Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / hwmon / asc7621.c
blob87e1867008499b4e60b0dcf0294758f32801bc38
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
4 * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com>
5 */
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/jiffies.h>
11 #include <linux/i2c.h>
12 #include <linux/hwmon.h>
13 #include <linux/hwmon-sysfs.h>
14 #include <linux/err.h>
15 #include <linux/mutex.h>
17 /* Addresses to scan */
18 static const unsigned short normal_i2c[] = {
19 0x2c, 0x2d, 0x2e, I2C_CLIENT_END
22 enum asc7621_type {
23 asc7621,
24 asc7621a
27 #define INTERVAL_HIGH (HZ + HZ / 2)
28 #define INTERVAL_LOW (1 * 60 * HZ)
29 #define PRI_NONE 0
30 #define PRI_LOW 1
31 #define PRI_HIGH 2
32 #define FIRST_CHIP asc7621
33 #define LAST_CHIP asc7621a
35 struct asc7621_chip {
36 char *name;
37 enum asc7621_type chip_type;
38 u8 company_reg;
39 u8 company_id;
40 u8 verstep_reg;
41 u8 verstep_id;
42 const unsigned short *addresses;
45 static struct asc7621_chip asc7621_chips[] = {
47 .name = "asc7621",
48 .chip_type = asc7621,
49 .company_reg = 0x3e,
50 .company_id = 0x61,
51 .verstep_reg = 0x3f,
52 .verstep_id = 0x6c,
53 .addresses = normal_i2c,
56 .name = "asc7621a",
57 .chip_type = asc7621a,
58 .company_reg = 0x3e,
59 .company_id = 0x61,
60 .verstep_reg = 0x3f,
61 .verstep_id = 0x6d,
62 .addresses = normal_i2c,
67 * Defines the highest register to be used, not the count.
68 * The actual count will probably be smaller because of gaps
69 * in the implementation (unused register locations).
70 * This define will safely set the array size of both the parameter
71 * and data arrays.
72 * This comes from the data sheet register description table.
74 #define LAST_REGISTER 0xff
76 struct asc7621_data {
77 struct i2c_client client;
78 struct device *class_dev;
79 struct mutex update_lock;
80 bool valid; /* true if following fields are valid */
81 unsigned long last_high_reading; /* In jiffies */
82 unsigned long last_low_reading; /* In jiffies */
84 * Registers we care about occupy the corresponding index
85 * in the array. Registers we don't care about are left
86 * at 0.
88 u8 reg[LAST_REGISTER + 1];
92 * Macro to get the parent asc7621_param structure
93 * from a sensor_device_attribute passed into the
94 * show/store functions.
96 #define to_asc7621_param(_sda) \
97 container_of(_sda, struct asc7621_param, sda)
100 * Each parameter to be retrieved needs an asc7621_param structure
101 * allocated. It contains the sensor_device_attribute structure
102 * and the control info needed to retrieve the value from the register map.
104 struct asc7621_param {
105 struct sensor_device_attribute sda;
106 u8 priority;
107 u8 msb[3];
108 u8 lsb[3];
109 u8 mask[3];
110 u8 shift[3];
114 * This is the map that ultimately indicates whether we'll be
115 * retrieving a register value or not, and at what frequency.
117 static u8 asc7621_register_priorities[255];
119 static struct asc7621_data *asc7621_update_device(struct device *dev);
121 static inline u8 read_byte(struct i2c_client *client, u8 reg)
123 int res = i2c_smbus_read_byte_data(client, reg);
124 if (res < 0) {
125 dev_err(&client->dev,
126 "Unable to read from register 0x%02x.\n", reg);
127 return 0;
129 return res & 0xff;
132 static inline int write_byte(struct i2c_client *client, u8 reg, u8 data)
134 int res = i2c_smbus_write_byte_data(client, reg, data);
135 if (res < 0) {
136 dev_err(&client->dev,
137 "Unable to write value 0x%02x to register 0x%02x.\n",
138 data, reg);
140 return res;
144 * Data Handlers
145 * Each function handles the formatting, storage
146 * and retrieval of like parameters.
149 #define SETUP_SHOW_DATA_PARAM(d, a) \
150 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
151 struct asc7621_data *data = asc7621_update_device(d); \
152 struct asc7621_param *param = to_asc7621_param(sda)
154 #define SETUP_STORE_DATA_PARAM(d, a) \
155 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
156 struct i2c_client *client = to_i2c_client(d); \
157 struct asc7621_data *data = i2c_get_clientdata(client); \
158 struct asc7621_param *param = to_asc7621_param(sda)
161 * u8 is just what it sounds like...an unsigned byte with no
162 * special formatting.
164 static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
165 char *buf)
167 SETUP_SHOW_DATA_PARAM(dev, attr);
169 return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
172 static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
173 const char *buf, size_t count)
175 SETUP_STORE_DATA_PARAM(dev, attr);
176 long reqval;
178 if (kstrtol(buf, 10, &reqval))
179 return -EINVAL;
181 reqval = clamp_val(reqval, 0, 255);
183 mutex_lock(&data->update_lock);
184 data->reg[param->msb[0]] = reqval;
185 write_byte(client, param->msb[0], reqval);
186 mutex_unlock(&data->update_lock);
187 return count;
191 * Many of the config values occupy only a few bits of a register.
193 static ssize_t show_bitmask(struct device *dev,
194 struct device_attribute *attr, char *buf)
196 SETUP_SHOW_DATA_PARAM(dev, attr);
198 return sprintf(buf, "%u\n",
199 (data->reg[param->msb[0]] >> param->
200 shift[0]) & param->mask[0]);
203 static ssize_t store_bitmask(struct device *dev,
204 struct device_attribute *attr,
205 const char *buf, size_t count)
207 SETUP_STORE_DATA_PARAM(dev, attr);
208 long reqval;
209 u8 currval;
211 if (kstrtol(buf, 10, &reqval))
212 return -EINVAL;
214 reqval = clamp_val(reqval, 0, param->mask[0]);
216 reqval = (reqval & param->mask[0]) << param->shift[0];
218 mutex_lock(&data->update_lock);
219 currval = read_byte(client, param->msb[0]);
220 reqval |= (currval & ~(param->mask[0] << param->shift[0]));
221 data->reg[param->msb[0]] = reqval;
222 write_byte(client, param->msb[0], reqval);
223 mutex_unlock(&data->update_lock);
224 return count;
228 * 16 bit fan rpm values
229 * reported by the device as the number of 11.111us periods (90khz)
230 * between full fan rotations. Therefore...
231 * RPM = (90000 * 60) / register value
233 static ssize_t show_fan16(struct device *dev,
234 struct device_attribute *attr, char *buf)
236 SETUP_SHOW_DATA_PARAM(dev, attr);
237 u16 regval;
239 mutex_lock(&data->update_lock);
240 regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
241 mutex_unlock(&data->update_lock);
243 return sprintf(buf, "%u\n",
244 (regval == 0 ? -1 : (regval) ==
245 0xffff ? 0 : 5400000 / regval));
248 static ssize_t store_fan16(struct device *dev,
249 struct device_attribute *attr, const char *buf,
250 size_t count)
252 SETUP_STORE_DATA_PARAM(dev, attr);
253 long reqval;
255 if (kstrtol(buf, 10, &reqval))
256 return -EINVAL;
259 * If a minimum RPM of zero is requested, then we set the register to
260 * 0xffff. This value allows the fan to be stopped completely without
261 * generating an alarm.
263 reqval =
264 (reqval <= 0 ? 0xffff : clamp_val(5400000 / reqval, 0, 0xfffe));
266 mutex_lock(&data->update_lock);
267 data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
268 data->reg[param->lsb[0]] = reqval & 0xff;
269 write_byte(client, param->msb[0], data->reg[param->msb[0]]);
270 write_byte(client, param->lsb[0], data->reg[param->lsb[0]]);
271 mutex_unlock(&data->update_lock);
273 return count;
277 * Voltages are scaled in the device so that the nominal voltage
278 * is 3/4ths of the 0-255 range (i.e. 192).
279 * If all voltages are 'normal' then all voltage registers will
280 * read 0xC0.
282 * The data sheet provides us with the 3/4 scale value for each voltage
283 * which is stored in in_scaling. The sda->index parameter value provides
284 * the index into in_scaling.
286 * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
287 * respectively. That doesn't mean that's what the motherboard provides. :)
290 static const int asc7621_in_scaling[] = {
291 2500, 2250, 3300, 5000, 12000
294 static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
295 char *buf)
297 SETUP_SHOW_DATA_PARAM(dev, attr);
298 u16 regval;
299 u8 nr = sda->index;
301 mutex_lock(&data->update_lock);
302 regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]);
303 mutex_unlock(&data->update_lock);
305 /* The LSB value is a 2-bit scaling of the MSB's LSbit value. */
306 regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2);
308 return sprintf(buf, "%u\n", regval);
311 /* 8 bit voltage values (the mins and maxs) */
312 static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
313 char *buf)
315 SETUP_SHOW_DATA_PARAM(dev, attr);
316 u8 nr = sda->index;
318 return sprintf(buf, "%u\n",
319 ((data->reg[param->msb[0]] *
320 asc7621_in_scaling[nr]) / 0xc0));
323 static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
324 const char *buf, size_t count)
326 SETUP_STORE_DATA_PARAM(dev, attr);
327 long reqval;
328 u8 nr = sda->index;
330 if (kstrtol(buf, 10, &reqval))
331 return -EINVAL;
333 reqval = clamp_val(reqval, 0, 0xffff);
335 reqval = reqval * 0xc0 / asc7621_in_scaling[nr];
337 reqval = clamp_val(reqval, 0, 0xff);
339 mutex_lock(&data->update_lock);
340 data->reg[param->msb[0]] = reqval;
341 write_byte(client, param->msb[0], reqval);
342 mutex_unlock(&data->update_lock);
344 return count;
347 static ssize_t show_temp8(struct device *dev,
348 struct device_attribute *attr, char *buf)
350 SETUP_SHOW_DATA_PARAM(dev, attr);
352 return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
355 static ssize_t store_temp8(struct device *dev,
356 struct device_attribute *attr, const char *buf,
357 size_t count)
359 SETUP_STORE_DATA_PARAM(dev, attr);
360 long reqval;
361 s8 temp;
363 if (kstrtol(buf, 10, &reqval))
364 return -EINVAL;
366 reqval = clamp_val(reqval, -127000, 127000);
368 temp = reqval / 1000;
370 mutex_lock(&data->update_lock);
371 data->reg[param->msb[0]] = temp;
372 write_byte(client, param->msb[0], temp);
373 mutex_unlock(&data->update_lock);
374 return count;
378 * Temperatures that occupy 2 bytes always have the whole
379 * number of degrees in the MSB with some part of the LSB
380 * indicating fractional degrees.
383 /* mmmmmmmm.llxxxxxx */
384 static ssize_t show_temp10(struct device *dev,
385 struct device_attribute *attr, char *buf)
387 SETUP_SHOW_DATA_PARAM(dev, attr);
388 u8 msb, lsb;
389 int temp;
391 mutex_lock(&data->update_lock);
392 msb = data->reg[param->msb[0]];
393 lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
394 temp = (((s8) msb) * 1000) + (lsb * 250);
395 mutex_unlock(&data->update_lock);
397 return sprintf(buf, "%d\n", temp);
400 /* mmmmmm.ll */
401 static ssize_t show_temp62(struct device *dev,
402 struct device_attribute *attr, char *buf)
404 SETUP_SHOW_DATA_PARAM(dev, attr);
405 u8 regval = data->reg[param->msb[0]];
406 int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
408 return sprintf(buf, "%d\n", temp);
411 static ssize_t store_temp62(struct device *dev,
412 struct device_attribute *attr, const char *buf,
413 size_t count)
415 SETUP_STORE_DATA_PARAM(dev, attr);
416 long reqval, i, f;
417 s8 temp;
419 if (kstrtol(buf, 10, &reqval))
420 return -EINVAL;
422 reqval = clamp_val(reqval, -32000, 31750);
423 i = reqval / 1000;
424 f = reqval - (i * 1000);
425 temp = i << 2;
426 temp |= f / 250;
428 mutex_lock(&data->update_lock);
429 data->reg[param->msb[0]] = temp;
430 write_byte(client, param->msb[0], temp);
431 mutex_unlock(&data->update_lock);
432 return count;
436 * The aSC7621 doesn't provide an "auto_point2". Instead, you
437 * specify the auto_point1 and a range. To keep with the sysfs
438 * hwmon specs, we synthesize the auto_point_2 from them.
441 static const u32 asc7621_range_map[] = {
442 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
443 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
446 static ssize_t show_ap2_temp(struct device *dev,
447 struct device_attribute *attr, char *buf)
449 SETUP_SHOW_DATA_PARAM(dev, attr);
450 long auto_point1;
451 u8 regval;
452 int temp;
454 mutex_lock(&data->update_lock);
455 auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
456 regval =
457 ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
458 temp = auto_point1 + asc7621_range_map[clamp_val(regval, 0, 15)];
459 mutex_unlock(&data->update_lock);
461 return sprintf(buf, "%d\n", temp);
465 static ssize_t store_ap2_temp(struct device *dev,
466 struct device_attribute *attr,
467 const char *buf, size_t count)
469 SETUP_STORE_DATA_PARAM(dev, attr);
470 long reqval, auto_point1;
471 int i;
472 u8 currval, newval = 0;
474 if (kstrtol(buf, 10, &reqval))
475 return -EINVAL;
477 mutex_lock(&data->update_lock);
478 auto_point1 = data->reg[param->msb[1]] * 1000;
479 reqval = clamp_val(reqval, auto_point1 + 2000, auto_point1 + 80000);
481 for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
482 if (reqval >= auto_point1 + asc7621_range_map[i]) {
483 newval = i;
484 break;
488 newval = (newval & param->mask[0]) << param->shift[0];
489 currval = read_byte(client, param->msb[0]);
490 newval |= (currval & ~(param->mask[0] << param->shift[0]));
491 data->reg[param->msb[0]] = newval;
492 write_byte(client, param->msb[0], newval);
493 mutex_unlock(&data->update_lock);
494 return count;
497 static ssize_t show_pwm_ac(struct device *dev,
498 struct device_attribute *attr, char *buf)
500 SETUP_SHOW_DATA_PARAM(dev, attr);
501 u8 config, altbit, regval;
502 static const u8 map[] = {
503 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
504 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
507 mutex_lock(&data->update_lock);
508 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
509 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
510 regval = config | (altbit << 3);
511 mutex_unlock(&data->update_lock);
513 return sprintf(buf, "%u\n", map[clamp_val(regval, 0, 15)]);
516 static ssize_t store_pwm_ac(struct device *dev,
517 struct device_attribute *attr,
518 const char *buf, size_t count)
520 SETUP_STORE_DATA_PARAM(dev, attr);
521 unsigned long reqval;
522 u8 currval, config, altbit, newval;
523 static const u16 map[] = {
524 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
525 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
526 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
527 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
530 if (kstrtoul(buf, 10, &reqval))
531 return -EINVAL;
533 if (reqval > 31)
534 return -EINVAL;
536 reqval = map[reqval];
537 if (reqval == 0xff)
538 return -EINVAL;
540 config = reqval & 0x07;
541 altbit = (reqval >> 3) & 0x01;
543 config = (config & param->mask[0]) << param->shift[0];
544 altbit = (altbit & param->mask[1]) << param->shift[1];
546 mutex_lock(&data->update_lock);
547 currval = read_byte(client, param->msb[0]);
548 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
549 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
550 data->reg[param->msb[0]] = newval;
551 write_byte(client, param->msb[0], newval);
552 mutex_unlock(&data->update_lock);
553 return count;
556 static ssize_t show_pwm_enable(struct device *dev,
557 struct device_attribute *attr, char *buf)
559 SETUP_SHOW_DATA_PARAM(dev, attr);
560 u8 config, altbit, minoff, val, newval;
562 mutex_lock(&data->update_lock);
563 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
564 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
565 minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
566 mutex_unlock(&data->update_lock);
568 val = config | (altbit << 3);
570 if (val == 3 || val >= 10)
571 newval = 255;
572 else if (val == 4)
573 newval = 0;
574 else if (val == 7)
575 newval = 1;
576 else if (minoff == 1)
577 newval = 2;
578 else
579 newval = 3;
581 return sprintf(buf, "%u\n", newval);
584 static ssize_t store_pwm_enable(struct device *dev,
585 struct device_attribute *attr,
586 const char *buf, size_t count)
588 SETUP_STORE_DATA_PARAM(dev, attr);
589 long reqval;
590 u8 currval, config, altbit, newval, minoff = 255;
592 if (kstrtol(buf, 10, &reqval))
593 return -EINVAL;
595 switch (reqval) {
596 case 0:
597 newval = 0x04;
598 break;
599 case 1:
600 newval = 0x07;
601 break;
602 case 2:
603 newval = 0x00;
604 minoff = 1;
605 break;
606 case 3:
607 newval = 0x00;
608 minoff = 0;
609 break;
610 case 255:
611 newval = 0x03;
612 break;
613 default:
614 return -EINVAL;
617 config = newval & 0x07;
618 altbit = (newval >> 3) & 0x01;
620 mutex_lock(&data->update_lock);
621 config = (config & param->mask[0]) << param->shift[0];
622 altbit = (altbit & param->mask[1]) << param->shift[1];
623 currval = read_byte(client, param->msb[0]);
624 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
625 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
626 data->reg[param->msb[0]] = newval;
627 write_byte(client, param->msb[0], newval);
628 if (minoff < 255) {
629 minoff = (minoff & param->mask[2]) << param->shift[2];
630 currval = read_byte(client, param->msb[2]);
631 newval =
632 minoff | (currval & ~(param->mask[2] << param->shift[2]));
633 data->reg[param->msb[2]] = newval;
634 write_byte(client, param->msb[2], newval);
636 mutex_unlock(&data->update_lock);
637 return count;
640 static const u32 asc7621_pwm_freq_map[] = {
641 10, 15, 23, 30, 38, 47, 62, 94,
642 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
645 static ssize_t show_pwm_freq(struct device *dev,
646 struct device_attribute *attr, char *buf)
648 SETUP_SHOW_DATA_PARAM(dev, attr);
649 u8 regval =
650 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
652 regval = clamp_val(regval, 0, 15);
654 return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
657 static ssize_t store_pwm_freq(struct device *dev,
658 struct device_attribute *attr,
659 const char *buf, size_t count)
661 SETUP_STORE_DATA_PARAM(dev, attr);
662 unsigned long reqval;
663 u8 currval, newval = 255;
664 int i;
666 if (kstrtoul(buf, 10, &reqval))
667 return -EINVAL;
669 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
670 if (reqval == asc7621_pwm_freq_map[i]) {
671 newval = i;
672 break;
675 if (newval == 255)
676 return -EINVAL;
678 newval = (newval & param->mask[0]) << param->shift[0];
680 mutex_lock(&data->update_lock);
681 currval = read_byte(client, param->msb[0]);
682 newval |= (currval & ~(param->mask[0] << param->shift[0]));
683 data->reg[param->msb[0]] = newval;
684 write_byte(client, param->msb[0], newval);
685 mutex_unlock(&data->update_lock);
686 return count;
689 static const u32 asc7621_pwm_auto_spinup_map[] = {
690 0, 100, 250, 400, 700, 1000, 2000, 4000
693 static ssize_t show_pwm_ast(struct device *dev,
694 struct device_attribute *attr, char *buf)
696 SETUP_SHOW_DATA_PARAM(dev, attr);
697 u8 regval =
698 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
700 regval = clamp_val(regval, 0, 7);
702 return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
706 static ssize_t store_pwm_ast(struct device *dev,
707 struct device_attribute *attr,
708 const char *buf, size_t count)
710 SETUP_STORE_DATA_PARAM(dev, attr);
711 long reqval;
712 u8 currval, newval = 255;
713 u32 i;
715 if (kstrtol(buf, 10, &reqval))
716 return -EINVAL;
718 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
719 if (reqval == asc7621_pwm_auto_spinup_map[i]) {
720 newval = i;
721 break;
724 if (newval == 255)
725 return -EINVAL;
727 newval = (newval & param->mask[0]) << param->shift[0];
729 mutex_lock(&data->update_lock);
730 currval = read_byte(client, param->msb[0]);
731 newval |= (currval & ~(param->mask[0] << param->shift[0]));
732 data->reg[param->msb[0]] = newval;
733 write_byte(client, param->msb[0], newval);
734 mutex_unlock(&data->update_lock);
735 return count;
738 static const u32 asc7621_temp_smoothing_time_map[] = {
739 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
742 static ssize_t show_temp_st(struct device *dev,
743 struct device_attribute *attr, char *buf)
745 SETUP_SHOW_DATA_PARAM(dev, attr);
746 u8 regval =
747 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
748 regval = clamp_val(regval, 0, 7);
750 return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
753 static ssize_t store_temp_st(struct device *dev,
754 struct device_attribute *attr,
755 const char *buf, size_t count)
757 SETUP_STORE_DATA_PARAM(dev, attr);
758 long reqval;
759 u8 currval, newval = 255;
760 u32 i;
762 if (kstrtol(buf, 10, &reqval))
763 return -EINVAL;
765 for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) {
766 if (reqval == asc7621_temp_smoothing_time_map[i]) {
767 newval = i;
768 break;
772 if (newval == 255)
773 return -EINVAL;
775 newval = (newval & param->mask[0]) << param->shift[0];
777 mutex_lock(&data->update_lock);
778 currval = read_byte(client, param->msb[0]);
779 newval |= (currval & ~(param->mask[0] << param->shift[0]));
780 data->reg[param->msb[0]] = newval;
781 write_byte(client, param->msb[0], newval);
782 mutex_unlock(&data->update_lock);
783 return count;
787 * End of data handlers
789 * These defines do nothing more than make the table easier
790 * to read when wrapped at column 80.
794 * Creates a variable length array inititalizer.
795 * VAA(1,3,5,7) would produce {1,3,5,7}
797 #define VAA(args...) {args}
799 #define PREAD(name, n, pri, rm, rl, m, s, r) \
800 {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
801 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
802 .shift[0] = s,}
804 #define PWRITE(name, n, pri, rm, rl, m, s, r) \
805 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
806 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
807 .shift[0] = s,}
810 * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
811 * were created using the VAA macro.
813 #define PWRITEM(name, n, pri, rm, rl, m, s, r) \
814 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
815 .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
817 static struct asc7621_param asc7621_params[] = {
818 PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
819 PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
820 PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
821 PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
822 PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
824 PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
825 PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
826 PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
827 PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
828 PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
830 PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
831 PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
832 PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
833 PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
834 PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
836 PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask),
837 PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask),
838 PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask),
839 PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask),
840 PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask),
842 PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
843 PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
844 PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
845 PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
847 PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
848 PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
849 PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
850 PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
852 PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask),
853 PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask),
854 PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask),
855 PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask),
857 PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
858 PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
859 PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
860 PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
861 PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
862 PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
863 PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
864 PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
866 PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
867 PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
868 PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
869 PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
871 PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
872 PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
873 PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
874 PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
876 PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask),
877 PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask),
878 PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask),
879 PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask),
881 PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
882 PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
883 PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
884 PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
886 PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
887 PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
888 PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask),
889 PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
891 PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
892 PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
893 PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
894 PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
896 PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
897 bitmask),
898 PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
899 bitmask),
900 PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
901 bitmask),
902 PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
903 bitmask),
905 PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
906 bitmask),
907 PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
908 bitmask),
909 PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
910 bitmask),
911 PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
912 bitmask),
914 PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
915 PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
916 PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
917 PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
919 PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
920 VAA(0x0f), VAA(4), ap2_temp),
921 PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
922 VAA(0x0f), VAA(4), ap2_temp),
923 PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
924 VAA(0x0f), VAA(4), ap2_temp),
925 PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
926 VAA(0x0f), VAA(4), ap2_temp),
928 PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
929 PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
930 PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
931 PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
933 PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
934 PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
935 PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
936 PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
938 PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
939 PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
941 PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
942 PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
943 PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
945 PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
946 PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
947 PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
949 PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
950 VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
951 PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
952 VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
953 PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
954 VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
956 PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
957 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
958 PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
959 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
960 PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
961 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
963 PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
964 PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
965 PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
967 PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
968 PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
969 PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
971 PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
972 PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
973 PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
975 PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
976 PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
977 PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
979 PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
980 PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
981 PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
983 PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
984 PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
985 PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
986 PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
987 PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
988 PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
992 static struct asc7621_data *asc7621_update_device(struct device *dev)
994 struct i2c_client *client = to_i2c_client(dev);
995 struct asc7621_data *data = i2c_get_clientdata(client);
996 int i;
999 * The asc7621 chips guarantee consistent reads of multi-byte values
1000 * regardless of the order of the reads. No special logic is needed
1001 * so we can just read the registers in whatever order they appear
1002 * in the asc7621_params array.
1005 mutex_lock(&data->update_lock);
1007 /* Read all the high priority registers */
1009 if (!data->valid ||
1010 time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
1012 for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
1013 if (asc7621_register_priorities[i] == PRI_HIGH) {
1014 data->reg[i] =
1015 i2c_smbus_read_byte_data(client, i) & 0xff;
1018 data->last_high_reading = jiffies;
1019 } /* last_reading */
1021 /* Read all the low priority registers. */
1023 if (!data->valid ||
1024 time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) {
1026 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1027 if (asc7621_register_priorities[i] == PRI_LOW) {
1028 data->reg[i] =
1029 i2c_smbus_read_byte_data(client, i) & 0xff;
1032 data->last_low_reading = jiffies;
1033 } /* last_reading */
1035 data->valid = true;
1037 mutex_unlock(&data->update_lock);
1039 return data;
1043 * Standard detection and initialization below
1045 * Helper function that checks if an address is valid
1046 * for a particular chip.
1049 static inline int valid_address_for_chip(int chip_type, int address)
1051 int i;
1053 for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
1054 i++) {
1055 if (asc7621_chips[chip_type].addresses[i] == address)
1056 return 1;
1058 return 0;
1061 static void asc7621_init_client(struct i2c_client *client)
1063 int value;
1065 /* Warn if part was not "READY" */
1067 value = read_byte(client, 0x40);
1069 if (value & 0x02) {
1070 dev_err(&client->dev,
1071 "Client (%d,0x%02x) config is locked.\n",
1072 i2c_adapter_id(client->adapter), client->addr);
1074 if (!(value & 0x04)) {
1075 dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
1076 i2c_adapter_id(client->adapter), client->addr);
1080 * Start monitoring
1082 * Try to clear LOCK, Set START, save everything else
1084 value = (value & ~0x02) | 0x01;
1085 write_byte(client, 0x40, value & 0xff);
1089 static int
1090 asc7621_probe(struct i2c_client *client)
1092 struct asc7621_data *data;
1093 int i, err;
1095 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1096 return -EIO;
1098 data = devm_kzalloc(&client->dev, sizeof(struct asc7621_data),
1099 GFP_KERNEL);
1100 if (data == NULL)
1101 return -ENOMEM;
1103 i2c_set_clientdata(client, data);
1104 mutex_init(&data->update_lock);
1106 /* Initialize the asc7621 chip */
1107 asc7621_init_client(client);
1109 /* Create the sysfs entries */
1110 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1111 err =
1112 device_create_file(&client->dev,
1113 &(asc7621_params[i].sda.dev_attr));
1114 if (err)
1115 goto exit_remove;
1118 data->class_dev = hwmon_device_register(&client->dev);
1119 if (IS_ERR(data->class_dev)) {
1120 err = PTR_ERR(data->class_dev);
1121 goto exit_remove;
1124 return 0;
1126 exit_remove:
1127 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1128 device_remove_file(&client->dev,
1129 &(asc7621_params[i].sda.dev_attr));
1132 return err;
1135 static int asc7621_detect(struct i2c_client *client,
1136 struct i2c_board_info *info)
1138 struct i2c_adapter *adapter = client->adapter;
1139 int company, verstep, chip_index;
1141 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1142 return -ENODEV;
1144 for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
1146 if (!valid_address_for_chip(chip_index, client->addr))
1147 continue;
1149 company = read_byte(client,
1150 asc7621_chips[chip_index].company_reg);
1151 verstep = read_byte(client,
1152 asc7621_chips[chip_index].verstep_reg);
1154 if (company == asc7621_chips[chip_index].company_id &&
1155 verstep == asc7621_chips[chip_index].verstep_id) {
1156 strscpy(info->type, asc7621_chips[chip_index].name,
1157 I2C_NAME_SIZE);
1159 dev_info(&adapter->dev, "Matched %s at 0x%02x\n",
1160 asc7621_chips[chip_index].name, client->addr);
1161 return 0;
1165 return -ENODEV;
1168 static void asc7621_remove(struct i2c_client *client)
1170 struct asc7621_data *data = i2c_get_clientdata(client);
1171 int i;
1173 hwmon_device_unregister(data->class_dev);
1175 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1176 device_remove_file(&client->dev,
1177 &(asc7621_params[i].sda.dev_attr));
1181 static const struct i2c_device_id asc7621_id[] = {
1182 {"asc7621", asc7621},
1183 {"asc7621a", asc7621a},
1187 MODULE_DEVICE_TABLE(i2c, asc7621_id);
1189 static struct i2c_driver asc7621_driver = {
1190 .class = I2C_CLASS_HWMON,
1191 .driver = {
1192 .name = "asc7621",
1194 .probe = asc7621_probe,
1195 .remove = asc7621_remove,
1196 .id_table = asc7621_id,
1197 .detect = asc7621_detect,
1198 .address_list = normal_i2c,
1201 static int __init sm_asc7621_init(void)
1203 int i, j;
1205 * Collect all the registers needed into a single array.
1206 * This way, if a register isn't actually used for anything,
1207 * we don't retrieve it.
1210 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1211 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
1212 asc7621_register_priorities[asc7621_params[i].msb[j]] =
1213 asc7621_params[i].priority;
1214 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
1215 asc7621_register_priorities[asc7621_params[i].lsb[j]] =
1216 asc7621_params[i].priority;
1218 return i2c_add_driver(&asc7621_driver);
1221 static void __exit sm_asc7621_exit(void)
1223 i2c_del_driver(&asc7621_driver);
1226 MODULE_LICENSE("GPL");
1227 MODULE_AUTHOR("George Joseph");
1228 MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
1230 module_init(sm_asc7621_init);
1231 module_exit(sm_asc7621_exit);