNV_NUM_CHANNELS
];
417 static struct d_cr_drp drp
[DNV_NUM_CHANNELS
];
418 static struct d_cr_dmap dmap
[DNV_NUM_CHANNELS
];
419 static struct d_cr_dmap1 dmap1
[DNV_NUM_CHANNELS
];
420 static struct d_cr_dmap2 dmap2
[DNV_NUM_CHANNELS
];
421 static struct d_cr_dmap3 dmap3
[DNV_NUM_CHANNELS
];
422 static struct d_cr_dmap4 dmap4
[DNV_NUM_CHANNELS
];
423 static struct d_cr_dmap5 dmap5
[DNV_NUM_CHANNELS
];
425 static void apl_mk_region(char *name
, struct region
*rp
, void *asym
)
427 struct b_cr_asym_mem_region0_mchbar
*a
= asym
;
430 U64_LSHIFT(a
->slice0_asym_base
, APL_ASYMSHIFT
),
431 U64_LSHIFT(a
->slice0_asym_limit
, APL_ASYMSHIFT
) +
432 GENMASK_ULL(APL_ASYMSHIFT
- 1, 0));
435 static void dnv_mk_region(char *name
, struct region
*rp
, void *asym
)
437 struct b_cr_asym_mem_region_denverton
*a
= asym
;
440 U64_LSHIFT(a
->slice_asym_base
, DNV_ASYMSHIFT
),
441 U64_LSHIFT(a
->slice_asym_limit
, DNV_ASYMSHIFT
) +
442 GENMASK_ULL(DNV_ASYMSHIFT
- 1, 0));
445 static int apl_get_registers(void)
450 if (RD_REG(&asym_2way
, b_cr_asym_2way_mem_region_mchbar
))
454 * RD_REGP() will fail for unpopulated or non-existent
455 * DIMM slots. Return success if we find at least one DIMM.
457 for (i
= 0; i
< APL_NUM_CHANNELS
; i
++)
458 if (!RD_REGP(&drp0
[i
], d_cr_drp0
, apl_dports
[i
]))
464 static int dnv_get_registers(void)
468 if (RD_REG(&dsch
, d_cr_dsch
))
471 for (i
= 0; i
< DNV_NUM_CHANNELS
; i
++)
472 if (RD_REGP(&ecc_ctrl
[i
], d_cr_ecc_ctrl
, dnv_dports
[i
]) ||
473 RD_REGP(&drp
[i
], d_cr_drp
, dnv_dports
[i
]) ||
474 RD_REGP(&dmap
[i
], d_cr_dmap
, dnv_dports
[i
]) ||
475 RD_REGP(&dmap1
[i
], d_cr_dmap1
, dnv_dports
[i
]) ||
476 RD_REGP(&dmap2
[i
], d_cr_dmap2
, dnv_dports
[i
]) ||
477 RD_REGP(&dmap3
[i
], d_cr_dmap3
, dnv_dports
[i
]) ||
478 RD_REGP(&dmap4
[i
], d_cr_dmap4
, dnv_dports
[i
]) ||
479 RD_REGP(&dmap5
[i
], d_cr_dmap5
, dnv_dports
[i
]))
486 * Read all the h/w config registers once here (they don't
487 * change at run time. Figure out which address ranges have
488 * which interleave characteristics.
490 static int get_registers(void)
492 const int intlv
[] = { 10, 11, 12, 12 };
494 if (RD_REG(&tolud
, b_cr_tolud_pci
) ||
495 RD_REG(&touud_lo
, b_cr_touud_lo_pci
) ||
496 RD_REG(&touud_hi
, b_cr_touud_hi_pci
) ||
497 RD_REG(&asym0
, b_cr_asym_mem_region0_mchbar
) ||
498 RD_REG(&asym1
, b_cr_asym_mem_region1_mchbar
) ||
499 RD_REG(&mot_base
, b_cr_mot_out_base_mchbar
) ||
500 RD_REG(&mot_mask
, b_cr_mot_out_mask_mchbar
) ||
501 RD_REG(&chash
, b_cr_slice_channel_hash
))
504 if (ops
->get_registers())
507 if (ops
->type
== DNV
) {
508 /* PMI channel idx (always 0) for asymmetric region */
509 asym0
.slice0_asym_channel_select
= 0;
510 asym1
.slice1_asym_channel_select
= 0;
511 /* PMI channel bitmap (always 1) for symmetric region */
512 chash
.sym_slice0_channel_enabled
= 0x1;
513 chash
.sym_slice1_channel_enabled
= 0x1;
516 if (asym0
.slice0_asym_enable
)
517 ops
->mk_region("as0", &as0
, &asym0
);
519 if (asym1
.slice1_asym_enable
)
520 ops
->mk_region("as1", &as1
, &asym1
);
522 if (asym_2way
.asym_2way_interleave_enable
) {
523 mk_region("as2way", &as2
,
524 U64_LSHIFT(asym_2way
.asym_2way_base
, APL_ASYMSHIFT
),
525 U64_LSHIFT(asym_2way
.asym_2way_limit
, APL_ASYMSHIFT
) +
526 GENMASK_ULL(APL_ASYMSHIFT
- 1, 0));
529 if (mot_base
.imr_en
) {
530 mk_region_mask("mot", &mot
,
531 U64_LSHIFT(mot_base
.mot_out_base
, MOT_SHIFT
),
532 U64_LSHIFT(mot_mask
.mot_out_mask
, MOT_SHIFT
));
535 top_lm
= U64_LSHIFT(tolud
.tolud
, 20);
536 top_hm
= U64_LSHIFT(touud_hi
.touud
, 32) | U64_LSHIFT(touud_lo
.touud
, 20);
538 two_slices
= !chash
.slice_1_disabled
&&
539 !chash
.slice_0_mem_disabled
&&
540 (chash
.sym_slice0_channel_enabled
!= 0) &&
541 (chash
.sym_slice1_channel_enabled
!= 0);
542 two_channels
= !chash
.ch_1_disabled
&&
543 !chash
.enable_pmi_dual_data_mode
&&
544 ((chash
.sym_slice0_channel_enabled
== 3) ||
545 (chash
.sym_slice1_channel_enabled
== 3));
547 sym_chan_mask
= gen_sym_mask(&chash
);
548 asym_chan_mask
= gen_asym_mask(&chash
, &asym0
, &asym1
, &asym_2way
);
549 chan_mask
= sym_chan_mask
| asym_chan_mask
;
551 if (two_slices
&& !two_channels
) {
555 slice_selector
= intlv
[chash
.interleave_mode
];
556 } else if (!two_slices
&& two_channels
) {
560 chan_selector
= intlv
[chash
.interleave_mode
];
561 } else if (two_slices
&& two_channels
) {
562 if (chash
.hvm_mode
) {
566 slice_selector
= intlv
[chash
.interleave_mode
];
567 chan_selector
= intlv
[chash
.interleave_mode
] + 1;
573 slice_hash_mask
= chash
.slice_hash_mask
<< SLICE_HASH_MASK_LSB
;
575 slice_hash_mask
|= BIT_ULL(slice_selector
);
580 chan_hash_mask
= chash
.ch_hash_mask
<< CH_HASH_MASK_LSB
;
582 chan_hash_mask
|= BIT_ULL(chan_selector
);
588 /* Get a contiguous memory address (remove the MMIO gap) */
589 static u64
remove_mmio_gap(u64 sys
)
591 return (sys
< SZ_4G
) ? sys
: sys
- (SZ_4G
- top_lm
);
594 /* Squeeze out one address bit, shift upper part down to fill gap */
595 static void remove_addr_bit(u64
*addr
, int bitidx
)
602 mask
= BIT_ULL(bitidx
) - 1;
603 *addr
= ((*addr
>> 1) & ~mask
) | (*addr
& mask
);
606 /* XOR all the bits from addr specified in mask */
607 static int hash_by_mask(u64 addr
, u64 mask
)
609 u64 result
= addr
& mask
;
611 result
= (result
>> 32) ^ result
;
612 result
= (result
>> 16) ^ result
;
613 result
= (result
>> 8) ^ result
;
614 result
= (result
>> 4) ^ result
;
615 result
= (result
>> 2) ^ result
;
616 result
= (result
>> 1) ^ result
;
618 return (int)result
& 1;
622 * First stage decode. Take the system address and figure out which
623 * second stage will deal with it based on interleave modes.
625 static int sys2pmi(const u64 addr
, u32
*pmiidx
, u64
*pmiaddr
, char *msg
)
627 u64 contig_addr
, contig_base
, contig_offset
, contig_base_adj
;
628 int mot_intlv_bit
= two_slices
? MOT_CHAN_INTLV_BIT_2SLC_2CH
:
629 MOT_CHAN_INTLV_BIT_1SLC_2CH
;
630 int slice_intlv_bit_rm
= SELECTOR_DISABLED
;
631 int chan_intlv_bit_rm
= SELECTOR_DISABLED
;
632 /* Determine if address is in the MOT region. */
633 bool mot_hit
= in_region(&mot
, addr
);
634 /* Calculate the number of symmetric regions enabled. */
635 int sym_channels
= hweight8(sym_chan_mask
);
638 * The amount we need to shift the asym base can be determined by the
639 * number of enabled symmetric channels.
640 * NOTE: This can only work because symmetric memory is not supposed
641 * to do a 3-way interleave.
643 int sym_chan_shift
= sym_channels
>> 1;
645 /* Give up if address is out of range, or in MMIO gap */
646 if (addr
>= BIT(PND_MAX_PHYS_BIT
) ||
647 (addr
>= top_lm
&& addr
< SZ_4G
) || addr
>= top_hm
) {
648 snprintf(msg
, PND2_MSG_SIZE
, "Error address 0x%llx is not DRAM", addr
);
652 /* Get a contiguous memory address (remove the MMIO gap) */
653 contig_addr
= remove_mmio_gap(addr
);
655 if (in_region(&as0
, addr
)) {
656 *pmiidx
= asym0
.slice0_asym_channel_select
;
658 contig_base
= remove_mmio_gap(as0
.base
);
659 contig_offset
= contig_addr
- contig_base
;
660 contig_base_adj
= (contig_base
>> sym_chan_shift
) *
661 ((chash
.sym_slice0_channel_enabled
>> (*pmiidx
& 1)) & 1);
662 contig_addr
= contig_offset
+ ((sym_channels
> 0) ? contig_base_adj
: 0ull);
663 } else if (in_region(&as1
, addr
)) {
664 *pmiidx
= 2u + asym1
.slice1_asym_channel_select
;
666 contig_base
= remove_mmio_gap(as1
.base
);
667 contig_offset
= contig_addr
- contig_base
;
668 contig_base_adj
= (contig_base
>> sym_chan_shift
) *
669 ((chash
.sym_slice1_channel_enabled
>> (*pmiidx
& 1)) & 1);
670 contig_addr
= contig_offset
+ ((sym_channels
> 0) ? contig_base_adj
: 0ull);
671 } else if (in_region(&as2
, addr
) && (asym_2way
.asym_2way_intlv_mode
== 0x3ul
)) {
674 mot_intlv_bit
= MOT_CHAN_INTLV_BIT_1SLC_2CH
;
675 *pmiidx
= (asym_2way
.asym_2way_intlv_mode
& 1) << 1;
676 channel1
= mot_hit
? ((bool)((addr
>> mot_intlv_bit
) & 1)) :
677 hash_by_mask(contig_addr
, chan_hash_mask
);
678 *pmiidx
|= (u32
)channel1
;
680 contig_base
= remove_mmio_gap(as2
.base
);
681 chan_intlv_bit_rm
= mot_hit
? mot_intlv_bit
: chan_selector
;
682 contig_offset
= contig_addr
- contig_base
;
683 remove_addr_bit(&contig_offset
, chan_intlv_bit_rm
);
684 contig_addr
= (contig_base
>> sym_chan_shift
) + contig_offset
;
686 /* Otherwise we're in normal, boring symmetric mode. */
693 slice_intlv_bit_rm
= MOT_SLC_INTLV_BIT
;
694 slice1
= (addr
>> MOT_SLC_INTLV_BIT
) & 1;
696 slice_intlv_bit_rm
= slice_selector
;
697 slice1
= hash_by_mask(addr
, slice_hash_mask
);
700 *pmiidx
= (u32
)slice1
<< 1;
706 mot_intlv_bit
= two_slices
? MOT_CHAN_INTLV_BIT_2SLC_2CH
:
707 MOT_CHAN_INTLV_BIT_1SLC_2CH
;
710 chan_intlv_bit_rm
= mot_intlv_bit
;
711 channel1
= (addr
>> mot_intlv_bit
) & 1;
713 chan_intlv_bit_rm
= chan_selector
;
714 channel1
= hash_by_mask(contig_addr
, chan_hash_mask
);
717 *pmiidx
|= (u32
)channel1
;
721 /* Remove the chan_selector bit first */
722 remove_addr_bit(&contig_addr
, chan_intlv_bit_rm
);
723 /* Remove the slice bit (we remove it second because it must be lower */
724 remove_addr_bit(&contig_addr
, slice_intlv_bit_rm
);
725 *pmiaddr
= contig_addr
;
730 /* Translate PMI address to memory (rank, row, bank, column) */
731 #define C(n) (BIT(4) | (n)) /* column */
732 #define B(n) (BIT(5) | (n)) /* bank */
733 #define R(n) (BIT(6) | (n)) /* row */
734 #define RS (BIT(7)) /* rank */
750 static struct dimm_geometry
{
755 u16 bits
[PMI_ADDRESS_WIDTH
];
758 .addrdec
= AMAP_1KB
, .dden
= DEN_4Gb
, .dwid
= X16
,
759 .rowbits
= 15, .colbits
= 10,
761 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
762 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
763 R(10), C(7), C(8), C(9), R(11), RS
, R(12), R(13), R(14),
768 .addrdec
= AMAP_1KB
, .dden
= DEN_4Gb
, .dwid
= X8
,
769 .rowbits
= 16, .colbits
= 10,
771 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
772 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
773 R(10), C(7), C(8), C(9), R(11), RS
, R(12), R(13), R(14),
778 .addrdec
= AMAP_1KB
, .dden
= DEN_8Gb
, .dwid
= X16
,
779 .rowbits
= 16, .colbits
= 10,
781 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
782 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
783 R(10), C(7), C(8), C(9), R(11), RS
, R(12), R(13), R(14),
788 .addrdec
= AMAP_1KB
, .dden
= DEN_8Gb
, .dwid
= X8
,
789 .rowbits
= 16, .colbits
= 11,
791 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
792 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
793 R(10), C(7), C(8), C(9), R(11), RS
, C(11), R(12), R(13),
798 .addrdec
= AMAP_2KB
, .dden
= DEN_4Gb
, .dwid
= X16
,
799 .rowbits
= 15, .colbits
= 10,
801 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
802 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
803 R(9), R(10), C(8), C(9), R(11), RS
, R(12), R(13), R(14),
808 .addrdec
= AMAP_2KB
, .dden
= DEN_4Gb
, .dwid
= X8
,
809 .rowbits
= 16, .colbits
= 10,
811 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
812 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
813 R(9), R(10), C(8), C(9), R(11), RS
, R(12), R(13), R(14),
818 .addrdec
= AMAP_2KB
, .dden
= DEN_8Gb
, .dwid
= X16
,
819 .rowbits
= 16, .colbits
= 10,
821 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
822 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
823 R(9), R(10), C(8), C(9), R(11), RS
, R(12), R(13), R(14),
828 .addrdec
= AMAP_2KB
, .dden
= DEN_8Gb
, .dwid
= X8
,
829 .rowbits
= 16, .colbits
= 11,
831 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
832 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
833 R(9), R(10), C(8), C(9), R(11), RS
, C(11), R(12), R(13),
838 .addrdec
= AMAP_4KB
, .dden
= DEN_4Gb
, .dwid
= X16
,
839 .rowbits
= 15, .colbits
= 10,
841 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
842 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
843 R(8), R(9), R(10), C(9), R(11), RS
, R(12), R(13), R(14),
848 .addrdec
= AMAP_4KB
, .dden
= DEN_4Gb
, .dwid
= X8
,
849 .rowbits
= 16, .colbits
= 10,
851 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
852 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
853 R(8), R(9), R(10), C(9), R(11), RS
, R(12), R(13), R(14),
858 .addrdec
= AMAP_4KB
, .dden
= DEN_8Gb
, .dwid
= X16
,
859 .rowbits
= 16, .colbits
= 10,
861 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
862 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
863 R(8), R(9), R(10), C(9), R(11), RS
, R(12), R(13), R(14),
868 .addrdec
= AMAP_4KB
, .dden
= DEN_8Gb
, .dwid
= X8
,
869 .rowbits
= 16, .colbits
= 11,
871 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
872 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
873 R(8), R(9), R(10), C(9), R(11), RS
, C(11), R(12), R(13),
879 static int bank_hash(u64 pmiaddr
, int idx
, int shft
)
885 bhash
^= ((pmiaddr
>> (12 + shft
)) ^ (pmiaddr
>> (9 + shft
))) & 1;
888 bhash
^= (((pmiaddr
>> (10 + shft
)) ^ (pmiaddr
>> (8 + shft
))) & 1) << 1;
889 bhash
^= ((pmiaddr
>> 22) & 1) << 1;
892 bhash
^= (((pmiaddr
>> (13 + shft
)) ^ (pmiaddr
>> (11 + shft
))) & 1) << 2;
899 static int rank_hash(u64 pmiaddr
)
901 return ((pmiaddr
>> 16) ^ (pmiaddr
>> 10)) & 1;
904 /* Second stage decode. Compute rank, bank, row & column. */
905 static int apl_pmi2mem(struct mem_ctl_info
*mci
, u64 pmiaddr
, u32 pmiidx
,
906 struct dram_addr
*daddr
, char *msg
)
908 struct d_cr_drp0
*cr_drp0
= &drp0
[pmiidx
];
909 struct pnd2_pvt
*pvt
= mci
->pvt_info
;
910 int g
= pvt
->dimm_geom
[pmiidx
];
911 struct dimm_geometry
*d
= &dimms
[g
];
912 int column
= 0, bank
= 0, row
= 0, rank
= 0;
913 int i
, idx
, type
, skiprs
= 0;
915 for (i
= 0; i
< PMI_ADDRESS_WIDTH
; i
++) {
916 int bit
= (pmiaddr
>> i
) & 1;
918 if (i
+ skiprs
>= PMI_ADDRESS_WIDTH
) {
919 snprintf(msg
, PND2_MSG_SIZE
, "Bad dimm_geometry[] table\n");
923 type
= d
->bits
[i
+ skiprs
] & ~0xf;
924 idx
= d
->bits
[i
+ skiprs
] & 0xf;
927 * On single rank DIMMs ignore the rank select bit
928 * and shift remainder of "bits[]" down one place.
930 if (type
== RS
&& (cr_drp0
->rken0
+ cr_drp0
->rken1
) == 1) {
932 type
= d
->bits
[i
+ skiprs
] & ~0xf;
933 idx
= d
->bits
[i
+ skiprs
] & 0xf;
938 column
|= (bit
<< idx
);
941 bank
|= (bit
<< idx
);
943 bank
^= bank_hash(pmiaddr
, idx
, d
->addrdec
);
951 rank
^= rank_hash(pmiaddr
);
955 snprintf(msg
, PND2_MSG_SIZE
, "Bad translation\n");
972 /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
973 #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))
975 static int dnv_pmi2mem(struct mem_ctl_info
*mci
, u64 pmiaddr
, u32 pmiidx
,
976 struct dram_addr
*daddr
, char *msg
)
979 daddr
->rank
= dnv_get_bit(pmiaddr
, dmap
[pmiidx
].rs0
+ 13, 0);
981 daddr
->rank
|= dnv_get_bit(pmiaddr
, dmap
[pmiidx
].rs1
+ 13, 1);
984 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
985 * flip them if DIMM1 is larger than DIMM0.
987 daddr
->dimm
= (daddr
->rank
>= 2) ^ drp
[pmiidx
].dimmflip
;
989 daddr
->bank
= dnv_get_bit(pmiaddr
, dmap
[pmiidx
].ba0
+ 6, 0);
990 daddr
->bank
|= dnv_get_bit(pmiaddr
, dmap
[pmiidx
].ba1
+ 6, 1);
991 daddr
->bank
|= dnv_get_bit(pmiaddr
, dmap
[pmiidx
].bg0
+ 6, 2);
993 daddr
->bank
|= dnv_get_bit(pmiaddr
, dmap
[pmiidx
].bg1
+ 6, 3);
994 if (dmap1
[pmiidx
].bxor
) {
996 daddr
->bank
^= dnv_get_bit(pmiaddr
, dmap3
[pmiidx
].row6
+ 6, 0);
997 daddr
->bank
^= dnv_get_bit(pmiaddr
, dmap3
[pmiidx
].row7
+ 6, 1);
998 if (dsch
.chan_width
== 0)
999 /* 64/72 bit dram channel width */
1000 daddr
->bank
^= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca3
+ 6, 2);
1002 /* 32/40 bit dram channel width */
1003 daddr
->bank
^= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca4
+ 6, 2);
1004 daddr
->bank
^= dnv_get_bit(pmiaddr
, dmap2
[pmiidx
].row2
+ 6, 3);
1006 daddr
->bank
^= dnv_get_bit(pmiaddr
, dmap2
[pmiidx
].row2
+ 6, 0);
1007 daddr
->bank
^= dnv_get_bit(pmiaddr
, dmap3
[pmiidx
].row6
+ 6, 1);
1008 if (dsch
.chan_width
== 0)
1009 daddr
->bank
^= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca3
+ 6, 2);
1011 daddr
->bank
^= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca4
+ 6, 2);
1015 daddr
->row
= dnv_get_bit(pmiaddr
, dmap2
[pmiidx
].row0
+ 6, 0);
1016 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap2
[pmiidx
].row1
+ 6, 1);
1017 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap2
[pmiidx
].row2
+ 6, 2);
1018 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap2
[pmiidx
].row3
+ 6, 3);
1019 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap2
[pmiidx
].row4
+ 6, 4);
1020 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap2
[pmiidx
].row5
+ 6, 5);
1021 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap3
[pmiidx
].row6
+ 6, 6);
1022 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap3
[pmiidx
].row7
+ 6, 7);
1023 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap3
[pmiidx
].row8
+ 6, 8);
1024 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap3
[pmiidx
].row9
+ 6, 9);
1025 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap3
[pmiidx
].row10
+ 6, 10);
1026 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap3
[pmiidx
].row11
+ 6, 11);
1027 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap4
[pmiidx
].row12
+ 6, 12);
1028 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap4
[pmiidx
].row13
+ 6, 13);
1029 if (dmap4
[pmiidx
].row14
!= 31)
1030 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap4
[pmiidx
].row14
+ 6, 14);
1031 if (dmap4
[pmiidx
].row15
!= 31)
1032 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap4
[pmiidx
].row15
+ 6, 15);
1033 if (dmap4
[pmiidx
].row16
!= 31)
1034 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap4
[pmiidx
].row16
+ 6, 16);
1035 if (dmap4
[pmiidx
].row17
!= 31)
1036 daddr
->row
|= dnv_get_bit(pmiaddr
, dmap4
[pmiidx
].row17
+ 6, 17);
1038 daddr
->col
= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca3
+ 6, 3);
1039 daddr
->col
|= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca4
+ 6, 4);
1040 daddr
->col
|= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca5
+ 6, 5);
1041 daddr
->col
|= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca6
+ 6, 6);
1042 daddr
->col
|= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca7
+ 6, 7);
1043 daddr
->col
|= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca8
+ 6, 8);
1044 daddr
->col
|= dnv_get_bit(pmiaddr
, dmap5
[pmiidx
].ca9
+ 6, 9);
1045 if (!dsch
.ddr4en
&& dmap1
[pmiidx
].ca11
!= 0x3f)
1046 daddr
->col
|= dnv_get_bit(pmiaddr
, dmap1
[pmiidx
].ca11
+ 13, 11);
1051 static int check_channel(int ch
)
1053 if (drp0
[ch
].dramtype
!= 0) {
1054 pnd2_printk(KERN_INFO
, "Unsupported DIMM in channel %d\n", ch
);
1056 } else if (drp0
[ch
].eccen
== 0) {
1057 pnd2_printk(KERN_INFO
, "ECC disabled on channel %d\n", ch
);
1063 static int apl_check_ecc_active(void)
1067 /* Check dramtype and ECC mode for each present DIMM */
1068 for_each_set_bit(i
, &chan_mask
, APL_NUM_CHANNELS
)
1069 ret
+= check_channel(i
);
1071 return ret
? -EINVAL
: 0;
1074 #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)
1076 static int check_unit(int ch
)
1078 struct d_cr_drp
*d
= &drp
[ch
];
1080 if (DIMMS_PRESENT(d
) && !ecc_ctrl
[ch
].eccen
) {
1081 pnd2_printk(KERN_INFO
, "ECC disabled on channel %d\n", ch
);
1087 static int dnv_check_ecc_active(void)
1091 for (i
= 0; i
< DNV_NUM_CHANNELS
; i
++)
1092 ret
+= check_unit(i
);
1093 return ret
? -EINVAL
: 0;
1096 static int get_memory_error_data(struct mem_ctl_info
*mci
, u64 addr
,
1097 struct dram_addr
*daddr
, char *msg
)
1103 ret
= sys2pmi(addr
, &pmiidx
, &pmiaddr
, msg
);
1107 pmiaddr
>>= ops
->pmiaddr_shift
;
1108 /* pmi channel idx to dimm channel idx */
1109 pmiidx
>>= ops
->pmiidx_shift
;
1110 daddr
->chan
= pmiidx
;
1112 ret
= ops
->pmi2mem(mci
, pmiaddr
, pmiidx
, daddr
, msg
);
1116 edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1117 addr
, pmiaddr
, daddr
->chan
, daddr
->dimm
, daddr
->rank
, daddr
->bank
, daddr
->row
, daddr
->col
);
1122 static void pnd2_mce_output_error(struct mem_ctl_info
*mci
, const struct mce
*m
,
1123 struct dram_addr
*daddr
)
1125 enum hw_event_mc_err_type tp_event
;
1126 char *optype
, msg
[PND2_MSG_SIZE
];
1127 bool ripv
= m
->mcgstatus
& MCG_STATUS_RIPV
;
1128 bool overflow
= m
->status
& MCI_STATUS_OVER
;
1129 bool uc_err
= m
->status
& MCI_STATUS_UC
;
1130 bool recov
= m
->status
& MCI_STATUS_S
;
1131 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
1132 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
1133 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
1134 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
1137 tp_event
= uc_err
? (ripv
? HW_EVENT_ERR_UNCORRECTED
: HW_EVENT_ERR_FATAL
) :
1138 HW_EVENT_ERR_CORRECTED
;
1141 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1142 * memory errors should fit in this mask:
1143 * 000f 0000 1mmm cccc (binary)
1145 * f = Correction Report Filtering Bit. If 1, subsequent errors
1149 * If the mask doesn't match, report an error to the parsing logic
1151 if (!((errcode
& 0xef80) == 0x80)) {
1152 optype
= "Can't parse: it is not a mem";
1154 switch (optypenum
) {
1156 optype
= "generic undef request error";
1159 optype
= "memory read error";
1162 optype
= "memory write error";
1165 optype
= "addr/cmd error";
1168 optype
= "memory scrubbing error";
1171 optype
= "reserved";
1176 /* Only decode errors with an valid address (ADDRV) */
1177 if (!(m
->status
& MCI_STATUS_ADDRV
))
1180 rc
= get_memory_error_data(mci
, m
->addr
, daddr
, msg
);
1184 snprintf(msg
, sizeof(msg
),
1185 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
1186 overflow
? " OVERFLOW" : "", (uc_err
&& recov
) ? " recoverable" : "", mscod
,
1187 errcode
, daddr
->chan
, daddr
->dimm
, daddr
->rank
, daddr
->row
, daddr
->bank
, daddr
->col
);
1189 edac_dbg(0, "%s\n", msg
);
1191 /* Call the helper to output message */
1192 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, m
->addr
>> PAGE_SHIFT
,
1193 m
->addr
& ~PAGE_MASK
, 0, daddr
->chan
, daddr
->dimm
, -1, optype
, msg
);
1198 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0, -1, -1, -1, msg
, "");
1201 static void apl_get_dimm_config(struct mem_ctl_info
*mci
)
1203 struct pnd2_pvt
*pvt
= mci
->pvt_info
;
1204 struct dimm_info
*dimm
;
1205 struct d_cr_drp0
*d
;
1209 for_each_set_bit(i
, &chan_mask
, APL_NUM_CHANNELS
) {
1210 dimm
= edac_get_dimm(mci
, i
, 0, 0);
1212 edac_dbg(0, "No allocated DIMM for channel %d\n", i
);
1217 for (g
= 0; g
< ARRAY_SIZE(dimms
); g
++)
1218 if (dimms
[g
].addrdec
== d
->addrdec
&&
1219 dimms
[g
].dden
== d
->dden
&&
1220 dimms
[g
].dwid
== d
->dwid
)
1223 if (g
== ARRAY_SIZE(dimms
)) {
1224 edac_dbg(0, "Channel %d: unrecognized DIMM\n", i
);
1228 pvt
->dimm_geom
[i
] = g
;
1229 capacity
= (d
->rken0
+ d
->rken1
) * 8 * BIT(dimms
[g
].rowbits
+ dimms
[g
].colbits
);
1230 edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i
, capacity
>> (20 - 3));
1231 dimm
->nr_pages
= MiB_TO_PAGES(capacity
>> (20 - 3));
1233 dimm
->dtype
= (d
->dwid
== 0) ? DEV_X8
: DEV_X16
;
1234 dimm
->mtype
= MEM_DDR3
;
1235 dimm
->edac_mode
= EDAC_SECDED
;
1236 snprintf(dimm
->label
, sizeof(dimm
->label
), "Slice#%d_Chan#%d", i
/ 2, i
% 2);
1240 static const int dnv_dtypes
[] = {
1241 DEV_X8
, DEV_X4
, DEV_X16
, DEV_UNKNOWN
1244 static void dnv_get_dimm_config(struct mem_ctl_info
*mci
)
1246 int i
, j
, ranks_of_dimm
[DNV_MAX_DIMMS
], banks
, rowbits
, colbits
, memtype
;
1247 struct dimm_info
*dimm
;
1260 for (i
= 0; i
< DNV_NUM_CHANNELS
; i
++) {
1261 if (dmap4
[i
].row14
== 31)
1263 else if (dmap4
[i
].row15
== 31)
1265 else if (dmap4
[i
].row16
== 31)
1267 else if (dmap4
[i
].row17
== 31)
1272 if (memtype
== MEM_DDR3
) {
1273 if (dmap1
[i
].ca11
!= 0x3f)
1280 /* DIMM0 is present if rank0 and/or rank1 is enabled */
1281 ranks_of_dimm
[0] = d
->rken0
+ d
->rken1
;
1282 /* DIMM1 is present if rank2 and/or rank3 is enabled */
1283 ranks_of_dimm
[1] = d
->rken2
+ d
->rken3
;
1285 for (j
= 0; j
< DNV_MAX_DIMMS
; j
++) {
1286 if (!ranks_of_dimm
[j
])
1289 dimm
= edac_get_dimm(mci
, i
, j
, 0);
1291 edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i
, j
);
1295 capacity
= ranks_of_dimm
[j
] * banks
* BIT(rowbits
+ colbits
);
1296 edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i
, j
, capacity
>> (20 - 3));
1297 dimm
->nr_pages
= MiB_TO_PAGES(capacity
>> (20 - 3));
1299 dimm
->dtype
= dnv_dtypes
[j
? d
->dimmdwid0
: d
->dimmdwid1
];
1300 dimm
->mtype
= memtype
;
1301 dimm
->edac_mode
= EDAC_SECDED
;
1302 snprintf(dimm
->label
, sizeof(dimm
->label
), "Chan#%d_DIMM#%d", i
, j
);
1307 static int pnd2_register_mci(struct mem_ctl_info
**ppmci
)
1309 struct edac_mc_layer layers
[2];
1310 struct mem_ctl_info
*mci
;
1311 struct pnd2_pvt
*pvt
;
1314 rc
= ops
->check_ecc();
1318 /* Allocate a new MC control structure */
1319 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
1320 layers
[0].size
= ops
->channels
;
1321 layers
[0].is_virt_csrow
= false;
1322 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
1323 layers
[1].size
= ops
->dimms_per_channel
;
1324 layers
[1].is_virt_csrow
= true;
1325 mci
= edac_mc_alloc(0, ARRAY_SIZE(layers
), layers
, sizeof(*pvt
));
1329 pvt
= mci
->pvt_info
;
1330 memset(pvt
, 0, sizeof(*pvt
));
1332 mci
->mod_name
= EDAC_MOD_STR
;
1333 mci
->dev_name
= ops
->name
;
1334 mci
->ctl_name
= "Pondicherry2";
1336 /* Get dimm basic config and the memory layout */
1337 ops
->get_dimm_config(mci
);
1339 if (edac_mc_add_mc(mci
)) {
1340 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1350 static void pnd2_unregister_mci(struct mem_ctl_info
*mci
)
1352 if (unlikely(!mci
|| !mci
->pvt_info
)) {
1353 pnd2_printk(KERN_ERR
, "Couldn't find mci handler\n");
1357 /* Remove MC sysfs nodes */
1358 edac_mc_del_mc(NULL
);
1359 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
1364 * Callback function registered with core kernel mce code.
1365 * Called once for each logged error.
1367 static int pnd2_mce_check_error(struct notifier_block
*nb
, unsigned long val
, void *data
)
1369 struct mce
*mce
= (struct mce
*)data
;
1370 struct mem_ctl_info
*mci
;
1371 struct dram_addr daddr
;
1375 if (!mci
|| (mce
->kflags
& MCE_HANDLED_CEC
))
1379 * Just let mcelog handle it if the error is
1380 * outside the memory controller. A memory error
1381 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1382 * bit 12 has an special meaning.
1384 if ((mce
->status
& 0xefff) >> 7 != 1)
1387 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
1392 pnd2_mc_printk(mci
, KERN_INFO
, "HANDLING MCE MEMORY ERROR\n");
1393 pnd2_mc_printk(mci
, KERN_INFO
, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
1394 mce
->extcpu
, type
, mce
->mcgstatus
, mce
->bank
, mce
->status
);
1395 pnd2_mc_printk(mci
, KERN_INFO
, "TSC %llx ", mce
->tsc
);
1396 pnd2_mc_printk(mci
, KERN_INFO
, "ADDR %llx ", mce
->addr
);
1397 pnd2_mc_printk(mci
, KERN_INFO
, "MISC %llx ", mce
->misc
);
1398 pnd2_mc_printk(mci
, KERN_INFO
, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1399 mce
->cpuvendor
, mce
->cpuid
, mce
->time
, mce
->socketid
, mce
->apicid
);
1401 pnd2_mce_output_error(mci
, mce
, &daddr
);
1403 /* Advice mcelog that the error were handled */
1404 mce
->kflags
|= MCE_HANDLED_EDAC
;
1408 static struct notifier_block pnd2_mce_dec
= {
1409 .notifier_call
= pnd2_mce_check_error
,
1410 .priority
= MCE_PRIO_EDAC
,
1413 #ifdef CONFIG_EDAC_DEBUG
1415 * Write an address to this file to exercise the address decode
1416 * logic in this driver.
1418 static u64 pnd2_fake_addr
;
1419 #define PND2_BLOB_SIZE 1024
1420 static char pnd2_result
[PND2_BLOB_SIZE
];
1421 static struct dentry
*pnd2_test
;
1422 static struct debugfs_blob_wrapper pnd2_blob
= {
1423 .data
= pnd2_result
,
1427 static int debugfs_u64_set(void *data
, u64 val
)
1429 struct dram_addr daddr
;
1434 /* ADDRV + MemRd + Unknown channel */
1435 m
.status
= MCI_STATUS_ADDRV
+ 0x9f;
1437 pnd2_mce_output_error(pnd2_mci
, &m
, &daddr
);
1438 snprintf(pnd2_blob
.data
, PND2_BLOB_SIZE
,
1439 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1440 m
.addr
, daddr
.chan
, daddr
.dimm
, daddr
.rank
, daddr
.bank
, daddr
.row
, daddr
.col
);
1441 pnd2_blob
.size
= strlen(pnd2_blob
.data
);
1445 DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo
, NULL
, debugfs_u64_set
, "%llu\n");
1447 static void setup_pnd2_debug(void)
1449 pnd2_test
= edac_debugfs_create_dir("pnd2_test");
1450 edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test
,
1451 &pnd2_fake_addr
, &fops_u64_wo
);
1452 debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test
, &pnd2_blob
);
1455 static void teardown_pnd2_debug(void)
1457 debugfs_remove_recursive(pnd2_test
);
1460 static void setup_pnd2_debug(void) {}
1461 static void teardown_pnd2_debug(void) {}
1462 #endif /* CONFIG_EDAC_DEBUG */
1465 static int pnd2_probe(void)
1470 rc
= get_registers();
1474 return pnd2_register_mci(&pnd2_mci
);
1477 static void pnd2_remove(void)
1480 pnd2_unregister_mci(pnd2_mci
);
1483 static struct dunit_ops apl_ops
= {
1486 .pmiaddr_shift
= LOG2_PMI_ADDR_GRANULARITY
,
1488 .channels
= APL_NUM_CHANNELS
,
1489 .dimms_per_channel
= 1,
1490 .rd_reg
= apl_rd_reg
,
1491 .get_registers
= apl_get_registers
,
1492 .check_ecc
= apl_check_ecc_active
,
1493 .mk_region
= apl_mk_region
,
1494 .get_dimm_config
= apl_get_dimm_config
,
1495 .pmi2mem
= apl_pmi2mem
,
1498 static struct dunit_ops dnv_ops
= {
1503 .channels
= DNV_NUM_CHANNELS
,
1504 .dimms_per_channel
= 2,
1505 .rd_reg
= dnv_rd_reg
,
1506 .get_registers
= dnv_get_registers
,
1507 .check_ecc
= dnv_check_ecc_active
,
1508 .mk_region
= dnv_mk_region
,
1509 .get_dimm_config
= dnv_get_dimm_config
,
1510 .pmi2mem
= dnv_pmi2mem
,
1513 static const struct x86_cpu_id pnd2_cpuids
[] = {
1514 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT
, &apl_ops
),
1515 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D
, &dnv_ops
),
1518 MODULE_DEVICE_TABLE(x86cpu
, pnd2_cpuids
);
1520 static int __init
pnd2_init(void)
1522 const struct x86_cpu_id
*id
;
1528 if (ghes_get_devices())
1531 owner
= edac_get_owner();
1532 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
1535 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR
))
1538 id
= x86_match_cpu(pnd2_cpuids
);
1542 ops
= (struct dunit_ops
*)id
->driver_data
;
1544 if (ops
->type
== APL
) {
1545 p2sb_bus
= pci_find_bus(0, 0);
1550 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1555 pnd2_printk(KERN_ERR
, "Failed to register device with error %d.\n", rc
);
1562 mce_register_decode_chain(&pnd2_mce_dec
);
1568 static void __exit
pnd2_exit(void)
1571 teardown_pnd2_debug();
1572 mce_unregister_decode_chain(&pnd2_mce_dec
);
1576 module_init(pnd2_init
);
1577 module_exit(pnd2_exit
);
1579 module_param(edac_op_state
, int, 0444);
1580 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
1582 MODULE_LICENSE("GPL v2");
1583 MODULE_AUTHOR("Tony Luck");
1584 MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");