1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
6 * Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
7 * Serge Semin <Sergey.Semin@baikalelectronics.ru>
9 * Baikal-T1 Process, Voltage, Temperature sensor driver
12 #include <linux/bitfield.h>
13 #include <linux/bitops.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/hwmon.h>
20 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/limits.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
28 #include <linux/platform_device.h>
29 #include <linux/polynomial.h>
30 #include <linux/seqlock.h>
31 #include <linux/sysfs.h>
32 #include <linux/types.h>
37 * For the sake of the code simplification we created the sensors info table
38 * with the sensor names, activation modes, threshold registers base address
39 * and the thresholds bit fields.
41 static const struct pvt_sensor_info pvt_info
[] = {
42 PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp
, TEMP
, TTHRES
),
43 PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in
, VOLT
, VTHRES
),
44 PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in
, LVT
, LTHRES
),
45 PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in
, HVT
, HTHRES
),
46 PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in
, SVT
, STHRES
),
50 * The original translation formulae of the temperature (in degrees of Celsius)
51 * to PVT data and vice-versa are following:
52 * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
54 * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
55 * 3.1020e-1*(N^1) - 4.838e1,
56 * where T = [-48.380, 147.438]C and N = [0, 1023].
57 * They must be accordingly altered to be suitable for the integer arithmetics.
58 * The technique is called 'factor redistribution', which just makes sure the
59 * multiplications and divisions are made so to have a result of the operations
60 * within the integer numbers limit. In addition we need to translate the
61 * formulae to accept millidegrees of Celsius. Here what they look like after
63 * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
65 * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
67 * where T = [-48380, 147438] mC and N = [0, 1023].
69 static const struct polynomial __maybe_unused poly_temp_to_N
= {
70 .total_divider
= 10000,
72 {4, 18322, 10000, 10000},
74 {2, 87018, 10000, 10},
80 static const struct polynomial poly_N_to_temp
= {
85 {2, -182010, 1000, 1},
92 * Similar alterations are performed for the voltage conversion equations.
93 * The original formulae are:
94 * N = 1.8658e3*V - 1.1572e3,
95 * V = (N + 1.1572e3) / 1.8658e3,
96 * where V = [0.620, 1.168] V and N = [0, 1023].
97 * After the optimization they looks as follows:
98 * N = (18658e-3*V - 11572) / 10,
99 * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
101 static const struct polynomial __maybe_unused poly_volt_to_N
= {
109 static const struct polynomial poly_N_to_volt
= {
112 {1, 100000, 18658, 1},
113 {0, 115720000, 1, 18658}
117 static inline u32
pvt_update(void __iomem
*reg
, u32 mask
, u32 data
)
121 old
= readl_relaxed(reg
);
122 writel((old
& ~mask
) | (data
& mask
), reg
);
128 * Baikal-T1 PVT mode can be updated only when the controller is disabled.
129 * So first we disable it, then set the new mode together with the controller
130 * getting back enabled. The same concerns the temperature trim and
131 * measurements timeout. If it is necessary the interface mutex is supposed
132 * to be locked at the time the operations are performed.
134 static inline void pvt_set_mode(struct pvt_hwmon
*pvt
, u32 mode
)
138 mode
= FIELD_PREP(PVT_CTRL_MODE_MASK
, mode
);
140 old
= pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, 0);
141 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_MODE_MASK
| PVT_CTRL_EN
,
145 static inline u32
pvt_calc_trim(long temp
)
147 temp
= clamp_val(temp
, 0, PVT_TRIM_TEMP
);
149 return DIV_ROUND_UP(temp
, PVT_TRIM_STEP
);
152 static inline void pvt_set_trim(struct pvt_hwmon
*pvt
, u32 trim
)
156 trim
= FIELD_PREP(PVT_CTRL_TRIM_MASK
, trim
);
158 old
= pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, 0);
159 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_TRIM_MASK
| PVT_CTRL_EN
,
163 static inline void pvt_set_tout(struct pvt_hwmon
*pvt
, u32 tout
)
167 old
= pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, 0);
168 writel(tout
, pvt
->regs
+ PVT_TTIMEOUT
);
169 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, old
);
173 * This driver can optionally provide the hwmon alarms for each sensor the PVT
174 * controller supports. The alarms functionality is made compile-time
175 * configurable due to the hardware interface implementation peculiarity
176 * described further in this comment. So in case if alarms are unnecessary in
177 * your system design it's recommended to have them disabled to prevent the PVT
178 * IRQs being periodically raised to get the data cache/alarms status up to
181 * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
182 * but is equipped with a dedicated control wrapper. It exposes the PVT
183 * sub-block registers space via the APB3 bus. In addition the wrapper provides
184 * a common interrupt vector of the sensors conversion completion events and
185 * threshold value alarms. Alas the wrapper interface hasn't been fully thought
186 * through. There is only one sensor can be activated at a time, for which the
187 * thresholds comparator is enabled right after the data conversion is
188 * completed. Due to this if alarms need to be implemented for all available
189 * sensors we can't just set the thresholds and enable the interrupts. We need
190 * to enable the sensors one after another and let the controller to detect
191 * the alarms by itself at each conversion. This also makes pointless to handle
192 * the alarms interrupts, since in occasion they happen synchronously with
193 * data conversion completion. The best driver design would be to have the
194 * completion interrupts enabled only and keep the converted value in the
195 * driver data cache. This solution is implemented if hwmon alarms are enabled
196 * in this driver. In case if the alarms are disabled, the conversion is
197 * performed on demand at the time a sensors input file is read.
200 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
202 #define pvt_hard_isr NULL
204 static irqreturn_t
pvt_soft_isr(int irq
, void *data
)
206 const struct pvt_sensor_info
*info
;
207 struct pvt_hwmon
*pvt
= data
;
208 struct pvt_cache
*cache
;
209 u32 val
, thres_sts
, old
;
212 * DVALID bit will be cleared by reading the data. We need to save the
213 * status before the next conversion happens. Threshold events will be
214 * handled a bit later.
216 thres_sts
= readl(pvt
->regs
+ PVT_RAW_INTR_STAT
);
219 * Then lets recharge the PVT interface with the next sampling mode.
220 * Lock the interface mutex to serialize trim, timeouts and alarm
221 * thresholds settings.
223 cache
= &pvt
->cache
[pvt
->sensor
];
224 info
= &pvt_info
[pvt
->sensor
];
225 pvt
->sensor
= (pvt
->sensor
== PVT_SENSOR_LAST
) ?
226 PVT_SENSOR_FIRST
: (pvt
->sensor
+ 1);
229 * For some reason we have to mask the interrupt before changing the
230 * mode, otherwise sometimes the temperature mode doesn't get
231 * activated even though the actual mode in the ctrl register
232 * corresponds to one. Then we read the data. By doing so we also
233 * recharge the data conversion. After this the mode corresponding
234 * to the next sensor in the row is set. Finally we enable the
237 mutex_lock(&pvt
->iface_mtx
);
239 old
= pvt_update(pvt
->regs
+ PVT_INTR_MASK
, PVT_INTR_DVALID
,
242 val
= readl(pvt
->regs
+ PVT_DATA
);
244 pvt_set_mode(pvt
, pvt_info
[pvt
->sensor
].mode
);
246 pvt_update(pvt
->regs
+ PVT_INTR_MASK
, PVT_INTR_DVALID
, old
);
248 mutex_unlock(&pvt
->iface_mtx
);
251 * We can now update the data cache with data just retrieved from the
252 * sensor. Lock write-seqlock to make sure the reader has a coherent
255 write_seqlock(&cache
->data_seqlock
);
257 cache
->data
= FIELD_GET(PVT_DATA_DATA_MASK
, val
);
259 write_sequnlock(&cache
->data_seqlock
);
262 * While PVT core is doing the next mode data conversion, we'll check
263 * whether the alarms were triggered for the current sensor. Note that
264 * according to the documentation only one threshold IRQ status can be
265 * set at a time, that's why if-else statement is utilized.
267 if ((thres_sts
& info
->thres_sts_lo
) ^ cache
->thres_sts_lo
) {
268 WRITE_ONCE(cache
->thres_sts_lo
, thres_sts
& info
->thres_sts_lo
);
269 hwmon_notify_event(pvt
->hwmon
, info
->type
, info
->attr_min_alarm
,
271 } else if ((thres_sts
& info
->thres_sts_hi
) ^ cache
->thres_sts_hi
) {
272 WRITE_ONCE(cache
->thres_sts_hi
, thres_sts
& info
->thres_sts_hi
);
273 hwmon_notify_event(pvt
->hwmon
, info
->type
, info
->attr_max_alarm
,
280 static inline umode_t
pvt_limit_is_visible(enum pvt_sensor_type type
)
285 static inline umode_t
pvt_alarm_is_visible(enum pvt_sensor_type type
)
290 static int pvt_read_data(struct pvt_hwmon
*pvt
, enum pvt_sensor_type type
,
293 struct pvt_cache
*cache
= &pvt
->cache
[type
];
298 seq
= read_seqbegin(&cache
->data_seqlock
);
300 } while (read_seqretry(&cache
->data_seqlock
, seq
));
302 if (type
== PVT_TEMP
)
303 *val
= polynomial_calc(&poly_N_to_temp
, data
);
305 *val
= polynomial_calc(&poly_N_to_volt
, data
);
310 static int pvt_read_limit(struct pvt_hwmon
*pvt
, enum pvt_sensor_type type
,
311 bool is_low
, long *val
)
315 /* No need in serialization, since it is just read from MMIO. */
316 data
= readl(pvt
->regs
+ pvt_info
[type
].thres_base
);
319 data
= FIELD_GET(PVT_THRES_LO_MASK
, data
);
321 data
= FIELD_GET(PVT_THRES_HI_MASK
, data
);
323 if (type
== PVT_TEMP
)
324 *val
= polynomial_calc(&poly_N_to_temp
, data
);
326 *val
= polynomial_calc(&poly_N_to_volt
, data
);
331 static int pvt_write_limit(struct pvt_hwmon
*pvt
, enum pvt_sensor_type type
,
332 bool is_low
, long val
)
334 u32 data
, limit
, mask
;
337 if (type
== PVT_TEMP
) {
338 val
= clamp(val
, PVT_TEMP_MIN
, PVT_TEMP_MAX
);
339 data
= polynomial_calc(&poly_temp_to_N
, val
);
341 val
= clamp(val
, PVT_VOLT_MIN
, PVT_VOLT_MAX
);
342 data
= polynomial_calc(&poly_volt_to_N
, val
);
345 /* Serialize limit update, since a part of the register is changed. */
346 ret
= mutex_lock_interruptible(&pvt
->iface_mtx
);
350 /* Make sure the upper and lower ranges don't intersect. */
351 limit
= readl(pvt
->regs
+ pvt_info
[type
].thres_base
);
353 limit
= FIELD_GET(PVT_THRES_HI_MASK
, limit
);
354 data
= clamp_val(data
, PVT_DATA_MIN
, limit
);
355 data
= FIELD_PREP(PVT_THRES_LO_MASK
, data
);
356 mask
= PVT_THRES_LO_MASK
;
358 limit
= FIELD_GET(PVT_THRES_LO_MASK
, limit
);
359 data
= clamp_val(data
, limit
, PVT_DATA_MAX
);
360 data
= FIELD_PREP(PVT_THRES_HI_MASK
, data
);
361 mask
= PVT_THRES_HI_MASK
;
364 pvt_update(pvt
->regs
+ pvt_info
[type
].thres_base
, mask
, data
);
366 mutex_unlock(&pvt
->iface_mtx
);
371 static int pvt_read_alarm(struct pvt_hwmon
*pvt
, enum pvt_sensor_type type
,
372 bool is_low
, long *val
)
375 *val
= !!READ_ONCE(pvt
->cache
[type
].thres_sts_lo
);
377 *val
= !!READ_ONCE(pvt
->cache
[type
].thres_sts_hi
);
382 static const struct hwmon_channel_info
* const pvt_channel_info
[] = {
383 HWMON_CHANNEL_INFO(chip
,
384 HWMON_C_REGISTER_TZ
| HWMON_C_UPDATE_INTERVAL
),
385 HWMON_CHANNEL_INFO(temp
,
386 HWMON_T_INPUT
| HWMON_T_TYPE
| HWMON_T_LABEL
|
387 HWMON_T_MIN
| HWMON_T_MIN_ALARM
|
388 HWMON_T_MAX
| HWMON_T_MAX_ALARM
|
390 HWMON_CHANNEL_INFO(in
,
391 HWMON_I_INPUT
| HWMON_I_LABEL
|
392 HWMON_I_MIN
| HWMON_I_MIN_ALARM
|
393 HWMON_I_MAX
| HWMON_I_MAX_ALARM
,
394 HWMON_I_INPUT
| HWMON_I_LABEL
|
395 HWMON_I_MIN
| HWMON_I_MIN_ALARM
|
396 HWMON_I_MAX
| HWMON_I_MAX_ALARM
,
397 HWMON_I_INPUT
| HWMON_I_LABEL
|
398 HWMON_I_MIN
| HWMON_I_MIN_ALARM
|
399 HWMON_I_MAX
| HWMON_I_MAX_ALARM
,
400 HWMON_I_INPUT
| HWMON_I_LABEL
|
401 HWMON_I_MIN
| HWMON_I_MIN_ALARM
|
402 HWMON_I_MAX
| HWMON_I_MAX_ALARM
),
406 #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
408 static irqreturn_t
pvt_hard_isr(int irq
, void *data
)
410 struct pvt_hwmon
*pvt
= data
;
411 struct pvt_cache
*cache
;
415 * Mask the DVALID interrupt so after exiting from the handler a
416 * repeated conversion wouldn't happen.
418 pvt_update(pvt
->regs
+ PVT_INTR_MASK
, PVT_INTR_DVALID
,
422 * Nothing special for alarm-less driver. Just read the data, update
423 * the cache and notify a waiter of this event.
425 val
= readl(pvt
->regs
+ PVT_DATA
);
426 if (!(val
& PVT_DATA_VALID
)) {
427 dev_err(pvt
->dev
, "Got IRQ when data isn't valid\n");
431 cache
= &pvt
->cache
[pvt
->sensor
];
433 WRITE_ONCE(cache
->data
, FIELD_GET(PVT_DATA_DATA_MASK
, val
));
435 complete(&cache
->conversion
);
440 #define pvt_soft_isr NULL
442 static inline umode_t
pvt_limit_is_visible(enum pvt_sensor_type type
)
447 static inline umode_t
pvt_alarm_is_visible(enum pvt_sensor_type type
)
452 static int pvt_read_data(struct pvt_hwmon
*pvt
, enum pvt_sensor_type type
,
455 struct pvt_cache
*cache
= &pvt
->cache
[type
];
456 unsigned long timeout
;
461 * Lock PVT conversion interface until data cache is updated. The
462 * data read procedure is following: set the requested PVT sensor
463 * mode, enable IRQ and conversion, wait until conversion is finished,
464 * then disable conversion and IRQ, and read the cached data.
466 ret
= mutex_lock_interruptible(&pvt
->iface_mtx
);
471 pvt_set_mode(pvt
, pvt_info
[type
].mode
);
474 * Unmask the DVALID interrupt and enable the sensors conversions.
475 * Do the reverse procedure when conversion is done.
477 pvt_update(pvt
->regs
+ PVT_INTR_MASK
, PVT_INTR_DVALID
, 0);
478 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, PVT_CTRL_EN
);
481 * Wait with timeout since in case if the sensor is suddenly powered
482 * down the request won't be completed and the caller will hang up on
483 * this procedure until the power is back up again. Multiply the
484 * timeout by the factor of two to prevent a false timeout.
486 timeout
= 2 * usecs_to_jiffies(ktime_to_us(pvt
->timeout
));
487 ret
= wait_for_completion_timeout(&cache
->conversion
, timeout
);
489 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, 0);
490 pvt_update(pvt
->regs
+ PVT_INTR_MASK
, PVT_INTR_DVALID
,
493 data
= READ_ONCE(cache
->data
);
495 mutex_unlock(&pvt
->iface_mtx
);
500 if (type
== PVT_TEMP
)
501 *val
= polynomial_calc(&poly_N_to_temp
, data
);
503 *val
= polynomial_calc(&poly_N_to_volt
, data
);
508 static int pvt_read_limit(struct pvt_hwmon
*pvt
, enum pvt_sensor_type type
,
509 bool is_low
, long *val
)
514 static int pvt_write_limit(struct pvt_hwmon
*pvt
, enum pvt_sensor_type type
,
515 bool is_low
, long val
)
520 static int pvt_read_alarm(struct pvt_hwmon
*pvt
, enum pvt_sensor_type type
,
521 bool is_low
, long *val
)
526 static const struct hwmon_channel_info
* const pvt_channel_info
[] = {
527 HWMON_CHANNEL_INFO(chip
,
528 HWMON_C_REGISTER_TZ
| HWMON_C_UPDATE_INTERVAL
),
529 HWMON_CHANNEL_INFO(temp
,
530 HWMON_T_INPUT
| HWMON_T_TYPE
| HWMON_T_LABEL
|
532 HWMON_CHANNEL_INFO(in
,
533 HWMON_I_INPUT
| HWMON_I_LABEL
,
534 HWMON_I_INPUT
| HWMON_I_LABEL
,
535 HWMON_I_INPUT
| HWMON_I_LABEL
,
536 HWMON_I_INPUT
| HWMON_I_LABEL
),
540 #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
542 static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type
,
547 if (ch
< 0 || ch
>= PVT_TEMP_CHS
)
551 if (ch
< 0 || ch
>= PVT_VOLT_CHS
)
558 /* The rest of the types are independent from the channel number. */
562 static umode_t
pvt_hwmon_is_visible(const void *data
,
563 enum hwmon_sensor_types type
,
566 if (!pvt_hwmon_channel_is_valid(type
, ch
))
572 case hwmon_chip_update_interval
:
578 case hwmon_temp_input
:
579 case hwmon_temp_type
:
580 case hwmon_temp_label
:
584 return pvt_limit_is_visible(ch
);
585 case hwmon_temp_min_alarm
:
586 case hwmon_temp_max_alarm
:
587 return pvt_alarm_is_visible(ch
);
588 case hwmon_temp_offset
:
599 return pvt_limit_is_visible(PVT_VOLT
+ ch
);
600 case hwmon_in_min_alarm
:
601 case hwmon_in_max_alarm
:
602 return pvt_alarm_is_visible(PVT_VOLT
+ ch
);
612 static int pvt_read_trim(struct pvt_hwmon
*pvt
, long *val
)
616 data
= readl(pvt
->regs
+ PVT_CTRL
);
617 *val
= FIELD_GET(PVT_CTRL_TRIM_MASK
, data
) * PVT_TRIM_STEP
;
622 static int pvt_write_trim(struct pvt_hwmon
*pvt
, long val
)
628 * Serialize trim update, since a part of the register is changed and
629 * the controller is supposed to be disabled during this operation.
631 ret
= mutex_lock_interruptible(&pvt
->iface_mtx
);
635 trim
= pvt_calc_trim(val
);
636 pvt_set_trim(pvt
, trim
);
638 mutex_unlock(&pvt
->iface_mtx
);
643 static int pvt_read_timeout(struct pvt_hwmon
*pvt
, long *val
)
647 ret
= mutex_lock_interruptible(&pvt
->iface_mtx
);
651 /* Return the result in msec as hwmon sysfs interface requires. */
652 *val
= ktime_to_ms(pvt
->timeout
);
654 mutex_unlock(&pvt
->iface_mtx
);
659 static int pvt_write_timeout(struct pvt_hwmon
*pvt
, long val
)
666 rate
= clk_get_rate(pvt
->clks
[PVT_CLOCK_REF
].clk
);
671 * If alarms are enabled, the requested timeout must be divided
672 * between all available sensors to have the requested delay
673 * applicable to each individual sensor.
675 cache
= kt
= ms_to_ktime(val
);
676 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
677 kt
= ktime_divns(kt
, PVT_SENSORS_NUM
);
681 * Subtract a constant lag, which always persists due to the limited
682 * PVT sampling rate. Make sure the timeout is not negative.
684 kt
= ktime_sub_ns(kt
, PVT_TOUT_MIN
);
685 if (ktime_to_ns(kt
) < 0)
686 kt
= ktime_set(0, 0);
689 * Finally recalculate the timeout in terms of the reference clock
692 data
= ktime_divns(kt
* rate
, NSEC_PER_SEC
);
695 * Update the measurements delay, but lock the interface first, since
696 * we have to disable PVT in order to have the new delay actually
699 ret
= mutex_lock_interruptible(&pvt
->iface_mtx
);
703 pvt_set_tout(pvt
, data
);
704 pvt
->timeout
= cache
;
706 mutex_unlock(&pvt
->iface_mtx
);
711 static int pvt_hwmon_read(struct device
*dev
, enum hwmon_sensor_types type
,
712 u32 attr
, int ch
, long *val
)
714 struct pvt_hwmon
*pvt
= dev_get_drvdata(dev
);
716 if (!pvt_hwmon_channel_is_valid(type
, ch
))
722 case hwmon_chip_update_interval
:
723 return pvt_read_timeout(pvt
, val
);
728 case hwmon_temp_input
:
729 return pvt_read_data(pvt
, ch
, val
);
730 case hwmon_temp_type
:
734 return pvt_read_limit(pvt
, ch
, true, val
);
736 return pvt_read_limit(pvt
, ch
, false, val
);
737 case hwmon_temp_min_alarm
:
738 return pvt_read_alarm(pvt
, ch
, true, val
);
739 case hwmon_temp_max_alarm
:
740 return pvt_read_alarm(pvt
, ch
, false, val
);
741 case hwmon_temp_offset
:
742 return pvt_read_trim(pvt
, val
);
748 return pvt_read_data(pvt
, PVT_VOLT
+ ch
, val
);
750 return pvt_read_limit(pvt
, PVT_VOLT
+ ch
, true, val
);
752 return pvt_read_limit(pvt
, PVT_VOLT
+ ch
, false, val
);
753 case hwmon_in_min_alarm
:
754 return pvt_read_alarm(pvt
, PVT_VOLT
+ ch
, true, val
);
755 case hwmon_in_max_alarm
:
756 return pvt_read_alarm(pvt
, PVT_VOLT
+ ch
, false, val
);
766 static int pvt_hwmon_read_string(struct device
*dev
,
767 enum hwmon_sensor_types type
,
768 u32 attr
, int ch
, const char **str
)
770 if (!pvt_hwmon_channel_is_valid(type
, ch
))
776 case hwmon_temp_label
:
777 *str
= pvt_info
[ch
].label
;
784 *str
= pvt_info
[PVT_VOLT
+ ch
].label
;
795 static int pvt_hwmon_write(struct device
*dev
, enum hwmon_sensor_types type
,
796 u32 attr
, int ch
, long val
)
798 struct pvt_hwmon
*pvt
= dev_get_drvdata(dev
);
800 if (!pvt_hwmon_channel_is_valid(type
, ch
))
806 case hwmon_chip_update_interval
:
807 return pvt_write_timeout(pvt
, val
);
813 return pvt_write_limit(pvt
, ch
, true, val
);
815 return pvt_write_limit(pvt
, ch
, false, val
);
816 case hwmon_temp_offset
:
817 return pvt_write_trim(pvt
, val
);
823 return pvt_write_limit(pvt
, PVT_VOLT
+ ch
, true, val
);
825 return pvt_write_limit(pvt
, PVT_VOLT
+ ch
, false, val
);
835 static const struct hwmon_ops pvt_hwmon_ops
= {
836 .is_visible
= pvt_hwmon_is_visible
,
837 .read
= pvt_hwmon_read
,
838 .read_string
= pvt_hwmon_read_string
,
839 .write
= pvt_hwmon_write
842 static const struct hwmon_chip_info pvt_hwmon_info
= {
843 .ops
= &pvt_hwmon_ops
,
844 .info
= pvt_channel_info
847 static void pvt_clear_data(void *data
)
849 struct pvt_hwmon
*pvt
= data
;
850 #if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
853 for (idx
= 0; idx
< PVT_SENSORS_NUM
; ++idx
)
854 complete_all(&pvt
->cache
[idx
].conversion
);
857 mutex_destroy(&pvt
->iface_mtx
);
860 static struct pvt_hwmon
*pvt_create_data(struct platform_device
*pdev
)
862 struct device
*dev
= &pdev
->dev
;
863 struct pvt_hwmon
*pvt
;
866 pvt
= devm_kzalloc(dev
, sizeof(*pvt
), GFP_KERNEL
);
868 return ERR_PTR(-ENOMEM
);
870 ret
= devm_add_action(dev
, pvt_clear_data
, pvt
);
872 dev_err(dev
, "Can't add PVT data clear action\n");
877 pvt
->sensor
= PVT_SENSOR_FIRST
;
878 mutex_init(&pvt
->iface_mtx
);
880 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
881 for (idx
= 0; idx
< PVT_SENSORS_NUM
; ++idx
)
882 seqlock_init(&pvt
->cache
[idx
].data_seqlock
);
884 for (idx
= 0; idx
< PVT_SENSORS_NUM
; ++idx
)
885 init_completion(&pvt
->cache
[idx
].conversion
);
891 static int pvt_request_regs(struct pvt_hwmon
*pvt
)
893 struct platform_device
*pdev
= to_platform_device(pvt
->dev
);
895 pvt
->regs
= devm_platform_ioremap_resource(pdev
, 0);
896 if (IS_ERR(pvt
->regs
))
897 return PTR_ERR(pvt
->regs
);
902 static void pvt_disable_clks(void *data
)
904 struct pvt_hwmon
*pvt
= data
;
906 clk_bulk_disable_unprepare(PVT_CLOCK_NUM
, pvt
->clks
);
909 static int pvt_request_clks(struct pvt_hwmon
*pvt
)
913 pvt
->clks
[PVT_CLOCK_APB
].id
= "pclk";
914 pvt
->clks
[PVT_CLOCK_REF
].id
= "ref";
916 ret
= devm_clk_bulk_get(pvt
->dev
, PVT_CLOCK_NUM
, pvt
->clks
);
918 dev_err(pvt
->dev
, "Couldn't get PVT clocks descriptors\n");
922 ret
= clk_bulk_prepare_enable(PVT_CLOCK_NUM
, pvt
->clks
);
924 dev_err(pvt
->dev
, "Couldn't enable the PVT clocks\n");
928 ret
= devm_add_action_or_reset(pvt
->dev
, pvt_disable_clks
, pvt
);
930 dev_err(pvt
->dev
, "Can't add PVT clocks disable action\n");
937 static int pvt_check_pwr(struct pvt_hwmon
*pvt
)
944 * Test out the sensor conversion functionality. If it is not done on
945 * time then the domain must have been unpowered and we won't be able
946 * to use the device later in this driver.
947 * Note If the power source is lost during the normal driver work the
948 * data read procedure will either return -ETIMEDOUT (for the
949 * alarm-less driver configuration) or just stop the repeated
950 * conversion. In the later case alas we won't be able to detect the
953 pvt_update(pvt
->regs
+ PVT_INTR_MASK
, PVT_INTR_ALL
, PVT_INTR_ALL
);
954 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, PVT_CTRL_EN
);
955 pvt_set_tout(pvt
, 0);
956 readl(pvt
->regs
+ PVT_DATA
);
958 tout
= PVT_TOUT_MIN
/ NSEC_PER_USEC
;
959 usleep_range(tout
, 2 * tout
);
961 data
= readl(pvt
->regs
+ PVT_DATA
);
962 if (!(data
& PVT_DATA_VALID
)) {
964 dev_err(pvt
->dev
, "Sensor is powered down\n");
967 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, 0);
972 static int pvt_init_iface(struct pvt_hwmon
*pvt
)
977 rate
= clk_get_rate(pvt
->clks
[PVT_CLOCK_REF
].clk
);
979 dev_err(pvt
->dev
, "Invalid reference clock rate\n");
984 * Make sure all interrupts and controller are disabled so not to
985 * accidentally have ISR executed before the driver data is fully
986 * initialized. Clear the IRQ status as well.
988 pvt_update(pvt
->regs
+ PVT_INTR_MASK
, PVT_INTR_ALL
, PVT_INTR_ALL
);
989 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, 0);
990 readl(pvt
->regs
+ PVT_CLR_INTR
);
991 readl(pvt
->regs
+ PVT_DATA
);
993 /* Setup default sensor mode, timeout and temperature trim. */
994 pvt_set_mode(pvt
, pvt_info
[pvt
->sensor
].mode
);
995 pvt_set_tout(pvt
, PVT_TOUT_DEF
);
998 * Preserve the current ref-clock based delay (Ttotal) between the
999 * sensors data samples in the driver data so not to recalculate it
1000 * each time on the data requests and timeout reads. It consists of the
1001 * delay introduced by the internal ref-clock timer (N / Fclk) and the
1002 * constant timeout caused by each conversion latency (Tmin):
1003 * Ttotal = N / Fclk + Tmin
1004 * If alarms are enabled the sensors are polled one after another and
1005 * in order to get the next measurement of a particular sensor the
1006 * caller will have to wait for at most until all the others are
1007 * polled. In that case the formulae will look a bit different:
1008 * Ttotal = 5 * (N / Fclk + Tmin)
1010 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1011 pvt
->timeout
= ktime_set(PVT_SENSORS_NUM
* PVT_TOUT_DEF
, 0);
1012 pvt
->timeout
= ktime_divns(pvt
->timeout
, rate
);
1013 pvt
->timeout
= ktime_add_ns(pvt
->timeout
, PVT_SENSORS_NUM
* PVT_TOUT_MIN
);
1015 pvt
->timeout
= ktime_set(PVT_TOUT_DEF
, 0);
1016 pvt
->timeout
= ktime_divns(pvt
->timeout
, rate
);
1017 pvt
->timeout
= ktime_add_ns(pvt
->timeout
, PVT_TOUT_MIN
);
1020 trim
= PVT_TRIM_DEF
;
1021 if (!of_property_read_u32(pvt
->dev
->of_node
,
1022 "baikal,pvt-temp-offset-millicelsius", &temp
))
1023 trim
= pvt_calc_trim(temp
);
1025 pvt_set_trim(pvt
, trim
);
1030 static int pvt_request_irq(struct pvt_hwmon
*pvt
)
1032 struct platform_device
*pdev
= to_platform_device(pvt
->dev
);
1035 pvt
->irq
= platform_get_irq(pdev
, 0);
1039 ret
= devm_request_threaded_irq(pvt
->dev
, pvt
->irq
,
1040 pvt_hard_isr
, pvt_soft_isr
,
1041 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1042 IRQF_SHARED
| IRQF_TRIGGER_HIGH
|
1045 IRQF_SHARED
| IRQF_TRIGGER_HIGH
,
1049 dev_err(pvt
->dev
, "Couldn't request PVT IRQ\n");
1056 static int pvt_create_hwmon(struct pvt_hwmon
*pvt
)
1058 pvt
->hwmon
= devm_hwmon_device_register_with_info(pvt
->dev
, "pvt", pvt
,
1059 &pvt_hwmon_info
, NULL
);
1060 if (IS_ERR(pvt
->hwmon
)) {
1061 dev_err(pvt
->dev
, "Couldn't create hwmon device\n");
1062 return PTR_ERR(pvt
->hwmon
);
1068 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1070 static void pvt_disable_iface(void *data
)
1072 struct pvt_hwmon
*pvt
= data
;
1074 mutex_lock(&pvt
->iface_mtx
);
1075 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, 0);
1076 pvt_update(pvt
->regs
+ PVT_INTR_MASK
, PVT_INTR_DVALID
,
1078 mutex_unlock(&pvt
->iface_mtx
);
1081 static int pvt_enable_iface(struct pvt_hwmon
*pvt
)
1085 ret
= devm_add_action(pvt
->dev
, pvt_disable_iface
, pvt
);
1087 dev_err(pvt
->dev
, "Can't add PVT disable interface action\n");
1092 * Enable sensors data conversion and IRQ. We need to lock the
1093 * interface mutex since hwmon has just been created and the
1094 * corresponding sysfs files are accessible from user-space,
1095 * which theoretically may cause races.
1097 mutex_lock(&pvt
->iface_mtx
);
1098 pvt_update(pvt
->regs
+ PVT_INTR_MASK
, PVT_INTR_DVALID
, 0);
1099 pvt_update(pvt
->regs
+ PVT_CTRL
, PVT_CTRL_EN
, PVT_CTRL_EN
);
1100 mutex_unlock(&pvt
->iface_mtx
);
1105 #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1107 static int pvt_enable_iface(struct pvt_hwmon
*pvt
)
1112 #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1114 static int pvt_probe(struct platform_device
*pdev
)
1116 struct pvt_hwmon
*pvt
;
1119 pvt
= pvt_create_data(pdev
);
1121 return PTR_ERR(pvt
);
1123 ret
= pvt_request_regs(pvt
);
1127 ret
= pvt_request_clks(pvt
);
1131 ret
= pvt_check_pwr(pvt
);
1135 ret
= pvt_init_iface(pvt
);
1139 ret
= pvt_request_irq(pvt
);
1143 ret
= pvt_create_hwmon(pvt
);
1147 ret
= pvt_enable_iface(pvt
);
1154 static const struct of_device_id pvt_of_match
[] = {
1155 { .compatible
= "baikal,bt1-pvt" },
1158 MODULE_DEVICE_TABLE(of
, pvt_of_match
);
1160 static struct platform_driver pvt_driver
= {
1164 .of_match_table
= pvt_of_match
1167 module_platform_driver(pvt_driver
);
1169 MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
1170 MODULE_DESCRIPTION("Baikal-T1 PVT driver");
1171 MODULE_LICENSE("GPL v2");