1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
5 * Queued image conversion support, with tiling and rotation.
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/math.h>
12 #include <video/imx-ipu-image-convert.h>
17 * The IC Resizer has a restriction that the output frame from the
18 * resizer must be 1024 or less in both width (pixels) and height
21 * The image converter attempts to split up a conversion when
22 * the desired output (converted) frame resolution exceeds the
23 * IC resizer limit of 1024 in either dimension.
25 * If either dimension of the output frame exceeds the limit, the
26 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
27 * of 4*4 or 16 tiles. A conversion is then carried out for each
28 * tile (but taking care to pass the full frame stride length to
29 * the DMA channel's parameter memory!). IDMA double-buffering is used
30 * to convert each tile back-to-back when possible (see note below
31 * when double_buffering boolean is set).
33 * Note that the input frame must be split up into the same number
34 * of tiles as the output frame:
37 * +-----+---+ | A | B |
39 * +-----+---+ --> +---------+-----+
44 * Clockwise 90° rotations are handled by first rescaling into a
45 * reusable temporary tile buffer and then rotating with the 8x8
46 * block rotator, writing to the correct destination:
50 * +-----+---+ +---------+ | C | A |
51 * | A | B | | A,B, | | | | |
52 * +-----+---+ --> | C,D | | --> | | |
53 * | C | D | +---------+ +-----+-----+
54 * +-----+---+ | D | B |
58 * If the 8x8 block rotator is used, horizontal or vertical flipping
59 * is done during the rotation step, otherwise flipping is done
60 * during the scaling step.
61 * With rotation or flipping, tile order changes between input and
62 * output image. Tiles are numbered row major from top left to bottom
63 * right for both input and output image.
66 #define MAX_STRIPES_W 4
67 #define MAX_STRIPES_H 4
68 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
75 enum ipu_image_convert_type
{
80 struct ipu_image_convert_dma_buf
{
86 struct ipu_image_convert_dma_chan
{
96 /* dimensions of one tile */
97 struct ipu_image_tile
{
102 /* size and strides are in bytes */
106 /* start Y or packed offset of this tile */
108 /* offset from start to tile in U plane, for planar formats */
110 /* offset from start to tile in V plane, for planar formats */
114 struct ipu_image_convert_image
{
115 struct ipu_image base
;
116 enum ipu_image_convert_type type
;
118 const struct ipu_image_pixfmt
*fmt
;
121 /* # of rows (horizontal stripes) if dest height is > 1024 */
122 unsigned int num_rows
;
123 /* # of columns (vertical stripes) if dest width is > 1024 */
124 unsigned int num_cols
;
126 struct ipu_image_tile tile
[MAX_TILES
];
129 struct ipu_image_pixfmt
{
130 u32 fourcc
; /* V4L2 fourcc */
131 int bpp
; /* total bpp */
132 int uv_width_dec
; /* decimation in width for U/V planes */
133 int uv_height_dec
; /* decimation in height for U/V planes */
134 bool planar
; /* planar format */
135 bool uv_swapped
; /* U and V planes are swapped */
136 bool uv_packed
; /* partial planar (U and V in same plane) */
139 struct ipu_image_convert_ctx
;
140 struct ipu_image_convert_chan
;
141 struct ipu_image_convert_priv
;
145 EOF_IRQ_ROT_IN
= BIT(1),
146 EOF_IRQ_OUT
= BIT(2),
147 EOF_IRQ_ROT_OUT
= BIT(3),
150 #define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
151 #define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT | \
152 EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
154 struct ipu_image_convert_ctx
{
155 struct ipu_image_convert_chan
*chan
;
157 ipu_image_convert_cb_t complete
;
158 void *complete_context
;
160 /* Source/destination image data and rotation mode */
161 struct ipu_image_convert_image in
;
162 struct ipu_image_convert_image out
;
163 struct ipu_ic_csc csc
;
164 enum ipu_rotate_mode rot_mode
;
165 u32 downsize_coeff_h
;
166 u32 downsize_coeff_v
;
167 u32 image_resize_coeff_h
;
168 u32 image_resize_coeff_v
;
169 u32 resize_coeffs_h
[MAX_STRIPES_W
];
170 u32 resize_coeffs_v
[MAX_STRIPES_H
];
172 /* intermediate buffer for rotation */
173 struct ipu_image_convert_dma_buf rot_intermediate
[2];
175 /* current buffer number for double buffering */
179 struct completion aborted
;
181 /* can we use double-buffering for this conversion operation? */
182 bool double_buffering
;
183 /* num_rows * num_cols */
184 unsigned int num_tiles
;
185 /* next tile to process */
186 unsigned int next_tile
;
187 /* where to place converted tile in dest image */
188 unsigned int out_tile_map
[MAX_TILES
];
190 /* mask of completed EOF irqs at every tile conversion */
191 enum eof_irq_mask eof_mask
;
193 struct list_head list
;
196 struct ipu_image_convert_chan
{
197 struct ipu_image_convert_priv
*priv
;
199 enum ipu_ic_task ic_task
;
200 const struct ipu_image_convert_dma_chan
*dma_ch
;
203 struct ipuv3_channel
*in_chan
;
204 struct ipuv3_channel
*out_chan
;
205 struct ipuv3_channel
*rotation_in_chan
;
206 struct ipuv3_channel
*rotation_out_chan
;
208 /* the IPU end-of-frame irqs */
216 /* list of convert contexts */
217 struct list_head ctx_list
;
218 /* queue of conversion runs */
219 struct list_head pending_q
;
220 /* queue of completed runs */
221 struct list_head done_q
;
223 /* the current conversion run */
224 struct ipu_image_convert_run
*current_run
;
227 struct ipu_image_convert_priv
{
228 struct ipu_image_convert_chan chan
[IC_NUM_TASKS
];
232 static const struct ipu_image_convert_dma_chan
233 image_convert_dma_chan
[IC_NUM_TASKS
] = {
234 [IC_TASK_VIEWFINDER
] = {
235 .in
= IPUV3_CHANNEL_MEM_IC_PRP_VF
,
236 .out
= IPUV3_CHANNEL_IC_PRP_VF_MEM
,
237 .rot_in
= IPUV3_CHANNEL_MEM_ROT_VF
,
238 .rot_out
= IPUV3_CHANNEL_ROT_VF_MEM
,
239 .vdi_in_p
= IPUV3_CHANNEL_MEM_VDI_PREV
,
240 .vdi_in
= IPUV3_CHANNEL_MEM_VDI_CUR
,
241 .vdi_in_n
= IPUV3_CHANNEL_MEM_VDI_NEXT
,
243 [IC_TASK_POST_PROCESSOR
] = {
244 .in
= IPUV3_CHANNEL_MEM_IC_PP
,
245 .out
= IPUV3_CHANNEL_IC_PP_MEM
,
246 .rot_in
= IPUV3_CHANNEL_MEM_ROT_PP
,
247 .rot_out
= IPUV3_CHANNEL_ROT_PP_MEM
,
251 static const struct ipu_image_pixfmt image_convert_formats
[] = {
253 .fourcc
= V4L2_PIX_FMT_RGB565
,
256 .fourcc
= V4L2_PIX_FMT_RGB24
,
259 .fourcc
= V4L2_PIX_FMT_BGR24
,
262 .fourcc
= V4L2_PIX_FMT_RGB32
,
265 .fourcc
= V4L2_PIX_FMT_BGR32
,
268 .fourcc
= V4L2_PIX_FMT_XRGB32
,
271 .fourcc
= V4L2_PIX_FMT_XBGR32
,
274 .fourcc
= V4L2_PIX_FMT_BGRX32
,
277 .fourcc
= V4L2_PIX_FMT_RGBX32
,
280 .fourcc
= V4L2_PIX_FMT_YUYV
,
285 .fourcc
= V4L2_PIX_FMT_UYVY
,
290 .fourcc
= V4L2_PIX_FMT_YUV420
,
296 .fourcc
= V4L2_PIX_FMT_YVU420
,
303 .fourcc
= V4L2_PIX_FMT_NV12
,
310 .fourcc
= V4L2_PIX_FMT_YUV422P
,
316 .fourcc
= V4L2_PIX_FMT_NV16
,
325 static const struct ipu_image_pixfmt
*get_format(u32 fourcc
)
327 const struct ipu_image_pixfmt
*ret
= NULL
;
330 for (i
= 0; i
< ARRAY_SIZE(image_convert_formats
); i
++) {
331 if (image_convert_formats
[i
].fourcc
== fourcc
) {
332 ret
= &image_convert_formats
[i
];
340 static void dump_format(struct ipu_image_convert_ctx
*ctx
,
341 struct ipu_image_convert_image
*ic_image
)
343 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
344 struct ipu_image_convert_priv
*priv
= chan
->priv
;
346 dev_dbg(priv
->ipu
->dev
,
347 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
349 ic_image
->type
== IMAGE_CONVERT_OUT
? "Output" : "Input",
350 ic_image
->base
.pix
.width
, ic_image
->base
.pix
.height
,
351 ic_image
->num_cols
, ic_image
->num_rows
,
352 ic_image
->fmt
->fourcc
& 0xff,
353 (ic_image
->fmt
->fourcc
>> 8) & 0xff,
354 (ic_image
->fmt
->fourcc
>> 16) & 0xff,
355 (ic_image
->fmt
->fourcc
>> 24) & 0xff);
358 int ipu_image_convert_enum_format(int index
, u32
*fourcc
)
360 const struct ipu_image_pixfmt
*fmt
;
362 if (index
>= (int)ARRAY_SIZE(image_convert_formats
))
366 fmt
= &image_convert_formats
[index
];
367 *fourcc
= fmt
->fourcc
;
370 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format
);
372 static void free_dma_buf(struct ipu_image_convert_priv
*priv
,
373 struct ipu_image_convert_dma_buf
*buf
)
376 dma_free_coherent(priv
->ipu
->dev
,
377 buf
->len
, buf
->virt
, buf
->phys
);
382 static int alloc_dma_buf(struct ipu_image_convert_priv
*priv
,
383 struct ipu_image_convert_dma_buf
*buf
,
386 buf
->len
= PAGE_ALIGN(size
);
387 buf
->virt
= dma_alloc_coherent(priv
->ipu
->dev
, buf
->len
, &buf
->phys
,
388 GFP_DMA
| GFP_KERNEL
);
390 dev_err(priv
->ipu
->dev
, "failed to alloc dma buffer\n");
397 static inline int num_stripes(int dim
)
399 return (dim
- 1) / 1024 + 1;
403 * Calculate downsizing coefficients, which are the same for all tiles,
404 * and initial bilinear resizing coefficients, which are used to find the
405 * best seam positions.
406 * Also determine the number of tiles necessary to guarantee that no tile
407 * is larger than 1024 pixels in either dimension at the output and between
408 * IC downsizing and main processing sections.
410 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx
*ctx
,
411 struct ipu_image
*in
,
412 struct ipu_image
*out
)
414 u32 downsized_width
= in
->rect
.width
;
415 u32 downsized_height
= in
->rect
.height
;
416 u32 downsize_coeff_v
= 0;
417 u32 downsize_coeff_h
= 0;
418 u32 resized_width
= out
->rect
.width
;
419 u32 resized_height
= out
->rect
.height
;
425 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
426 resized_width
= out
->rect
.height
;
427 resized_height
= out
->rect
.width
;
430 /* Do not let invalid input lead to an endless loop below */
431 if (WARN_ON(resized_width
== 0 || resized_height
== 0))
434 while (downsized_width
>= resized_width
* 2) {
435 downsized_width
>>= 1;
439 while (downsized_height
>= resized_height
* 2) {
440 downsized_height
>>= 1;
445 * Calculate the bilinear resizing coefficients that could be used if
446 * we were converting with a single tile. The bottom right output pixel
447 * should sample as close as possible to the bottom right input pixel
448 * out of the decimator, but not overshoot it:
450 resize_coeff_h
= 8192 * (downsized_width
- 1) / (resized_width
- 1);
451 resize_coeff_v
= 8192 * (downsized_height
- 1) / (resized_height
- 1);
454 * Both the output of the IC downsizing section before being passed to
455 * the IC main processing section and the final output of the IC main
456 * processing section must be <= 1024 pixels in both dimensions.
458 cols
= num_stripes(max_t(u32
, downsized_width
, resized_width
));
459 rows
= num_stripes(max_t(u32
, downsized_height
, resized_height
));
461 dev_dbg(ctx
->chan
->priv
->ipu
->dev
,
462 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
463 __func__
, downsize_coeff_h
, resize_coeff_h
, downsize_coeff_v
,
464 resize_coeff_v
, cols
, rows
);
466 if (downsize_coeff_h
> 2 || downsize_coeff_v
> 2 ||
467 resize_coeff_h
> 0x3fff || resize_coeff_v
> 0x3fff)
470 ctx
->downsize_coeff_h
= downsize_coeff_h
;
471 ctx
->downsize_coeff_v
= downsize_coeff_v
;
472 ctx
->image_resize_coeff_h
= resize_coeff_h
;
473 ctx
->image_resize_coeff_v
= resize_coeff_v
;
474 ctx
->in
.num_cols
= cols
;
475 ctx
->in
.num_rows
= rows
;
480 #define round_closest(x, y) round_down((x) + (y)/2, (y))
483 * Find the best aligned seam position for the given column / row index.
484 * Rotation and image offsets are out of scope.
486 * @index: column / row index, used to calculate valid interval
487 * @in_edge: input right / bottom edge
488 * @out_edge: output right / bottom edge
489 * @in_align: input alignment, either horizontal 8-byte line start address
490 * alignment, or pixel alignment due to image format
491 * @out_align: output alignment, either horizontal 8-byte line start address
492 * alignment, or pixel alignment due to image format or rotator
494 * @in_burst: horizontal input burst size in case of horizontal flip
495 * @out_burst: horizontal output burst size or rotator block size
496 * @downsize_coeff: downsizing section coefficient
497 * @resize_coeff: main processing section resizing coefficient
498 * @_in_seam: aligned input seam position return value
499 * @_out_seam: aligned output seam position return value
501 static void find_best_seam(struct ipu_image_convert_ctx
*ctx
,
503 unsigned int in_edge
,
504 unsigned int out_edge
,
505 unsigned int in_align
,
506 unsigned int out_align
,
507 unsigned int in_burst
,
508 unsigned int out_burst
,
509 unsigned int downsize_coeff
,
510 unsigned int resize_coeff
,
514 struct device
*dev
= ctx
->chan
->priv
->ipu
->dev
;
515 unsigned int out_pos
;
516 /* Input / output seam position candidates */
517 unsigned int out_seam
= 0;
518 unsigned int in_seam
= 0;
519 unsigned int min_diff
= UINT_MAX
;
520 unsigned int out_start
;
521 unsigned int out_end
;
522 unsigned int in_start
;
525 /* Start within 1024 pixels of the right / bottom edge */
526 out_start
= max_t(int, index
* out_align
, out_edge
- 1024);
527 /* End before having to add more columns to the left / rows above */
528 out_end
= min_t(unsigned int, out_edge
, index
* 1024 + 1);
531 * Limit input seam position to make sure that the downsized input tile
532 * to the right or bottom does not exceed 1024 pixels.
534 in_start
= max_t(int, index
* in_align
,
535 in_edge
- (1024 << downsize_coeff
));
536 in_end
= min_t(unsigned int, in_edge
,
537 index
* (1024 << downsize_coeff
) + 1);
540 * Output tiles must start at a multiple of 8 bytes horizontally and
541 * possibly at an even line horizontally depending on the pixel format.
542 * Only consider output aligned positions for the seam.
544 out_start
= round_up(out_start
, out_align
);
545 for (out_pos
= out_start
; out_pos
< out_end
; out_pos
+= out_align
) {
547 unsigned int in_pos_aligned
;
548 unsigned int in_pos_rounded
;
552 * Tiles in the right row / bottom column may not be allowed to
553 * overshoot horizontally / vertically. out_burst may be the
554 * actual DMA burst size, or the rotator block size.
556 if ((out_burst
> 1) && (out_edge
- out_pos
) % out_burst
)
560 * Input sample position, corresponding to out_pos, 19.13 fixed
563 in_pos
= (out_pos
* resize_coeff
) << downsize_coeff
;
565 * The closest input sample position that we could actually
566 * start the input tile at, 19.13 fixed point.
568 in_pos_aligned
= round_closest(in_pos
, 8192U * in_align
);
569 /* Convert 19.13 fixed point to integer */
570 in_pos_rounded
= in_pos_aligned
/ 8192U;
572 if (in_pos_rounded
< in_start
)
574 if (in_pos_rounded
>= in_end
)
577 if ((in_burst
> 1) &&
578 (in_edge
- in_pos_rounded
) % in_burst
)
581 diff
= abs_diff(in_pos
, in_pos_aligned
);
582 if (diff
< min_diff
) {
583 in_seam
= in_pos_rounded
;
589 *_out_seam
= out_seam
;
592 dev_dbg(dev
, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
593 __func__
, out_seam
, out_align
, out_start
, out_end
,
594 in_seam
, in_align
, in_start
, in_end
, min_diff
/ 8192,
595 DIV_ROUND_CLOSEST(min_diff
% 8192 * 1000, 8192));
599 * Tile left edges are required to be aligned to multiples of 8 bytes
602 static inline u32
tile_left_align(const struct ipu_image_pixfmt
*fmt
)
605 return fmt
->uv_packed
? 8 : 8 * fmt
->uv_width_dec
;
607 return fmt
->bpp
== 32 ? 2 : fmt
->bpp
== 16 ? 4 : 8;
611 * Tile top edge alignment is only limited by chroma subsampling.
613 static inline u32
tile_top_align(const struct ipu_image_pixfmt
*fmt
)
615 return fmt
->uv_height_dec
> 1 ? 2 : 1;
618 static inline u32
tile_width_align(enum ipu_image_convert_type type
,
619 const struct ipu_image_pixfmt
*fmt
,
620 enum ipu_rotate_mode rot_mode
)
622 if (type
== IMAGE_CONVERT_IN
) {
624 * The IC burst reads 8 pixels at a time. Reading beyond the
625 * end of the line is usually acceptable. Those pixels are
626 * ignored, unless the IC has to write the scaled line in
629 return (!ipu_rot_mode_is_irt(rot_mode
) &&
630 (rot_mode
& IPU_ROT_BIT_HFLIP
)) ? 8 : 2;
634 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
635 * formats to guarantee 8-byte aligned line start addresses in the
636 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
637 * for all other formats.
639 return (ipu_rot_mode_is_irt(rot_mode
) &&
640 fmt
->planar
&& !fmt
->uv_packed
) ?
641 8 * fmt
->uv_width_dec
: 8;
644 static inline u32
tile_height_align(enum ipu_image_convert_type type
,
645 const struct ipu_image_pixfmt
*fmt
,
646 enum ipu_rotate_mode rot_mode
)
648 if (type
== IMAGE_CONVERT_IN
|| !ipu_rot_mode_is_irt(rot_mode
))
652 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
653 * formats to guarantee 8-byte aligned line start addresses in the
654 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
655 * for all other formats.
657 return (fmt
->planar
&& !fmt
->uv_packed
) ? 8 * fmt
->uv_width_dec
: 8;
661 * Fill in left position and width and for all tiles in an input column, and
662 * for all corresponding output tiles. If the 90° rotator is used, the output
663 * tiles are in a row, and output tile top position and height are set.
665 static void fill_tile_column(struct ipu_image_convert_ctx
*ctx
,
667 struct ipu_image_convert_image
*in
,
668 unsigned int in_left
, unsigned int in_width
,
669 struct ipu_image_convert_image
*out
,
670 unsigned int out_left
, unsigned int out_width
)
672 unsigned int row
, tile_idx
;
673 struct ipu_image_tile
*in_tile
, *out_tile
;
675 for (row
= 0; row
< in
->num_rows
; row
++) {
676 tile_idx
= in
->num_cols
* row
+ col
;
677 in_tile
= &in
->tile
[tile_idx
];
678 out_tile
= &out
->tile
[ctx
->out_tile_map
[tile_idx
]];
680 in_tile
->left
= in_left
;
681 in_tile
->width
= in_width
;
683 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
684 out_tile
->top
= out_left
;
685 out_tile
->height
= out_width
;
687 out_tile
->left
= out_left
;
688 out_tile
->width
= out_width
;
694 * Fill in top position and height and for all tiles in an input row, and
695 * for all corresponding output tiles. If the 90° rotator is used, the output
696 * tiles are in a column, and output tile left position and width are set.
698 static void fill_tile_row(struct ipu_image_convert_ctx
*ctx
, unsigned int row
,
699 struct ipu_image_convert_image
*in
,
700 unsigned int in_top
, unsigned int in_height
,
701 struct ipu_image_convert_image
*out
,
702 unsigned int out_top
, unsigned int out_height
)
704 unsigned int col
, tile_idx
;
705 struct ipu_image_tile
*in_tile
, *out_tile
;
707 for (col
= 0; col
< in
->num_cols
; col
++) {
708 tile_idx
= in
->num_cols
* row
+ col
;
709 in_tile
= &in
->tile
[tile_idx
];
710 out_tile
= &out
->tile
[ctx
->out_tile_map
[tile_idx
]];
712 in_tile
->top
= in_top
;
713 in_tile
->height
= in_height
;
715 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
716 out_tile
->left
= out_top
;
717 out_tile
->width
= out_height
;
719 out_tile
->top
= out_top
;
720 out_tile
->height
= out_height
;
726 * Find the best horizontal and vertical seam positions to split into tiles.
727 * Minimize the fractional part of the input sampling position for the
728 * top / left pixels of each tile.
730 static void find_seams(struct ipu_image_convert_ctx
*ctx
,
731 struct ipu_image_convert_image
*in
,
732 struct ipu_image_convert_image
*out
)
734 struct device
*dev
= ctx
->chan
->priv
->ipu
->dev
;
735 unsigned int resized_width
= out
->base
.rect
.width
;
736 unsigned int resized_height
= out
->base
.rect
.height
;
739 unsigned int in_left_align
= tile_left_align(in
->fmt
);
740 unsigned int in_top_align
= tile_top_align(in
->fmt
);
741 unsigned int out_left_align
= tile_left_align(out
->fmt
);
742 unsigned int out_top_align
= tile_top_align(out
->fmt
);
743 unsigned int out_width_align
= tile_width_align(out
->type
, out
->fmt
,
745 unsigned int out_height_align
= tile_height_align(out
->type
, out
->fmt
,
747 unsigned int in_right
= in
->base
.rect
.width
;
748 unsigned int in_bottom
= in
->base
.rect
.height
;
749 unsigned int out_right
= out
->base
.rect
.width
;
750 unsigned int out_bottom
= out
->base
.rect
.height
;
751 unsigned int flipped_out_left
;
752 unsigned int flipped_out_top
;
754 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
755 /* Switch width/height and align top left to IRT block size */
756 resized_width
= out
->base
.rect
.height
;
757 resized_height
= out
->base
.rect
.width
;
758 out_left_align
= out_height_align
;
759 out_top_align
= out_width_align
;
760 out_width_align
= out_left_align
;
761 out_height_align
= out_top_align
;
762 out_right
= out
->base
.rect
.height
;
763 out_bottom
= out
->base
.rect
.width
;
766 for (col
= in
->num_cols
- 1; col
> 0; col
--) {
767 bool allow_in_overshoot
= ipu_rot_mode_is_irt(ctx
->rot_mode
) ||
768 !(ctx
->rot_mode
& IPU_ROT_BIT_HFLIP
);
769 bool allow_out_overshoot
= (col
< in
->num_cols
- 1) &&
770 !(ctx
->rot_mode
& IPU_ROT_BIT_HFLIP
);
771 unsigned int in_left
;
772 unsigned int out_left
;
775 * Align input width to burst length if the scaling step flips
779 find_best_seam(ctx
, col
,
781 in_left_align
, out_left_align
,
782 allow_in_overshoot
? 1 : 8 /* burst length */,
783 allow_out_overshoot
? 1 : out_width_align
,
784 ctx
->downsize_coeff_h
, ctx
->image_resize_coeff_h
,
785 &in_left
, &out_left
);
787 if (ctx
->rot_mode
& IPU_ROT_BIT_HFLIP
)
788 flipped_out_left
= resized_width
- out_right
;
790 flipped_out_left
= out_left
;
792 fill_tile_column(ctx
, col
, in
, in_left
, in_right
- in_left
,
793 out
, flipped_out_left
, out_right
- out_left
);
795 dev_dbg(dev
, "%s: col %u: %u, %u -> %u, %u\n", __func__
, col
,
796 in_left
, in_right
- in_left
,
797 flipped_out_left
, out_right
- out_left
);
800 out_right
= out_left
;
803 flipped_out_left
= (ctx
->rot_mode
& IPU_ROT_BIT_HFLIP
) ?
804 resized_width
- out_right
: 0;
806 fill_tile_column(ctx
, 0, in
, 0, in_right
,
807 out
, flipped_out_left
, out_right
);
809 dev_dbg(dev
, "%s: col 0: 0, %u -> %u, %u\n", __func__
,
810 in_right
, flipped_out_left
, out_right
);
812 for (row
= in
->num_rows
- 1; row
> 0; row
--) {
813 bool allow_overshoot
= row
< in
->num_rows
- 1;
815 unsigned int out_top
;
817 find_best_seam(ctx
, row
,
818 in_bottom
, out_bottom
,
819 in_top_align
, out_top_align
,
820 1, allow_overshoot
? 1 : out_height_align
,
821 ctx
->downsize_coeff_v
, ctx
->image_resize_coeff_v
,
824 if ((ctx
->rot_mode
& IPU_ROT_BIT_VFLIP
) ^
825 ipu_rot_mode_is_irt(ctx
->rot_mode
))
826 flipped_out_top
= resized_height
- out_bottom
;
828 flipped_out_top
= out_top
;
830 fill_tile_row(ctx
, row
, in
, in_top
, in_bottom
- in_top
,
831 out
, flipped_out_top
, out_bottom
- out_top
);
833 dev_dbg(dev
, "%s: row %u: %u, %u -> %u, %u\n", __func__
, row
,
834 in_top
, in_bottom
- in_top
,
835 flipped_out_top
, out_bottom
- out_top
);
838 out_bottom
= out_top
;
841 if ((ctx
->rot_mode
& IPU_ROT_BIT_VFLIP
) ^
842 ipu_rot_mode_is_irt(ctx
->rot_mode
))
843 flipped_out_top
= resized_height
- out_bottom
;
847 fill_tile_row(ctx
, 0, in
, 0, in_bottom
,
848 out
, flipped_out_top
, out_bottom
);
850 dev_dbg(dev
, "%s: row 0: 0, %u -> %u, %u\n", __func__
,
851 in_bottom
, flipped_out_top
, out_bottom
);
854 static int calc_tile_dimensions(struct ipu_image_convert_ctx
*ctx
,
855 struct ipu_image_convert_image
*image
)
857 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
858 struct ipu_image_convert_priv
*priv
= chan
->priv
;
859 unsigned int max_width
= 1024;
860 unsigned int max_height
= 1024;
863 if (image
->type
== IMAGE_CONVERT_IN
) {
864 /* Up to 4096x4096 input tile size */
865 max_width
<<= ctx
->downsize_coeff_h
;
866 max_height
<<= ctx
->downsize_coeff_v
;
869 for (i
= 0; i
< ctx
->num_tiles
; i
++) {
870 struct ipu_image_tile
*tile
;
871 const unsigned int row
= i
/ image
->num_cols
;
872 const unsigned int col
= i
% image
->num_cols
;
874 if (image
->type
== IMAGE_CONVERT_OUT
)
875 tile
= &image
->tile
[ctx
->out_tile_map
[i
]];
877 tile
= &image
->tile
[i
];
879 tile
->size
= ((tile
->height
* image
->fmt
->bpp
) >> 3) *
882 if (image
->fmt
->planar
) {
883 tile
->stride
= tile
->width
;
884 tile
->rot_stride
= tile
->height
;
887 (image
->fmt
->bpp
* tile
->width
) >> 3;
889 (image
->fmt
->bpp
* tile
->height
) >> 3;
892 dev_dbg(priv
->ipu
->dev
,
893 "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
895 image
->type
== IMAGE_CONVERT_IN
? "Input" : "Output",
897 tile
->width
, tile
->height
, tile
->left
, tile
->top
);
899 if (!tile
->width
|| tile
->width
> max_width
||
900 !tile
->height
|| tile
->height
> max_height
) {
901 dev_err(priv
->ipu
->dev
, "invalid %s tile size: %ux%u\n",
902 image
->type
== IMAGE_CONVERT_IN
? "input" :
903 "output", tile
->width
, tile
->height
);
912 * Use the rotation transformation to find the tile coordinates
913 * (row, col) of a tile in the destination frame that corresponds
914 * to the given tile coordinates of a source frame. The destination
915 * coordinate is then converted to a tile index.
917 static int transform_tile_index(struct ipu_image_convert_ctx
*ctx
,
918 int src_row
, int src_col
)
920 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
921 struct ipu_image_convert_priv
*priv
= chan
->priv
;
922 struct ipu_image_convert_image
*s_image
= &ctx
->in
;
923 struct ipu_image_convert_image
*d_image
= &ctx
->out
;
924 int dst_row
, dst_col
;
926 /* with no rotation it's a 1:1 mapping */
927 if (ctx
->rot_mode
== IPU_ROTATE_NONE
)
928 return src_row
* s_image
->num_cols
+ src_col
;
931 * before doing the transform, first we have to translate
932 * source row,col for an origin in the center of s_image
934 src_row
= src_row
* 2 - (s_image
->num_rows
- 1);
935 src_col
= src_col
* 2 - (s_image
->num_cols
- 1);
937 /* do the rotation transform */
938 if (ctx
->rot_mode
& IPU_ROT_BIT_90
) {
947 if (ctx
->rot_mode
& IPU_ROT_BIT_HFLIP
)
949 if (ctx
->rot_mode
& IPU_ROT_BIT_VFLIP
)
952 dev_dbg(priv
->ipu
->dev
, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
953 chan
->ic_task
, ctx
, src_col
, src_row
, dst_col
, dst_row
);
956 * finally translate dest row,col using an origin in upper
959 dst_row
+= d_image
->num_rows
- 1;
960 dst_col
+= d_image
->num_cols
- 1;
964 return dst_row
* d_image
->num_cols
+ dst_col
;
968 * Fill the out_tile_map[] with transformed destination tile indeces.
970 static void calc_out_tile_map(struct ipu_image_convert_ctx
*ctx
)
972 struct ipu_image_convert_image
*s_image
= &ctx
->in
;
973 unsigned int row
, col
, tile
= 0;
975 for (row
= 0; row
< s_image
->num_rows
; row
++) {
976 for (col
= 0; col
< s_image
->num_cols
; col
++) {
977 ctx
->out_tile_map
[tile
] =
978 transform_tile_index(ctx
, row
, col
);
984 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx
*ctx
,
985 struct ipu_image_convert_image
*image
)
987 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
988 struct ipu_image_convert_priv
*priv
= chan
->priv
;
989 const struct ipu_image_pixfmt
*fmt
= image
->fmt
;
990 unsigned int row
, col
, tile
= 0;
991 u32 H
, top
, y_stride
, uv_stride
;
992 u32 uv_row_off
, uv_col_off
, uv_off
, u_off
, v_off
;
993 u32 y_row_off
, y_col_off
, y_off
;
996 /* setup some convenience vars */
997 H
= image
->base
.pix
.height
;
999 y_stride
= image
->stride
;
1000 uv_stride
= y_stride
/ fmt
->uv_width_dec
;
1004 y_size
= H
* y_stride
;
1005 uv_size
= y_size
/ (fmt
->uv_width_dec
* fmt
->uv_height_dec
);
1007 for (row
= 0; row
< image
->num_rows
; row
++) {
1008 top
= image
->tile
[tile
].top
;
1009 y_row_off
= top
* y_stride
;
1010 uv_row_off
= (top
* uv_stride
) / fmt
->uv_height_dec
;
1012 for (col
= 0; col
< image
->num_cols
; col
++) {
1013 y_col_off
= image
->tile
[tile
].left
;
1014 uv_col_off
= y_col_off
/ fmt
->uv_width_dec
;
1018 y_off
= y_row_off
+ y_col_off
;
1019 uv_off
= uv_row_off
+ uv_col_off
;
1021 u_off
= y_size
- y_off
+ uv_off
;
1022 v_off
= (fmt
->uv_packed
) ? 0 : u_off
+ uv_size
;
1023 if (fmt
->uv_swapped
)
1026 image
->tile
[tile
].offset
= y_off
;
1027 image
->tile
[tile
].u_off
= u_off
;
1028 image
->tile
[tile
++].v_off
= v_off
;
1030 if ((y_off
& 0x7) || (u_off
& 0x7) || (v_off
& 0x7)) {
1031 dev_err(priv
->ipu
->dev
,
1032 "task %u: ctx %p: %s@[%d,%d]: "
1033 "y_off %08x, u_off %08x, v_off %08x\n",
1035 image
->type
== IMAGE_CONVERT_IN
?
1036 "Input" : "Output", row
, col
,
1037 y_off
, u_off
, v_off
);
1046 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx
*ctx
,
1047 struct ipu_image_convert_image
*image
)
1049 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
1050 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1051 const struct ipu_image_pixfmt
*fmt
= image
->fmt
;
1052 unsigned int row
, col
, tile
= 0;
1053 u32 bpp
, stride
, offset
;
1054 u32 row_off
, col_off
;
1056 /* setup some convenience vars */
1057 stride
= image
->stride
;
1060 for (row
= 0; row
< image
->num_rows
; row
++) {
1061 row_off
= image
->tile
[tile
].top
* stride
;
1063 for (col
= 0; col
< image
->num_cols
; col
++) {
1064 col_off
= (image
->tile
[tile
].left
* bpp
) >> 3;
1066 offset
= row_off
+ col_off
;
1068 image
->tile
[tile
].offset
= offset
;
1069 image
->tile
[tile
].u_off
= 0;
1070 image
->tile
[tile
++].v_off
= 0;
1073 dev_err(priv
->ipu
->dev
,
1074 "task %u: ctx %p: %s@[%d,%d]: "
1077 image
->type
== IMAGE_CONVERT_IN
?
1078 "Input" : "Output", row
, col
,
1088 static int calc_tile_offsets(struct ipu_image_convert_ctx
*ctx
,
1089 struct ipu_image_convert_image
*image
)
1091 if (image
->fmt
->planar
)
1092 return calc_tile_offsets_planar(ctx
, image
);
1094 return calc_tile_offsets_packed(ctx
, image
);
1098 * Calculate the resizing ratio for the IC main processing section given input
1099 * size, fixed downsizing coefficient, and output size.
1100 * Either round to closest for the next tile's first pixel to minimize seams
1101 * and distortion (for all but right column / bottom row), or round down to
1102 * avoid sampling beyond the edges of the input image for this tile's last
1104 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1106 static u32
calc_resize_coeff(u32 input_size
, u32 downsize_coeff
,
1107 u32 output_size
, bool allow_overshoot
)
1109 u32 downsized
= input_size
>> downsize_coeff
;
1111 if (allow_overshoot
)
1112 return DIV_ROUND_CLOSEST(8192 * downsized
, output_size
);
1114 return 8192 * (downsized
- 1) / (output_size
- 1);
1118 * Slightly modify resize coefficients per tile to hide the bilinear
1119 * interpolator reset at tile borders, shifting the right / bottom edge
1120 * by up to a half input pixel. This removes noticeable seams between
1121 * tiles at higher upscaling factors.
1123 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx
*ctx
)
1125 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
1126 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1127 struct ipu_image_tile
*in_tile
, *out_tile
;
1128 unsigned int col
, row
, tile_idx
;
1129 unsigned int last_output
;
1131 for (col
= 0; col
< ctx
->in
.num_cols
; col
++) {
1132 bool closest
= (col
< ctx
->in
.num_cols
- 1) &&
1133 !(ctx
->rot_mode
& IPU_ROT_BIT_HFLIP
);
1139 in_tile
= &ctx
->in
.tile
[tile_idx
];
1140 out_tile
= &ctx
->out
.tile
[ctx
->out_tile_map
[tile_idx
]];
1142 if (ipu_rot_mode_is_irt(ctx
->rot_mode
))
1143 resized_width
= out_tile
->height
;
1145 resized_width
= out_tile
->width
;
1147 resize_coeff_h
= calc_resize_coeff(in_tile
->width
,
1148 ctx
->downsize_coeff_h
,
1149 resized_width
, closest
);
1151 dev_dbg(priv
->ipu
->dev
, "%s: column %u hscale: *8192/%u\n",
1152 __func__
, col
, resize_coeff_h
);
1155 * With the horizontal scaling factor known, round up resized
1156 * width (output width or height) to burst size.
1158 resized_width
= round_up(resized_width
, 8);
1161 * Calculate input width from the last accessed input pixel
1162 * given resized width and scaling coefficients. Round up to
1165 last_output
= resized_width
- 1;
1166 if (closest
&& ((last_output
* resize_coeff_h
) % 8192))
1168 in_width
= round_up(
1169 (DIV_ROUND_UP(last_output
* resize_coeff_h
, 8192) + 1)
1170 << ctx
->downsize_coeff_h
, 8);
1172 for (row
= 0; row
< ctx
->in
.num_rows
; row
++) {
1173 tile_idx
= row
* ctx
->in
.num_cols
+ col
;
1174 in_tile
= &ctx
->in
.tile
[tile_idx
];
1175 out_tile
= &ctx
->out
.tile
[ctx
->out_tile_map
[tile_idx
]];
1177 if (ipu_rot_mode_is_irt(ctx
->rot_mode
))
1178 out_tile
->height
= resized_width
;
1180 out_tile
->width
= resized_width
;
1182 in_tile
->width
= in_width
;
1185 ctx
->resize_coeffs_h
[col
] = resize_coeff_h
;
1188 for (row
= 0; row
< ctx
->in
.num_rows
; row
++) {
1189 bool closest
= (row
< ctx
->in
.num_rows
- 1) &&
1190 !(ctx
->rot_mode
& IPU_ROT_BIT_VFLIP
);
1195 tile_idx
= row
* ctx
->in
.num_cols
;
1196 in_tile
= &ctx
->in
.tile
[tile_idx
];
1197 out_tile
= &ctx
->out
.tile
[ctx
->out_tile_map
[tile_idx
]];
1199 if (ipu_rot_mode_is_irt(ctx
->rot_mode
))
1200 resized_height
= out_tile
->width
;
1202 resized_height
= out_tile
->height
;
1204 resize_coeff_v
= calc_resize_coeff(in_tile
->height
,
1205 ctx
->downsize_coeff_v
,
1206 resized_height
, closest
);
1208 dev_dbg(priv
->ipu
->dev
, "%s: row %u vscale: *8192/%u\n",
1209 __func__
, row
, resize_coeff_v
);
1212 * With the vertical scaling factor known, round up resized
1213 * height (output width or height) to IDMAC limitations.
1215 resized_height
= round_up(resized_height
, 2);
1218 * Calculate input width from the last accessed input pixel
1219 * given resized height and scaling coefficients. Align to
1220 * IDMAC restrictions.
1222 last_output
= resized_height
- 1;
1223 if (closest
&& ((last_output
* resize_coeff_v
) % 8192))
1225 in_height
= round_up(
1226 (DIV_ROUND_UP(last_output
* resize_coeff_v
, 8192) + 1)
1227 << ctx
->downsize_coeff_v
, 2);
1229 for (col
= 0; col
< ctx
->in
.num_cols
; col
++) {
1230 tile_idx
= row
* ctx
->in
.num_cols
+ col
;
1231 in_tile
= &ctx
->in
.tile
[tile_idx
];
1232 out_tile
= &ctx
->out
.tile
[ctx
->out_tile_map
[tile_idx
]];
1234 if (ipu_rot_mode_is_irt(ctx
->rot_mode
))
1235 out_tile
->width
= resized_height
;
1237 out_tile
->height
= resized_height
;
1239 in_tile
->height
= in_height
;
1242 ctx
->resize_coeffs_v
[row
] = resize_coeff_v
;
1247 * return the number of runs in given queue (pending_q or done_q)
1248 * for this context. hold irqlock when calling.
1250 static int get_run_count(struct ipu_image_convert_ctx
*ctx
,
1251 struct list_head
*q
)
1253 struct ipu_image_convert_run
*run
;
1256 lockdep_assert_held(&ctx
->chan
->irqlock
);
1258 list_for_each_entry(run
, q
, list
) {
1259 if (run
->ctx
== ctx
)
1266 static void convert_stop(struct ipu_image_convert_run
*run
)
1268 struct ipu_image_convert_ctx
*ctx
= run
->ctx
;
1269 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
1270 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1272 dev_dbg(priv
->ipu
->dev
, "%s: task %u: stopping ctx %p run %p\n",
1273 __func__
, chan
->ic_task
, ctx
, run
);
1275 /* disable IC tasks and the channels */
1276 ipu_ic_task_disable(chan
->ic
);
1277 ipu_idmac_disable_channel(chan
->in_chan
);
1278 ipu_idmac_disable_channel(chan
->out_chan
);
1280 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
1281 ipu_idmac_disable_channel(chan
->rotation_in_chan
);
1282 ipu_idmac_disable_channel(chan
->rotation_out_chan
);
1283 ipu_idmac_unlink(chan
->out_chan
, chan
->rotation_in_chan
);
1286 ipu_ic_disable(chan
->ic
);
1289 static void init_idmac_channel(struct ipu_image_convert_ctx
*ctx
,
1290 struct ipuv3_channel
*channel
,
1291 struct ipu_image_convert_image
*image
,
1292 enum ipu_rotate_mode rot_mode
,
1293 bool rot_swap_width_height
,
1296 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
1297 unsigned int burst_size
;
1298 u32 width
, height
, stride
;
1299 dma_addr_t addr0
, addr1
= 0;
1300 struct ipu_image tile_image
;
1301 unsigned int tile_idx
[2];
1303 if (image
->type
== IMAGE_CONVERT_OUT
) {
1304 tile_idx
[0] = ctx
->out_tile_map
[tile
];
1305 tile_idx
[1] = ctx
->out_tile_map
[1];
1311 if (rot_swap_width_height
) {
1312 width
= image
->tile
[tile_idx
[0]].height
;
1313 height
= image
->tile
[tile_idx
[0]].width
;
1314 stride
= image
->tile
[tile_idx
[0]].rot_stride
;
1315 addr0
= ctx
->rot_intermediate
[0].phys
;
1316 if (ctx
->double_buffering
)
1317 addr1
= ctx
->rot_intermediate
[1].phys
;
1319 width
= image
->tile
[tile_idx
[0]].width
;
1320 height
= image
->tile
[tile_idx
[0]].height
;
1321 stride
= image
->stride
;
1322 addr0
= image
->base
.phys0
+
1323 image
->tile
[tile_idx
[0]].offset
;
1324 if (ctx
->double_buffering
)
1325 addr1
= image
->base
.phys0
+
1326 image
->tile
[tile_idx
[1]].offset
;
1329 ipu_cpmem_zero(channel
);
1331 memset(&tile_image
, 0, sizeof(tile_image
));
1332 tile_image
.pix
.width
= tile_image
.rect
.width
= width
;
1333 tile_image
.pix
.height
= tile_image
.rect
.height
= height
;
1334 tile_image
.pix
.bytesperline
= stride
;
1335 tile_image
.pix
.pixelformat
= image
->fmt
->fourcc
;
1336 tile_image
.phys0
= addr0
;
1337 tile_image
.phys1
= addr1
;
1338 if (image
->fmt
->planar
&& !rot_swap_width_height
) {
1339 tile_image
.u_offset
= image
->tile
[tile_idx
[0]].u_off
;
1340 tile_image
.v_offset
= image
->tile
[tile_idx
[0]].v_off
;
1343 ipu_cpmem_set_image(channel
, &tile_image
);
1346 ipu_cpmem_set_rotation(channel
, rot_mode
);
1349 * Skip writing U and V components to odd rows in the output
1350 * channels for planar 4:2:0.
1352 if ((channel
== chan
->out_chan
||
1353 channel
== chan
->rotation_out_chan
) &&
1354 image
->fmt
->planar
&& image
->fmt
->uv_height_dec
== 2)
1355 ipu_cpmem_skip_odd_chroma_rows(channel
);
1357 if (channel
== chan
->rotation_in_chan
||
1358 channel
== chan
->rotation_out_chan
) {
1360 ipu_cpmem_set_block_mode(channel
);
1362 burst_size
= (width
% 16) ? 8 : 16;
1364 ipu_cpmem_set_burstsize(channel
, burst_size
);
1366 ipu_ic_task_idma_init(chan
->ic
, channel
, width
, height
,
1367 burst_size
, rot_mode
);
1370 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1371 * only do this when there is no PRG present.
1373 if (!channel
->ipu
->prg_priv
)
1374 ipu_cpmem_set_axi_id(channel
, 1);
1376 ipu_idmac_set_double_buffer(channel
, ctx
->double_buffering
);
1379 static int convert_start(struct ipu_image_convert_run
*run
, unsigned int tile
)
1381 struct ipu_image_convert_ctx
*ctx
= run
->ctx
;
1382 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
1383 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1384 struct ipu_image_convert_image
*s_image
= &ctx
->in
;
1385 struct ipu_image_convert_image
*d_image
= &ctx
->out
;
1386 unsigned int dst_tile
= ctx
->out_tile_map
[tile
];
1387 unsigned int dest_width
, dest_height
;
1388 unsigned int col
, row
;
1392 dev_dbg(priv
->ipu
->dev
, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1393 __func__
, chan
->ic_task
, ctx
, run
, tile
, dst_tile
);
1395 /* clear EOF irq mask */
1398 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
1399 /* swap width/height for resizer */
1400 dest_width
= d_image
->tile
[dst_tile
].height
;
1401 dest_height
= d_image
->tile
[dst_tile
].width
;
1403 dest_width
= d_image
->tile
[dst_tile
].width
;
1404 dest_height
= d_image
->tile
[dst_tile
].height
;
1407 row
= tile
/ s_image
->num_cols
;
1408 col
= tile
% s_image
->num_cols
;
1410 rsc
= (ctx
->downsize_coeff_v
<< 30) |
1411 (ctx
->resize_coeffs_v
[row
] << 16) |
1412 (ctx
->downsize_coeff_h
<< 14) |
1413 (ctx
->resize_coeffs_h
[col
]);
1415 dev_dbg(priv
->ipu
->dev
, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1416 __func__
, s_image
->tile
[tile
].width
,
1417 s_image
->tile
[tile
].height
, dest_width
, dest_height
, rsc
);
1419 /* setup the IC resizer and CSC */
1420 ret
= ipu_ic_task_init_rsc(chan
->ic
, &ctx
->csc
,
1421 s_image
->tile
[tile
].width
,
1422 s_image
->tile
[tile
].height
,
1427 dev_err(priv
->ipu
->dev
, "ipu_ic_task_init failed, %d\n", ret
);
1431 /* init the source MEM-->IC PP IDMAC channel */
1432 init_idmac_channel(ctx
, chan
->in_chan
, s_image
,
1433 IPU_ROTATE_NONE
, false, tile
);
1435 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
1436 /* init the IC PP-->MEM IDMAC channel */
1437 init_idmac_channel(ctx
, chan
->out_chan
, d_image
,
1438 IPU_ROTATE_NONE
, true, tile
);
1440 /* init the MEM-->IC PP ROT IDMAC channel */
1441 init_idmac_channel(ctx
, chan
->rotation_in_chan
, d_image
,
1442 ctx
->rot_mode
, true, tile
);
1444 /* init the destination IC PP ROT-->MEM IDMAC channel */
1445 init_idmac_channel(ctx
, chan
->rotation_out_chan
, d_image
,
1446 IPU_ROTATE_NONE
, false, tile
);
1448 /* now link IC PP-->MEM to MEM-->IC PP ROT */
1449 ipu_idmac_link(chan
->out_chan
, chan
->rotation_in_chan
);
1451 /* init the destination IC PP-->MEM IDMAC channel */
1452 init_idmac_channel(ctx
, chan
->out_chan
, d_image
,
1453 ctx
->rot_mode
, false, tile
);
1457 ipu_ic_enable(chan
->ic
);
1459 /* set buffers ready */
1460 ipu_idmac_select_buffer(chan
->in_chan
, 0);
1461 ipu_idmac_select_buffer(chan
->out_chan
, 0);
1462 if (ipu_rot_mode_is_irt(ctx
->rot_mode
))
1463 ipu_idmac_select_buffer(chan
->rotation_out_chan
, 0);
1464 if (ctx
->double_buffering
) {
1465 ipu_idmac_select_buffer(chan
->in_chan
, 1);
1466 ipu_idmac_select_buffer(chan
->out_chan
, 1);
1467 if (ipu_rot_mode_is_irt(ctx
->rot_mode
))
1468 ipu_idmac_select_buffer(chan
->rotation_out_chan
, 1);
1471 /* enable the channels! */
1472 ipu_idmac_enable_channel(chan
->in_chan
);
1473 ipu_idmac_enable_channel(chan
->out_chan
);
1474 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
1475 ipu_idmac_enable_channel(chan
->rotation_in_chan
);
1476 ipu_idmac_enable_channel(chan
->rotation_out_chan
);
1479 ipu_ic_task_enable(chan
->ic
);
1481 ipu_cpmem_dump(chan
->in_chan
);
1482 ipu_cpmem_dump(chan
->out_chan
);
1483 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
1484 ipu_cpmem_dump(chan
->rotation_in_chan
);
1485 ipu_cpmem_dump(chan
->rotation_out_chan
);
1488 ipu_dump(priv
->ipu
);
1493 /* hold irqlock when calling */
1494 static int do_run(struct ipu_image_convert_run
*run
)
1496 struct ipu_image_convert_ctx
*ctx
= run
->ctx
;
1497 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
1499 lockdep_assert_held(&chan
->irqlock
);
1501 ctx
->in
.base
.phys0
= run
->in_phys
;
1502 ctx
->out
.base
.phys0
= run
->out_phys
;
1504 ctx
->cur_buf_num
= 0;
1507 /* remove run from pending_q and set as current */
1508 list_del(&run
->list
);
1509 chan
->current_run
= run
;
1511 return convert_start(run
, 0);
1514 /* hold irqlock when calling */
1515 static void run_next(struct ipu_image_convert_chan
*chan
)
1517 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1518 struct ipu_image_convert_run
*run
, *tmp
;
1521 lockdep_assert_held(&chan
->irqlock
);
1523 list_for_each_entry_safe(run
, tmp
, &chan
->pending_q
, list
) {
1524 /* skip contexts that are aborting */
1525 if (run
->ctx
->aborting
) {
1526 dev_dbg(priv
->ipu
->dev
,
1527 "%s: task %u: skipping aborting ctx %p run %p\n",
1528 __func__
, chan
->ic_task
, run
->ctx
, run
);
1537 * something went wrong with start, add the run
1538 * to done q and continue to the next run in the
1542 list_add_tail(&run
->list
, &chan
->done_q
);
1543 chan
->current_run
= NULL
;
1547 static void empty_done_q(struct ipu_image_convert_chan
*chan
)
1549 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1550 struct ipu_image_convert_run
*run
;
1551 unsigned long flags
;
1553 spin_lock_irqsave(&chan
->irqlock
, flags
);
1555 while (!list_empty(&chan
->done_q
)) {
1556 run
= list_entry(chan
->done_q
.next
,
1557 struct ipu_image_convert_run
,
1560 list_del(&run
->list
);
1562 dev_dbg(priv
->ipu
->dev
,
1563 "%s: task %u: completing ctx %p run %p with %d\n",
1564 __func__
, chan
->ic_task
, run
->ctx
, run
, run
->status
);
1566 /* call the completion callback and free the run */
1567 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
1568 run
->ctx
->complete(run
, run
->ctx
->complete_context
);
1569 spin_lock_irqsave(&chan
->irqlock
, flags
);
1572 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
1576 * the bottom half thread clears out the done_q, calling the
1577 * completion handler for each.
1579 static irqreturn_t
do_bh(int irq
, void *dev_id
)
1581 struct ipu_image_convert_chan
*chan
= dev_id
;
1582 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1583 struct ipu_image_convert_ctx
*ctx
;
1584 unsigned long flags
;
1586 dev_dbg(priv
->ipu
->dev
, "%s: task %u: enter\n", __func__
,
1591 spin_lock_irqsave(&chan
->irqlock
, flags
);
1594 * the done_q is cleared out, signal any contexts
1595 * that are aborting that abort can complete.
1597 list_for_each_entry(ctx
, &chan
->ctx_list
, list
) {
1598 if (ctx
->aborting
) {
1599 dev_dbg(priv
->ipu
->dev
,
1600 "%s: task %u: signaling abort for ctx %p\n",
1601 __func__
, chan
->ic_task
, ctx
);
1602 complete_all(&ctx
->aborted
);
1606 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
1608 dev_dbg(priv
->ipu
->dev
, "%s: task %u: exit\n", __func__
,
1614 static bool ic_settings_changed(struct ipu_image_convert_ctx
*ctx
)
1616 unsigned int cur_tile
= ctx
->next_tile
- 1;
1617 unsigned int next_tile
= ctx
->next_tile
;
1619 if (ctx
->resize_coeffs_h
[cur_tile
% ctx
->in
.num_cols
] !=
1620 ctx
->resize_coeffs_h
[next_tile
% ctx
->in
.num_cols
] ||
1621 ctx
->resize_coeffs_v
[cur_tile
/ ctx
->in
.num_cols
] !=
1622 ctx
->resize_coeffs_v
[next_tile
/ ctx
->in
.num_cols
] ||
1623 ctx
->in
.tile
[cur_tile
].width
!= ctx
->in
.tile
[next_tile
].width
||
1624 ctx
->in
.tile
[cur_tile
].height
!= ctx
->in
.tile
[next_tile
].height
||
1625 ctx
->out
.tile
[cur_tile
].width
!= ctx
->out
.tile
[next_tile
].width
||
1626 ctx
->out
.tile
[cur_tile
].height
!= ctx
->out
.tile
[next_tile
].height
)
1632 /* hold irqlock when calling */
1633 static irqreturn_t
do_tile_complete(struct ipu_image_convert_run
*run
)
1635 struct ipu_image_convert_ctx
*ctx
= run
->ctx
;
1636 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
1637 struct ipu_image_tile
*src_tile
, *dst_tile
;
1638 struct ipu_image_convert_image
*s_image
= &ctx
->in
;
1639 struct ipu_image_convert_image
*d_image
= &ctx
->out
;
1640 struct ipuv3_channel
*outch
;
1641 unsigned int dst_idx
;
1643 lockdep_assert_held(&chan
->irqlock
);
1645 outch
= ipu_rot_mode_is_irt(ctx
->rot_mode
) ?
1646 chan
->rotation_out_chan
: chan
->out_chan
;
1649 * It is difficult to stop the channel DMA before the channels
1650 * enter the paused state. Without double-buffering the channels
1651 * are always in a paused state when the EOF irq occurs, so it
1652 * is safe to stop the channels now. For double-buffering we
1653 * just ignore the abort until the operation completes, when it
1654 * is safe to shut down.
1656 if (ctx
->aborting
&& !ctx
->double_buffering
) {
1662 if (ctx
->next_tile
== ctx
->num_tiles
) {
1664 * the conversion is complete
1672 * not done, place the next tile buffers.
1674 if (!ctx
->double_buffering
) {
1675 if (ic_settings_changed(ctx
)) {
1677 convert_start(run
, ctx
->next_tile
);
1679 src_tile
= &s_image
->tile
[ctx
->next_tile
];
1680 dst_idx
= ctx
->out_tile_map
[ctx
->next_tile
];
1681 dst_tile
= &d_image
->tile
[dst_idx
];
1683 ipu_cpmem_set_buffer(chan
->in_chan
, 0,
1684 s_image
->base
.phys0
+
1686 ipu_cpmem_set_buffer(outch
, 0,
1687 d_image
->base
.phys0
+
1689 if (s_image
->fmt
->planar
)
1690 ipu_cpmem_set_uv_offset(chan
->in_chan
,
1693 if (d_image
->fmt
->planar
)
1694 ipu_cpmem_set_uv_offset(outch
,
1698 ipu_idmac_select_buffer(chan
->in_chan
, 0);
1699 ipu_idmac_select_buffer(outch
, 0);
1701 } else if (ctx
->next_tile
< ctx
->num_tiles
- 1) {
1703 src_tile
= &s_image
->tile
[ctx
->next_tile
+ 1];
1704 dst_idx
= ctx
->out_tile_map
[ctx
->next_tile
+ 1];
1705 dst_tile
= &d_image
->tile
[dst_idx
];
1707 ipu_cpmem_set_buffer(chan
->in_chan
, ctx
->cur_buf_num
,
1708 s_image
->base
.phys0
+ src_tile
->offset
);
1709 ipu_cpmem_set_buffer(outch
, ctx
->cur_buf_num
,
1710 d_image
->base
.phys0
+ dst_tile
->offset
);
1712 ipu_idmac_select_buffer(chan
->in_chan
, ctx
->cur_buf_num
);
1713 ipu_idmac_select_buffer(outch
, ctx
->cur_buf_num
);
1715 ctx
->cur_buf_num
^= 1;
1718 ctx
->eof_mask
= 0; /* clear EOF irq mask for next tile */
1722 list_add_tail(&run
->list
, &chan
->done_q
);
1723 chan
->current_run
= NULL
;
1725 return IRQ_WAKE_THREAD
;
1728 static irqreturn_t
eof_irq(int irq
, void *data
)
1730 struct ipu_image_convert_chan
*chan
= data
;
1731 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1732 struct ipu_image_convert_ctx
*ctx
;
1733 struct ipu_image_convert_run
*run
;
1734 irqreturn_t ret
= IRQ_HANDLED
;
1735 bool tile_complete
= false;
1736 unsigned long flags
;
1738 spin_lock_irqsave(&chan
->irqlock
, flags
);
1740 /* get current run and its context */
1741 run
= chan
->current_run
;
1749 if (irq
== chan
->in_eof_irq
) {
1750 ctx
->eof_mask
|= EOF_IRQ_IN
;
1751 } else if (irq
== chan
->out_eof_irq
) {
1752 ctx
->eof_mask
|= EOF_IRQ_OUT
;
1753 } else if (irq
== chan
->rot_in_eof_irq
||
1754 irq
== chan
->rot_out_eof_irq
) {
1755 if (!ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
1756 /* this was NOT a rotation op, shouldn't happen */
1757 dev_err(priv
->ipu
->dev
,
1758 "Unexpected rotation interrupt\n");
1761 ctx
->eof_mask
|= (irq
== chan
->rot_in_eof_irq
) ?
1762 EOF_IRQ_ROT_IN
: EOF_IRQ_ROT_OUT
;
1764 dev_err(priv
->ipu
->dev
, "Received unknown irq %d\n", irq
);
1769 if (ipu_rot_mode_is_irt(ctx
->rot_mode
))
1770 tile_complete
= (ctx
->eof_mask
== EOF_IRQ_ROT_COMPLETE
);
1772 tile_complete
= (ctx
->eof_mask
== EOF_IRQ_COMPLETE
);
1775 ret
= do_tile_complete(run
);
1777 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
1782 * try to force the completion of runs for this ctx. Called when
1783 * abort wait times out in ipu_image_convert_abort().
1785 static void force_abort(struct ipu_image_convert_ctx
*ctx
)
1787 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
1788 struct ipu_image_convert_run
*run
;
1789 unsigned long flags
;
1791 spin_lock_irqsave(&chan
->irqlock
, flags
);
1793 run
= chan
->current_run
;
1794 if (run
&& run
->ctx
== ctx
) {
1797 list_add_tail(&run
->list
, &chan
->done_q
);
1798 chan
->current_run
= NULL
;
1802 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
1807 static void release_ipu_resources(struct ipu_image_convert_chan
*chan
)
1809 if (chan
->in_eof_irq
>= 0)
1810 free_irq(chan
->in_eof_irq
, chan
);
1811 if (chan
->rot_in_eof_irq
>= 0)
1812 free_irq(chan
->rot_in_eof_irq
, chan
);
1813 if (chan
->out_eof_irq
>= 0)
1814 free_irq(chan
->out_eof_irq
, chan
);
1815 if (chan
->rot_out_eof_irq
>= 0)
1816 free_irq(chan
->rot_out_eof_irq
, chan
);
1818 if (!IS_ERR_OR_NULL(chan
->in_chan
))
1819 ipu_idmac_put(chan
->in_chan
);
1820 if (!IS_ERR_OR_NULL(chan
->out_chan
))
1821 ipu_idmac_put(chan
->out_chan
);
1822 if (!IS_ERR_OR_NULL(chan
->rotation_in_chan
))
1823 ipu_idmac_put(chan
->rotation_in_chan
);
1824 if (!IS_ERR_OR_NULL(chan
->rotation_out_chan
))
1825 ipu_idmac_put(chan
->rotation_out_chan
);
1826 if (!IS_ERR_OR_NULL(chan
->ic
))
1827 ipu_ic_put(chan
->ic
);
1829 chan
->in_chan
= chan
->out_chan
= chan
->rotation_in_chan
=
1830 chan
->rotation_out_chan
= NULL
;
1831 chan
->in_eof_irq
= -1;
1832 chan
->rot_in_eof_irq
= -1;
1833 chan
->out_eof_irq
= -1;
1834 chan
->rot_out_eof_irq
= -1;
1837 static int get_eof_irq(struct ipu_image_convert_chan
*chan
,
1838 struct ipuv3_channel
*channel
)
1840 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1843 irq
= ipu_idmac_channel_irq(priv
->ipu
, channel
, IPU_IRQ_EOF
);
1845 ret
= request_threaded_irq(irq
, eof_irq
, do_bh
, 0, "ipu-ic", chan
);
1847 dev_err(priv
->ipu
->dev
, "could not acquire irq %d\n", irq
);
1854 static int get_ipu_resources(struct ipu_image_convert_chan
*chan
)
1856 const struct ipu_image_convert_dma_chan
*dma
= chan
->dma_ch
;
1857 struct ipu_image_convert_priv
*priv
= chan
->priv
;
1861 chan
->ic
= ipu_ic_get(priv
->ipu
, chan
->ic_task
);
1862 if (IS_ERR(chan
->ic
)) {
1863 dev_err(priv
->ipu
->dev
, "could not acquire IC\n");
1864 ret
= PTR_ERR(chan
->ic
);
1868 /* get IDMAC channels */
1869 chan
->in_chan
= ipu_idmac_get(priv
->ipu
, dma
->in
);
1870 chan
->out_chan
= ipu_idmac_get(priv
->ipu
, dma
->out
);
1871 if (IS_ERR(chan
->in_chan
) || IS_ERR(chan
->out_chan
)) {
1872 dev_err(priv
->ipu
->dev
, "could not acquire idmac channels\n");
1877 chan
->rotation_in_chan
= ipu_idmac_get(priv
->ipu
, dma
->rot_in
);
1878 chan
->rotation_out_chan
= ipu_idmac_get(priv
->ipu
, dma
->rot_out
);
1879 if (IS_ERR(chan
->rotation_in_chan
) || IS_ERR(chan
->rotation_out_chan
)) {
1880 dev_err(priv
->ipu
->dev
,
1881 "could not acquire idmac rotation channels\n");
1886 /* acquire the EOF interrupts */
1887 ret
= get_eof_irq(chan
, chan
->in_chan
);
1889 chan
->in_eof_irq
= -1;
1892 chan
->in_eof_irq
= ret
;
1894 ret
= get_eof_irq(chan
, chan
->rotation_in_chan
);
1896 chan
->rot_in_eof_irq
= -1;
1899 chan
->rot_in_eof_irq
= ret
;
1901 ret
= get_eof_irq(chan
, chan
->out_chan
);
1903 chan
->out_eof_irq
= -1;
1906 chan
->out_eof_irq
= ret
;
1908 ret
= get_eof_irq(chan
, chan
->rotation_out_chan
);
1910 chan
->rot_out_eof_irq
= -1;
1913 chan
->rot_out_eof_irq
= ret
;
1917 release_ipu_resources(chan
);
1921 static int fill_image(struct ipu_image_convert_ctx
*ctx
,
1922 struct ipu_image_convert_image
*ic_image
,
1923 struct ipu_image
*image
,
1924 enum ipu_image_convert_type type
)
1926 struct ipu_image_convert_priv
*priv
= ctx
->chan
->priv
;
1928 ic_image
->base
= *image
;
1929 ic_image
->type
= type
;
1931 ic_image
->fmt
= get_format(image
->pix
.pixelformat
);
1932 if (!ic_image
->fmt
) {
1933 dev_err(priv
->ipu
->dev
, "pixelformat not supported for %s\n",
1934 type
== IMAGE_CONVERT_OUT
? "Output" : "Input");
1938 if (ic_image
->fmt
->planar
)
1939 ic_image
->stride
= ic_image
->base
.pix
.width
;
1941 ic_image
->stride
= ic_image
->base
.pix
.bytesperline
;
1946 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1947 static unsigned int clamp_align(unsigned int x
, unsigned int min
,
1948 unsigned int max
, unsigned int align
)
1950 /* Bits that must be zero to be aligned */
1951 unsigned int mask
= ~((1 << align
) - 1);
1953 /* Clamp to aligned min and max */
1954 x
= clamp(x
, (min
+ ~mask
) & mask
, max
& mask
);
1956 /* Round to nearest aligned value */
1958 x
= (x
+ (1 << (align
- 1))) & mask
;
1963 /* Adjusts input/output images to IPU restrictions */
1964 void ipu_image_convert_adjust(struct ipu_image
*in
, struct ipu_image
*out
,
1965 enum ipu_rotate_mode rot_mode
)
1967 const struct ipu_image_pixfmt
*infmt
, *outfmt
;
1968 u32 w_align_out
, h_align_out
;
1969 u32 w_align_in
, h_align_in
;
1971 infmt
= get_format(in
->pix
.pixelformat
);
1972 outfmt
= get_format(out
->pix
.pixelformat
);
1974 /* set some default pixel formats if needed */
1976 in
->pix
.pixelformat
= V4L2_PIX_FMT_RGB24
;
1977 infmt
= get_format(V4L2_PIX_FMT_RGB24
);
1980 out
->pix
.pixelformat
= V4L2_PIX_FMT_RGB24
;
1981 outfmt
= get_format(V4L2_PIX_FMT_RGB24
);
1984 /* image converter does not handle fields */
1985 in
->pix
.field
= out
->pix
.field
= V4L2_FIELD_NONE
;
1987 /* resizer cannot downsize more than 4:1 */
1988 if (ipu_rot_mode_is_irt(rot_mode
)) {
1989 out
->pix
.height
= max_t(__u32
, out
->pix
.height
,
1991 out
->pix
.width
= max_t(__u32
, out
->pix
.width
,
1992 in
->pix
.height
/ 4);
1994 out
->pix
.width
= max_t(__u32
, out
->pix
.width
,
1996 out
->pix
.height
= max_t(__u32
, out
->pix
.height
,
1997 in
->pix
.height
/ 4);
2000 /* align input width/height */
2001 w_align_in
= ilog2(tile_width_align(IMAGE_CONVERT_IN
, infmt
,
2003 h_align_in
= ilog2(tile_height_align(IMAGE_CONVERT_IN
, infmt
,
2005 in
->pix
.width
= clamp_align(in
->pix
.width
, MIN_W
, MAX_W
,
2007 in
->pix
.height
= clamp_align(in
->pix
.height
, MIN_H
, MAX_H
,
2010 /* align output width/height */
2011 w_align_out
= ilog2(tile_width_align(IMAGE_CONVERT_OUT
, outfmt
,
2013 h_align_out
= ilog2(tile_height_align(IMAGE_CONVERT_OUT
, outfmt
,
2015 out
->pix
.width
= clamp_align(out
->pix
.width
, MIN_W
, MAX_W
,
2017 out
->pix
.height
= clamp_align(out
->pix
.height
, MIN_H
, MAX_H
,
2020 /* set input/output strides and image sizes */
2021 in
->pix
.bytesperline
= infmt
->planar
?
2022 clamp_align(in
->pix
.width
, 2 << w_align_in
, MAX_W
,
2024 clamp_align((in
->pix
.width
* infmt
->bpp
) >> 3,
2025 ((2 << w_align_in
) * infmt
->bpp
) >> 3,
2026 (MAX_W
* infmt
->bpp
) >> 3,
2028 in
->pix
.sizeimage
= infmt
->planar
?
2029 (in
->pix
.height
* in
->pix
.bytesperline
* infmt
->bpp
) >> 3 :
2030 in
->pix
.height
* in
->pix
.bytesperline
;
2031 out
->pix
.bytesperline
= outfmt
->planar
? out
->pix
.width
:
2032 (out
->pix
.width
* outfmt
->bpp
) >> 3;
2033 out
->pix
.sizeimage
= outfmt
->planar
?
2034 (out
->pix
.height
* out
->pix
.bytesperline
* outfmt
->bpp
) >> 3 :
2035 out
->pix
.height
* out
->pix
.bytesperline
;
2037 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust
);
2040 * this is used by ipu_image_convert_prepare() to verify set input and
2041 * output images are valid before starting the conversion. Clients can
2042 * also call it before calling ipu_image_convert_prepare().
2044 int ipu_image_convert_verify(struct ipu_image
*in
, struct ipu_image
*out
,
2045 enum ipu_rotate_mode rot_mode
)
2047 struct ipu_image testin
, testout
;
2052 ipu_image_convert_adjust(&testin
, &testout
, rot_mode
);
2054 if (testin
.pix
.width
!= in
->pix
.width
||
2055 testin
.pix
.height
!= in
->pix
.height
||
2056 testout
.pix
.width
!= out
->pix
.width
||
2057 testout
.pix
.height
!= out
->pix
.height
)
2062 EXPORT_SYMBOL_GPL(ipu_image_convert_verify
);
2065 * Call ipu_image_convert_prepare() to prepare for the conversion of
2066 * given images and rotation mode. Returns a new conversion context.
2068 struct ipu_image_convert_ctx
*
2069 ipu_image_convert_prepare(struct ipu_soc
*ipu
, enum ipu_ic_task ic_task
,
2070 struct ipu_image
*in
, struct ipu_image
*out
,
2071 enum ipu_rotate_mode rot_mode
,
2072 ipu_image_convert_cb_t complete
,
2073 void *complete_context
)
2075 struct ipu_image_convert_priv
*priv
= ipu
->image_convert_priv
;
2076 struct ipu_image_convert_image
*s_image
, *d_image
;
2077 struct ipu_image_convert_chan
*chan
;
2078 struct ipu_image_convert_ctx
*ctx
;
2079 unsigned long flags
;
2084 if (!in
|| !out
|| !complete
||
2085 (ic_task
!= IC_TASK_VIEWFINDER
&&
2086 ic_task
!= IC_TASK_POST_PROCESSOR
))
2087 return ERR_PTR(-EINVAL
);
2089 /* verify the in/out images before continuing */
2090 ret
= ipu_image_convert_verify(in
, out
, rot_mode
);
2092 dev_err(priv
->ipu
->dev
, "%s: in/out formats invalid\n",
2094 return ERR_PTR(ret
);
2097 chan
= &priv
->chan
[ic_task
];
2099 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
2101 return ERR_PTR(-ENOMEM
);
2103 dev_dbg(priv
->ipu
->dev
, "%s: task %u: ctx %p\n", __func__
,
2104 chan
->ic_task
, ctx
);
2107 init_completion(&ctx
->aborted
);
2109 ctx
->rot_mode
= rot_mode
;
2111 /* Sets ctx->in.num_rows/cols as well */
2112 ret
= calc_image_resize_coefficients(ctx
, in
, out
);
2117 d_image
= &ctx
->out
;
2119 /* set tiling and rotation */
2120 if (ipu_rot_mode_is_irt(rot_mode
)) {
2121 d_image
->num_rows
= s_image
->num_cols
;
2122 d_image
->num_cols
= s_image
->num_rows
;
2124 d_image
->num_rows
= s_image
->num_rows
;
2125 d_image
->num_cols
= s_image
->num_cols
;
2128 ctx
->num_tiles
= d_image
->num_cols
* d_image
->num_rows
;
2130 ret
= fill_image(ctx
, s_image
, in
, IMAGE_CONVERT_IN
);
2133 ret
= fill_image(ctx
, d_image
, out
, IMAGE_CONVERT_OUT
);
2137 calc_out_tile_map(ctx
);
2139 find_seams(ctx
, s_image
, d_image
);
2141 ret
= calc_tile_dimensions(ctx
, s_image
);
2145 ret
= calc_tile_offsets(ctx
, s_image
);
2149 calc_tile_dimensions(ctx
, d_image
);
2150 ret
= calc_tile_offsets(ctx
, d_image
);
2154 calc_tile_resize_coefficients(ctx
);
2156 ret
= ipu_ic_calc_csc(&ctx
->csc
,
2157 s_image
->base
.pix
.ycbcr_enc
,
2158 s_image
->base
.pix
.quantization
,
2159 ipu_pixelformat_to_colorspace(s_image
->fmt
->fourcc
),
2160 d_image
->base
.pix
.ycbcr_enc
,
2161 d_image
->base
.pix
.quantization
,
2162 ipu_pixelformat_to_colorspace(d_image
->fmt
->fourcc
));
2166 dump_format(ctx
, s_image
);
2167 dump_format(ctx
, d_image
);
2169 ctx
->complete
= complete
;
2170 ctx
->complete_context
= complete_context
;
2173 * Can we use double-buffering for this operation? If there is
2174 * only one tile (the whole image can be converted in a single
2175 * operation) there's no point in using double-buffering. Also,
2176 * the IPU's IDMAC channels allow only a single U and V plane
2177 * offset shared between both buffers, but these offsets change
2178 * for every tile, and therefore would have to be updated for
2179 * each buffer which is not possible. So double-buffering is
2180 * impossible when either the source or destination images are
2181 * a planar format (YUV420, YUV422P, etc.). Further, differently
2182 * sized tiles or different resizing coefficients per tile
2183 * prevent double-buffering as well.
2185 ctx
->double_buffering
= (ctx
->num_tiles
> 1 &&
2186 !s_image
->fmt
->planar
&&
2187 !d_image
->fmt
->planar
);
2188 for (i
= 1; i
< ctx
->num_tiles
; i
++) {
2189 if (ctx
->in
.tile
[i
].width
!= ctx
->in
.tile
[0].width
||
2190 ctx
->in
.tile
[i
].height
!= ctx
->in
.tile
[0].height
||
2191 ctx
->out
.tile
[i
].width
!= ctx
->out
.tile
[0].width
||
2192 ctx
->out
.tile
[i
].height
!= ctx
->out
.tile
[0].height
) {
2193 ctx
->double_buffering
= false;
2197 for (i
= 1; i
< ctx
->in
.num_cols
; i
++) {
2198 if (ctx
->resize_coeffs_h
[i
] != ctx
->resize_coeffs_h
[0]) {
2199 ctx
->double_buffering
= false;
2203 for (i
= 1; i
< ctx
->in
.num_rows
; i
++) {
2204 if (ctx
->resize_coeffs_v
[i
] != ctx
->resize_coeffs_v
[0]) {
2205 ctx
->double_buffering
= false;
2210 if (ipu_rot_mode_is_irt(ctx
->rot_mode
)) {
2211 unsigned long intermediate_size
= d_image
->tile
[0].size
;
2213 for (i
= 1; i
< ctx
->num_tiles
; i
++) {
2214 if (d_image
->tile
[i
].size
> intermediate_size
)
2215 intermediate_size
= d_image
->tile
[i
].size
;
2218 ret
= alloc_dma_buf(priv
, &ctx
->rot_intermediate
[0],
2222 if (ctx
->double_buffering
) {
2223 ret
= alloc_dma_buf(priv
,
2224 &ctx
->rot_intermediate
[1],
2227 goto out_free_dmabuf0
;
2231 spin_lock_irqsave(&chan
->irqlock
, flags
);
2233 get_res
= list_empty(&chan
->ctx_list
);
2235 list_add_tail(&ctx
->list
, &chan
->ctx_list
);
2237 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
2240 ret
= get_ipu_resources(chan
);
2242 goto out_free_dmabuf1
;
2248 free_dma_buf(priv
, &ctx
->rot_intermediate
[1]);
2249 spin_lock_irqsave(&chan
->irqlock
, flags
);
2250 list_del(&ctx
->list
);
2251 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
2253 free_dma_buf(priv
, &ctx
->rot_intermediate
[0]);
2256 return ERR_PTR(ret
);
2258 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare
);
2261 * Carry out a single image conversion run. Only the physaddr's of the input
2262 * and output image buffers are needed. The conversion context must have
2263 * been created previously with ipu_image_convert_prepare().
2265 int ipu_image_convert_queue(struct ipu_image_convert_run
*run
)
2267 struct ipu_image_convert_chan
*chan
;
2268 struct ipu_image_convert_priv
*priv
;
2269 struct ipu_image_convert_ctx
*ctx
;
2270 unsigned long flags
;
2273 if (!run
|| !run
->ctx
|| !run
->in_phys
|| !run
->out_phys
)
2280 dev_dbg(priv
->ipu
->dev
, "%s: task %u: ctx %p run %p\n", __func__
,
2281 chan
->ic_task
, ctx
, run
);
2283 INIT_LIST_HEAD(&run
->list
);
2285 spin_lock_irqsave(&chan
->irqlock
, flags
);
2287 if (ctx
->aborting
) {
2292 list_add_tail(&run
->list
, &chan
->pending_q
);
2294 if (!chan
->current_run
) {
2297 chan
->current_run
= NULL
;
2300 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
2303 EXPORT_SYMBOL_GPL(ipu_image_convert_queue
);
2305 /* Abort any active or pending conversions for this context */
2306 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx
*ctx
)
2308 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
2309 struct ipu_image_convert_priv
*priv
= chan
->priv
;
2310 struct ipu_image_convert_run
*run
, *active_run
, *tmp
;
2311 unsigned long flags
;
2314 spin_lock_irqsave(&chan
->irqlock
, flags
);
2316 /* move all remaining pending runs in this context to done_q */
2317 list_for_each_entry_safe(run
, tmp
, &chan
->pending_q
, list
) {
2318 if (run
->ctx
!= ctx
)
2321 list_move_tail(&run
->list
, &chan
->done_q
);
2324 run_count
= get_run_count(ctx
, &chan
->done_q
);
2325 active_run
= (chan
->current_run
&& chan
->current_run
->ctx
== ctx
) ?
2326 chan
->current_run
: NULL
;
2329 reinit_completion(&ctx
->aborted
);
2331 ctx
->aborting
= true;
2333 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
2335 if (!run_count
&& !active_run
) {
2336 dev_dbg(priv
->ipu
->dev
,
2337 "%s: task %u: no abort needed for ctx %p\n",
2338 __func__
, chan
->ic_task
, ctx
);
2347 dev_dbg(priv
->ipu
->dev
,
2348 "%s: task %u: wait for completion: %d runs\n",
2349 __func__
, chan
->ic_task
, run_count
);
2351 ret
= wait_for_completion_timeout(&ctx
->aborted
,
2352 msecs_to_jiffies(10000));
2354 dev_warn(priv
->ipu
->dev
, "%s: timeout\n", __func__
);
2359 void ipu_image_convert_abort(struct ipu_image_convert_ctx
*ctx
)
2361 __ipu_image_convert_abort(ctx
);
2362 ctx
->aborting
= false;
2364 EXPORT_SYMBOL_GPL(ipu_image_convert_abort
);
2366 /* Unprepare image conversion context */
2367 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx
*ctx
)
2369 struct ipu_image_convert_chan
*chan
= ctx
->chan
;
2370 struct ipu_image_convert_priv
*priv
= chan
->priv
;
2371 unsigned long flags
;
2374 /* make sure no runs are hanging around */
2375 __ipu_image_convert_abort(ctx
);
2377 dev_dbg(priv
->ipu
->dev
, "%s: task %u: removing ctx %p\n", __func__
,
2378 chan
->ic_task
, ctx
);
2380 spin_lock_irqsave(&chan
->irqlock
, flags
);
2382 list_del(&ctx
->list
);
2384 put_res
= list_empty(&chan
->ctx_list
);
2386 spin_unlock_irqrestore(&chan
->irqlock
, flags
);
2389 release_ipu_resources(chan
);
2391 free_dma_buf(priv
, &ctx
->rot_intermediate
[1]);
2392 free_dma_buf(priv
, &ctx
->rot_intermediate
[0]);
2396 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare
);
2399 * "Canned" asynchronous single image conversion. Allocates and returns
2400 * a new conversion run. On successful return the caller must free the
2401 * run and call ipu_image_convert_unprepare() after conversion completes.
2403 struct ipu_image_convert_run
*
2404 ipu_image_convert(struct ipu_soc
*ipu
, enum ipu_ic_task ic_task
,
2405 struct ipu_image
*in
, struct ipu_image
*out
,
2406 enum ipu_rotate_mode rot_mode
,
2407 ipu_image_convert_cb_t complete
,
2408 void *complete_context
)
2410 struct ipu_image_convert_ctx
*ctx
;
2411 struct ipu_image_convert_run
*run
;
2414 ctx
= ipu_image_convert_prepare(ipu
, ic_task
, in
, out
, rot_mode
,
2415 complete
, complete_context
);
2417 return ERR_CAST(ctx
);
2419 run
= kzalloc(sizeof(*run
), GFP_KERNEL
);
2421 ipu_image_convert_unprepare(ctx
);
2422 return ERR_PTR(-ENOMEM
);
2426 run
->in_phys
= in
->phys0
;
2427 run
->out_phys
= out
->phys0
;
2429 ret
= ipu_image_convert_queue(run
);
2431 ipu_image_convert_unprepare(ctx
);
2433 return ERR_PTR(ret
);
2438 EXPORT_SYMBOL_GPL(ipu_image_convert
);
2440 /* "Canned" synchronous single image conversion */
2441 static void image_convert_sync_complete(struct ipu_image_convert_run
*run
,
2444 struct completion
*comp
= data
;
2449 int ipu_image_convert_sync(struct ipu_soc
*ipu
, enum ipu_ic_task ic_task
,
2450 struct ipu_image
*in
, struct ipu_image
*out
,
2451 enum ipu_rotate_mode rot_mode
)
2453 struct ipu_image_convert_run
*run
;
2454 struct completion comp
;
2457 init_completion(&comp
);
2459 run
= ipu_image_convert(ipu
, ic_task
, in
, out
, rot_mode
,
2460 image_convert_sync_complete
, &comp
);
2462 return PTR_ERR(run
);
2464 ret
= wait_for_completion_timeout(&comp
, msecs_to_jiffies(10000));
2465 ret
= (ret
== 0) ? -ETIMEDOUT
: 0;
2467 ipu_image_convert_unprepare(run
->ctx
);
2472 EXPORT_SYMBOL_GPL(ipu_image_convert_sync
);
2474 int ipu_image_convert_init(struct ipu_soc
*ipu
, struct device
*dev
)
2476 struct ipu_image_convert_priv
*priv
;
2479 priv
= devm_kzalloc(dev
, sizeof(*priv
), GFP_KERNEL
);
2483 ipu
->image_convert_priv
= priv
;
2486 for (i
= 0; i
< IC_NUM_TASKS
; i
++) {
2487 struct ipu_image_convert_chan
*chan
= &priv
->chan
[i
];
2491 chan
->dma_ch
= &image_convert_dma_chan
[i
];
2492 chan
->in_eof_irq
= -1;
2493 chan
->rot_in_eof_irq
= -1;
2494 chan
->out_eof_irq
= -1;
2495 chan
->rot_out_eof_irq
= -1;
2497 spin_lock_init(&chan
->irqlock
);
2498 INIT_LIST_HEAD(&chan
->ctx_list
);
2499 INIT_LIST_HEAD(&chan
->pending_q
);
2500 INIT_LIST_HEAD(&chan
->done_q
);
2506 void ipu_image_convert_exit(struct ipu_soc
*ipu
)