1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Isochronous I/O functionality:
4 * - Isochronous DMA context management
5 * - Isochronous bus resource management (channels, bandwidth), client side
7 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
21 #include <asm/byteorder.h>
25 #include <trace/events/firewire.h>
28 * Isochronous DMA context management
31 int fw_iso_buffer_alloc(struct fw_iso_buffer
*buffer
, int page_count
)
35 buffer
->page_count
= 0;
36 buffer
->page_count_mapped
= 0;
37 buffer
->pages
= kmalloc_array(page_count
, sizeof(buffer
->pages
[0]),
39 if (buffer
->pages
== NULL
)
42 for (i
= 0; i
< page_count
; i
++) {
43 buffer
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
| __GFP_ZERO
);
44 if (buffer
->pages
[i
] == NULL
)
47 buffer
->page_count
= i
;
49 fw_iso_buffer_destroy(buffer
, NULL
);
56 int fw_iso_buffer_map_dma(struct fw_iso_buffer
*buffer
, struct fw_card
*card
,
57 enum dma_data_direction direction
)
62 buffer
->direction
= direction
;
64 for (i
= 0; i
< buffer
->page_count
; i
++) {
65 address
= dma_map_page(card
->device
, buffer
->pages
[i
],
66 0, PAGE_SIZE
, direction
);
67 if (dma_mapping_error(card
->device
, address
))
70 set_page_private(buffer
->pages
[i
], address
);
72 buffer
->page_count_mapped
= i
;
73 if (i
< buffer
->page_count
)
79 int fw_iso_buffer_init(struct fw_iso_buffer
*buffer
, struct fw_card
*card
,
80 int page_count
, enum dma_data_direction direction
)
84 ret
= fw_iso_buffer_alloc(buffer
, page_count
);
88 ret
= fw_iso_buffer_map_dma(buffer
, card
, direction
);
90 fw_iso_buffer_destroy(buffer
, card
);
94 EXPORT_SYMBOL(fw_iso_buffer_init
);
96 void fw_iso_buffer_destroy(struct fw_iso_buffer
*buffer
,
102 for (i
= 0; i
< buffer
->page_count_mapped
; i
++) {
103 address
= page_private(buffer
->pages
[i
]);
104 dma_unmap_page(card
->device
, address
,
105 PAGE_SIZE
, buffer
->direction
);
107 for (i
= 0; i
< buffer
->page_count
; i
++)
108 __free_page(buffer
->pages
[i
]);
110 kfree(buffer
->pages
);
111 buffer
->pages
= NULL
;
112 buffer
->page_count
= 0;
113 buffer
->page_count_mapped
= 0;
115 EXPORT_SYMBOL(fw_iso_buffer_destroy
);
117 /* Convert DMA address to offset into virtually contiguous buffer. */
118 size_t fw_iso_buffer_lookup(struct fw_iso_buffer
*buffer
, dma_addr_t completed
)
124 for (i
= 0; i
< buffer
->page_count
; i
++) {
125 address
= page_private(buffer
->pages
[i
]);
126 offset
= (ssize_t
)completed
- (ssize_t
)address
;
127 if (offset
> 0 && offset
<= PAGE_SIZE
)
128 return (i
<< PAGE_SHIFT
) + offset
;
134 struct fw_iso_context
*fw_iso_context_create(struct fw_card
*card
,
135 int type
, int channel
, int speed
, size_t header_size
,
136 fw_iso_callback_t callback
, void *callback_data
)
138 struct fw_iso_context
*ctx
;
140 ctx
= card
->driver
->allocate_iso_context(card
,
141 type
, channel
, header_size
);
147 ctx
->channel
= channel
;
149 ctx
->header_size
= header_size
;
150 ctx
->callback
.sc
= callback
;
151 ctx
->callback_data
= callback_data
;
153 trace_isoc_outbound_allocate(ctx
, channel
, speed
);
154 trace_isoc_inbound_single_allocate(ctx
, channel
, header_size
);
155 trace_isoc_inbound_multiple_allocate(ctx
);
159 EXPORT_SYMBOL(fw_iso_context_create
);
161 void fw_iso_context_destroy(struct fw_iso_context
*ctx
)
163 trace_isoc_outbound_destroy(ctx
);
164 trace_isoc_inbound_single_destroy(ctx
);
165 trace_isoc_inbound_multiple_destroy(ctx
);
167 ctx
->card
->driver
->free_iso_context(ctx
);
169 EXPORT_SYMBOL(fw_iso_context_destroy
);
171 int fw_iso_context_start(struct fw_iso_context
*ctx
,
172 int cycle
, int sync
, int tags
)
174 trace_isoc_outbound_start(ctx
, cycle
);
175 trace_isoc_inbound_single_start(ctx
, cycle
, sync
, tags
);
176 trace_isoc_inbound_multiple_start(ctx
, cycle
, sync
, tags
);
178 return ctx
->card
->driver
->start_iso(ctx
, cycle
, sync
, tags
);
180 EXPORT_SYMBOL(fw_iso_context_start
);
182 int fw_iso_context_set_channels(struct fw_iso_context
*ctx
, u64
*channels
)
184 trace_isoc_inbound_multiple_channels(ctx
, *channels
);
186 return ctx
->card
->driver
->set_iso_channels(ctx
, channels
);
189 int fw_iso_context_queue(struct fw_iso_context
*ctx
,
190 struct fw_iso_packet
*packet
,
191 struct fw_iso_buffer
*buffer
,
192 unsigned long payload
)
194 trace_isoc_outbound_queue(ctx
, payload
, packet
);
195 trace_isoc_inbound_single_queue(ctx
, payload
, packet
);
196 trace_isoc_inbound_multiple_queue(ctx
, payload
, packet
);
198 return ctx
->card
->driver
->queue_iso(ctx
, packet
, buffer
, payload
);
200 EXPORT_SYMBOL(fw_iso_context_queue
);
202 void fw_iso_context_queue_flush(struct fw_iso_context
*ctx
)
204 trace_isoc_outbound_flush(ctx
);
205 trace_isoc_inbound_single_flush(ctx
);
206 trace_isoc_inbound_multiple_flush(ctx
);
208 ctx
->card
->driver
->flush_queue_iso(ctx
);
210 EXPORT_SYMBOL(fw_iso_context_queue_flush
);
213 * fw_iso_context_flush_completions() - process isochronous context in current process context.
214 * @ctx: the isochronous context
216 * Process the isochronous context in the current process context. The registered callback function
217 * is called when a queued packet buffer with the interrupt flag is completed, either after
218 * transmission in the IT context or after being filled in the IR context. Additionally, the
219 * callback function is also called for the packet buffer completed at last. Furthermore, the
220 * callback function is called as well when the header buffer in the context becomes full. If it is
221 * required to process the context asynchronously, fw_iso_context_schedule_flush_completions() is
224 * Context: Process context. May sleep due to disable_work_sync().
226 int fw_iso_context_flush_completions(struct fw_iso_context
*ctx
)
230 trace_isoc_outbound_flush_completions(ctx
);
231 trace_isoc_inbound_single_flush_completions(ctx
);
232 trace_isoc_inbound_multiple_flush_completions(ctx
);
236 // Avoid dead lock due to programming mistake.
237 if (WARN_ON_ONCE(current_work() == &ctx
->work
))
240 disable_work_sync(&ctx
->work
);
242 err
= ctx
->card
->driver
->flush_iso_completions(ctx
);
244 enable_work(&ctx
->work
);
248 EXPORT_SYMBOL(fw_iso_context_flush_completions
);
250 int fw_iso_context_stop(struct fw_iso_context
*ctx
)
254 trace_isoc_outbound_stop(ctx
);
255 trace_isoc_inbound_single_stop(ctx
);
256 trace_isoc_inbound_multiple_stop(ctx
);
260 // Avoid dead lock due to programming mistake.
261 if (WARN_ON_ONCE(current_work() == &ctx
->work
))
264 err
= ctx
->card
->driver
->stop_iso(ctx
);
266 cancel_work_sync(&ctx
->work
);
270 EXPORT_SYMBOL(fw_iso_context_stop
);
273 * Isochronous bus resource management (channels, bandwidth), client side
276 static int manage_bandwidth(struct fw_card
*card
, int irm_id
, int generation
,
277 int bandwidth
, bool allocate
)
279 int try, new, old
= allocate
? BANDWIDTH_AVAILABLE_INITIAL
: 0;
283 * On a 1394a IRM with low contention, try < 1 is enough.
284 * On a 1394-1995 IRM, we need at least try < 2.
285 * Let's just do try < 5.
287 for (try = 0; try < 5; try++) {
288 new = allocate
? old
- bandwidth
: old
+ bandwidth
;
289 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL
)
292 data
[0] = cpu_to_be32(old
);
293 data
[1] = cpu_to_be32(new);
294 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
295 irm_id
, generation
, SCODE_100
,
296 CSR_REGISTER_BASE
+ CSR_BANDWIDTH_AVAILABLE
,
298 case RCODE_GENERATION
:
299 /* A generation change frees all bandwidth. */
300 return allocate
? -EAGAIN
: bandwidth
;
303 if (be32_to_cpup(data
) == old
)
306 old
= be32_to_cpup(data
);
314 static int manage_channel(struct fw_card
*card
, int irm_id
, int generation
,
315 u32 channels_mask
, u64 offset
, bool allocate
)
317 __be32 bit
, all
, old
;
319 int channel
, ret
= -EIO
, retry
= 5;
321 old
= all
= allocate
? cpu_to_be32(~0) : 0;
323 for (channel
= 0; channel
< 32; channel
++) {
324 if (!(channels_mask
& 1 << channel
))
329 bit
= cpu_to_be32(1 << (31 - channel
));
330 if ((old
& bit
) != (all
& bit
))
335 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
336 irm_id
, generation
, SCODE_100
,
338 case RCODE_GENERATION
:
339 /* A generation change frees all channels. */
340 return allocate
? -EAGAIN
: channel
;
348 /* Is the IRM 1394a-2000 compliant? */
349 if ((data
[0] & bit
) == (data
[1] & bit
))
352 fallthrough
; /* It's a 1394-1995 IRM, retry */
366 static void deallocate_channel(struct fw_card
*card
, int irm_id
,
367 int generation
, int channel
)
372 mask
= channel
< 32 ? 1 << channel
: 1 << (channel
- 32);
373 offset
= channel
< 32 ? CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
:
374 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
;
376 manage_channel(card
, irm_id
, generation
, mask
, offset
, false);
380 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
381 * @card: card interface for this action
382 * @generation: bus generation
383 * @channels_mask: bitmask for channel allocation
384 * @channel: pointer for returning channel allocation result
385 * @bandwidth: pointer for returning bandwidth allocation result
386 * @allocate: whether to allocate (true) or deallocate (false)
388 * In parameters: card, generation, channels_mask, bandwidth, allocate
389 * Out parameters: channel, bandwidth
391 * This function blocks (sleeps) during communication with the IRM.
393 * Allocates or deallocates at most one channel out of channels_mask.
394 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
395 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
396 * channel 0 and LSB for channel 63.)
397 * Allocates or deallocates as many bandwidth allocation units as specified.
399 * Returns channel < 0 if no channel was allocated or deallocated.
400 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
402 * If generation is stale, deallocations succeed but allocations fail with
405 * If channel allocation fails, no bandwidth will be allocated either.
406 * If bandwidth allocation fails, no channel will be allocated either.
407 * But deallocations of channel and bandwidth are tried independently
408 * of each other's success.
410 void fw_iso_resource_manage(struct fw_card
*card
, int generation
,
411 u64 channels_mask
, int *channel
, int *bandwidth
,
414 u32 channels_hi
= channels_mask
; /* channels 31...0 */
415 u32 channels_lo
= channels_mask
>> 32; /* channels 63...32 */
416 int irm_id
, ret
, c
= -EINVAL
;
418 scoped_guard(spinlock_irq
, &card
->lock
)
419 irm_id
= card
->irm_node
->node_id
;
422 c
= manage_channel(card
, irm_id
, generation
, channels_hi
,
423 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
,
425 if (channels_lo
&& c
< 0) {
426 c
= manage_channel(card
, irm_id
, generation
, channels_lo
,
427 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
,
434 if (allocate
&& channels_mask
!= 0 && c
< 0)
440 ret
= manage_bandwidth(card
, irm_id
, generation
, *bandwidth
, allocate
);
444 if (allocate
&& ret
< 0) {
446 deallocate_channel(card
, irm_id
, generation
, c
);
450 EXPORT_SYMBOL(fw_iso_resource_manage
);