Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / firewire / core-card.c
blob01354b9de8b23612789c208d717f7964af5f47b0
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 */
6 #include <linux/bug.h>
7 #include <linux/completion.h>
8 #include <linux/crc-itu-t.h>
9 #include <linux/device.h>
10 #include <linux/errno.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/kref.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
22 #include <linux/atomic.h>
23 #include <asm/byteorder.h>
25 #include "core.h"
26 #include <trace/events/firewire.h>
28 #define define_fw_printk_level(func, kern_level) \
29 void func(const struct fw_card *card, const char *fmt, ...) \
30 { \
31 struct va_format vaf; \
32 va_list args; \
34 va_start(args, fmt); \
35 vaf.fmt = fmt; \
36 vaf.va = &args; \
37 printk(kern_level KBUILD_MODNAME " %s: %pV", \
38 dev_name(card->device), &vaf); \
39 va_end(args); \
41 define_fw_printk_level(fw_err, KERN_ERR);
42 define_fw_printk_level(fw_notice, KERN_NOTICE);
44 int fw_compute_block_crc(__be32 *block)
46 int length;
47 u16 crc;
49 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
50 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
51 *block |= cpu_to_be32(crc);
53 return length;
56 static DEFINE_MUTEX(card_mutex);
57 static LIST_HEAD(card_list);
59 static LIST_HEAD(descriptor_list);
60 static int descriptor_count;
62 static __be32 tmp_config_rom[256];
63 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
64 static size_t config_rom_length = 1 + 4 + 1 + 1;
66 #define BIB_CRC(v) ((v) << 0)
67 #define BIB_CRC_LENGTH(v) ((v) << 16)
68 #define BIB_INFO_LENGTH(v) ((v) << 24)
69 #define BIB_BUS_NAME 0x31333934 /* "1394" */
70 #define BIB_LINK_SPEED(v) ((v) << 0)
71 #define BIB_GENERATION(v) ((v) << 4)
72 #define BIB_MAX_ROM(v) ((v) << 8)
73 #define BIB_MAX_RECEIVE(v) ((v) << 12)
74 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
75 #define BIB_PMC ((1) << 27)
76 #define BIB_BMC ((1) << 28)
77 #define BIB_ISC ((1) << 29)
78 #define BIB_CMC ((1) << 30)
79 #define BIB_IRMC ((1) << 31)
80 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
83 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
84 * but we have to make it longer because there are many devices whose firmware
85 * is just too slow for that.
87 #define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
89 #define CANON_OUI 0x000085
91 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
93 struct fw_descriptor *desc;
94 int i, j, k, length;
97 * Initialize contents of config rom buffer. On the OHCI
98 * controller, block reads to the config rom accesses the host
99 * memory, but quadlet read access the hardware bus info block
100 * registers. That's just crack, but it means we should make
101 * sure the contents of bus info block in host memory matches
102 * the version stored in the OHCI registers.
105 config_rom[0] = cpu_to_be32(
106 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
107 config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
108 config_rom[2] = cpu_to_be32(
109 BIB_LINK_SPEED(card->link_speed) |
110 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
111 BIB_MAX_ROM(2) |
112 BIB_MAX_RECEIVE(card->max_receive) |
113 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
114 config_rom[3] = cpu_to_be32(card->guid >> 32);
115 config_rom[4] = cpu_to_be32(card->guid);
117 /* Generate root directory. */
118 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
119 i = 7;
120 j = 7 + descriptor_count;
122 /* Generate root directory entries for descriptors. */
123 list_for_each_entry (desc, &descriptor_list, link) {
124 if (desc->immediate > 0)
125 config_rom[i++] = cpu_to_be32(desc->immediate);
126 config_rom[i] = cpu_to_be32(desc->key | (j - i));
127 i++;
128 j += desc->length;
131 /* Update root directory length. */
132 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
134 /* End of root directory, now copy in descriptors. */
135 list_for_each_entry (desc, &descriptor_list, link) {
136 for (k = 0; k < desc->length; k++)
137 config_rom[i + k] = cpu_to_be32(desc->data[k]);
138 i += desc->length;
141 /* Calculate CRCs for all blocks in the config rom. This
142 * assumes that CRC length and info length are identical for
143 * the bus info block, which is always the case for this
144 * implementation. */
145 for (i = 0; i < j; i += length + 1)
146 length = fw_compute_block_crc(config_rom + i);
148 WARN_ON(j != config_rom_length);
151 static void update_config_roms(void)
153 struct fw_card *card;
155 list_for_each_entry (card, &card_list, link) {
156 generate_config_rom(card, tmp_config_rom);
157 card->driver->set_config_rom(card, tmp_config_rom,
158 config_rom_length);
162 static size_t required_space(struct fw_descriptor *desc)
164 /* descriptor + entry into root dir + optional immediate entry */
165 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
168 int fw_core_add_descriptor(struct fw_descriptor *desc)
170 size_t i;
173 * Check descriptor is valid; the length of all blocks in the
174 * descriptor has to add up to exactly the length of the
175 * block.
177 i = 0;
178 while (i < desc->length)
179 i += (desc->data[i] >> 16) + 1;
181 if (i != desc->length)
182 return -EINVAL;
184 guard(mutex)(&card_mutex);
186 if (config_rom_length + required_space(desc) > 256)
187 return -EBUSY;
189 list_add_tail(&desc->link, &descriptor_list);
190 config_rom_length += required_space(desc);
191 descriptor_count++;
192 if (desc->immediate > 0)
193 descriptor_count++;
194 update_config_roms();
196 return 0;
198 EXPORT_SYMBOL(fw_core_add_descriptor);
200 void fw_core_remove_descriptor(struct fw_descriptor *desc)
202 guard(mutex)(&card_mutex);
204 list_del(&desc->link);
205 config_rom_length -= required_space(desc);
206 descriptor_count--;
207 if (desc->immediate > 0)
208 descriptor_count--;
209 update_config_roms();
211 EXPORT_SYMBOL(fw_core_remove_descriptor);
213 static int reset_bus(struct fw_card *card, bool short_reset)
215 int reg = short_reset ? 5 : 1;
216 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
218 trace_bus_reset_initiate(card->index, card->generation, short_reset);
220 return card->driver->update_phy_reg(card, reg, 0, bit);
223 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
225 trace_bus_reset_schedule(card->index, card->generation, short_reset);
227 /* We don't try hard to sort out requests of long vs. short resets. */
228 card->br_short = short_reset;
230 /* Use an arbitrary short delay to combine multiple reset requests. */
231 fw_card_get(card);
232 if (!queue_delayed_work(fw_workqueue, &card->br_work,
233 delayed ? DIV_ROUND_UP(HZ, 100) : 0))
234 fw_card_put(card);
236 EXPORT_SYMBOL(fw_schedule_bus_reset);
238 static void br_work(struct work_struct *work)
240 struct fw_card *card = container_of(work, struct fw_card, br_work.work);
242 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
243 if (card->reset_jiffies != 0 &&
244 time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
245 trace_bus_reset_postpone(card->index, card->generation, card->br_short);
247 if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
248 fw_card_put(card);
249 return;
252 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
253 FW_PHY_CONFIG_CURRENT_GAP_COUNT);
254 reset_bus(card, card->br_short);
255 fw_card_put(card);
258 static void allocate_broadcast_channel(struct fw_card *card, int generation)
260 int channel, bandwidth = 0;
262 if (!card->broadcast_channel_allocated) {
263 fw_iso_resource_manage(card, generation, 1ULL << 31,
264 &channel, &bandwidth, true);
265 if (channel != 31) {
266 fw_notice(card, "failed to allocate broadcast channel\n");
267 return;
269 card->broadcast_channel_allocated = true;
272 device_for_each_child(card->device, (void *)(long)generation,
273 fw_device_set_broadcast_channel);
276 static const char gap_count_table[] = {
277 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
280 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
282 fw_card_get(card);
283 if (!schedule_delayed_work(&card->bm_work, delay))
284 fw_card_put(card);
287 static void bm_work(struct work_struct *work)
289 struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
290 struct fw_device *root_device, *irm_device;
291 struct fw_node *root_node;
292 int root_id, new_root_id, irm_id, bm_id, local_id;
293 int gap_count, generation, grace, rcode;
294 bool do_reset = false;
295 bool root_device_is_running;
296 bool root_device_is_cmc;
297 bool irm_is_1394_1995_only;
298 bool keep_this_irm;
299 __be32 transaction_data[2];
301 spin_lock_irq(&card->lock);
303 if (card->local_node == NULL) {
304 spin_unlock_irq(&card->lock);
305 goto out_put_card;
308 generation = card->generation;
310 root_node = card->root_node;
311 fw_node_get(root_node);
312 root_device = root_node->data;
313 root_device_is_running = root_device &&
314 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
315 root_device_is_cmc = root_device && root_device->cmc;
317 irm_device = card->irm_node->data;
318 irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
319 (irm_device->config_rom[2] & 0x000000f0) == 0;
321 /* Canon MV5i works unreliably if it is not root node. */
322 keep_this_irm = irm_device && irm_device->config_rom &&
323 irm_device->config_rom[3] >> 8 == CANON_OUI;
325 root_id = root_node->node_id;
326 irm_id = card->irm_node->node_id;
327 local_id = card->local_node->node_id;
329 grace = time_after64(get_jiffies_64(),
330 card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
332 if ((is_next_generation(generation, card->bm_generation) &&
333 !card->bm_abdicate) ||
334 (card->bm_generation != generation && grace)) {
336 * This first step is to figure out who is IRM and
337 * then try to become bus manager. If the IRM is not
338 * well defined (e.g. does not have an active link
339 * layer or does not responds to our lock request, we
340 * will have to do a little vigilante bus management.
341 * In that case, we do a goto into the gap count logic
342 * so that when we do the reset, we still optimize the
343 * gap count. That could well save a reset in the
344 * next generation.
347 if (!card->irm_node->link_on) {
348 new_root_id = local_id;
349 fw_notice(card, "%s, making local node (%02x) root\n",
350 "IRM has link off", new_root_id);
351 goto pick_me;
354 if (irm_is_1394_1995_only && !keep_this_irm) {
355 new_root_id = local_id;
356 fw_notice(card, "%s, making local node (%02x) root\n",
357 "IRM is not 1394a compliant", new_root_id);
358 goto pick_me;
361 transaction_data[0] = cpu_to_be32(0x3f);
362 transaction_data[1] = cpu_to_be32(local_id);
364 spin_unlock_irq(&card->lock);
366 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
367 irm_id, generation, SCODE_100,
368 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
369 transaction_data, 8);
371 if (rcode == RCODE_GENERATION)
372 /* Another bus reset, BM work has been rescheduled. */
373 goto out;
375 bm_id = be32_to_cpu(transaction_data[0]);
377 scoped_guard(spinlock_irq, &card->lock) {
378 if (rcode == RCODE_COMPLETE && generation == card->generation)
379 card->bm_node_id =
380 bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
383 if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
384 /* Somebody else is BM. Only act as IRM. */
385 if (local_id == irm_id)
386 allocate_broadcast_channel(card, generation);
388 goto out;
391 if (rcode == RCODE_SEND_ERROR) {
393 * We have been unable to send the lock request due to
394 * some local problem. Let's try again later and hope
395 * that the problem has gone away by then.
397 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
398 goto out;
401 spin_lock_irq(&card->lock);
403 if (rcode != RCODE_COMPLETE && !keep_this_irm) {
405 * The lock request failed, maybe the IRM
406 * isn't really IRM capable after all. Let's
407 * do a bus reset and pick the local node as
408 * root, and thus, IRM.
410 new_root_id = local_id;
411 fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
412 fw_rcode_string(rcode), new_root_id);
413 goto pick_me;
415 } else if (card->bm_generation != generation) {
417 * We weren't BM in the last generation, and the last
418 * bus reset is less than 125ms ago. Reschedule this job.
420 spin_unlock_irq(&card->lock);
421 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
422 goto out;
426 * We're bus manager for this generation, so next step is to
427 * make sure we have an active cycle master and do gap count
428 * optimization.
430 card->bm_generation = generation;
432 if (card->gap_count == 0) {
434 * If self IDs have inconsistent gap counts, do a
435 * bus reset ASAP. The config rom read might never
436 * complete, so don't wait for it. However, still
437 * send a PHY configuration packet prior to the
438 * bus reset. The PHY configuration packet might
439 * fail, but 1394-2008 8.4.5.2 explicitly permits
440 * it in this case, so it should be safe to try.
442 new_root_id = local_id;
444 * We must always send a bus reset if the gap count
445 * is inconsistent, so bypass the 5-reset limit.
447 card->bm_retries = 0;
448 } else if (root_device == NULL) {
450 * Either link_on is false, or we failed to read the
451 * config rom. In either case, pick another root.
453 new_root_id = local_id;
454 } else if (!root_device_is_running) {
456 * If we haven't probed this device yet, bail out now
457 * and let's try again once that's done.
459 spin_unlock_irq(&card->lock);
460 goto out;
461 } else if (root_device_is_cmc) {
463 * We will send out a force root packet for this
464 * node as part of the gap count optimization.
466 new_root_id = root_id;
467 } else {
469 * Current root has an active link layer and we
470 * successfully read the config rom, but it's not
471 * cycle master capable.
473 new_root_id = local_id;
476 pick_me:
478 * Pick a gap count from 1394a table E-1. The table doesn't cover
479 * the typically much larger 1394b beta repeater delays though.
481 if (!card->beta_repeaters_present &&
482 root_node->max_hops < ARRAY_SIZE(gap_count_table))
483 gap_count = gap_count_table[root_node->max_hops];
484 else
485 gap_count = 63;
488 * Finally, figure out if we should do a reset or not. If we have
489 * done less than 5 resets with the same physical topology and we
490 * have either a new root or a new gap count setting, let's do it.
493 if (card->bm_retries++ < 5 &&
494 (card->gap_count != gap_count || new_root_id != root_id))
495 do_reset = true;
497 spin_unlock_irq(&card->lock);
499 if (do_reset) {
500 fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
501 new_root_id, gap_count);
502 fw_send_phy_config(card, new_root_id, generation, gap_count);
504 * Where possible, use a short bus reset to minimize
505 * disruption to isochronous transfers. But in the event
506 * of a gap count inconsistency, use a long bus reset.
508 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
509 * may set different gap counts after a bus reset. On a mixed
510 * 1394/1394a bus, a short bus reset can get doubled. Some
511 * nodes may treat the double reset as one bus reset and others
512 * may treat it as two, causing a gap count inconsistency
513 * again. Using a long bus reset prevents this.
515 reset_bus(card, card->gap_count != 0);
516 /* Will allocate broadcast channel after the reset. */
517 goto out;
520 if (root_device_is_cmc) {
522 * Make sure that the cycle master sends cycle start packets.
524 transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
525 rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
526 root_id, generation, SCODE_100,
527 CSR_REGISTER_BASE + CSR_STATE_SET,
528 transaction_data, 4);
529 if (rcode == RCODE_GENERATION)
530 goto out;
533 if (local_id == irm_id)
534 allocate_broadcast_channel(card, generation);
536 out:
537 fw_node_put(root_node);
538 out_put_card:
539 fw_card_put(card);
542 void fw_card_initialize(struct fw_card *card,
543 const struct fw_card_driver *driver,
544 struct device *device)
546 static atomic_t index = ATOMIC_INIT(-1);
548 card->index = atomic_inc_return(&index);
549 card->driver = driver;
550 card->device = device;
551 card->current_tlabel = 0;
552 card->tlabel_mask = 0;
553 card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
554 card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
555 card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
556 card->split_timeout_jiffies =
557 DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
558 card->color = 0;
559 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
561 kref_init(&card->kref);
562 init_completion(&card->done);
563 INIT_LIST_HEAD(&card->transaction_list);
564 INIT_LIST_HEAD(&card->phy_receiver_list);
565 spin_lock_init(&card->lock);
567 card->local_node = NULL;
569 INIT_DELAYED_WORK(&card->br_work, br_work);
570 INIT_DELAYED_WORK(&card->bm_work, bm_work);
572 EXPORT_SYMBOL(fw_card_initialize);
574 int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
575 unsigned int supported_isoc_contexts)
577 struct workqueue_struct *isoc_wq;
578 int ret;
580 // This workqueue should be:
581 // * != WQ_BH Sleepable.
582 // * == WQ_UNBOUND Any core can process data for isoc context. The
583 // implementation of unit protocol could consumes the core
584 // longer somehow.
585 // * != WQ_MEM_RECLAIM Not used for any backend of block device.
586 // * == WQ_FREEZABLE Isochronous communication is at regular interval in real
587 // time, thus should be drained if possible at freeze phase.
588 // * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
589 // * == WQ_SYSFS Parameters are available via sysfs.
590 // * max_active == n_it + n_ir A hardIRQ could notify events for multiple isochronous
591 // contexts if they are scheduled to the same cycle.
592 isoc_wq = alloc_workqueue("firewire-isoc-card%u",
593 WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
594 supported_isoc_contexts, card->index);
595 if (!isoc_wq)
596 return -ENOMEM;
598 card->max_receive = max_receive;
599 card->link_speed = link_speed;
600 card->guid = guid;
602 guard(mutex)(&card_mutex);
604 generate_config_rom(card, tmp_config_rom);
605 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
606 if (ret < 0) {
607 destroy_workqueue(isoc_wq);
608 return ret;
611 card->isoc_wq = isoc_wq;
612 list_add_tail(&card->link, &card_list);
614 return 0;
616 EXPORT_SYMBOL(fw_card_add);
619 * The next few functions implement a dummy driver that is used once a card
620 * driver shuts down an fw_card. This allows the driver to cleanly unload,
621 * as all IO to the card will be handled (and failed) by the dummy driver
622 * instead of calling into the module. Only functions for iso context
623 * shutdown still need to be provided by the card driver.
625 * .read/write_csr() should never be called anymore after the dummy driver
626 * was bound since they are only used within request handler context.
627 * .set_config_rom() is never called since the card is taken out of card_list
628 * before switching to the dummy driver.
631 static int dummy_read_phy_reg(struct fw_card *card, int address)
633 return -ENODEV;
636 static int dummy_update_phy_reg(struct fw_card *card, int address,
637 int clear_bits, int set_bits)
639 return -ENODEV;
642 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
644 packet->callback(packet, card, RCODE_CANCELLED);
647 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
649 packet->callback(packet, card, RCODE_CANCELLED);
652 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
654 return -ENOENT;
657 static int dummy_enable_phys_dma(struct fw_card *card,
658 int node_id, int generation)
660 return -ENODEV;
663 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
664 int type, int channel, size_t header_size)
666 return ERR_PTR(-ENODEV);
669 static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
671 return 0;
674 static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
678 static int dummy_start_iso(struct fw_iso_context *ctx,
679 s32 cycle, u32 sync, u32 tags)
681 return -ENODEV;
684 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
686 return -ENODEV;
689 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
690 struct fw_iso_buffer *buffer, unsigned long payload)
692 return -ENODEV;
695 static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
699 static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
701 return -ENODEV;
704 static const struct fw_card_driver dummy_driver_template = {
705 .read_phy_reg = dummy_read_phy_reg,
706 .update_phy_reg = dummy_update_phy_reg,
707 .send_request = dummy_send_request,
708 .send_response = dummy_send_response,
709 .cancel_packet = dummy_cancel_packet,
710 .enable_phys_dma = dummy_enable_phys_dma,
711 .read_csr = dummy_read_csr,
712 .write_csr = dummy_write_csr,
713 .allocate_iso_context = dummy_allocate_iso_context,
714 .start_iso = dummy_start_iso,
715 .set_iso_channels = dummy_set_iso_channels,
716 .queue_iso = dummy_queue_iso,
717 .flush_queue_iso = dummy_flush_queue_iso,
718 .flush_iso_completions = dummy_flush_iso_completions,
721 void fw_card_release(struct kref *kref)
723 struct fw_card *card = container_of(kref, struct fw_card, kref);
725 complete(&card->done);
727 EXPORT_SYMBOL_GPL(fw_card_release);
729 void fw_core_remove_card(struct fw_card *card)
731 struct fw_card_driver dummy_driver = dummy_driver_template;
733 might_sleep();
735 card->driver->update_phy_reg(card, 4,
736 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
737 fw_schedule_bus_reset(card, false, true);
739 scoped_guard(mutex, &card_mutex)
740 list_del_init(&card->link);
742 /* Switch off most of the card driver interface. */
743 dummy_driver.free_iso_context = card->driver->free_iso_context;
744 dummy_driver.stop_iso = card->driver->stop_iso;
745 card->driver = &dummy_driver;
746 drain_workqueue(card->isoc_wq);
748 scoped_guard(spinlock_irqsave, &card->lock)
749 fw_destroy_nodes(card);
751 /* Wait for all users, especially device workqueue jobs, to finish. */
752 fw_card_put(card);
753 wait_for_completion(&card->done);
755 destroy_workqueue(card->isoc_wq);
757 WARN_ON(!list_empty(&card->transaction_list));
759 EXPORT_SYMBOL(fw_core_remove_card);
762 * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
763 * for controller card.
764 * @card: The instance of card for 1394 OHCI controller.
765 * @cycle_time: The mutual reference to value of cycle time for the read operation.
767 * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
768 * controller card. This function accesses the region without any lock primitives or IRQ mask.
769 * When returning successfully, the content of @value argument has value aligned to host endianness,
770 * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
772 * Context: Any context.
773 * Return:
774 * * 0 - Read successfully.
775 * * -ENODEV - The controller is unavailable due to being removed or unbound.
777 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
779 if (card->driver->read_csr == dummy_read_csr)
780 return -ENODEV;
782 // It's possible to switch to dummy driver between the above and the below. This is the best
783 // effort to return -ENODEV.
784 *cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
785 return 0;
787 EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);