1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for OHCI 1394 controllers
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
8 #include <linux/bitops.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
34 #include <asm/byteorder.h>
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
43 #include "packet-header-definitions.h"
44 #include "phy-packet-definitions.h"
46 #include <trace/events/firewire.h>
48 static u32
cond_le32_to_cpu(__le32 value
, bool has_be_header_quirk
);
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/firewire_ohci.h>
53 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
54 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
56 #define DESCRIPTOR_OUTPUT_MORE 0
57 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
58 #define DESCRIPTOR_INPUT_MORE (2 << 12)
59 #define DESCRIPTOR_INPUT_LAST (3 << 12)
60 #define DESCRIPTOR_STATUS (1 << 11)
61 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
62 #define DESCRIPTOR_PING (1 << 7)
63 #define DESCRIPTOR_YY (1 << 6)
64 #define DESCRIPTOR_NO_IRQ (0 << 4)
65 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
66 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
67 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
68 #define DESCRIPTOR_WAIT (3 << 0)
70 #define DESCRIPTOR_CMD (0xf << 12)
76 __le32 branch_address
;
78 __le16 transfer_status
;
81 #define CONTROL_SET(regs) (regs)
82 #define CONTROL_CLEAR(regs) ((regs) + 4)
83 #define COMMAND_PTR(regs) ((regs) + 12)
84 #define CONTEXT_MATCH(regs) ((regs) + 16)
86 #define AR_BUFFER_SIZE (32*1024)
87 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
91 #define MAX_ASYNC_PAYLOAD 4096
92 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
97 struct page
*pages
[AR_BUFFERS
];
99 struct descriptor
*descriptors
;
100 dma_addr_t descriptors_bus
;
102 unsigned int last_buffer_index
;
104 struct tasklet_struct tasklet
;
109 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
110 struct descriptor
*d
,
111 struct descriptor
*last
);
114 * A buffer that contains a block of DMA-able coherent memory used for
115 * storing a portion of a DMA descriptor program.
117 struct descriptor_buffer
{
118 struct list_head list
;
119 dma_addr_t buffer_bus
;
122 struct descriptor buffer
[];
126 struct fw_ohci
*ohci
;
128 int total_allocation
;
134 * List of page-sized buffers for storing DMA descriptors.
135 * Head of list contains buffers in use and tail of list contains
138 struct list_head buffer_list
;
141 * Pointer to a buffer inside buffer_list that contains the tail
142 * end of the current DMA program.
144 struct descriptor_buffer
*buffer_tail
;
147 * The descriptor containing the branch address of the first
148 * descriptor that has not yet been filled by the device.
150 struct descriptor
*last
;
153 * The last descriptor block in the DMA program. It contains the branch
154 * address that must be updated upon appending a new descriptor.
156 struct descriptor
*prev
;
159 descriptor_callback_t callback
;
161 struct tasklet_struct tasklet
;
165 struct fw_iso_context base
;
166 struct context context
;
168 size_t header_length
;
169 unsigned long flushing_completions
;
177 #define CONFIG_ROM_SIZE (CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
182 __iomem
char *registers
;
185 int request_generation
; /* for timestamping incoming requests */
187 unsigned int pri_req_max
;
189 bool bus_time_running
;
191 bool csr_state_setclear_abdicate
;
195 * Spinlock for accessing fw_ohci data. Never call out of
196 * this driver with this lock held.
200 struct mutex phy_reg_mutex
;
203 dma_addr_t misc_buffer_bus
;
205 struct ar_context ar_request_ctx
;
206 struct ar_context ar_response_ctx
;
207 struct context at_request_ctx
;
208 struct context at_response_ctx
;
210 u32 it_context_support
;
211 u32 it_context_mask
; /* unoccupied IT contexts */
212 struct iso_context
*it_context_list
;
213 u64 ir_context_channels
; /* unoccupied channels */
214 u32 ir_context_support
;
215 u32 ir_context_mask
; /* unoccupied IR contexts */
216 struct iso_context
*ir_context_list
;
217 u64 mc_channels
; /* channels in use by the multichannel IR context */
221 dma_addr_t config_rom_bus
;
222 __be32
*next_config_rom
;
223 dma_addr_t next_config_rom_bus
;
227 dma_addr_t self_id_bus
;
228 struct work_struct bus_reset_work
;
230 u32 self_id_buffer
[512];
233 static struct workqueue_struct
*selfid_workqueue
;
235 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
237 return container_of(card
, struct fw_ohci
, card
);
240 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
241 #define IR_CONTEXT_BUFFER_FILL 0x80000000
242 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
243 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
244 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
245 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
247 #define CONTEXT_RUN 0x8000
248 #define CONTEXT_WAKE 0x1000
249 #define CONTEXT_DEAD 0x0800
250 #define CONTEXT_ACTIVE 0x0400
252 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
253 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
254 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
256 #define OHCI1394_REGISTER_SIZE 0x800
257 #define OHCI1394_PCI_HCI_Control 0x40
258 #define SELF_ID_BUF_SIZE 0x800
259 #define OHCI_VERSION_1_1 0x010010
261 static char ohci_driver_name
[] = KBUILD_MODNAME
;
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
271 #define PCI_REV_ID_VIA_VT6306 0x46
272 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
274 #define QUIRK_CYCLE_TIMER 0x1
275 #define QUIRK_RESET_PACKET 0x2
276 #define QUIRK_BE_HEADERS 0x4
277 #define QUIRK_NO_1394A 0x8
278 #define QUIRK_NO_MSI 0x10
279 #define QUIRK_TI_SLLZ059 0x20
280 #define QUIRK_IR_WAKE 0x40
282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286 // while it is probable due to detection of any type of PCIe error.
287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
289 #if IS_ENABLED(CONFIG_X86)
291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci
*ohci
)
293 return !!(ohci
->quirks
& QUIRK_REBOOT_BY_CYCLE_TIMER_READ
);
296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev
*pdev
)
300 const struct pci_dev
*pcie_to_pci_bridge
;
302 // Detect any type of AMD Ryzen machine.
303 if (!static_cpu_has(X86_FEATURE_ZEN
))
306 // Detect VIA VT6306/6307/6308.
307 if (pdev
->vendor
!= PCI_VENDOR_ID_VIA
)
309 if (pdev
->device
!= PCI_DEVICE_ID_VIA_VT630X
)
312 // Detect Asmedia ASM1083/1085.
313 pcie_to_pci_bridge
= pdev
->bus
->self
;
314 if (pcie_to_pci_bridge
->vendor
!= PCI_VENDOR_ID_ASMEDIA
)
316 if (pcie_to_pci_bridge
->device
!= PCI_DEVICE_ID_ASMEDIA_ASM108X
)
323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
328 static const struct {
329 unsigned short vendor
, device
, revision
, flags
;
331 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
334 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
337 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
340 {PCI_VENDOR_ID_CREATIVE
, PCI_DEVICE_ID_CREATIVE_SB1394
, PCI_ANY_ID
,
343 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
346 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
349 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
352 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
353 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
355 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
356 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
358 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV26
, PCI_ANY_ID
,
359 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
361 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB82AA2
, PCI_ANY_ID
,
362 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
364 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
367 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT630X
, PCI_REV_ID_VIA_VT6306
,
368 QUIRK_CYCLE_TIMER
| QUIRK_IR_WAKE
},
370 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT6315
, 0,
371 QUIRK_CYCLE_TIMER
/* FIXME: necessary? */ | QUIRK_NO_MSI
},
373 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT6315
, PCI_ANY_ID
,
376 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
377 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
380 /* This overrides anything that was found in ohci_quirks[]. */
381 static int param_quirks
;
382 module_param_named(quirks
, param_quirks
, int, 0644);
383 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
384 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
385 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
386 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS
)
387 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
388 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
389 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059
)
390 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE
)
393 #define OHCI_PARAM_DEBUG_AT_AR 1
394 #define OHCI_PARAM_DEBUG_SELFIDS 2
395 #define OHCI_PARAM_DEBUG_IRQS 4
397 static int param_debug
;
398 module_param_named(debug
, param_debug
, int, 0644);
399 MODULE_PARM_DESC(debug
, "Verbose logging, deprecated in v6.11 kernel or later. (default = 0"
400 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
401 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
402 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
403 ", or a combination, or all = -1)");
405 static bool param_remote_dma
;
406 module_param_named(remote_dma
, param_remote_dma
, bool, 0444);
407 MODULE_PARM_DESC(remote_dma
, "Enable unfiltered remote DMA (default = N)");
409 static void log_irqs(struct fw_ohci
*ohci
, u32 evt
)
411 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_IRQS
)))
414 ohci_notice(ohci
, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
415 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
416 evt
& OHCI1394_RQPkt
? " AR_req" : "",
417 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
418 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
419 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
420 evt
& OHCI1394_isochRx
? " IR" : "",
421 evt
& OHCI1394_isochTx
? " IT" : "",
422 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
423 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
424 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
425 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
426 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
427 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
428 evt
& OHCI1394_busReset
? " busReset" : "",
429 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
430 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
431 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
432 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
433 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
434 OHCI1394_cycleInconsistent
|
435 OHCI1394_regAccessFail
| OHCI1394_busReset
)
439 static void log_selfids(struct fw_ohci
*ohci
, int generation
, int self_id_count
)
441 static const char *const speed
[] = {
442 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
444 static const char *const power
[] = {
445 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
446 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
448 static const char port
[] = {
449 [PHY_PACKET_SELF_ID_PORT_STATUS_NONE
] = '.',
450 [PHY_PACKET_SELF_ID_PORT_STATUS_NCONN
] = '-',
451 [PHY_PACKET_SELF_ID_PORT_STATUS_PARENT
] = 'p',
452 [PHY_PACKET_SELF_ID_PORT_STATUS_CHILD
] = 'c',
454 struct self_id_sequence_enumerator enumerator
= {
455 .cursor
= ohci
->self_id_buffer
,
456 .quadlet_count
= self_id_count
,
459 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
462 ohci_notice(ohci
, "%d selfIDs, generation %d, local node ID %04x\n",
463 self_id_count
, generation
, ohci
->node_id
);
465 while (enumerator
.quadlet_count
> 0) {
466 unsigned int quadlet_count
;
467 unsigned int port_index
;
471 s
= self_id_sequence_enumerator_next(&enumerator
, &quadlet_count
);
476 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
478 phy_packet_self_id_get_phy_id(*s
),
479 port
[self_id_sequence_get_port_status(s
, quadlet_count
, 0)],
480 port
[self_id_sequence_get_port_status(s
, quadlet_count
, 1)],
481 port
[self_id_sequence_get_port_status(s
, quadlet_count
, 2)],
482 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
483 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
484 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
487 for (i
= 1; i
< quadlet_count
; ++i
) {
489 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
491 phy_packet_self_id_get_phy_id(s
[i
]),
492 port
[self_id_sequence_get_port_status(s
, quadlet_count
, port_index
)],
493 port
[self_id_sequence_get_port_status(s
, quadlet_count
, port_index
+ 1)],
494 port
[self_id_sequence_get_port_status(s
, quadlet_count
, port_index
+ 2)],
495 port
[self_id_sequence_get_port_status(s
, quadlet_count
, port_index
+ 3)],
496 port
[self_id_sequence_get_port_status(s
, quadlet_count
, port_index
+ 4)],
497 port
[self_id_sequence_get_port_status(s
, quadlet_count
, port_index
+ 5)],
498 port
[self_id_sequence_get_port_status(s
, quadlet_count
, port_index
+ 6)],
499 port
[self_id_sequence_get_port_status(s
, quadlet_count
, port_index
+ 7)]
507 static const char *evts
[] = {
508 [0x00] = "evt_no_status", [0x01] = "-reserved-",
509 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
510 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
511 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
512 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
513 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
514 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
515 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
516 [0x10] = "-reserved-", [0x11] = "ack_complete",
517 [0x12] = "ack_pending ", [0x13] = "-reserved-",
518 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
519 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
520 [0x18] = "-reserved-", [0x19] = "-reserved-",
521 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
522 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
523 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
524 [0x20] = "pending/cancelled",
527 static void log_ar_at_event(struct fw_ohci
*ohci
,
528 char dir
, int speed
, u32
*header
, int evt
)
530 static const char *const tcodes
[] = {
531 [TCODE_WRITE_QUADLET_REQUEST
] = "QW req",
532 [TCODE_WRITE_BLOCK_REQUEST
] = "BW req",
533 [TCODE_WRITE_RESPONSE
] = "W resp",
534 [0x3] = "-reserved-",
535 [TCODE_READ_QUADLET_REQUEST
] = "QR req",
536 [TCODE_READ_BLOCK_REQUEST
] = "BR req",
537 [TCODE_READ_QUADLET_RESPONSE
] = "QR resp",
538 [TCODE_READ_BLOCK_RESPONSE
] = "BR resp",
539 [TCODE_CYCLE_START
] = "cycle start",
540 [TCODE_LOCK_REQUEST
] = "Lk req",
541 [TCODE_STREAM_DATA
] = "async stream packet",
542 [TCODE_LOCK_RESPONSE
] = "Lk resp",
543 [0xc] = "-reserved-",
544 [0xd] = "-reserved-",
545 [TCODE_LINK_INTERNAL
] = "link internal",
546 [0xf] = "-reserved-",
548 int tcode
= async_header_get_tcode(header
);
551 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
554 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
557 if (evt
== OHCI1394_evt_bus_reset
) {
558 ohci_notice(ohci
, "A%c evt_bus_reset, generation %d\n",
559 dir
, (header
[2] >> 16) & 0xff);
564 case TCODE_WRITE_QUADLET_REQUEST
:
565 case TCODE_READ_QUADLET_RESPONSE
:
566 case TCODE_CYCLE_START
:
567 snprintf(specific
, sizeof(specific
), " = %08x",
568 be32_to_cpu((__force __be32
)header
[3]));
570 case TCODE_WRITE_BLOCK_REQUEST
:
571 case TCODE_READ_BLOCK_REQUEST
:
572 case TCODE_READ_BLOCK_RESPONSE
:
573 case TCODE_LOCK_REQUEST
:
574 case TCODE_LOCK_RESPONSE
:
575 snprintf(specific
, sizeof(specific
), " %x,%x",
576 async_header_get_data_length(header
),
577 async_header_get_extended_tcode(header
));
584 case TCODE_STREAM_DATA
:
585 ohci_notice(ohci
, "A%c %s, %s\n",
586 dir
, evts
[evt
], tcodes
[tcode
]);
588 case TCODE_LINK_INTERNAL
:
589 ohci_notice(ohci
, "A%c %s, PHY %08x %08x\n",
590 dir
, evts
[evt
], header
[1], header
[2]);
592 case TCODE_WRITE_QUADLET_REQUEST
:
593 case TCODE_WRITE_BLOCK_REQUEST
:
594 case TCODE_READ_QUADLET_REQUEST
:
595 case TCODE_READ_BLOCK_REQUEST
:
596 case TCODE_LOCK_REQUEST
:
598 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
599 dir
, speed
, async_header_get_tlabel(header
),
600 async_header_get_source(header
), async_header_get_destination(header
),
601 evts
[evt
], tcodes
[tcode
], async_header_get_offset(header
), specific
);
605 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
606 dir
, speed
, async_header_get_tlabel(header
),
607 async_header_get_source(header
), async_header_get_destination(header
),
608 evts
[evt
], tcodes
[tcode
], specific
);
612 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
614 writel(data
, ohci
->registers
+ offset
);
617 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
619 return readl(ohci
->registers
+ offset
);
622 static inline void flush_writes(const struct fw_ohci
*ohci
)
624 /* Do a dummy read to flush writes. */
625 reg_read(ohci
, OHCI1394_Version
);
629 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
630 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
631 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
632 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
634 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
639 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
640 for (i
= 0; i
< 3 + 100; i
++) {
641 val
= reg_read(ohci
, OHCI1394_PhyControl
);
643 return -ENODEV
; /* Card was ejected. */
645 if (val
& OHCI1394_PhyControl_ReadDone
)
646 return OHCI1394_PhyControl_ReadData(val
);
649 * Try a few times without waiting. Sleeping is necessary
650 * only when the link/PHY interface is busy.
655 ohci_err(ohci
, "failed to read phy reg %d\n", addr
);
661 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
665 reg_write(ohci
, OHCI1394_PhyControl
,
666 OHCI1394_PhyControl_Write(addr
, val
));
667 for (i
= 0; i
< 3 + 100; i
++) {
668 val
= reg_read(ohci
, OHCI1394_PhyControl
);
670 return -ENODEV
; /* Card was ejected. */
672 if (!(val
& OHCI1394_PhyControl_WritePending
))
678 ohci_err(ohci
, "failed to write phy reg %d, val %u\n", addr
, val
);
684 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
685 int clear_bits
, int set_bits
)
687 int ret
= read_phy_reg(ohci
, addr
);
692 * The interrupt status bits are cleared by writing a one bit.
693 * Avoid clearing them unless explicitly requested in set_bits.
696 clear_bits
|= PHY_INT_STATUS_BITS
;
698 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
701 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
705 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
709 return read_phy_reg(ohci
, addr
);
712 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
714 struct fw_ohci
*ohci
= fw_ohci(card
);
716 guard(mutex
)(&ohci
->phy_reg_mutex
);
718 return read_phy_reg(ohci
, addr
);
721 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
722 int clear_bits
, int set_bits
)
724 struct fw_ohci
*ohci
= fw_ohci(card
);
726 guard(mutex
)(&ohci
->phy_reg_mutex
);
728 return update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
731 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
733 return page_private(ctx
->pages
[i
]);
736 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
738 struct descriptor
*d
;
740 d
= &ctx
->descriptors
[index
];
741 d
->branch_address
&= cpu_to_le32(~0xf);
742 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
743 d
->transfer_status
= 0;
745 wmb(); /* finish init of new descriptors before branch_address update */
746 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
747 d
->branch_address
|= cpu_to_le32(1);
749 ctx
->last_buffer_index
= index
;
751 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
754 static void ar_context_release(struct ar_context
*ctx
)
756 struct device
*dev
= ctx
->ohci
->card
.device
;
764 for (i
= 0; i
< AR_BUFFERS
; i
++) {
766 dma_free_pages(dev
, PAGE_SIZE
, ctx
->pages
[i
],
767 ar_buffer_bus(ctx
, i
), DMA_FROM_DEVICE
);
771 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
773 struct fw_ohci
*ohci
= ctx
->ohci
;
775 if (reg_read(ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
776 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
779 ohci_err(ohci
, "AR error: %s; DMA stopped\n", error_msg
);
781 /* FIXME: restart? */
784 static inline unsigned int ar_next_buffer_index(unsigned int index
)
786 return (index
+ 1) % AR_BUFFERS
;
789 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
791 return ar_next_buffer_index(ctx
->last_buffer_index
);
795 * We search for the buffer that contains the last AR packet DMA data written
798 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
799 unsigned int *buffer_offset
)
801 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
802 __le16 res_count
, next_res_count
;
804 i
= ar_first_buffer_index(ctx
);
805 res_count
= READ_ONCE(ctx
->descriptors
[i
].res_count
);
807 /* A buffer that is not yet completely filled must be the last one. */
808 while (i
!= last
&& res_count
== 0) {
810 /* Peek at the next descriptor. */
811 next_i
= ar_next_buffer_index(i
);
812 rmb(); /* read descriptors in order */
813 next_res_count
= READ_ONCE(ctx
->descriptors
[next_i
].res_count
);
815 * If the next descriptor is still empty, we must stop at this
818 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
820 * The exception is when the DMA data for one packet is
821 * split over three buffers; in this case, the middle
822 * buffer's descriptor might be never updated by the
823 * controller and look still empty, and we have to peek
826 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
827 next_i
= ar_next_buffer_index(next_i
);
829 next_res_count
= READ_ONCE(ctx
->descriptors
[next_i
].res_count
);
830 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
831 goto next_buffer_is_active
;
837 next_buffer_is_active
:
839 res_count
= next_res_count
;
842 rmb(); /* read res_count before the DMA data */
844 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
845 if (*buffer_offset
> PAGE_SIZE
) {
847 ar_context_abort(ctx
, "corrupted descriptor");
853 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
854 unsigned int end_buffer_index
,
855 unsigned int end_buffer_offset
)
859 i
= ar_first_buffer_index(ctx
);
860 while (i
!= end_buffer_index
) {
861 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
862 ar_buffer_bus(ctx
, i
),
863 PAGE_SIZE
, DMA_FROM_DEVICE
);
864 i
= ar_next_buffer_index(i
);
866 if (end_buffer_offset
> 0)
867 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
868 ar_buffer_bus(ctx
, i
),
869 end_buffer_offset
, DMA_FROM_DEVICE
);
872 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
873 static u32
cond_le32_to_cpu(__le32 value
, bool has_be_header_quirk
)
875 return has_be_header_quirk
? (__force __u32
)value
: le32_to_cpu(value
);
878 static bool has_be_header_quirk(const struct fw_ohci
*ohci
)
880 return !!(ohci
->quirks
& QUIRK_BE_HEADERS
);
883 static u32
cond_le32_to_cpu(__le32 value
, bool has_be_header_quirk __maybe_unused
)
885 return le32_to_cpu(value
);
888 static bool has_be_header_quirk(const struct fw_ohci
*ohci
)
894 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
896 struct fw_ohci
*ohci
= ctx
->ohci
;
898 u32 status
, length
, tcode
;
901 p
.header
[0] = cond_le32_to_cpu(buffer
[0], has_be_header_quirk(ohci
));
902 p
.header
[1] = cond_le32_to_cpu(buffer
[1], has_be_header_quirk(ohci
));
903 p
.header
[2] = cond_le32_to_cpu(buffer
[2], has_be_header_quirk(ohci
));
905 tcode
= async_header_get_tcode(p
.header
);
907 case TCODE_WRITE_QUADLET_REQUEST
:
908 case TCODE_READ_QUADLET_RESPONSE
:
909 p
.header
[3] = (__force __u32
) buffer
[3];
910 p
.header_length
= 16;
911 p
.payload_length
= 0;
914 case TCODE_READ_BLOCK_REQUEST
:
915 p
.header
[3] = cond_le32_to_cpu(buffer
[3], has_be_header_quirk(ohci
));
916 p
.header_length
= 16;
917 p
.payload_length
= 0;
920 case TCODE_WRITE_BLOCK_REQUEST
:
921 case TCODE_READ_BLOCK_RESPONSE
:
922 case TCODE_LOCK_REQUEST
:
923 case TCODE_LOCK_RESPONSE
:
924 p
.header
[3] = cond_le32_to_cpu(buffer
[3], has_be_header_quirk(ohci
));
925 p
.header_length
= 16;
926 p
.payload_length
= async_header_get_data_length(p
.header
);
927 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
928 ar_context_abort(ctx
, "invalid packet length");
933 case TCODE_WRITE_RESPONSE
:
934 case TCODE_READ_QUADLET_REQUEST
:
935 case TCODE_LINK_INTERNAL
:
936 p
.header_length
= 12;
937 p
.payload_length
= 0;
941 ar_context_abort(ctx
, "invalid tcode");
945 p
.payload
= (void *) buffer
+ p
.header_length
;
947 /* FIXME: What to do about evt_* errors? */
948 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
949 status
= cond_le32_to_cpu(buffer
[length
], has_be_header_quirk(ohci
));
950 evt
= (status
>> 16) & 0x1f;
953 p
.speed
= (status
>> 21) & 0x7;
954 p
.timestamp
= status
& 0xffff;
955 p
.generation
= ohci
->request_generation
;
957 log_ar_at_event(ohci
, 'R', p
.speed
, p
.header
, evt
);
960 * Several controllers, notably from NEC and VIA, forget to
961 * write ack_complete status at PHY packet reception.
963 if (evt
== OHCI1394_evt_no_status
&& tcode
== TCODE_LINK_INTERNAL
)
964 p
.ack
= ACK_COMPLETE
;
967 * The OHCI bus reset handler synthesizes a PHY packet with
968 * the new generation number when a bus reset happens (see
969 * section 8.4.2.3). This helps us determine when a request
970 * was received and make sure we send the response in the same
971 * generation. We only need this for requests; for responses
972 * we use the unique tlabel for finding the matching
975 * Alas some chips sometimes emit bus reset packets with a
976 * wrong generation. We set the correct generation for these
977 * at a slightly incorrect time (in bus_reset_work).
979 if (evt
== OHCI1394_evt_bus_reset
) {
980 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
981 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
982 } else if (ctx
== &ohci
->ar_request_ctx
) {
983 fw_core_handle_request(&ohci
->card
, &p
);
985 fw_core_handle_response(&ohci
->card
, &p
);
988 return buffer
+ length
+ 1;
991 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
996 next
= handle_ar_packet(ctx
, p
);
1005 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
1009 i
= ar_first_buffer_index(ctx
);
1010 while (i
!= end_buffer
) {
1011 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
1012 ar_buffer_bus(ctx
, i
),
1013 PAGE_SIZE
, DMA_FROM_DEVICE
);
1014 ar_context_link_page(ctx
, i
);
1015 i
= ar_next_buffer_index(i
);
1019 static void ar_context_tasklet(unsigned long data
)
1021 struct ar_context
*ctx
= (struct ar_context
*)data
;
1022 unsigned int end_buffer_index
, end_buffer_offset
;
1029 end_buffer_index
= ar_search_last_active_buffer(ctx
,
1030 &end_buffer_offset
);
1031 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
1032 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
1034 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
1036 * The filled part of the overall buffer wraps around; handle
1037 * all packets up to the buffer end here. If the last packet
1038 * wraps around, its tail will be visible after the buffer end
1039 * because the buffer start pages are mapped there again.
1041 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
1042 p
= handle_ar_packets(ctx
, p
, buffer_end
);
1045 /* adjust p to point back into the actual buffer */
1046 p
-= AR_BUFFERS
* PAGE_SIZE
;
1049 p
= handle_ar_packets(ctx
, p
, end
);
1052 ar_context_abort(ctx
, "inconsistent descriptor");
1057 ar_recycle_buffers(ctx
, end_buffer_index
);
1062 ctx
->pointer
= NULL
;
1065 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
1066 unsigned int descriptors_offset
, u32 regs
)
1068 struct device
*dev
= ohci
->card
.device
;
1070 dma_addr_t dma_addr
;
1071 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
1072 struct descriptor
*d
;
1076 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
1078 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1079 ctx
->pages
[i
] = dma_alloc_pages(dev
, PAGE_SIZE
, &dma_addr
,
1080 DMA_FROM_DEVICE
, GFP_KERNEL
);
1083 set_page_private(ctx
->pages
[i
], dma_addr
);
1084 dma_sync_single_for_device(dev
, dma_addr
, PAGE_SIZE
,
1088 for (i
= 0; i
< AR_BUFFERS
; i
++)
1089 pages
[i
] = ctx
->pages
[i
];
1090 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
1091 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
1092 ctx
->buffer
= vmap(pages
, ARRAY_SIZE(pages
), VM_MAP
, PAGE_KERNEL
);
1096 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
1097 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
1099 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1100 d
= &ctx
->descriptors
[i
];
1101 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
1102 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
1104 DESCRIPTOR_BRANCH_ALWAYS
);
1105 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
1106 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
1107 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1113 ar_context_release(ctx
);
1118 static void ar_context_run(struct ar_context
*ctx
)
1122 for (i
= 0; i
< AR_BUFFERS
; i
++)
1123 ar_context_link_page(ctx
, i
);
1125 ctx
->pointer
= ctx
->buffer
;
1127 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1128 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1131 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1135 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1137 /* figure out which descriptor the branch address goes in */
1138 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1144 static void context_retire_descriptors(struct context
*ctx
)
1146 struct descriptor
*d
, *last
;
1149 struct descriptor_buffer
*desc
;
1151 desc
= list_entry(ctx
->buffer_list
.next
,
1152 struct descriptor_buffer
, list
);
1154 while (last
->branch_address
!= 0) {
1155 struct descriptor_buffer
*old_desc
= desc
;
1156 address
= le32_to_cpu(last
->branch_address
);
1159 ctx
->current_bus
= address
;
1161 /* If the branch address points to a buffer outside of the
1162 * current buffer, advance to the next buffer. */
1163 if (address
< desc
->buffer_bus
||
1164 address
>= desc
->buffer_bus
+ desc
->used
)
1165 desc
= list_entry(desc
->list
.next
,
1166 struct descriptor_buffer
, list
);
1167 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1168 last
= find_branch_descriptor(d
, z
);
1170 if (!ctx
->callback(ctx
, d
, last
))
1173 if (old_desc
!= desc
) {
1174 // If we've advanced to the next buffer, move the previous buffer to the
1177 guard(spinlock_irqsave
)(&ctx
->ohci
->lock
);
1178 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1184 static void context_tasklet(unsigned long data
)
1186 struct context
*ctx
= (struct context
*) data
;
1188 context_retire_descriptors(ctx
);
1191 static void ohci_isoc_context_work(struct work_struct
*work
)
1193 struct fw_iso_context
*base
= container_of(work
, struct fw_iso_context
, work
);
1194 struct iso_context
*isoc_ctx
= container_of(base
, struct iso_context
, base
);
1196 context_retire_descriptors(&isoc_ctx
->context
);
1200 * Allocate a new buffer and add it to the list of free buffers for this
1201 * context. Must be called with ohci->lock held.
1203 static int context_add_buffer(struct context
*ctx
)
1205 struct descriptor_buffer
*desc
;
1206 dma_addr_t bus_addr
;
1210 * 16MB of descriptors should be far more than enough for any DMA
1211 * program. This will catch run-away userspace or DoS attacks.
1213 if (ctx
->total_allocation
>= 16*1024*1024)
1216 desc
= dmam_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
, &bus_addr
, GFP_ATOMIC
);
1220 offset
= (void *)&desc
->buffer
- (void *)desc
;
1222 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1223 * for descriptors, even 0x10-byte ones. This can cause page faults when
1224 * an IOMMU is in use and the oversized read crosses a page boundary.
1225 * Work around this by always leaving at least 0x10 bytes of padding.
1227 desc
->buffer_size
= PAGE_SIZE
- offset
- 0x10;
1228 desc
->buffer_bus
= bus_addr
+ offset
;
1231 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1232 ctx
->total_allocation
+= PAGE_SIZE
;
1237 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1238 u32 regs
, descriptor_callback_t callback
)
1242 ctx
->total_allocation
= 0;
1244 INIT_LIST_HEAD(&ctx
->buffer_list
);
1245 if (context_add_buffer(ctx
) < 0)
1248 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1249 struct descriptor_buffer
, list
);
1251 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1252 ctx
->callback
= callback
;
1255 * We put a dummy descriptor in the buffer that has a NULL
1256 * branch address and looks like it's been sent. That way we
1257 * have a descriptor to append DMA programs to.
1259 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1260 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1261 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1262 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1263 ctx
->last
= ctx
->buffer_tail
->buffer
;
1264 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1270 static void context_release(struct context
*ctx
)
1272 struct fw_card
*card
= &ctx
->ohci
->card
;
1273 struct descriptor_buffer
*desc
, *tmp
;
1275 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
) {
1276 dmam_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1277 desc
->buffer_bus
- ((void *)&desc
->buffer
- (void *)desc
));
1281 /* Must be called with ohci->lock held */
1282 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1283 int z
, dma_addr_t
*d_bus
)
1285 struct descriptor
*d
= NULL
;
1286 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1288 if (z
* sizeof(*d
) > desc
->buffer_size
)
1291 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1292 /* No room for the descriptor in this buffer, so advance to the
1295 if (desc
->list
.next
== &ctx
->buffer_list
) {
1296 /* If there is no free buffer next in the list,
1298 if (context_add_buffer(ctx
) < 0)
1301 desc
= list_entry(desc
->list
.next
,
1302 struct descriptor_buffer
, list
);
1303 ctx
->buffer_tail
= desc
;
1306 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1307 memset(d
, 0, z
* sizeof(*d
));
1308 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1313 static void context_run(struct context
*ctx
, u32 extra
)
1315 struct fw_ohci
*ohci
= ctx
->ohci
;
1317 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1318 le32_to_cpu(ctx
->last
->branch_address
));
1319 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1320 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1321 ctx
->running
= true;
1325 static void context_append(struct context
*ctx
,
1326 struct descriptor
*d
, int z
, int extra
)
1329 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1330 struct descriptor
*d_branch
;
1332 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1334 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1336 wmb(); /* finish init of new descriptors before branch_address update */
1338 d_branch
= find_branch_descriptor(ctx
->prev
, ctx
->prev_z
);
1339 d_branch
->branch_address
= cpu_to_le32(d_bus
| z
);
1342 * VT6306 incorrectly checks only the single descriptor at the
1343 * CommandPtr when the wake bit is written, so if it's a
1344 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1345 * the branch address in the first descriptor.
1347 * Not doing this for transmit contexts since not sure how it interacts
1348 * with skip addresses.
1350 if (unlikely(ctx
->ohci
->quirks
& QUIRK_IR_WAKE
) &&
1351 d_branch
!= ctx
->prev
&&
1352 (ctx
->prev
->control
& cpu_to_le16(DESCRIPTOR_CMD
)) ==
1353 cpu_to_le16(DESCRIPTOR_INPUT_MORE
)) {
1354 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1361 static void context_stop(struct context
*ctx
)
1363 struct fw_ohci
*ohci
= ctx
->ohci
;
1367 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1368 ctx
->running
= false;
1370 for (i
= 0; i
< 1000; i
++) {
1371 reg
= reg_read(ohci
, CONTROL_SET(ctx
->regs
));
1372 if ((reg
& CONTEXT_ACTIVE
) == 0)
1378 ohci_err(ohci
, "DMA context still active (0x%08x)\n", reg
);
1381 struct driver_data
{
1383 struct fw_packet
*packet
;
1387 * This function appends a packet to the DMA queue for transmission.
1388 * Must always be called with the ochi->lock held to ensure proper
1389 * generation handling and locking around packet queue manipulation.
1391 static int at_context_queue_packet(struct context
*ctx
,
1392 struct fw_packet
*packet
)
1394 struct fw_ohci
*ohci
= ctx
->ohci
;
1395 dma_addr_t d_bus
, payload_bus
;
1396 struct driver_data
*driver_data
;
1397 struct descriptor
*d
, *last
;
1401 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1403 packet
->ack
= RCODE_SEND_ERROR
;
1407 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1408 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1410 tcode
= async_header_get_tcode(packet
->header
);
1411 header
= (__le32
*) &d
[1];
1413 case TCODE_WRITE_QUADLET_REQUEST
:
1414 case TCODE_WRITE_BLOCK_REQUEST
:
1415 case TCODE_WRITE_RESPONSE
:
1416 case TCODE_READ_QUADLET_REQUEST
:
1417 case TCODE_READ_BLOCK_REQUEST
:
1418 case TCODE_READ_QUADLET_RESPONSE
:
1419 case TCODE_READ_BLOCK_RESPONSE
:
1420 case TCODE_LOCK_REQUEST
:
1421 case TCODE_LOCK_RESPONSE
:
1422 ohci1394_at_data_set_src_bus_id(header
, false);
1423 ohci1394_at_data_set_speed(header
, packet
->speed
);
1424 ohci1394_at_data_set_tlabel(header
, async_header_get_tlabel(packet
->header
));
1425 ohci1394_at_data_set_retry(header
, async_header_get_retry(packet
->header
));
1426 ohci1394_at_data_set_tcode(header
, tcode
);
1428 ohci1394_at_data_set_destination_id(header
,
1429 async_header_get_destination(packet
->header
));
1431 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1432 ohci1394_at_data_set_rcode(header
, async_header_get_rcode(packet
->header
));
1434 ohci1394_at_data_set_destination_offset(header
,
1435 async_header_get_offset(packet
->header
));
1438 if (tcode_is_block_packet(tcode
))
1439 header
[3] = cpu_to_le32(packet
->header
[3]);
1441 header
[3] = (__force __le32
) packet
->header
[3];
1443 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1445 case TCODE_LINK_INTERNAL
:
1446 ohci1394_at_data_set_speed(header
, packet
->speed
);
1447 ohci1394_at_data_set_tcode(header
, TCODE_LINK_INTERNAL
);
1449 header
[1] = cpu_to_le32(packet
->header
[1]);
1450 header
[2] = cpu_to_le32(packet
->header
[2]);
1451 d
[0].req_count
= cpu_to_le16(12);
1453 if (is_ping_packet(&packet
->header
[1]))
1454 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1457 case TCODE_STREAM_DATA
:
1458 ohci1394_it_data_set_speed(header
, packet
->speed
);
1459 ohci1394_it_data_set_tag(header
, isoc_header_get_tag(packet
->header
[0]));
1460 ohci1394_it_data_set_channel(header
, isoc_header_get_channel(packet
->header
[0]));
1461 ohci1394_it_data_set_tcode(header
, TCODE_STREAM_DATA
);
1462 ohci1394_it_data_set_sync(header
, isoc_header_get_sy(packet
->header
[0]));
1464 ohci1394_it_data_set_data_length(header
, isoc_header_get_data_length(packet
->header
[0]));
1466 d
[0].req_count
= cpu_to_le16(8);
1471 packet
->ack
= RCODE_SEND_ERROR
;
1475 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1476 driver_data
= (struct driver_data
*) &d
[3];
1477 driver_data
->packet
= packet
;
1478 packet
->driver_data
= driver_data
;
1480 if (packet
->payload_length
> 0) {
1481 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1482 payload_bus
= dma_map_single(ohci
->card
.device
,
1484 packet
->payload_length
,
1486 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1487 packet
->ack
= RCODE_SEND_ERROR
;
1490 packet
->payload_bus
= payload_bus
;
1491 packet
->payload_mapped
= true;
1493 memcpy(driver_data
->inline_data
, packet
->payload
,
1494 packet
->payload_length
);
1495 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1498 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1499 d
[2].data_address
= cpu_to_le32(payload_bus
);
1507 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1508 DESCRIPTOR_IRQ_ALWAYS
|
1509 DESCRIPTOR_BRANCH_ALWAYS
);
1511 /* FIXME: Document how the locking works. */
1512 if (ohci
->generation
!= packet
->generation
) {
1513 if (packet
->payload_mapped
)
1514 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1515 packet
->payload_length
, DMA_TO_DEVICE
);
1516 packet
->ack
= RCODE_GENERATION
;
1520 context_append(ctx
, d
, z
, 4 - z
);
1523 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1525 context_run(ctx
, 0);
1530 static void at_context_flush(struct context
*ctx
)
1532 tasklet_disable(&ctx
->tasklet
);
1534 ctx
->flushing
= true;
1535 context_tasklet((unsigned long)ctx
);
1536 ctx
->flushing
= false;
1538 tasklet_enable(&ctx
->tasklet
);
1541 static int handle_at_packet(struct context
*context
,
1542 struct descriptor
*d
,
1543 struct descriptor
*last
)
1545 struct driver_data
*driver_data
;
1546 struct fw_packet
*packet
;
1547 struct fw_ohci
*ohci
= context
->ohci
;
1550 if (last
->transfer_status
== 0 && !context
->flushing
)
1551 /* This descriptor isn't done yet, stop iteration. */
1554 driver_data
= (struct driver_data
*) &d
[3];
1555 packet
= driver_data
->packet
;
1557 /* This packet was cancelled, just continue. */
1560 if (packet
->payload_mapped
)
1561 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1562 packet
->payload_length
, DMA_TO_DEVICE
);
1564 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1565 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1567 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, evt
);
1570 case OHCI1394_evt_timeout
:
1571 /* Async response transmit timed out. */
1572 packet
->ack
= RCODE_CANCELLED
;
1575 case OHCI1394_evt_flushed
:
1577 * The packet was flushed should give same error as
1578 * when we try to use a stale generation count.
1580 packet
->ack
= RCODE_GENERATION
;
1583 case OHCI1394_evt_missing_ack
:
1584 if (context
->flushing
)
1585 packet
->ack
= RCODE_GENERATION
;
1588 * Using a valid (current) generation count, but the
1589 * node is not on the bus or not sending acks.
1591 packet
->ack
= RCODE_NO_ACK
;
1595 case ACK_COMPLETE
+ 0x10:
1596 case ACK_PENDING
+ 0x10:
1597 case ACK_BUSY_X
+ 0x10:
1598 case ACK_BUSY_A
+ 0x10:
1599 case ACK_BUSY_B
+ 0x10:
1600 case ACK_DATA_ERROR
+ 0x10:
1601 case ACK_TYPE_ERROR
+ 0x10:
1602 packet
->ack
= evt
- 0x10;
1605 case OHCI1394_evt_no_status
:
1606 if (context
->flushing
) {
1607 packet
->ack
= RCODE_GENERATION
;
1613 packet
->ack
= RCODE_SEND_ERROR
;
1617 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1622 static u32
get_cycle_time(struct fw_ohci
*ohci
);
1624 static void handle_local_rom(struct fw_ohci
*ohci
,
1625 struct fw_packet
*packet
, u32 csr
)
1627 struct fw_packet response
;
1628 int tcode
, length
, i
;
1630 tcode
= async_header_get_tcode(packet
->header
);
1631 if (tcode_is_block_packet(tcode
))
1632 length
= async_header_get_data_length(packet
->header
);
1636 i
= csr
- CSR_CONFIG_ROM
;
1637 if (i
+ length
> CONFIG_ROM_SIZE
) {
1638 fw_fill_response(&response
, packet
->header
,
1639 RCODE_ADDRESS_ERROR
, NULL
, 0);
1640 } else if (!tcode_is_read_request(tcode
)) {
1641 fw_fill_response(&response
, packet
->header
,
1642 RCODE_TYPE_ERROR
, NULL
, 0);
1644 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1645 (void *) ohci
->config_rom
+ i
, length
);
1648 // Timestamping on behalf of the hardware.
1649 response
.timestamp
= cycle_time_to_ohci_tstamp(get_cycle_time(ohci
));
1650 fw_core_handle_response(&ohci
->card
, &response
);
1653 static void handle_local_lock(struct fw_ohci
*ohci
,
1654 struct fw_packet
*packet
, u32 csr
)
1656 struct fw_packet response
;
1657 int tcode
, length
, ext_tcode
, sel
, try;
1658 __be32
*payload
, lock_old
;
1659 u32 lock_arg
, lock_data
;
1661 tcode
= async_header_get_tcode(packet
->header
);
1662 length
= async_header_get_data_length(packet
->header
);
1663 payload
= packet
->payload
;
1664 ext_tcode
= async_header_get_extended_tcode(packet
->header
);
1666 if (tcode
== TCODE_LOCK_REQUEST
&&
1667 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1668 lock_arg
= be32_to_cpu(payload
[0]);
1669 lock_data
= be32_to_cpu(payload
[1]);
1670 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1674 fw_fill_response(&response
, packet
->header
,
1675 RCODE_TYPE_ERROR
, NULL
, 0);
1679 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1680 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1681 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1682 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1684 for (try = 0; try < 20; try++)
1685 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1686 lock_old
= cpu_to_be32(reg_read(ohci
,
1688 fw_fill_response(&response
, packet
->header
,
1690 &lock_old
, sizeof(lock_old
));
1694 ohci_err(ohci
, "swap not done (CSR lock timeout)\n");
1695 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1698 // Timestamping on behalf of the hardware.
1699 response
.timestamp
= cycle_time_to_ohci_tstamp(get_cycle_time(ohci
));
1700 fw_core_handle_response(&ohci
->card
, &response
);
1703 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1707 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1708 packet
->ack
= ACK_PENDING
;
1709 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1712 offset
= async_header_get_offset(packet
->header
);
1713 csr
= offset
- CSR_REGISTER_BASE
;
1715 /* Handle config rom reads. */
1716 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1717 handle_local_rom(ctx
->ohci
, packet
, csr
);
1719 case CSR_BUS_MANAGER_ID
:
1720 case CSR_BANDWIDTH_AVAILABLE
:
1721 case CSR_CHANNELS_AVAILABLE_HI
:
1722 case CSR_CHANNELS_AVAILABLE_LO
:
1723 handle_local_lock(ctx
->ohci
, packet
, csr
);
1726 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1727 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1729 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1733 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1734 packet
->ack
= ACK_COMPLETE
;
1735 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1739 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1741 unsigned long flags
;
1744 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1746 if (async_header_get_destination(packet
->header
) == ctx
->ohci
->node_id
&&
1747 ctx
->ohci
->generation
== packet
->generation
) {
1748 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1750 // Timestamping on behalf of the hardware.
1751 packet
->timestamp
= cycle_time_to_ohci_tstamp(get_cycle_time(ctx
->ohci
));
1753 handle_local_request(ctx
, packet
);
1757 ret
= at_context_queue_packet(ctx
, packet
);
1758 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1761 // Timestamping on behalf of the hardware.
1762 packet
->timestamp
= cycle_time_to_ohci_tstamp(get_cycle_time(ctx
->ohci
));
1764 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1768 static void detect_dead_context(struct fw_ohci
*ohci
,
1769 const char *name
, unsigned int regs
)
1773 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1774 if (ctl
& CONTEXT_DEAD
)
1775 ohci_err(ohci
, "DMA context %s has stopped, error code: %s\n",
1776 name
, evts
[ctl
& 0x1f]);
1779 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1784 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1785 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1786 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1787 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1788 for (i
= 0; i
< 32; ++i
) {
1789 if (!(ohci
->it_context_support
& (1 << i
)))
1791 sprintf(name
, "IT%u", i
);
1792 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1794 for (i
= 0; i
< 32; ++i
) {
1795 if (!(ohci
->ir_context_support
& (1 << i
)))
1797 sprintf(name
, "IR%u", i
);
1798 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1800 /* TODO: maybe try to flush and restart the dead contexts */
1803 static u32
cycle_timer_ticks(u32 cycle_timer
)
1807 ticks
= cycle_timer
& 0xfff;
1808 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1809 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1815 * Some controllers exhibit one or more of the following bugs when updating the
1816 * iso cycle timer register:
1817 * - When the lowest six bits are wrapping around to zero, a read that happens
1818 * at the same time will return garbage in the lowest ten bits.
1819 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1820 * not incremented for about 60 ns.
1821 * - Occasionally, the entire register reads zero.
1823 * To catch these, we read the register three times and ensure that the
1824 * difference between each two consecutive reads is approximately the same, i.e.
1825 * less than twice the other. Furthermore, any negative difference indicates an
1826 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1827 * execute, so we have enough precision to compute the ratio of the differences.)
1829 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1836 if (has_reboot_by_cycle_timer_read_quirk(ohci
))
1839 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1841 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1844 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1848 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1849 t0
= cycle_timer_ticks(c0
);
1850 t1
= cycle_timer_ticks(c1
);
1851 t2
= cycle_timer_ticks(c2
);
1854 } while ((diff01
<= 0 || diff12
<= 0 ||
1855 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1863 * This function has to be called at least every 64 seconds. The bus_time
1864 * field stores not only the upper 25 bits of the BUS_TIME register but also
1865 * the most significant bit of the cycle timer in bit 6 so that we can detect
1866 * changes in this bit.
1868 static u32
update_bus_time(struct fw_ohci
*ohci
)
1870 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1872 if (unlikely(!ohci
->bus_time_running
)) {
1873 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_cycle64Seconds
);
1874 ohci
->bus_time
= (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1875 (cycle_time_seconds
& 0x40);
1876 ohci
->bus_time_running
= true;
1879 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1880 ohci
->bus_time
+= 0x40;
1882 return ohci
->bus_time
| cycle_time_seconds
;
1885 static int get_status_for_port(struct fw_ohci
*ohci
, int port_index
,
1886 enum phy_packet_self_id_port_status
*status
)
1890 scoped_guard(mutex
, &ohci
->phy_reg_mutex
) {
1891 reg
= write_phy_reg(ohci
, 7, port_index
);
1895 reg
= read_phy_reg(ohci
, 8);
1900 switch (reg
& 0x0f) {
1902 // is child node (connected to parent node)
1903 *status
= PHY_PACKET_SELF_ID_PORT_STATUS_PARENT
;
1906 // is parent node (connected to child node)
1907 *status
= PHY_PACKET_SELF_ID_PORT_STATUS_CHILD
;
1911 *status
= PHY_PACKET_SELF_ID_PORT_STATUS_NCONN
;
1918 static int get_self_id_pos(struct fw_ohci
*ohci
, u32 self_id
,
1921 unsigned int left_phy_id
= phy_packet_self_id_get_phy_id(self_id
);
1924 for (i
= 0; i
< self_id_count
; i
++) {
1925 u32 entry
= ohci
->self_id_buffer
[i
];
1926 unsigned int right_phy_id
= phy_packet_self_id_get_phy_id(entry
);
1928 if (left_phy_id
== right_phy_id
)
1930 if (left_phy_id
< right_phy_id
)
1936 static int detect_initiated_reset(struct fw_ohci
*ohci
, bool *is_initiated_reset
)
1940 guard(mutex
)(&ohci
->phy_reg_mutex
);
1943 reg
= write_phy_reg(ohci
, 7, 0xe0);
1947 reg
= read_phy_reg(ohci
, 8);
1953 reg
= write_phy_reg(ohci
, 8, reg
);
1958 reg
= read_phy_reg(ohci
, 12);
1962 // bit 3 indicates "initiated reset"
1963 *is_initiated_reset
= !!((reg
& 0x08) == 0x08);
1969 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1970 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1971 * Construct the selfID from phy register contents.
1973 static int find_and_insert_self_id(struct fw_ohci
*ohci
, int self_id_count
)
1975 int reg
, i
, pos
, err
;
1976 bool is_initiated_reset
;
1979 // link active 1, speed 3, bridge 0, contender 1, more packets 0.
1980 phy_packet_set_packet_identifier(&self_id
, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID
);
1981 phy_packet_self_id_zero_set_link_active(&self_id
, true);
1982 phy_packet_self_id_zero_set_scode(&self_id
, SCODE_800
);
1983 phy_packet_self_id_zero_set_contender(&self_id
, true);
1985 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1986 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1988 "node ID not valid, new bus reset in progress\n");
1991 phy_packet_self_id_set_phy_id(&self_id
, reg
& 0x3f);
1993 reg
= ohci_read_phy_reg(&ohci
->card
, 4);
1996 phy_packet_self_id_zero_set_power_class(&self_id
, reg
& 0x07);
1998 reg
= ohci_read_phy_reg(&ohci
->card
, 1);
2001 phy_packet_self_id_zero_set_gap_count(&self_id
, reg
& 0x3f);
2003 for (i
= 0; i
< 3; i
++) {
2004 enum phy_packet_self_id_port_status status
;
2006 err
= get_status_for_port(ohci
, i
, &status
);
2010 self_id_sequence_set_port_status(&self_id
, 1, i
, status
);
2013 err
= detect_initiated_reset(ohci
, &is_initiated_reset
);
2016 phy_packet_self_id_zero_set_initiated_reset(&self_id
, is_initiated_reset
);
2018 pos
= get_self_id_pos(ohci
, self_id
, self_id_count
);
2020 memmove(&(ohci
->self_id_buffer
[pos
+1]),
2021 &(ohci
->self_id_buffer
[pos
]),
2022 (self_id_count
- pos
) * sizeof(*ohci
->self_id_buffer
));
2023 ohci
->self_id_buffer
[pos
] = self_id
;
2026 return self_id_count
;
2029 static void bus_reset_work(struct work_struct
*work
)
2031 struct fw_ohci
*ohci
=
2032 container_of(work
, struct fw_ohci
, bus_reset_work
);
2033 int self_id_count
, generation
, new_generation
, i
, j
;
2035 void *free_rom
= NULL
;
2036 dma_addr_t free_rom_bus
= 0;
2039 reg
= reg_read(ohci
, OHCI1394_NodeID
);
2040 if (!(reg
& OHCI1394_NodeID_idValid
)) {
2042 "node ID not valid, new bus reset in progress\n");
2045 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
2046 ohci_notice(ohci
, "malconfigured bus\n");
2049 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
2050 OHCI1394_NodeID_nodeNumber
);
2052 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
2053 if (!(ohci
->is_root
&& is_new_root
))
2054 reg_write(ohci
, OHCI1394_LinkControlSet
,
2055 OHCI1394_LinkControl_cycleMaster
);
2056 ohci
->is_root
= is_new_root
;
2058 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
2059 if (ohci1394_self_id_count_is_error(reg
)) {
2060 ohci_notice(ohci
, "self ID receive error\n");
2064 * The count in the SelfIDCount register is the number of
2065 * bytes in the self ID receive buffer. Since we also receive
2066 * the inverted quadlets and a header quadlet, we shift one
2067 * bit extra to get the actual number of self IDs.
2069 self_id_count
= ohci1394_self_id_count_get_size(reg
) >> 1;
2071 if (self_id_count
> 252) {
2072 ohci_notice(ohci
, "bad selfIDSize (%08x)\n", reg
);
2076 quadlet
= cond_le32_to_cpu(ohci
->self_id
[0], has_be_header_quirk(ohci
));
2077 generation
= ohci1394_self_id_receive_q0_get_generation(quadlet
);
2080 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
2081 u32 id
= cond_le32_to_cpu(ohci
->self_id
[i
], has_be_header_quirk(ohci
));
2082 u32 id2
= cond_le32_to_cpu(ohci
->self_id
[i
+ 1], has_be_header_quirk(ohci
));
2086 * If the invalid data looks like a cycle start packet,
2087 * it's likely to be the result of the cycle master
2088 * having a wrong gap count. In this case, the self IDs
2089 * so far are valid and should be processed so that the
2090 * bus manager can then correct the gap count.
2092 if (id
== 0xffff008f) {
2093 ohci_notice(ohci
, "ignoring spurious self IDs\n");
2098 ohci_notice(ohci
, "bad self ID %d/%d (%08x != ~%08x)\n",
2099 j
, self_id_count
, id
, id2
);
2102 ohci
->self_id_buffer
[j
] = id
;
2105 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2106 self_id_count
= find_and_insert_self_id(ohci
, self_id_count
);
2107 if (self_id_count
< 0) {
2109 "could not construct local self ID\n");
2114 if (self_id_count
== 0) {
2115 ohci_notice(ohci
, "no self IDs\n");
2121 * Check the consistency of the self IDs we just read. The
2122 * problem we face is that a new bus reset can start while we
2123 * read out the self IDs from the DMA buffer. If this happens,
2124 * the DMA buffer will be overwritten with new self IDs and we
2125 * will read out inconsistent data. The OHCI specification
2126 * (section 11.2) recommends a technique similar to
2127 * linux/seqlock.h, where we remember the generation of the
2128 * self IDs in the buffer before reading them out and compare
2129 * it to the current generation after reading them out. If
2130 * the two generations match we know we have a consistent set
2134 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
2135 new_generation
= ohci1394_self_id_count_get_generation(reg
);
2136 if (new_generation
!= generation
) {
2137 ohci_notice(ohci
, "new bus reset, discarding self ids\n");
2141 // FIXME: Document how the locking works.
2142 scoped_guard(spinlock_irq
, &ohci
->lock
) {
2143 ohci
->generation
= -1; // prevent AT packet queueing
2144 context_stop(&ohci
->at_request_ctx
);
2145 context_stop(&ohci
->at_response_ctx
);
2149 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2150 * packets in the AT queues and software needs to drain them.
2151 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2153 at_context_flush(&ohci
->at_request_ctx
);
2154 at_context_flush(&ohci
->at_response_ctx
);
2156 scoped_guard(spinlock_irq
, &ohci
->lock
) {
2157 ohci
->generation
= generation
;
2158 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
2159 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_busReset
);
2161 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
2162 ohci
->request_generation
= generation
;
2164 // This next bit is unrelated to the AT context stuff but we have to do it under the
2165 // spinlock also. If a new config rom was set up before this reset, the old one is
2166 // now no longer in use and we can free it. Update the config rom pointers to point
2167 // to the current config rom and clear the next_config_rom pointer so a new update
2169 if (ohci
->next_config_rom
!= NULL
) {
2170 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
2171 free_rom
= ohci
->config_rom
;
2172 free_rom_bus
= ohci
->config_rom_bus
;
2174 ohci
->config_rom
= ohci
->next_config_rom
;
2175 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
2176 ohci
->next_config_rom
= NULL
;
2178 // Restore config_rom image and manually update config_rom registers.
2179 // Writing the header quadlet will indicate that the config rom is ready,
2180 // so we do that last.
2181 reg_write(ohci
, OHCI1394_BusOptions
, be32_to_cpu(ohci
->config_rom
[2]));
2182 ohci
->config_rom
[0] = ohci
->next_header
;
2183 reg_write(ohci
, OHCI1394_ConfigROMhdr
, be32_to_cpu(ohci
->next_header
));
2186 if (param_remote_dma
) {
2187 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
2188 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
2193 dmam_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
, free_rom
, free_rom_bus
);
2195 log_selfids(ohci
, generation
, self_id_count
);
2197 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
2198 self_id_count
, ohci
->self_id_buffer
,
2199 ohci
->csr_state_setclear_abdicate
);
2200 ohci
->csr_state_setclear_abdicate
= false;
2203 static irqreturn_t
irq_handler(int irq
, void *data
)
2205 struct fw_ohci
*ohci
= data
;
2206 u32 event
, iso_event
;
2209 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
2211 if (!event
|| !~event
)
2214 if (unlikely(param_debug
> 0)) {
2215 dev_notice_ratelimited(ohci
->card
.device
,
2216 "The debug parameter is superseded by tracepoints events, and deprecated.");
2220 * busReset and postedWriteErr events must not be cleared yet
2221 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2223 reg_write(ohci
, OHCI1394_IntEventClear
,
2224 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
2225 trace_irqs(ohci
->card
.index
, event
);
2226 log_irqs(ohci
, event
);
2227 // The flag is masked again at bus_reset_work() scheduled by selfID event.
2228 if (event
& OHCI1394_busReset
)
2229 reg_write(ohci
, OHCI1394_IntMaskClear
, OHCI1394_busReset
);
2231 if (event
& OHCI1394_selfIDComplete
) {
2232 if (trace_self_id_complete_enabled()) {
2233 u32 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
2235 trace_self_id_complete(ohci
->card
.index
, reg
, ohci
->self_id
,
2236 has_be_header_quirk(ohci
));
2238 queue_work(selfid_workqueue
, &ohci
->bus_reset_work
);
2241 if (event
& OHCI1394_RQPkt
)
2242 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
2244 if (event
& OHCI1394_RSPkt
)
2245 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
2247 if (event
& OHCI1394_reqTxComplete
)
2248 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
2250 if (event
& OHCI1394_respTxComplete
)
2251 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
2253 if (event
& OHCI1394_isochRx
) {
2254 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
2255 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
2258 i
= ffs(iso_event
) - 1;
2259 fw_iso_context_schedule_flush_completions(&ohci
->ir_context_list
[i
].base
);
2260 iso_event
&= ~(1 << i
);
2264 if (event
& OHCI1394_isochTx
) {
2265 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
2266 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
2269 i
= ffs(iso_event
) - 1;
2270 fw_iso_context_schedule_flush_completions(&ohci
->it_context_list
[i
].base
);
2271 iso_event
&= ~(1 << i
);
2275 if (unlikely(event
& OHCI1394_regAccessFail
))
2276 ohci_err(ohci
, "register access failure\n");
2278 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
2279 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
2280 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
2281 reg_write(ohci
, OHCI1394_IntEventClear
,
2282 OHCI1394_postedWriteErr
);
2283 dev_err_ratelimited(ohci
->card
.device
, "PCI posted write error\n");
2286 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
2287 dev_notice_ratelimited(ohci
->card
.device
, "isochronous cycle too long\n");
2288 reg_write(ohci
, OHCI1394_LinkControlSet
,
2289 OHCI1394_LinkControl_cycleMaster
);
2292 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
2294 * We need to clear this event bit in order to make
2295 * cycleMatch isochronous I/O work. In theory we should
2296 * stop active cycleMatch iso contexts now and restart
2297 * them at least two cycles later. (FIXME?)
2299 dev_notice_ratelimited(ohci
->card
.device
, "isochronous cycle inconsistent\n");
2302 if (unlikely(event
& OHCI1394_unrecoverableError
))
2303 handle_dead_contexts(ohci
);
2305 if (event
& OHCI1394_cycle64Seconds
) {
2306 guard(spinlock
)(&ohci
->lock
);
2307 update_bus_time(ohci
);
2314 static int software_reset(struct fw_ohci
*ohci
)
2319 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
2320 for (i
= 0; i
< 500; i
++) {
2321 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
2323 return -ENODEV
; /* Card was ejected. */
2325 if (!(val
& OHCI1394_HCControl_softReset
))
2334 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
2336 size_t size
= length
* 4;
2338 memcpy(dest
, src
, size
);
2339 if (size
< CONFIG_ROM_SIZE
)
2340 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2343 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2346 int ret
, clear
, set
, offset
;
2348 /* Check if the driver should configure link and PHY. */
2349 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2350 OHCI1394_HCControl_programPhyEnable
))
2353 /* Paranoia: check whether the PHY supports 1394a, too. */
2354 enable_1394a
= false;
2355 ret
= read_phy_reg(ohci
, 2);
2358 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2359 ret
= read_paged_phy_reg(ohci
, 1, 8);
2363 enable_1394a
= true;
2366 if (ohci
->quirks
& QUIRK_NO_1394A
)
2367 enable_1394a
= false;
2369 /* Configure PHY and link consistently. */
2372 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2374 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2377 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2382 offset
= OHCI1394_HCControlSet
;
2384 offset
= OHCI1394_HCControlClear
;
2385 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2387 /* Clean up: configuration has been taken care of. */
2388 reg_write(ohci
, OHCI1394_HCControlClear
,
2389 OHCI1394_HCControl_programPhyEnable
);
2394 static int probe_tsb41ba3d(struct fw_ohci
*ohci
)
2396 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2397 static const u8 id
[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2400 reg
= read_phy_reg(ohci
, 2);
2403 if ((reg
& PHY_EXTENDED_REGISTERS
) != PHY_EXTENDED_REGISTERS
)
2406 for (i
= ARRAY_SIZE(id
) - 1; i
>= 0; i
--) {
2407 reg
= read_paged_phy_reg(ohci
, 1, i
+ 10);
2416 static int ohci_enable(struct fw_card
*card
,
2417 const __be32
*config_rom
, size_t length
)
2419 struct fw_ohci
*ohci
= fw_ohci(card
);
2420 u32 lps
, version
, irqs
;
2423 ret
= software_reset(ohci
);
2425 ohci_err(ohci
, "failed to reset ohci card\n");
2430 * Now enable LPS, which we need in order to start accessing
2431 * most of the registers. In fact, on some cards (ALI M5251),
2432 * accessing registers in the SClk domain without LPS enabled
2433 * will lock up the machine. Wait 50msec to make sure we have
2434 * full link enabled. However, with some cards (well, at least
2435 * a JMicron PCIe card), we have to try again sometimes.
2437 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2438 * cannot actually use the phy at that time. These need tens of
2439 * millisecods pause between LPS write and first phy access too.
2442 reg_write(ohci
, OHCI1394_HCControlSet
,
2443 OHCI1394_HCControl_LPS
|
2444 OHCI1394_HCControl_postedWriteEnable
);
2447 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2449 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2450 OHCI1394_HCControl_LPS
;
2454 ohci_err(ohci
, "failed to set Link Power Status\n");
2458 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2459 ret
= probe_tsb41ba3d(ohci
);
2463 ohci_notice(ohci
, "local TSB41BA3D phy\n");
2465 ohci
->quirks
&= ~QUIRK_TI_SLLZ059
;
2468 reg_write(ohci
, OHCI1394_HCControlClear
,
2469 OHCI1394_HCControl_noByteSwapData
);
2471 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2472 reg_write(ohci
, OHCI1394_LinkControlSet
,
2473 OHCI1394_LinkControl_cycleTimerEnable
|
2474 OHCI1394_LinkControl_cycleMaster
);
2476 reg_write(ohci
, OHCI1394_ATRetries
,
2477 OHCI1394_MAX_AT_REQ_RETRIES
|
2478 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2479 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2482 ohci
->bus_time_running
= false;
2484 for (i
= 0; i
< 32; i
++)
2485 if (ohci
->ir_context_support
& (1 << i
))
2486 reg_write(ohci
, OHCI1394_IsoRcvContextControlClear(i
),
2487 IR_CONTEXT_MULTI_CHANNEL_MODE
);
2489 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2490 if (version
>= OHCI_VERSION_1_1
) {
2491 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2493 card
->broadcast_channel_auto_allocated
= true;
2496 /* Get implemented bits of the priority arbitration request counter. */
2497 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2498 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2499 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2500 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2502 reg_write(ohci
, OHCI1394_PhyUpperBound
, FW_MAX_PHYSICAL_RANGE
>> 16);
2503 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2504 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2506 ret
= configure_1394a_enhancements(ohci
);
2510 /* Activate link_on bit and contender bit in our self ID packets.*/
2511 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2516 * When the link is not yet enabled, the atomic config rom
2517 * update mechanism described below in ohci_set_config_rom()
2518 * is not active. We have to update ConfigRomHeader and
2519 * BusOptions manually, and the write to ConfigROMmap takes
2520 * effect immediately. We tie this to the enabling of the
2521 * link, so we have a valid config rom before enabling - the
2522 * OHCI requires that ConfigROMhdr and BusOptions have valid
2523 * values before enabling.
2525 * However, when the ConfigROMmap is written, some controllers
2526 * always read back quadlets 0 and 2 from the config rom to
2527 * the ConfigRomHeader and BusOptions registers on bus reset.
2528 * They shouldn't do that in this initial case where the link
2529 * isn't enabled. This means we have to use the same
2530 * workaround here, setting the bus header to 0 and then write
2531 * the right values in the bus reset tasklet.
2535 ohci
->next_config_rom
= dmam_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2536 &ohci
->next_config_rom_bus
, GFP_KERNEL
);
2537 if (ohci
->next_config_rom
== NULL
)
2540 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2543 * In the suspend case, config_rom is NULL, which
2544 * means that we just reuse the old config rom.
2546 ohci
->next_config_rom
= ohci
->config_rom
;
2547 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2550 ohci
->next_header
= ohci
->next_config_rom
[0];
2551 ohci
->next_config_rom
[0] = 0;
2552 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2553 reg_write(ohci
, OHCI1394_BusOptions
,
2554 be32_to_cpu(ohci
->next_config_rom
[2]));
2555 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2557 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2559 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2560 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2561 OHCI1394_isochTx
| OHCI1394_isochRx
|
2562 OHCI1394_postedWriteErr
|
2563 OHCI1394_selfIDComplete
|
2564 OHCI1394_regAccessFail
|
2565 OHCI1394_cycleInconsistent
|
2566 OHCI1394_unrecoverableError
|
2567 OHCI1394_cycleTooLong
|
2568 OHCI1394_masterIntEnable
|
2570 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2572 reg_write(ohci
, OHCI1394_HCControlSet
,
2573 OHCI1394_HCControl_linkEnable
|
2574 OHCI1394_HCControl_BIBimageValid
);
2576 reg_write(ohci
, OHCI1394_LinkControlSet
,
2577 OHCI1394_LinkControl_rcvSelfID
|
2578 OHCI1394_LinkControl_rcvPhyPkt
);
2580 ar_context_run(&ohci
->ar_request_ctx
);
2581 ar_context_run(&ohci
->ar_response_ctx
);
2585 /* We are ready to go, reset bus to finish initialization. */
2586 fw_schedule_bus_reset(&ohci
->card
, false, true);
2591 static int ohci_set_config_rom(struct fw_card
*card
,
2592 const __be32
*config_rom
, size_t length
)
2594 struct fw_ohci
*ohci
;
2595 __be32
*next_config_rom
;
2596 dma_addr_t next_config_rom_bus
;
2598 ohci
= fw_ohci(card
);
2601 * When the OHCI controller is enabled, the config rom update
2602 * mechanism is a bit tricky, but easy enough to use. See
2603 * section 5.5.6 in the OHCI specification.
2605 * The OHCI controller caches the new config rom address in a
2606 * shadow register (ConfigROMmapNext) and needs a bus reset
2607 * for the changes to take place. When the bus reset is
2608 * detected, the controller loads the new values for the
2609 * ConfigRomHeader and BusOptions registers from the specified
2610 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2611 * shadow register. All automatically and atomically.
2613 * Now, there's a twist to this story. The automatic load of
2614 * ConfigRomHeader and BusOptions doesn't honor the
2615 * noByteSwapData bit, so with a be32 config rom, the
2616 * controller will load be32 values in to these registers
2617 * during the atomic update, even on little endian
2618 * architectures. The workaround we use is to put a 0 in the
2619 * header quadlet; 0 is endian agnostic and means that the
2620 * config rom isn't ready yet. In the bus reset tasklet we
2621 * then set up the real values for the two registers.
2623 * We use ohci->lock to avoid racing with the code that sets
2624 * ohci->next_config_rom to NULL (see bus_reset_work).
2627 next_config_rom
= dmam_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2628 &next_config_rom_bus
, GFP_KERNEL
);
2629 if (next_config_rom
== NULL
)
2632 scoped_guard(spinlock_irq
, &ohci
->lock
) {
2633 // If there is not an already pending config_rom update, push our new allocation
2634 // into the ohci->next_config_rom and then mark the local variable as null so that
2635 // we won't deallocate the new buffer.
2637 // OTOH, if there is a pending config_rom update, just use that buffer with the new
2638 // config_rom data, and let this routine free the unused DMA allocation.
2639 if (ohci
->next_config_rom
== NULL
) {
2640 ohci
->next_config_rom
= next_config_rom
;
2641 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2642 next_config_rom
= NULL
;
2645 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2647 ohci
->next_header
= config_rom
[0];
2648 ohci
->next_config_rom
[0] = 0;
2650 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2653 /* If we didn't use the DMA allocation, delete it. */
2654 if (next_config_rom
!= NULL
) {
2655 dmam_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
, next_config_rom
,
2656 next_config_rom_bus
);
2660 * Now initiate a bus reset to have the changes take
2661 * effect. We clean up the old config rom memory and DMA
2662 * mappings in the bus reset tasklet, since the OHCI
2663 * controller could need to access it before the bus reset
2667 fw_schedule_bus_reset(&ohci
->card
, true, true);
2672 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2674 struct fw_ohci
*ohci
= fw_ohci(card
);
2676 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2679 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2681 struct fw_ohci
*ohci
= fw_ohci(card
);
2683 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2686 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2688 struct fw_ohci
*ohci
= fw_ohci(card
);
2689 struct context
*ctx
= &ohci
->at_request_ctx
;
2690 struct driver_data
*driver_data
= packet
->driver_data
;
2693 tasklet_disable_in_atomic(&ctx
->tasklet
);
2695 if (packet
->ack
!= 0)
2698 if (packet
->payload_mapped
)
2699 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2700 packet
->payload_length
, DMA_TO_DEVICE
);
2702 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, 0x20);
2703 driver_data
->packet
= NULL
;
2704 packet
->ack
= RCODE_CANCELLED
;
2706 // Timestamping on behalf of the hardware.
2707 packet
->timestamp
= cycle_time_to_ohci_tstamp(get_cycle_time(ohci
));
2709 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2712 tasklet_enable(&ctx
->tasklet
);
2717 static int ohci_enable_phys_dma(struct fw_card
*card
,
2718 int node_id
, int generation
)
2720 struct fw_ohci
*ohci
= fw_ohci(card
);
2723 if (param_remote_dma
)
2727 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2728 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2731 guard(spinlock_irqsave
)(&ohci
->lock
);
2733 if (ohci
->generation
!= generation
)
2737 * Note, if the node ID contains a non-local bus ID, physical DMA is
2738 * enabled for _all_ nodes on remote buses.
2741 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2743 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2745 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2752 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2754 struct fw_ohci
*ohci
= fw_ohci(card
);
2757 switch (csr_offset
) {
2758 case CSR_STATE_CLEAR
:
2760 if (ohci
->is_root
&&
2761 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2762 OHCI1394_LinkControl_cycleMaster
))
2763 value
= CSR_STATE_BIT_CMSTR
;
2766 if (ohci
->csr_state_setclear_abdicate
)
2767 value
|= CSR_STATE_BIT_ABDICATE
;
2772 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2774 case CSR_CYCLE_TIME
:
2775 return get_cycle_time(ohci
);
2779 // We might be called just after the cycle timer has wrapped around but just before
2780 // the cycle64Seconds handler, so we better check here, too, if the bus time needs
2783 guard(spinlock_irqsave
)(&ohci
->lock
);
2784 return update_bus_time(ohci
);
2786 case CSR_BUSY_TIMEOUT
:
2787 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2788 return (value
>> 4) & 0x0ffff00f;
2790 case CSR_PRIORITY_BUDGET
:
2791 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2792 (ohci
->pri_req_max
<< 8);
2800 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2802 struct fw_ohci
*ohci
= fw_ohci(card
);
2804 switch (csr_offset
) {
2805 case CSR_STATE_CLEAR
:
2806 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2807 reg_write(ohci
, OHCI1394_LinkControlClear
,
2808 OHCI1394_LinkControl_cycleMaster
);
2811 if (value
& CSR_STATE_BIT_ABDICATE
)
2812 ohci
->csr_state_setclear_abdicate
= false;
2816 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2817 reg_write(ohci
, OHCI1394_LinkControlSet
,
2818 OHCI1394_LinkControl_cycleMaster
);
2821 if (value
& CSR_STATE_BIT_ABDICATE
)
2822 ohci
->csr_state_setclear_abdicate
= true;
2826 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2830 case CSR_CYCLE_TIME
:
2831 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2832 reg_write(ohci
, OHCI1394_IntEventSet
,
2833 OHCI1394_cycleInconsistent
);
2839 guard(spinlock_irqsave
)(&ohci
->lock
);
2840 ohci
->bus_time
= (update_bus_time(ohci
) & 0x40) | (value
& ~0x7f);
2843 case CSR_BUSY_TIMEOUT
:
2844 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2845 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2846 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2850 case CSR_PRIORITY_BUDGET
:
2851 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2861 static void flush_iso_completions(struct iso_context
*ctx
, enum fw_iso_context_completions_cause cause
)
2863 trace_isoc_inbound_single_completions(&ctx
->base
, ctx
->last_timestamp
, cause
, ctx
->header
,
2864 ctx
->header_length
);
2865 trace_isoc_outbound_completions(&ctx
->base
, ctx
->last_timestamp
, cause
, ctx
->header
,
2866 ctx
->header_length
);
2868 ctx
->base
.callback
.sc(&ctx
->base
, ctx
->last_timestamp
,
2869 ctx
->header_length
, ctx
->header
,
2870 ctx
->base
.callback_data
);
2871 ctx
->header_length
= 0;
2874 static void copy_iso_headers(struct iso_context
*ctx
, const u32
*dma_hdr
)
2878 if (ctx
->header_length
+ ctx
->base
.header_size
> PAGE_SIZE
) {
2879 if (ctx
->base
.drop_overflow_headers
)
2881 flush_iso_completions(ctx
, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW
);
2884 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2885 ctx
->last_timestamp
= (u16
)le32_to_cpu((__force __le32
)dma_hdr
[0]);
2888 * The two iso header quadlets are byteswapped to little
2889 * endian by the controller, but we want to present them
2890 * as big endian for consistency with the bus endianness.
2892 if (ctx
->base
.header_size
> 0)
2893 ctx_hdr
[0] = swab32(dma_hdr
[1]); /* iso packet header */
2894 if (ctx
->base
.header_size
> 4)
2895 ctx_hdr
[1] = swab32(dma_hdr
[0]); /* timestamp */
2896 if (ctx
->base
.header_size
> 8)
2897 memcpy(&ctx_hdr
[2], &dma_hdr
[2], ctx
->base
.header_size
- 8);
2898 ctx
->header_length
+= ctx
->base
.header_size
;
2901 static int handle_ir_packet_per_buffer(struct context
*context
,
2902 struct descriptor
*d
,
2903 struct descriptor
*last
)
2905 struct iso_context
*ctx
=
2906 container_of(context
, struct iso_context
, context
);
2907 struct descriptor
*pd
;
2910 for (pd
= d
; pd
<= last
; pd
++)
2911 if (pd
->transfer_status
)
2914 /* Descriptor(s) not done yet, stop iteration */
2917 while (!(d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))) {
2919 buffer_dma
= le32_to_cpu(d
->data_address
);
2920 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2921 buffer_dma
& PAGE_MASK
,
2922 buffer_dma
& ~PAGE_MASK
,
2923 le16_to_cpu(d
->req_count
),
2927 copy_iso_headers(ctx
, (u32
*) (last
+ 1));
2929 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2930 flush_iso_completions(ctx
, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT
);
2935 /* d == last because each descriptor block is only a single descriptor. */
2936 static int handle_ir_buffer_fill(struct context
*context
,
2937 struct descriptor
*d
,
2938 struct descriptor
*last
)
2940 struct iso_context
*ctx
=
2941 container_of(context
, struct iso_context
, context
);
2942 unsigned int req_count
, res_count
, completed
;
2945 req_count
= le16_to_cpu(last
->req_count
);
2946 res_count
= le16_to_cpu(READ_ONCE(last
->res_count
));
2947 completed
= req_count
- res_count
;
2948 buffer_dma
= le32_to_cpu(last
->data_address
);
2950 if (completed
> 0) {
2951 ctx
->mc_buffer_bus
= buffer_dma
;
2952 ctx
->mc_completed
= completed
;
2956 /* Descriptor(s) not done yet, stop iteration */
2959 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2960 buffer_dma
& PAGE_MASK
,
2961 buffer_dma
& ~PAGE_MASK
,
2962 completed
, DMA_FROM_DEVICE
);
2964 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
)) {
2965 trace_isoc_inbound_multiple_completions(&ctx
->base
, completed
,
2966 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT
);
2968 ctx
->base
.callback
.mc(&ctx
->base
,
2969 buffer_dma
+ completed
,
2970 ctx
->base
.callback_data
);
2971 ctx
->mc_completed
= 0;
2977 static void flush_ir_buffer_fill(struct iso_context
*ctx
)
2979 dma_sync_single_range_for_cpu(ctx
->context
.ohci
->card
.device
,
2980 ctx
->mc_buffer_bus
& PAGE_MASK
,
2981 ctx
->mc_buffer_bus
& ~PAGE_MASK
,
2982 ctx
->mc_completed
, DMA_FROM_DEVICE
);
2984 trace_isoc_inbound_multiple_completions(&ctx
->base
, ctx
->mc_completed
,
2985 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH
);
2987 ctx
->base
.callback
.mc(&ctx
->base
,
2988 ctx
->mc_buffer_bus
+ ctx
->mc_completed
,
2989 ctx
->base
.callback_data
);
2990 ctx
->mc_completed
= 0;
2993 static inline void sync_it_packet_for_cpu(struct context
*context
,
2994 struct descriptor
*pd
)
2999 /* only packets beginning with OUTPUT_MORE* have data buffers */
3000 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
3003 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3007 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3008 * data buffer is in the context program's coherent page and must not
3011 if ((le32_to_cpu(pd
->data_address
) & PAGE_MASK
) ==
3012 (context
->current_bus
& PAGE_MASK
)) {
3013 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
3019 buffer_dma
= le32_to_cpu(pd
->data_address
);
3020 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
3021 buffer_dma
& PAGE_MASK
,
3022 buffer_dma
& ~PAGE_MASK
,
3023 le16_to_cpu(pd
->req_count
),
3025 control
= pd
->control
;
3027 } while (!(control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
)));
3030 static int handle_it_packet(struct context
*context
,
3031 struct descriptor
*d
,
3032 struct descriptor
*last
)
3034 struct iso_context
*ctx
=
3035 container_of(context
, struct iso_context
, context
);
3036 struct descriptor
*pd
;
3039 for (pd
= d
; pd
<= last
; pd
++)
3040 if (pd
->transfer_status
)
3043 /* Descriptor(s) not done yet, stop iteration */
3046 sync_it_packet_for_cpu(context
, d
);
3048 if (ctx
->header_length
+ 4 > PAGE_SIZE
) {
3049 if (ctx
->base
.drop_overflow_headers
)
3051 flush_iso_completions(ctx
, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW
);
3054 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
3055 ctx
->last_timestamp
= le16_to_cpu(last
->res_count
);
3056 /* Present this value as big-endian to match the receive code */
3057 *ctx_hdr
= cpu_to_be32((le16_to_cpu(pd
->transfer_status
) << 16) |
3058 le16_to_cpu(pd
->res_count
));
3059 ctx
->header_length
+= 4;
3061 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
3062 flush_iso_completions(ctx
, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT
);
3067 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
3069 u32 hi
= channels
>> 32, lo
= channels
;
3071 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
3072 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
3073 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
3074 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
3075 ohci
->mc_channels
= channels
;
3078 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
3079 int type
, int channel
, size_t header_size
)
3081 struct fw_ohci
*ohci
= fw_ohci(card
);
3082 struct iso_context
*ctx
;
3083 descriptor_callback_t callback
;
3086 int index
, ret
= -EBUSY
;
3088 scoped_guard(spinlock_irq
, &ohci
->lock
) {
3090 case FW_ISO_CONTEXT_TRANSMIT
:
3091 mask
= &ohci
->it_context_mask
;
3092 callback
= handle_it_packet
;
3093 index
= ffs(*mask
) - 1;
3095 *mask
&= ~(1 << index
);
3096 regs
= OHCI1394_IsoXmitContextBase(index
);
3097 ctx
= &ohci
->it_context_list
[index
];
3101 case FW_ISO_CONTEXT_RECEIVE
:
3102 channels
= &ohci
->ir_context_channels
;
3103 mask
= &ohci
->ir_context_mask
;
3104 callback
= handle_ir_packet_per_buffer
;
3105 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
3107 *channels
&= ~(1ULL << channel
);
3108 *mask
&= ~(1 << index
);
3109 regs
= OHCI1394_IsoRcvContextBase(index
);
3110 ctx
= &ohci
->ir_context_list
[index
];
3114 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3115 mask
= &ohci
->ir_context_mask
;
3116 callback
= handle_ir_buffer_fill
;
3117 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
3119 ohci
->mc_allocated
= true;
3120 *mask
&= ~(1 << index
);
3121 regs
= OHCI1394_IsoRcvContextBase(index
);
3122 ctx
= &ohci
->ir_context_list
[index
];
3132 return ERR_PTR(ret
);
3135 memset(ctx
, 0, sizeof(*ctx
));
3136 ctx
->header_length
= 0;
3137 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
3138 if (ctx
->header
== NULL
) {
3142 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
3144 goto out_with_header
;
3145 fw_iso_context_init_work(&ctx
->base
, ohci_isoc_context_work
);
3147 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
) {
3148 set_multichannel_mask(ohci
, 0);
3149 ctx
->mc_completed
= 0;
3155 free_page((unsigned long)ctx
->header
);
3157 scoped_guard(spinlock_irq
, &ohci
->lock
) {
3159 case FW_ISO_CONTEXT_RECEIVE
:
3160 *channels
|= 1ULL << channel
;
3163 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3164 ohci
->mc_allocated
= false;
3167 *mask
|= 1 << index
;
3170 return ERR_PTR(ret
);
3173 static int ohci_start_iso(struct fw_iso_context
*base
,
3174 s32 cycle
, u32 sync
, u32 tags
)
3176 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3177 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
3178 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
3181 /* the controller cannot start without any queued packets */
3182 if (ctx
->context
.last
->branch_address
== 0)
3185 switch (ctx
->base
.type
) {
3186 case FW_ISO_CONTEXT_TRANSMIT
:
3187 index
= ctx
- ohci
->it_context_list
;
3190 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
3191 (cycle
& 0x7fff) << 16;
3193 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
3194 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
3195 context_run(&ctx
->context
, match
);
3198 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3199 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
3201 case FW_ISO_CONTEXT_RECEIVE
:
3202 index
= ctx
- ohci
->ir_context_list
;
3203 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
3205 match
|= (cycle
& 0x07fff) << 12;
3206 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
3209 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
3210 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
3211 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
3212 context_run(&ctx
->context
, control
);
3223 static int ohci_stop_iso(struct fw_iso_context
*base
)
3225 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3226 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3229 switch (ctx
->base
.type
) {
3230 case FW_ISO_CONTEXT_TRANSMIT
:
3231 index
= ctx
- ohci
->it_context_list
;
3232 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
3235 case FW_ISO_CONTEXT_RECEIVE
:
3236 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3237 index
= ctx
- ohci
->ir_context_list
;
3238 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
3242 context_stop(&ctx
->context
);
3247 static void ohci_free_iso_context(struct fw_iso_context
*base
)
3249 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3250 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3253 ohci_stop_iso(base
);
3254 context_release(&ctx
->context
);
3255 free_page((unsigned long)ctx
->header
);
3257 guard(spinlock_irqsave
)(&ohci
->lock
);
3259 switch (base
->type
) {
3260 case FW_ISO_CONTEXT_TRANSMIT
:
3261 index
= ctx
- ohci
->it_context_list
;
3262 ohci
->it_context_mask
|= 1 << index
;
3265 case FW_ISO_CONTEXT_RECEIVE
:
3266 index
= ctx
- ohci
->ir_context_list
;
3267 ohci
->ir_context_mask
|= 1 << index
;
3268 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
3271 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3272 index
= ctx
- ohci
->ir_context_list
;
3273 ohci
->ir_context_mask
|= 1 << index
;
3274 ohci
->ir_context_channels
|= ohci
->mc_channels
;
3275 ohci
->mc_channels
= 0;
3276 ohci
->mc_allocated
= false;
3281 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
3283 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3285 switch (base
->type
) {
3286 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3288 guard(spinlock_irqsave
)(&ohci
->lock
);
3290 // Don't allow multichannel to grab other contexts' channels.
3291 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
3292 *channels
= ohci
->ir_context_channels
;
3295 set_multichannel_mask(ohci
, *channels
);
3305 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
3308 struct iso_context
*ctx
;
3310 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
3311 ctx
= &ohci
->ir_context_list
[i
];
3312 if (ctx
->context
.running
)
3313 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3316 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
3317 ctx
= &ohci
->it_context_list
[i
];
3318 if (ctx
->context
.running
)
3319 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3324 static int queue_iso_transmit(struct iso_context
*ctx
,
3325 struct fw_iso_packet
*packet
,
3326 struct fw_iso_buffer
*buffer
,
3327 unsigned long payload
)
3329 struct descriptor
*d
, *last
, *pd
;
3330 struct fw_iso_packet
*p
;
3332 dma_addr_t d_bus
, page_bus
;
3333 u32 z
, header_z
, payload_z
, irq
;
3334 u32 payload_index
, payload_end_index
, next_page_index
;
3335 int page
, end_page
, i
, length
, offset
;
3338 payload_index
= payload
;
3344 if (p
->header_length
> 0)
3347 /* Determine the first page the payload isn't contained in. */
3348 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
3349 if (p
->payload_length
> 0)
3350 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
3356 /* Get header size in number of descriptors. */
3357 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
3359 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
3364 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
3365 d
[0].req_count
= cpu_to_le16(8);
3367 * Link the skip address to this descriptor itself. This causes
3368 * a context to skip a cycle whenever lost cycles or FIFO
3369 * overruns occur, without dropping the data. The application
3370 * should then decide whether this is an error condition or not.
3371 * FIXME: Make the context's cycle-lost behaviour configurable?
3373 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
3375 header
= (__le32
*) &d
[1];
3377 ohci1394_it_data_set_speed(header
, ctx
->base
.speed
);
3378 ohci1394_it_data_set_tag(header
, p
->tag
);
3379 ohci1394_it_data_set_channel(header
, ctx
->base
.channel
);
3380 ohci1394_it_data_set_tcode(header
, TCODE_STREAM_DATA
);
3381 ohci1394_it_data_set_sync(header
, p
->sy
);
3383 ohci1394_it_data_set_data_length(header
, p
->header_length
+ p
->payload_length
);
3386 if (p
->header_length
> 0) {
3387 d
[2].req_count
= cpu_to_le16(p
->header_length
);
3388 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
3389 memcpy(&d
[z
], p
->header
, p
->header_length
);
3392 pd
= d
+ z
- payload_z
;
3393 payload_end_index
= payload_index
+ p
->payload_length
;
3394 for (i
= 0; i
< payload_z
; i
++) {
3395 page
= payload_index
>> PAGE_SHIFT
;
3396 offset
= payload_index
& ~PAGE_MASK
;
3397 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
3399 min(next_page_index
, payload_end_index
) - payload_index
;
3400 pd
[i
].req_count
= cpu_to_le16(length
);
3402 page_bus
= page_private(buffer
->pages
[page
]);
3403 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
3405 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3406 page_bus
, offset
, length
,
3409 payload_index
+= length
;
3413 irq
= DESCRIPTOR_IRQ_ALWAYS
;
3415 irq
= DESCRIPTOR_NO_IRQ
;
3417 last
= z
== 2 ? d
: d
+ z
- 1;
3418 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
3420 DESCRIPTOR_BRANCH_ALWAYS
|
3423 context_append(&ctx
->context
, d
, z
, header_z
);
3428 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
3429 struct fw_iso_packet
*packet
,
3430 struct fw_iso_buffer
*buffer
,
3431 unsigned long payload
)
3433 struct device
*device
= ctx
->context
.ohci
->card
.device
;
3434 struct descriptor
*d
, *pd
;
3435 dma_addr_t d_bus
, page_bus
;
3436 u32 z
, header_z
, rest
;
3438 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3441 * The OHCI controller puts the isochronous header and trailer in the
3442 * buffer, so we need at least 8 bytes.
3444 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3445 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3447 /* Get header size in number of descriptors. */
3448 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3449 page
= payload
>> PAGE_SHIFT
;
3450 offset
= payload
& ~PAGE_MASK
;
3451 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3453 for (i
= 0; i
< packet_count
; i
++) {
3454 /* d points to the header descriptor */
3455 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3456 d
= context_get_descriptors(&ctx
->context
,
3457 z
+ header_z
, &d_bus
);
3461 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3462 DESCRIPTOR_INPUT_MORE
);
3463 if (packet
->skip
&& i
== 0)
3464 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3465 d
->req_count
= cpu_to_le16(header_size
);
3466 d
->res_count
= d
->req_count
;
3467 d
->transfer_status
= 0;
3468 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3470 rest
= payload_per_buffer
;
3472 for (j
= 1; j
< z
; j
++) {
3474 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3475 DESCRIPTOR_INPUT_MORE
);
3477 if (offset
+ rest
< PAGE_SIZE
)
3480 length
= PAGE_SIZE
- offset
;
3481 pd
->req_count
= cpu_to_le16(length
);
3482 pd
->res_count
= pd
->req_count
;
3483 pd
->transfer_status
= 0;
3485 page_bus
= page_private(buffer
->pages
[page
]);
3486 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3488 dma_sync_single_range_for_device(device
, page_bus
,
3492 offset
= (offset
+ length
) & ~PAGE_MASK
;
3497 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3498 DESCRIPTOR_INPUT_LAST
|
3499 DESCRIPTOR_BRANCH_ALWAYS
);
3500 if (packet
->interrupt
&& i
== packet_count
- 1)
3501 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3503 context_append(&ctx
->context
, d
, z
, header_z
);
3509 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3510 struct fw_iso_packet
*packet
,
3511 struct fw_iso_buffer
*buffer
,
3512 unsigned long payload
)
3514 struct descriptor
*d
;
3515 dma_addr_t d_bus
, page_bus
;
3516 int page
, offset
, rest
, z
, i
, length
;
3518 page
= payload
>> PAGE_SHIFT
;
3519 offset
= payload
& ~PAGE_MASK
;
3520 rest
= packet
->payload_length
;
3522 /* We need one descriptor for each page in the buffer. */
3523 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3525 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3528 for (i
= 0; i
< z
; i
++) {
3529 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3533 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3534 DESCRIPTOR_BRANCH_ALWAYS
);
3535 if (packet
->skip
&& i
== 0)
3536 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3537 if (packet
->interrupt
&& i
== z
- 1)
3538 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3540 if (offset
+ rest
< PAGE_SIZE
)
3543 length
= PAGE_SIZE
- offset
;
3544 d
->req_count
= cpu_to_le16(length
);
3545 d
->res_count
= d
->req_count
;
3546 d
->transfer_status
= 0;
3548 page_bus
= page_private(buffer
->pages
[page
]);
3549 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3551 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3552 page_bus
, offset
, length
,
3559 context_append(&ctx
->context
, d
, 1, 0);
3565 static int ohci_queue_iso(struct fw_iso_context
*base
,
3566 struct fw_iso_packet
*packet
,
3567 struct fw_iso_buffer
*buffer
,
3568 unsigned long payload
)
3570 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3572 guard(spinlock_irqsave
)(&ctx
->context
.ohci
->lock
);
3574 switch (base
->type
) {
3575 case FW_ISO_CONTEXT_TRANSMIT
:
3576 return queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3577 case FW_ISO_CONTEXT_RECEIVE
:
3578 return queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3579 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3580 return queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3586 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3588 struct context
*ctx
=
3589 &container_of(base
, struct iso_context
, base
)->context
;
3591 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3594 static int ohci_flush_iso_completions(struct fw_iso_context
*base
)
3596 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3599 if (!test_and_set_bit_lock(0, &ctx
->flushing_completions
)) {
3600 ohci_isoc_context_work(&base
->work
);
3602 switch (base
->type
) {
3603 case FW_ISO_CONTEXT_TRANSMIT
:
3604 case FW_ISO_CONTEXT_RECEIVE
:
3605 if (ctx
->header_length
!= 0)
3606 flush_iso_completions(ctx
, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH
);
3608 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3609 if (ctx
->mc_completed
!= 0)
3610 flush_ir_buffer_fill(ctx
);
3616 clear_bit_unlock(0, &ctx
->flushing_completions
);
3617 smp_mb__after_atomic();
3623 static const struct fw_card_driver ohci_driver
= {
3624 .enable
= ohci_enable
,
3625 .read_phy_reg
= ohci_read_phy_reg
,
3626 .update_phy_reg
= ohci_update_phy_reg
,
3627 .set_config_rom
= ohci_set_config_rom
,
3628 .send_request
= ohci_send_request
,
3629 .send_response
= ohci_send_response
,
3630 .cancel_packet
= ohci_cancel_packet
,
3631 .enable_phys_dma
= ohci_enable_phys_dma
,
3632 .read_csr
= ohci_read_csr
,
3633 .write_csr
= ohci_write_csr
,
3635 .allocate_iso_context
= ohci_allocate_iso_context
,
3636 .free_iso_context
= ohci_free_iso_context
,
3637 .set_iso_channels
= ohci_set_iso_channels
,
3638 .queue_iso
= ohci_queue_iso
,
3639 .flush_queue_iso
= ohci_flush_queue_iso
,
3640 .flush_iso_completions
= ohci_flush_iso_completions
,
3641 .start_iso
= ohci_start_iso
,
3642 .stop_iso
= ohci_stop_iso
,
3645 #ifdef CONFIG_PPC_PMAC
3646 static void pmac_ohci_on(struct pci_dev
*dev
)
3648 if (machine_is(powermac
)) {
3649 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3652 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3653 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3658 static void pmac_ohci_off(struct pci_dev
*dev
)
3660 if (machine_is(powermac
)) {
3661 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3664 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3665 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3670 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3671 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3672 #endif /* CONFIG_PPC_PMAC */
3674 static void release_ohci(struct device
*dev
, void *data
)
3676 struct pci_dev
*pdev
= to_pci_dev(dev
);
3677 struct fw_ohci
*ohci
= pci_get_drvdata(pdev
);
3679 pmac_ohci_off(pdev
);
3681 ar_context_release(&ohci
->ar_response_ctx
);
3682 ar_context_release(&ohci
->ar_request_ctx
);
3684 dev_notice(dev
, "removed fw-ohci device\n");
3687 static int pci_probe(struct pci_dev
*dev
,
3688 const struct pci_device_id
*ent
)
3690 struct fw_ohci
*ohci
;
3691 u32 bus_options
, max_receive
, link_speed
, version
;
3693 int i
, flags
, irq
, err
;
3696 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3697 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3701 ohci
= devres_alloc(release_ohci
, sizeof(*ohci
), GFP_KERNEL
);
3704 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3705 pci_set_drvdata(dev
, ohci
);
3707 devres_add(&dev
->dev
, ohci
);
3709 err
= pcim_enable_device(dev
);
3711 dev_err(&dev
->dev
, "failed to enable OHCI hardware\n");
3715 pci_set_master(dev
);
3716 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3718 spin_lock_init(&ohci
->lock
);
3719 mutex_init(&ohci
->phy_reg_mutex
);
3721 INIT_WORK(&ohci
->bus_reset_work
, bus_reset_work
);
3723 if (!(pci_resource_flags(dev
, 0) & IORESOURCE_MEM
) ||
3724 pci_resource_len(dev
, 0) < OHCI1394_REGISTER_SIZE
) {
3725 ohci_err(ohci
, "invalid MMIO resource\n");
3729 ohci
->registers
= pcim_iomap_region(dev
, 0, ohci_driver_name
);
3730 if (IS_ERR(ohci
->registers
)) {
3731 ohci_err(ohci
, "request and map MMIO resource unavailable\n");
3735 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3736 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3737 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3738 ohci_quirks
[i
].device
== dev
->device
) &&
3739 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3740 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3741 ohci
->quirks
= ohci_quirks
[i
].flags
;
3745 ohci
->quirks
= param_quirks
;
3747 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev
))
3748 ohci
->quirks
|= QUIRK_REBOOT_BY_CYCLE_TIMER_READ
;
3751 * Because dma_alloc_coherent() allocates at least one page,
3752 * we save space by using a common buffer for the AR request/
3753 * response descriptors and the self IDs buffer.
3755 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3756 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3757 ohci
->misc_buffer
= dmam_alloc_coherent(&dev
->dev
, PAGE_SIZE
, &ohci
->misc_buffer_bus
,
3759 if (!ohci
->misc_buffer
)
3762 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3763 OHCI1394_AsReqRcvContextControlSet
);
3767 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3768 OHCI1394_AsRspRcvContextControlSet
);
3772 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3773 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3777 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3778 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3782 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3783 ohci
->ir_context_channels
= ~0ULL;
3784 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3785 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3786 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3787 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3788 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3789 ohci
->ir_context_list
= devm_kzalloc(&dev
->dev
, size
, GFP_KERNEL
);
3790 if (!ohci
->ir_context_list
)
3793 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3794 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3795 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3796 if (!ohci
->it_context_support
) {
3797 ohci_notice(ohci
, "overriding IsoXmitIntMask\n");
3798 ohci
->it_context_support
= 0xf;
3800 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3801 ohci
->it_context_mask
= ohci
->it_context_support
;
3802 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3803 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3804 ohci
->it_context_list
= devm_kzalloc(&dev
->dev
, size
, GFP_KERNEL
);
3805 if (!ohci
->it_context_list
)
3808 ohci
->self_id
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3809 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3811 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3812 max_receive
= (bus_options
>> 12) & 0xf;
3813 link_speed
= bus_options
& 0x7;
3814 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3815 reg_read(ohci
, OHCI1394_GUIDLo
);
3817 flags
= PCI_IRQ_INTX
;
3818 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
3819 flags
|= PCI_IRQ_MSI
;
3820 err
= pci_alloc_irq_vectors(dev
, 1, 1, flags
);
3823 irq
= pci_irq_vector(dev
, 0);
3829 err
= request_threaded_irq(irq
, irq_handler
, NULL
,
3830 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
, ohci_driver_name
,
3833 ohci_err(ohci
, "failed to allocate interrupt %d\n", irq
);
3837 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
, ohci
->n_it
+ ohci
->n_ir
);
3841 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3843 "added OHCI v%x.%x device as card %d, "
3844 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3845 version
>> 16, version
& 0xff, ohci
->card
.index
,
3846 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
,
3847 reg_read(ohci
, OHCI1394_PhyUpperBound
) ?
3853 free_irq(irq
, ohci
);
3855 pci_free_irq_vectors(dev
);
3860 static void pci_remove(struct pci_dev
*dev
)
3862 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3866 * If the removal is happening from the suspend state, LPS won't be
3867 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3869 if (reg_read(ohci
, OHCI1394_HCControlSet
) & OHCI1394_HCControl_LPS
) {
3870 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3873 cancel_work_sync(&ohci
->bus_reset_work
);
3874 fw_core_remove_card(&ohci
->card
);
3877 * FIXME: Fail all pending packets here, now that the upper
3878 * layers can't queue any more.
3881 software_reset(ohci
);
3883 irq
= pci_irq_vector(dev
, 0);
3885 free_irq(irq
, ohci
);
3886 pci_free_irq_vectors(dev
);
3888 dev_notice(&dev
->dev
, "removing fw-ohci device\n");
3892 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3894 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3897 software_reset(ohci
);
3898 err
= pci_save_state(dev
);
3900 ohci_err(ohci
, "pci_save_state failed\n");
3903 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3905 ohci_err(ohci
, "pci_set_power_state failed with %d\n", err
);
3911 static int pci_resume(struct pci_dev
*dev
)
3913 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3917 pci_set_power_state(dev
, PCI_D0
);
3918 pci_restore_state(dev
);
3919 err
= pci_enable_device(dev
);
3921 ohci_err(ohci
, "pci_enable_device failed\n");
3925 /* Some systems don't setup GUID register on resume from ram */
3926 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3927 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3928 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3929 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3932 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3936 ohci_resume_iso_dma(ohci
);
3942 static const struct pci_device_id pci_table
[] = {
3943 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3947 MODULE_DEVICE_TABLE(pci
, pci_table
);
3949 static struct pci_driver fw_ohci_pci_driver
= {
3950 .name
= ohci_driver_name
,
3951 .id_table
= pci_table
,
3953 .remove
= pci_remove
,
3955 .resume
= pci_resume
,
3956 .suspend
= pci_suspend
,
3960 static int __init
fw_ohci_init(void)
3962 selfid_workqueue
= alloc_workqueue(KBUILD_MODNAME
, WQ_MEM_RECLAIM
, 0);
3963 if (!selfid_workqueue
)
3966 return pci_register_driver(&fw_ohci_pci_driver
);
3969 static void __exit
fw_ohci_cleanup(void)
3971 pci_unregister_driver(&fw_ohci_pci_driver
);
3972 destroy_workqueue(selfid_workqueue
);
3975 module_init(fw_ohci_init
);
3976 module_exit(fw_ohci_cleanup
);
3978 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3979 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3980 MODULE_LICENSE("GPL");
3982 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3983 MODULE_ALIAS("ohci1394");