1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
36 * etr_perf_buffer - Perf buffer used for ETR
37 * @drvdata - The ETR drvdaga this buffer has been allocated for.
38 * @etr_buf - Actual buffer used by the ETR
39 * @pid - The PID of the session owner that etr_perf_buffer
41 * @snaphost - Perf session mode
42 * @nr_pages - Number of pages in the ring buffer.
43 * @pages - Array of Pages in the ring buffer.
45 struct etr_perf_buffer
{
46 struct tmc_drvdata
*drvdata
;
47 struct etr_buf
*etr_buf
;
54 /* Convert the perf index to an offset within the ETR buffer */
55 #define PERF_IDX2OFF(idx, buf) \
56 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
58 /* Lower limit for ETR hardware buffer */
59 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
62 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
63 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
64 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
65 * contain more than one SG buffer and tables.
67 * A table entry has the following format:
69 * ---Bit31------------Bit4-------Bit1-----Bit0--
70 * | Address[39:12] | SBZ | Entry Type |
71 * ----------------------------------------------
73 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
78 * b01 - Last entry in the tables, points to 4K page buffer.
79 * b10 - Normal entry, points to 4K page buffer.
80 * b11 - Link. The address points to the base of next table.
85 #define ETR_SG_PAGE_SHIFT 12
86 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
87 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
88 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
89 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
91 #define ETR_SG_ET_MASK 0x3
92 #define ETR_SG_ET_LAST 0x1
93 #define ETR_SG_ET_NORMAL 0x2
94 #define ETR_SG_ET_LINK 0x3
96 #define ETR_SG_ADDR_SHIFT 4
98 #define ETR_SG_ENTRY(addr, type) \
99 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
100 (type & ETR_SG_ET_MASK))
102 #define ETR_SG_ADDR(entry) \
103 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
104 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
107 * struct etr_sg_table : ETR SG Table
108 * @sg_table: Generic SG Table holding the data/table pages.
109 * @hwaddr: hwaddress used by the TMC, which is the base
110 * address of the table.
112 struct etr_sg_table
{
113 struct tmc_sg_table
*sg_table
;
118 * tmc_etr_sg_table_entries: Total number of table entries required to map
119 * @nr_pages system pages.
121 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
122 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
123 * with the last entry pointing to another page of table entries.
124 * If we spill over to a new page for mapping 1 entry, we could as
125 * well replace the link entry of the previous page with the last entry.
127 static inline unsigned long __attribute_const__
128 tmc_etr_sg_table_entries(int nr_pages
)
130 unsigned long nr_sgpages
= nr_pages
* ETR_SG_PAGES_PER_SYSPAGE
;
131 unsigned long nr_sglinks
= nr_sgpages
/ (ETR_SG_PTRS_PER_PAGE
- 1);
133 * If we spill over to a new page for 1 entry, we could as well
134 * make it the LAST entry in the previous page, skipping the Link
137 if (nr_sglinks
&& (nr_sgpages
% (ETR_SG_PTRS_PER_PAGE
- 1) < 2))
139 return nr_sgpages
+ nr_sglinks
;
143 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
144 * and map the device address @addr to an offset within the virtual
148 tmc_pages_get_offset(struct tmc_pages
*tmc_pages
, dma_addr_t addr
)
151 dma_addr_t page_start
;
153 for (i
= 0; i
< tmc_pages
->nr_pages
; i
++) {
154 page_start
= tmc_pages
->daddrs
[i
];
155 if (addr
>= page_start
&& addr
< (page_start
+ PAGE_SIZE
))
156 return i
* PAGE_SIZE
+ (addr
- page_start
);
163 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
164 * If the pages were not allocated in tmc_pages_alloc(), we would
165 * simply drop the refcount.
167 static void tmc_pages_free(struct tmc_pages
*tmc_pages
,
168 struct device
*dev
, enum dma_data_direction dir
)
171 struct device
*real_dev
= dev
->parent
;
173 for (i
= 0; i
< tmc_pages
->nr_pages
; i
++) {
174 if (tmc_pages
->daddrs
&& tmc_pages
->daddrs
[i
])
175 dma_unmap_page(real_dev
, tmc_pages
->daddrs
[i
],
177 if (tmc_pages
->pages
&& tmc_pages
->pages
[i
])
178 __free_page(tmc_pages
->pages
[i
]);
181 kfree(tmc_pages
->pages
);
182 kfree(tmc_pages
->daddrs
);
183 tmc_pages
->pages
= NULL
;
184 tmc_pages
->daddrs
= NULL
;
185 tmc_pages
->nr_pages
= 0;
189 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
190 * If @pages is not NULL, the list of page virtual addresses are
191 * used as the data pages. The pages are then dma_map'ed for @dev
192 * with dma_direction @dir.
194 * Returns 0 upon success, else the error number.
196 static int tmc_pages_alloc(struct tmc_pages
*tmc_pages
,
197 struct device
*dev
, int node
,
198 enum dma_data_direction dir
, void **pages
)
203 struct device
*real_dev
= dev
->parent
;
205 nr_pages
= tmc_pages
->nr_pages
;
206 tmc_pages
->daddrs
= kcalloc(nr_pages
, sizeof(*tmc_pages
->daddrs
),
208 if (!tmc_pages
->daddrs
)
210 tmc_pages
->pages
= kcalloc(nr_pages
, sizeof(*tmc_pages
->pages
),
212 if (!tmc_pages
->pages
) {
213 kfree(tmc_pages
->daddrs
);
214 tmc_pages
->daddrs
= NULL
;
218 for (i
= 0; i
< nr_pages
; i
++) {
219 if (pages
&& pages
[i
]) {
220 page
= virt_to_page(pages
[i
]);
221 /* Hold a refcount on the page */
224 page
= alloc_pages_node(node
,
225 GFP_KERNEL
| __GFP_ZERO
, 0);
229 paddr
= dma_map_page(real_dev
, page
, 0, PAGE_SIZE
, dir
);
230 if (dma_mapping_error(real_dev
, paddr
))
232 tmc_pages
->daddrs
[i
] = paddr
;
233 tmc_pages
->pages
[i
] = page
;
237 tmc_pages_free(tmc_pages
, dev
, dir
);
242 tmc_sg_get_data_page_offset(struct tmc_sg_table
*sg_table
, dma_addr_t addr
)
244 return tmc_pages_get_offset(&sg_table
->data_pages
, addr
);
247 static inline void tmc_free_table_pages(struct tmc_sg_table
*sg_table
)
249 if (sg_table
->table_vaddr
)
250 vunmap(sg_table
->table_vaddr
);
251 tmc_pages_free(&sg_table
->table_pages
, sg_table
->dev
, DMA_TO_DEVICE
);
254 static void tmc_free_data_pages(struct tmc_sg_table
*sg_table
)
256 if (sg_table
->data_vaddr
)
257 vunmap(sg_table
->data_vaddr
);
258 tmc_pages_free(&sg_table
->data_pages
, sg_table
->dev
, DMA_FROM_DEVICE
);
261 void tmc_free_sg_table(struct tmc_sg_table
*sg_table
)
263 tmc_free_table_pages(sg_table
);
264 tmc_free_data_pages(sg_table
);
267 EXPORT_SYMBOL_GPL(tmc_free_sg_table
);
270 * Alloc pages for the table. Since this will be used by the device,
271 * allocate the pages closer to the device (i.e, dev_to_node(dev)
272 * rather than the CPU node).
274 static int tmc_alloc_table_pages(struct tmc_sg_table
*sg_table
)
277 struct tmc_pages
*table_pages
= &sg_table
->table_pages
;
279 rc
= tmc_pages_alloc(table_pages
, sg_table
->dev
,
280 dev_to_node(sg_table
->dev
),
281 DMA_TO_DEVICE
, NULL
);
284 sg_table
->table_vaddr
= vmap(table_pages
->pages
,
285 table_pages
->nr_pages
,
288 if (!sg_table
->table_vaddr
)
291 sg_table
->table_daddr
= table_pages
->daddrs
[0];
295 static int tmc_alloc_data_pages(struct tmc_sg_table
*sg_table
, void **pages
)
299 /* Allocate data pages on the node requested by the caller */
300 rc
= tmc_pages_alloc(&sg_table
->data_pages
,
301 sg_table
->dev
, sg_table
->node
,
302 DMA_FROM_DEVICE
, pages
);
304 sg_table
->data_vaddr
= vmap(sg_table
->data_pages
.pages
,
305 sg_table
->data_pages
.nr_pages
,
308 if (!sg_table
->data_vaddr
)
315 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
316 * and data buffers. TMC writes to the data buffers and reads from the SG
319 * @dev - Coresight device to which page should be DMA mapped.
320 * @node - Numa node for mem allocations
321 * @nr_tpages - Number of pages for the table entries.
322 * @nr_dpages - Number of pages for Data buffer.
323 * @pages - Optional list of virtual address of pages.
325 struct tmc_sg_table
*tmc_alloc_sg_table(struct device
*dev
,
332 struct tmc_sg_table
*sg_table
;
334 sg_table
= kzalloc(sizeof(*sg_table
), GFP_KERNEL
);
336 return ERR_PTR(-ENOMEM
);
337 sg_table
->data_pages
.nr_pages
= nr_dpages
;
338 sg_table
->table_pages
.nr_pages
= nr_tpages
;
339 sg_table
->node
= node
;
342 rc
= tmc_alloc_data_pages(sg_table
, pages
);
344 rc
= tmc_alloc_table_pages(sg_table
);
346 tmc_free_sg_table(sg_table
);
352 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table
);
355 * tmc_sg_table_sync_data_range: Sync the data buffer written
356 * by the device from @offset upto a @size bytes.
358 void tmc_sg_table_sync_data_range(struct tmc_sg_table
*table
,
359 u64 offset
, u64 size
)
362 int npages
= DIV_ROUND_UP(size
, PAGE_SIZE
);
363 struct device
*real_dev
= table
->dev
->parent
;
364 struct tmc_pages
*data
= &table
->data_pages
;
366 start
= offset
>> PAGE_SHIFT
;
367 for (i
= start
; i
< (start
+ npages
); i
++) {
368 index
= i
% data
->nr_pages
;
369 dma_sync_single_for_cpu(real_dev
, data
->daddrs
[index
],
370 PAGE_SIZE
, DMA_FROM_DEVICE
);
373 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range
);
375 /* tmc_sg_sync_table: Sync the page table */
376 void tmc_sg_table_sync_table(struct tmc_sg_table
*sg_table
)
379 struct device
*real_dev
= sg_table
->dev
->parent
;
380 struct tmc_pages
*table_pages
= &sg_table
->table_pages
;
382 for (i
= 0; i
< table_pages
->nr_pages
; i
++)
383 dma_sync_single_for_device(real_dev
, table_pages
->daddrs
[i
],
384 PAGE_SIZE
, DMA_TO_DEVICE
);
386 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table
);
389 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
390 * in the SG buffer. The @bufpp is updated to point to the buffer.
392 * the length of linear data available at @offset.
394 * <= 0 if no data is available.
396 ssize_t
tmc_sg_table_get_data(struct tmc_sg_table
*sg_table
,
397 u64 offset
, size_t len
, char **bufpp
)
400 int pg_idx
= offset
>> PAGE_SHIFT
;
401 int pg_offset
= offset
& (PAGE_SIZE
- 1);
402 struct tmc_pages
*data_pages
= &sg_table
->data_pages
;
404 size
= tmc_sg_table_buf_size(sg_table
);
408 /* Make sure we don't go beyond the end */
409 len
= (len
< (size
- offset
)) ? len
: size
- offset
;
410 /* Respect the page boundaries */
411 len
= (len
< (PAGE_SIZE
- pg_offset
)) ? len
: (PAGE_SIZE
- pg_offset
);
413 *bufpp
= page_address(data_pages
->pages
[pg_idx
]) + pg_offset
;
416 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data
);
419 /* Map a dma address to virtual address */
421 tmc_sg_daddr_to_vaddr(struct tmc_sg_table
*sg_table
,
422 dma_addr_t addr
, bool table
)
426 struct tmc_pages
*tmc_pages
;
429 tmc_pages
= &sg_table
->table_pages
;
430 base
= (unsigned long)sg_table
->table_vaddr
;
432 tmc_pages
= &sg_table
->data_pages
;
433 base
= (unsigned long)sg_table
->data_vaddr
;
436 offset
= tmc_pages_get_offset(tmc_pages
, addr
);
439 return base
+ offset
;
442 /* Dump the given sg_table */
443 static void tmc_etr_sg_table_dump(struct etr_sg_table
*etr_table
)
448 struct tmc_sg_table
*sg_table
= etr_table
->sg_table
;
450 ptr
= (sgte_t
*)tmc_sg_daddr_to_vaddr(sg_table
,
451 etr_table
->hwaddr
, true);
453 addr
= ETR_SG_ADDR(*ptr
);
454 switch (ETR_SG_ET(*ptr
)) {
455 case ETR_SG_ET_NORMAL
:
456 dev_dbg(sg_table
->dev
,
457 "%05d: %p\t:[N] 0x%llx\n", i
, ptr
, addr
);
461 dev_dbg(sg_table
->dev
,
462 "%05d: *** %p\t:{L} 0x%llx ***\n",
464 ptr
= (sgte_t
*)tmc_sg_daddr_to_vaddr(sg_table
,
468 dev_dbg(sg_table
->dev
,
469 "%05d: ### %p\t:[L] 0x%llx ###\n",
473 dev_dbg(sg_table
->dev
,
474 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
480 dev_dbg(sg_table
->dev
, "******* End of Table *****\n");
483 static inline void tmc_etr_sg_table_dump(struct etr_sg_table
*etr_table
) {}
487 * Populate the SG Table page table entries from table/data
488 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
489 * So does a Table page. So we keep track of indices of the tables
490 * in each system page and move the pointers accordingly.
492 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
493 static void tmc_etr_sg_table_populate(struct etr_sg_table
*etr_table
)
496 int i
, type
, nr_entries
;
497 int tpidx
= 0; /* index to the current system table_page */
498 int sgtidx
= 0; /* index to the sg_table within the current syspage */
499 int sgtentry
= 0; /* the entry within the sg_table */
500 int dpidx
= 0; /* index to the current system data_page */
501 int spidx
= 0; /* index to the SG page within the current data page */
502 sgte_t
*ptr
; /* pointer to the table entry to fill */
503 struct tmc_sg_table
*sg_table
= etr_table
->sg_table
;
504 dma_addr_t
*table_daddrs
= sg_table
->table_pages
.daddrs
;
505 dma_addr_t
*data_daddrs
= sg_table
->data_pages
.daddrs
;
507 nr_entries
= tmc_etr_sg_table_entries(sg_table
->data_pages
.nr_pages
);
509 * Use the contiguous virtual address of the table to update entries.
511 ptr
= sg_table
->table_vaddr
;
513 * Fill all the entries, except the last entry to avoid special
514 * checks within the loop.
516 for (i
= 0; i
< nr_entries
- 1; i
++) {
517 if (sgtentry
== ETR_SG_PTRS_PER_PAGE
- 1) {
519 * Last entry in a sg_table page is a link address to
520 * the next table page. If this sg_table is the last
521 * one in the system page, it links to the first
522 * sg_table in the next system page. Otherwise, it
523 * links to the next sg_table page within the system
526 if (sgtidx
== ETR_SG_PAGES_PER_SYSPAGE
- 1) {
527 paddr
= table_daddrs
[tpidx
+ 1];
529 paddr
= table_daddrs
[tpidx
] +
530 (ETR_SG_PAGE_SIZE
* (sgtidx
+ 1));
532 type
= ETR_SG_ET_LINK
;
535 * Update the indices to the data_pages to point to the
536 * next sg_page in the data buffer.
538 type
= ETR_SG_ET_NORMAL
;
539 paddr
= data_daddrs
[dpidx
] + spidx
* ETR_SG_PAGE_SIZE
;
540 if (!INC_IDX_ROUND(spidx
, ETR_SG_PAGES_PER_SYSPAGE
))
543 *ptr
++ = ETR_SG_ENTRY(paddr
, type
);
545 * Move to the next table pointer, moving the table page index
548 if (!INC_IDX_ROUND(sgtentry
, ETR_SG_PTRS_PER_PAGE
)) {
549 if (!INC_IDX_ROUND(sgtidx
, ETR_SG_PAGES_PER_SYSPAGE
))
554 /* Set up the last entry, which is always a data pointer */
555 paddr
= data_daddrs
[dpidx
] + spidx
* ETR_SG_PAGE_SIZE
;
556 *ptr
++ = ETR_SG_ENTRY(paddr
, ETR_SG_ET_LAST
);
560 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
561 * populate the table.
563 * @dev - Device pointer for the TMC
564 * @node - NUMA node where the memory should be allocated
565 * @size - Total size of the data buffer
566 * @pages - Optional list of page virtual address
568 static struct etr_sg_table
*
569 tmc_init_etr_sg_table(struct device
*dev
, int node
,
570 unsigned long size
, void **pages
)
572 int nr_entries
, nr_tpages
;
573 int nr_dpages
= size
>> PAGE_SHIFT
;
574 struct tmc_sg_table
*sg_table
;
575 struct etr_sg_table
*etr_table
;
577 etr_table
= kzalloc(sizeof(*etr_table
), GFP_KERNEL
);
579 return ERR_PTR(-ENOMEM
);
580 nr_entries
= tmc_etr_sg_table_entries(nr_dpages
);
581 nr_tpages
= DIV_ROUND_UP(nr_entries
, ETR_SG_PTRS_PER_SYSPAGE
);
583 sg_table
= tmc_alloc_sg_table(dev
, node
, nr_tpages
, nr_dpages
, pages
);
584 if (IS_ERR(sg_table
)) {
586 return ERR_CAST(sg_table
);
589 etr_table
->sg_table
= sg_table
;
590 /* TMC should use table base address for DBA */
591 etr_table
->hwaddr
= sg_table
->table_daddr
;
592 tmc_etr_sg_table_populate(etr_table
);
593 /* Sync the table pages for the HW */
594 tmc_sg_table_sync_table(sg_table
);
595 tmc_etr_sg_table_dump(etr_table
);
601 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
603 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata
*drvdata
,
604 struct etr_buf
*etr_buf
, int node
,
607 struct etr_flat_buf
*flat_buf
;
608 struct device
*real_dev
= drvdata
->csdev
->dev
.parent
;
610 /* We cannot reuse existing pages for flat buf */
614 flat_buf
= kzalloc(sizeof(*flat_buf
), GFP_KERNEL
);
618 flat_buf
->vaddr
= dma_alloc_noncoherent(real_dev
, etr_buf
->size
,
621 GFP_KERNEL
| __GFP_NOWARN
);
622 if (!flat_buf
->vaddr
) {
627 flat_buf
->size
= etr_buf
->size
;
628 flat_buf
->dev
= &drvdata
->csdev
->dev
;
629 etr_buf
->hwaddr
= flat_buf
->daddr
;
630 etr_buf
->mode
= ETR_MODE_FLAT
;
631 etr_buf
->private = flat_buf
;
635 static void tmc_etr_free_flat_buf(struct etr_buf
*etr_buf
)
637 struct etr_flat_buf
*flat_buf
= etr_buf
->private;
639 if (flat_buf
&& flat_buf
->daddr
) {
640 struct device
*real_dev
= flat_buf
->dev
->parent
;
642 dma_free_noncoherent(real_dev
, etr_buf
->size
,
643 flat_buf
->vaddr
, flat_buf
->daddr
,
649 static void tmc_etr_sync_flat_buf(struct etr_buf
*etr_buf
, u64 rrp
, u64 rwp
)
651 struct etr_flat_buf
*flat_buf
= etr_buf
->private;
652 struct device
*real_dev
= flat_buf
->dev
->parent
;
655 * Adjust the buffer to point to the beginning of the trace data
656 * and update the available trace data.
658 etr_buf
->offset
= rrp
- etr_buf
->hwaddr
;
660 etr_buf
->len
= etr_buf
->size
;
662 etr_buf
->len
= rwp
- rrp
;
665 * The driver always starts tracing at the beginning of the buffer,
666 * the only reason why we would get a wrap around is when the buffer
667 * is full. Sync the entire buffer in one go for this case.
669 if (etr_buf
->offset
+ etr_buf
->len
> etr_buf
->size
)
670 dma_sync_single_for_cpu(real_dev
, flat_buf
->daddr
,
671 etr_buf
->size
, DMA_FROM_DEVICE
);
673 dma_sync_single_for_cpu(real_dev
,
674 flat_buf
->daddr
+ etr_buf
->offset
,
675 etr_buf
->len
, DMA_FROM_DEVICE
);
678 static ssize_t
tmc_etr_get_data_flat_buf(struct etr_buf
*etr_buf
,
679 u64 offset
, size_t len
, char **bufpp
)
681 struct etr_flat_buf
*flat_buf
= etr_buf
->private;
683 *bufpp
= (char *)flat_buf
->vaddr
+ offset
;
685 * tmc_etr_buf_get_data already adjusts the length to handle
686 * buffer wrapping around.
691 static const struct etr_buf_operations etr_flat_buf_ops
= {
692 .alloc
= tmc_etr_alloc_flat_buf
,
693 .free
= tmc_etr_free_flat_buf
,
694 .sync
= tmc_etr_sync_flat_buf
,
695 .get_data
= tmc_etr_get_data_flat_buf
,
699 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
702 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata
*drvdata
,
703 struct etr_buf
*etr_buf
, int node
,
706 struct etr_sg_table
*etr_table
;
707 struct device
*dev
= &drvdata
->csdev
->dev
;
709 etr_table
= tmc_init_etr_sg_table(dev
, node
,
710 etr_buf
->size
, pages
);
711 if (IS_ERR(etr_table
))
713 etr_buf
->hwaddr
= etr_table
->hwaddr
;
714 etr_buf
->mode
= ETR_MODE_ETR_SG
;
715 etr_buf
->private = etr_table
;
719 static void tmc_etr_free_sg_buf(struct etr_buf
*etr_buf
)
721 struct etr_sg_table
*etr_table
= etr_buf
->private;
724 tmc_free_sg_table(etr_table
->sg_table
);
729 static ssize_t
tmc_etr_get_data_sg_buf(struct etr_buf
*etr_buf
, u64 offset
,
730 size_t len
, char **bufpp
)
732 struct etr_sg_table
*etr_table
= etr_buf
->private;
734 return tmc_sg_table_get_data(etr_table
->sg_table
, offset
, len
, bufpp
);
737 static void tmc_etr_sync_sg_buf(struct etr_buf
*etr_buf
, u64 rrp
, u64 rwp
)
739 long r_offset
, w_offset
;
740 struct etr_sg_table
*etr_table
= etr_buf
->private;
741 struct tmc_sg_table
*table
= etr_table
->sg_table
;
743 /* Convert hw address to offset in the buffer */
744 r_offset
= tmc_sg_get_data_page_offset(table
, rrp
);
747 "Unable to map RRP %llx to offset\n", rrp
);
752 w_offset
= tmc_sg_get_data_page_offset(table
, rwp
);
755 "Unable to map RWP %llx to offset\n", rwp
);
760 etr_buf
->offset
= r_offset
;
762 etr_buf
->len
= etr_buf
->size
;
764 etr_buf
->len
= ((w_offset
< r_offset
) ? etr_buf
->size
: 0) +
766 tmc_sg_table_sync_data_range(table
, r_offset
, etr_buf
->len
);
769 static const struct etr_buf_operations etr_sg_buf_ops
= {
770 .alloc
= tmc_etr_alloc_sg_buf
,
771 .free
= tmc_etr_free_sg_buf
,
772 .sync
= tmc_etr_sync_sg_buf
,
773 .get_data
= tmc_etr_get_data_sg_buf
,
777 * TMC ETR could be connected to a CATU device, which can provide address
778 * translation service. This is represented by the Output port of the TMC
779 * (ETR) connected to the input port of the CATU.
781 * Returns : coresight_device ptr for the CATU device if a CATU is found.
784 struct coresight_device
*
785 tmc_etr_get_catu_device(struct tmc_drvdata
*drvdata
)
787 struct coresight_device
*etr
= drvdata
->csdev
;
788 union coresight_dev_subtype catu_subtype
= {
789 .helper_subtype
= CORESIGHT_DEV_SUBTYPE_HELPER_CATU
792 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU
))
795 return coresight_find_output_type(etr
->pdata
, CORESIGHT_DEV_TYPE_HELPER
,
798 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device
);
800 static const struct etr_buf_operations
*etr_buf_ops
[] = {
801 [ETR_MODE_FLAT
] = &etr_flat_buf_ops
,
802 [ETR_MODE_ETR_SG
] = &etr_sg_buf_ops
,
803 [ETR_MODE_CATU
] = NULL
,
806 void tmc_etr_set_catu_ops(const struct etr_buf_operations
*catu
)
808 etr_buf_ops
[ETR_MODE_CATU
] = catu
;
810 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops
);
812 void tmc_etr_remove_catu_ops(void)
814 etr_buf_ops
[ETR_MODE_CATU
] = NULL
;
816 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops
);
818 static inline int tmc_etr_mode_alloc_buf(int mode
,
819 struct tmc_drvdata
*drvdata
,
820 struct etr_buf
*etr_buf
, int node
,
827 case ETR_MODE_ETR_SG
:
829 if (etr_buf_ops
[mode
] && etr_buf_ops
[mode
]->alloc
)
830 rc
= etr_buf_ops
[mode
]->alloc(drvdata
, etr_buf
,
833 etr_buf
->ops
= etr_buf_ops
[mode
];
840 static void get_etr_buf_hw(struct device
*dev
, struct etr_buf_hw
*buf_hw
)
842 struct tmc_drvdata
*drvdata
= dev_get_drvdata(dev
->parent
);
844 buf_hw
->has_iommu
= iommu_get_domain_for_dev(dev
->parent
);
845 buf_hw
->has_etr_sg
= tmc_etr_has_cap(drvdata
, TMC_ETR_SG
);
846 buf_hw
->has_catu
= !!tmc_etr_get_catu_device(drvdata
);
849 static bool etr_can_use_flat_mode(struct etr_buf_hw
*buf_hw
, ssize_t etr_buf_size
)
851 bool has_sg
= buf_hw
->has_catu
|| buf_hw
->has_etr_sg
;
853 return !has_sg
|| buf_hw
->has_iommu
|| etr_buf_size
< SZ_1M
;
857 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
858 * @drvdata : ETR device details.
859 * @size : size of the requested buffer.
860 * @flags : Required properties for the buffer.
861 * @node : Node for memory allocations.
862 * @pages : An optional list of pages.
864 static struct etr_buf
*tmc_alloc_etr_buf(struct tmc_drvdata
*drvdata
,
865 ssize_t size
, int flags
,
866 int node
, void **pages
)
869 struct etr_buf
*etr_buf
;
870 struct etr_buf_hw buf_hw
;
871 struct device
*dev
= &drvdata
->csdev
->dev
;
873 get_etr_buf_hw(dev
, &buf_hw
);
874 etr_buf
= kzalloc(sizeof(*etr_buf
), GFP_KERNEL
);
876 return ERR_PTR(-ENOMEM
);
878 etr_buf
->size
= size
;
880 /* If there is user directive for buffer mode, try that first */
881 if (drvdata
->etr_mode
!= ETR_MODE_AUTO
)
882 rc
= tmc_etr_mode_alloc_buf(drvdata
->etr_mode
, drvdata
,
883 etr_buf
, node
, pages
);
886 * If we have to use an existing list of pages, we cannot reliably
887 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
888 * we use the contiguous DMA memory if at least one of the following
889 * conditions is true:
890 * a) The ETR cannot use Scatter-Gather.
891 * b) we have a backing IOMMU
892 * c) The requested memory size is smaller (< 1M).
894 * Fallback to available mechanisms.
897 if (rc
&& !pages
&& etr_can_use_flat_mode(&buf_hw
, size
))
898 rc
= tmc_etr_mode_alloc_buf(ETR_MODE_FLAT
, drvdata
,
899 etr_buf
, node
, pages
);
900 if (rc
&& buf_hw
.has_etr_sg
)
901 rc
= tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG
, drvdata
,
902 etr_buf
, node
, pages
);
903 if (rc
&& buf_hw
.has_catu
)
904 rc
= tmc_etr_mode_alloc_buf(ETR_MODE_CATU
, drvdata
,
905 etr_buf
, node
, pages
);
911 refcount_set(&etr_buf
->refcount
, 1);
912 dev_dbg(dev
, "allocated buffer of size %ldKB in mode %d\n",
913 (unsigned long)size
>> 10, etr_buf
->mode
);
917 static void tmc_free_etr_buf(struct etr_buf
*etr_buf
)
919 WARN_ON(!etr_buf
->ops
|| !etr_buf
->ops
->free
);
920 etr_buf
->ops
->free(etr_buf
);
925 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
926 * with a maximum of @len bytes.
927 * Returns: The size of the linear data available @pos, with *bufpp
928 * updated to point to the buffer.
930 static ssize_t
tmc_etr_buf_get_data(struct etr_buf
*etr_buf
,
931 u64 offset
, size_t len
, char **bufpp
)
933 /* Adjust the length to limit this transaction to end of buffer */
934 len
= (len
< (etr_buf
->size
- offset
)) ? len
: etr_buf
->size
- offset
;
936 return etr_buf
->ops
->get_data(etr_buf
, (u64
)offset
, len
, bufpp
);
940 tmc_etr_buf_insert_barrier_packet(struct etr_buf
*etr_buf
, u64 offset
)
945 len
= tmc_etr_buf_get_data(etr_buf
, offset
,
946 CORESIGHT_BARRIER_PKT_SIZE
, &bufp
);
947 if (WARN_ON(len
< 0 || len
< CORESIGHT_BARRIER_PKT_SIZE
))
949 coresight_insert_barrier_packet(bufp
);
950 return offset
+ CORESIGHT_BARRIER_PKT_SIZE
;
954 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
955 * Makes sure the trace data is synced to the memory for consumption.
956 * @etr_buf->offset will hold the offset to the beginning of the trace data
957 * within the buffer, with @etr_buf->len bytes to consume.
959 static void tmc_sync_etr_buf(struct tmc_drvdata
*drvdata
)
961 struct etr_buf
*etr_buf
= drvdata
->etr_buf
;
965 rrp
= tmc_read_rrp(drvdata
);
966 rwp
= tmc_read_rwp(drvdata
);
967 status
= readl_relaxed(drvdata
->base
+ TMC_STS
);
970 * If there were memory errors in the session, truncate the
973 if (WARN_ON_ONCE(status
& TMC_STS_MEMERR
)) {
974 dev_dbg(&drvdata
->csdev
->dev
,
975 "tmc memory error detected, truncating buffer\n");
977 etr_buf
->full
= false;
981 etr_buf
->full
= !!(status
& TMC_STS_FULL
);
983 WARN_ON(!etr_buf
->ops
|| !etr_buf
->ops
->sync
);
985 etr_buf
->ops
->sync(etr_buf
, rrp
, rwp
);
988 static int __tmc_etr_enable_hw(struct tmc_drvdata
*drvdata
)
991 struct etr_buf
*etr_buf
= drvdata
->etr_buf
;
994 CS_UNLOCK(drvdata
->base
);
996 /* Wait for TMCSReady bit to be set */
997 rc
= tmc_wait_for_tmcready(drvdata
);
999 dev_err(&drvdata
->csdev
->dev
,
1000 "Failed to enable : TMC not ready\n");
1001 CS_LOCK(drvdata
->base
);
1005 writel_relaxed(etr_buf
->size
/ 4, drvdata
->base
+ TMC_RSZ
);
1006 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER
, drvdata
->base
+ TMC_MODE
);
1008 axictl
= readl_relaxed(drvdata
->base
+ TMC_AXICTL
);
1009 axictl
&= ~TMC_AXICTL_CLEAR_MASK
;
1010 axictl
|= TMC_AXICTL_PROT_CTL_B1
;
1011 axictl
|= TMC_AXICTL_WR_BURST(drvdata
->max_burst_size
);
1012 axictl
|= TMC_AXICTL_AXCACHE_OS
;
1014 if (tmc_etr_has_cap(drvdata
, TMC_ETR_AXI_ARCACHE
)) {
1015 axictl
&= ~TMC_AXICTL_ARCACHE_MASK
;
1016 axictl
|= TMC_AXICTL_ARCACHE_OS
;
1019 if (etr_buf
->mode
== ETR_MODE_ETR_SG
)
1020 axictl
|= TMC_AXICTL_SCT_GAT_MODE
;
1022 writel_relaxed(axictl
, drvdata
->base
+ TMC_AXICTL
);
1023 tmc_write_dba(drvdata
, etr_buf
->hwaddr
);
1025 * If the TMC pointers must be programmed before the session,
1026 * we have to set it properly (i.e, RRP/RWP to base address and
1027 * STS to "not full").
1029 if (tmc_etr_has_cap(drvdata
, TMC_ETR_SAVE_RESTORE
)) {
1030 tmc_write_rrp(drvdata
, etr_buf
->hwaddr
);
1031 tmc_write_rwp(drvdata
, etr_buf
->hwaddr
);
1032 sts
= readl_relaxed(drvdata
->base
+ TMC_STS
) & ~TMC_STS_FULL
;
1033 writel_relaxed(sts
, drvdata
->base
+ TMC_STS
);
1036 writel_relaxed(TMC_FFCR_EN_FMT
| TMC_FFCR_EN_TI
|
1037 TMC_FFCR_FON_FLIN
| TMC_FFCR_FON_TRIG_EVT
|
1038 TMC_FFCR_TRIGON_TRIGIN
,
1039 drvdata
->base
+ TMC_FFCR
);
1040 writel_relaxed(drvdata
->trigger_cntr
, drvdata
->base
+ TMC_TRG
);
1041 tmc_enable_hw(drvdata
);
1043 CS_LOCK(drvdata
->base
);
1047 static int tmc_etr_enable_hw(struct tmc_drvdata
*drvdata
,
1048 struct etr_buf
*etr_buf
)
1052 /* Callers should provide an appropriate buffer for use */
1053 if (WARN_ON(!etr_buf
))
1056 if ((etr_buf
->mode
== ETR_MODE_ETR_SG
) &&
1057 WARN_ON(!tmc_etr_has_cap(drvdata
, TMC_ETR_SG
)))
1060 if (WARN_ON(drvdata
->etr_buf
))
1063 rc
= coresight_claim_device(drvdata
->csdev
);
1065 drvdata
->etr_buf
= etr_buf
;
1066 rc
= __tmc_etr_enable_hw(drvdata
);
1068 drvdata
->etr_buf
= NULL
;
1069 coresight_disclaim_device(drvdata
->csdev
);
1077 * Return the available trace data in the buffer (starts at etr_buf->offset,
1078 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1079 * also updating the @bufpp on where to find it. Since the trace data
1080 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1081 * @len returned to handle buffer wrapping around.
1083 * We are protected here by drvdata->reading != 0, which ensures the
1084 * sysfs_buf stays alive.
1086 ssize_t
tmc_etr_get_sysfs_trace(struct tmc_drvdata
*drvdata
,
1087 loff_t pos
, size_t len
, char **bufpp
)
1090 ssize_t actual
= len
;
1091 struct etr_buf
*etr_buf
= drvdata
->sysfs_buf
;
1093 if (pos
+ actual
> etr_buf
->len
)
1094 actual
= etr_buf
->len
- pos
;
1098 /* Compute the offset from which we read the data */
1099 offset
= etr_buf
->offset
+ pos
;
1100 if (offset
>= etr_buf
->size
)
1101 offset
-= etr_buf
->size
;
1102 return tmc_etr_buf_get_data(etr_buf
, offset
, actual
, bufpp
);
1105 static struct etr_buf
*
1106 tmc_etr_setup_sysfs_buf(struct tmc_drvdata
*drvdata
)
1108 return tmc_alloc_etr_buf(drvdata
, drvdata
->size
,
1109 0, cpu_to_node(0), NULL
);
1113 tmc_etr_free_sysfs_buf(struct etr_buf
*buf
)
1116 tmc_free_etr_buf(buf
);
1119 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata
*drvdata
)
1121 struct etr_buf
*etr_buf
= drvdata
->etr_buf
;
1123 if (WARN_ON(drvdata
->sysfs_buf
!= etr_buf
)) {
1124 tmc_etr_free_sysfs_buf(drvdata
->sysfs_buf
);
1125 drvdata
->sysfs_buf
= NULL
;
1127 tmc_sync_etr_buf(drvdata
);
1129 * Insert barrier packets at the beginning, if there was
1133 tmc_etr_buf_insert_barrier_packet(etr_buf
,
1138 static void __tmc_etr_disable_hw(struct tmc_drvdata
*drvdata
)
1140 CS_UNLOCK(drvdata
->base
);
1142 tmc_flush_and_stop(drvdata
);
1144 * When operating in sysFS mode the content of the buffer needs to be
1145 * read before the TMC is disabled.
1147 if (coresight_get_mode(drvdata
->csdev
) == CS_MODE_SYSFS
)
1148 tmc_etr_sync_sysfs_buf(drvdata
);
1150 tmc_disable_hw(drvdata
);
1152 CS_LOCK(drvdata
->base
);
1156 void tmc_etr_disable_hw(struct tmc_drvdata
*drvdata
)
1158 __tmc_etr_disable_hw(drvdata
);
1159 coresight_disclaim_device(drvdata
->csdev
);
1160 /* Reset the ETR buf used by hardware */
1161 drvdata
->etr_buf
= NULL
;
1164 static struct etr_buf
*tmc_etr_get_sysfs_buffer(struct coresight_device
*csdev
)
1167 unsigned long flags
;
1168 struct tmc_drvdata
*drvdata
= dev_get_drvdata(csdev
->dev
.parent
);
1169 struct etr_buf
*sysfs_buf
= NULL
, *new_buf
= NULL
, *free_buf
= NULL
;
1172 * If we are enabling the ETR from disabled state, we need to make
1173 * sure we have a buffer with the right size. The etr_buf is not reset
1174 * immediately after we stop the tracing in SYSFS mode as we wait for
1175 * the user to collect the data. We may be able to reuse the existing
1176 * buffer, provided the size matches. Any allocation has to be done
1177 * with the lock released.
1179 spin_lock_irqsave(&drvdata
->spinlock
, flags
);
1180 sysfs_buf
= READ_ONCE(drvdata
->sysfs_buf
);
1181 if (!sysfs_buf
|| (sysfs_buf
->size
!= drvdata
->size
)) {
1182 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1184 /* Allocate memory with the locks released */
1185 free_buf
= new_buf
= tmc_etr_setup_sysfs_buf(drvdata
);
1186 if (IS_ERR(new_buf
))
1189 /* Let's try again */
1190 spin_lock_irqsave(&drvdata
->spinlock
, flags
);
1193 if (drvdata
->reading
|| coresight_get_mode(csdev
) == CS_MODE_PERF
) {
1199 * If we don't have a buffer or it doesn't match the requested size,
1200 * use the buffer allocated above. Otherwise reuse the existing buffer.
1202 sysfs_buf
= READ_ONCE(drvdata
->sysfs_buf
);
1203 if (!sysfs_buf
|| (new_buf
&& sysfs_buf
->size
!= new_buf
->size
)) {
1204 free_buf
= sysfs_buf
;
1205 drvdata
->sysfs_buf
= new_buf
;
1209 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1211 /* Free memory outside the spinlock if need be */
1213 tmc_etr_free_sysfs_buf(free_buf
);
1214 return ret
? ERR_PTR(ret
) : drvdata
->sysfs_buf
;
1217 static int tmc_enable_etr_sink_sysfs(struct coresight_device
*csdev
)
1220 unsigned long flags
;
1221 struct tmc_drvdata
*drvdata
= dev_get_drvdata(csdev
->dev
.parent
);
1222 struct etr_buf
*sysfs_buf
= tmc_etr_get_sysfs_buffer(csdev
);
1224 if (IS_ERR(sysfs_buf
))
1225 return PTR_ERR(sysfs_buf
);
1227 spin_lock_irqsave(&drvdata
->spinlock
, flags
);
1230 * In sysFS mode we can have multiple writers per sink. Since this
1231 * sink is already enabled no memory is needed and the HW need not be
1232 * touched, even if the buffer size has changed.
1234 if (coresight_get_mode(csdev
) == CS_MODE_SYSFS
) {
1239 ret
= tmc_etr_enable_hw(drvdata
, sysfs_buf
);
1241 coresight_set_mode(csdev
, CS_MODE_SYSFS
);
1246 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1249 dev_dbg(&csdev
->dev
, "TMC-ETR enabled\n");
1254 struct etr_buf
*tmc_etr_get_buffer(struct coresight_device
*csdev
,
1255 enum cs_mode mode
, void *data
)
1257 struct perf_output_handle
*handle
= data
;
1258 struct etr_perf_buffer
*etr_perf
;
1262 return tmc_etr_get_sysfs_buffer(csdev
);
1264 etr_perf
= etm_perf_sink_config(handle
);
1265 if (WARN_ON(!etr_perf
|| !etr_perf
->etr_buf
))
1266 return ERR_PTR(-EINVAL
);
1267 return etr_perf
->etr_buf
;
1269 return ERR_PTR(-EINVAL
);
1272 EXPORT_SYMBOL_GPL(tmc_etr_get_buffer
);
1275 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1276 * The size of the hardware buffer is dependent on the size configured
1277 * via sysfs and the perf ring buffer size. We prefer to allocate the
1278 * largest possible size, scaling down the size by half until it
1279 * reaches a minimum limit (1M), beyond which we give up.
1281 static struct etr_buf
*
1282 alloc_etr_buf(struct tmc_drvdata
*drvdata
, struct perf_event
*event
,
1283 int nr_pages
, void **pages
, bool snapshot
)
1286 struct etr_buf
*etr_buf
;
1289 node
= (event
->cpu
== -1) ? NUMA_NO_NODE
: cpu_to_node(event
->cpu
);
1291 * Try to match the perf ring buffer size if it is larger
1292 * than the size requested via sysfs.
1294 if ((nr_pages
<< PAGE_SHIFT
) > drvdata
->size
) {
1295 etr_buf
= tmc_alloc_etr_buf(drvdata
, ((ssize_t
)nr_pages
<< PAGE_SHIFT
),
1297 if (!IS_ERR(etr_buf
))
1302 * Else switch to configured size for this ETR
1303 * and scale down until we hit the minimum limit.
1305 size
= drvdata
->size
;
1307 etr_buf
= tmc_alloc_etr_buf(drvdata
, size
, 0, node
, NULL
);
1308 if (!IS_ERR(etr_buf
))
1311 } while (size
>= TMC_ETR_PERF_MIN_BUF_SIZE
);
1313 return ERR_PTR(-ENOMEM
);
1319 static struct etr_buf
*
1320 get_perf_etr_buf_cpu_wide(struct tmc_drvdata
*drvdata
,
1321 struct perf_event
*event
, int nr_pages
,
1322 void **pages
, bool snapshot
)
1325 pid_t pid
= task_pid_nr(event
->owner
);
1326 struct etr_buf
*etr_buf
;
1330 * An etr_perf_buffer is associated with an event and holds a reference
1331 * to the AUX ring buffer that was created for that event. In CPU-wide
1332 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1333 * buffer, share a sink. As such an etr_perf_buffer is created for each
1334 * event but a single etr_buf associated with the ETR is shared between
1335 * them. The last event in a trace session will copy the content of the
1336 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1337 * events are simply not used an freed as events are destoyed. We still
1338 * need to allocate a ring buffer for each event since we don't know
1339 * which event will be last.
1343 * The first thing to do here is check if an etr_buf has already been
1344 * allocated for this session. If so it is shared with this event,
1345 * otherwise it is created.
1347 mutex_lock(&drvdata
->idr_mutex
);
1348 etr_buf
= idr_find(&drvdata
->idr
, pid
);
1350 refcount_inc(&etr_buf
->refcount
);
1351 mutex_unlock(&drvdata
->idr_mutex
);
1355 /* If we made it here no buffer has been allocated, do so now. */
1356 mutex_unlock(&drvdata
->idr_mutex
);
1358 etr_buf
= alloc_etr_buf(drvdata
, event
, nr_pages
, pages
, snapshot
);
1359 if (IS_ERR(etr_buf
))
1362 /* Now that we have a buffer, add it to the IDR. */
1363 mutex_lock(&drvdata
->idr_mutex
);
1364 ret
= idr_alloc(&drvdata
->idr
, etr_buf
, pid
, pid
+ 1, GFP_KERNEL
);
1365 mutex_unlock(&drvdata
->idr_mutex
);
1367 /* Another event with this session ID has allocated this buffer. */
1368 if (ret
== -ENOSPC
) {
1369 tmc_free_etr_buf(etr_buf
);
1373 /* The IDR can't allocate room for a new session, abandon ship. */
1374 if (ret
== -ENOMEM
) {
1375 tmc_free_etr_buf(etr_buf
);
1376 return ERR_PTR(ret
);
1383 static struct etr_buf
*
1384 get_perf_etr_buf_per_thread(struct tmc_drvdata
*drvdata
,
1385 struct perf_event
*event
, int nr_pages
,
1386 void **pages
, bool snapshot
)
1389 * In per-thread mode the etr_buf isn't shared, so just go ahead
1390 * with memory allocation.
1392 return alloc_etr_buf(drvdata
, event
, nr_pages
, pages
, snapshot
);
1395 static struct etr_buf
*
1396 get_perf_etr_buf(struct tmc_drvdata
*drvdata
, struct perf_event
*event
,
1397 int nr_pages
, void **pages
, bool snapshot
)
1399 if (event
->cpu
== -1)
1400 return get_perf_etr_buf_per_thread(drvdata
, event
, nr_pages
,
1403 return get_perf_etr_buf_cpu_wide(drvdata
, event
, nr_pages
,
1407 static struct etr_perf_buffer
*
1408 tmc_etr_setup_perf_buf(struct tmc_drvdata
*drvdata
, struct perf_event
*event
,
1409 int nr_pages
, void **pages
, bool snapshot
)
1412 struct etr_buf
*etr_buf
;
1413 struct etr_perf_buffer
*etr_perf
;
1415 node
= (event
->cpu
== -1) ? NUMA_NO_NODE
: cpu_to_node(event
->cpu
);
1417 etr_perf
= kzalloc_node(sizeof(*etr_perf
), GFP_KERNEL
, node
);
1419 return ERR_PTR(-ENOMEM
);
1421 etr_buf
= get_perf_etr_buf(drvdata
, event
, nr_pages
, pages
, snapshot
);
1422 if (!IS_ERR(etr_buf
))
1426 return ERR_PTR(-ENOMEM
);
1430 * Keep a reference to the ETR this buffer has been allocated for
1431 * in order to have access to the IDR in tmc_free_etr_buffer().
1433 etr_perf
->drvdata
= drvdata
;
1434 etr_perf
->etr_buf
= etr_buf
;
1440 static void *tmc_alloc_etr_buffer(struct coresight_device
*csdev
,
1441 struct perf_event
*event
, void **pages
,
1442 int nr_pages
, bool snapshot
)
1444 struct etr_perf_buffer
*etr_perf
;
1445 struct tmc_drvdata
*drvdata
= dev_get_drvdata(csdev
->dev
.parent
);
1447 etr_perf
= tmc_etr_setup_perf_buf(drvdata
, event
,
1448 nr_pages
, pages
, snapshot
);
1449 if (IS_ERR(etr_perf
)) {
1450 dev_dbg(&csdev
->dev
, "Unable to allocate ETR buffer\n");
1454 etr_perf
->pid
= task_pid_nr(event
->owner
);
1455 etr_perf
->snapshot
= snapshot
;
1456 etr_perf
->nr_pages
= nr_pages
;
1457 etr_perf
->pages
= pages
;
1462 static void tmc_free_etr_buffer(void *config
)
1464 struct etr_perf_buffer
*etr_perf
= config
;
1465 struct tmc_drvdata
*drvdata
= etr_perf
->drvdata
;
1466 struct etr_buf
*buf
, *etr_buf
= etr_perf
->etr_buf
;
1469 goto free_etr_perf_buffer
;
1471 mutex_lock(&drvdata
->idr_mutex
);
1472 /* If we are not the last one to use the buffer, don't touch it. */
1473 if (!refcount_dec_and_test(&etr_buf
->refcount
)) {
1474 mutex_unlock(&drvdata
->idr_mutex
);
1475 goto free_etr_perf_buffer
;
1478 /* We are the last one, remove from the IDR and free the buffer. */
1479 buf
= idr_remove(&drvdata
->idr
, etr_perf
->pid
);
1480 mutex_unlock(&drvdata
->idr_mutex
);
1483 * Something went very wrong if the buffer associated with this ID
1484 * is not the same in the IDR. Leak to avoid use after free.
1486 if (buf
&& WARN_ON(buf
!= etr_buf
))
1487 goto free_etr_perf_buffer
;
1489 tmc_free_etr_buf(etr_perf
->etr_buf
);
1491 free_etr_perf_buffer
:
1496 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1497 * buffer to the perf ring buffer.
1499 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer
*etr_perf
,
1501 unsigned long src_offset
,
1502 unsigned long to_copy
)
1505 long pg_idx
, pg_offset
;
1506 char **dst_pages
, *src_buf
;
1507 struct etr_buf
*etr_buf
= etr_perf
->etr_buf
;
1509 head
= PERF_IDX2OFF(head
, etr_perf
);
1510 pg_idx
= head
>> PAGE_SHIFT
;
1511 pg_offset
= head
& (PAGE_SIZE
- 1);
1512 dst_pages
= (char **)etr_perf
->pages
;
1514 while (to_copy
> 0) {
1516 * In one iteration, we can copy minimum of :
1517 * 1) what is available in the source buffer,
1518 * 2) what is available in the source buffer, before it
1520 * 3) what is available in the destination page.
1523 if (src_offset
>= etr_buf
->size
)
1524 src_offset
-= etr_buf
->size
;
1525 bytes
= tmc_etr_buf_get_data(etr_buf
, src_offset
, to_copy
,
1527 if (WARN_ON_ONCE(bytes
<= 0))
1529 bytes
= min(bytes
, (long)(PAGE_SIZE
- pg_offset
));
1531 memcpy(dst_pages
[pg_idx
] + pg_offset
, src_buf
, bytes
);
1535 /* Move destination pointers */
1537 if (pg_offset
== PAGE_SIZE
) {
1539 if (++pg_idx
== etr_perf
->nr_pages
)
1543 /* Move source pointers */
1544 src_offset
+= bytes
;
1549 * tmc_update_etr_buffer : Update the perf ring buffer with the
1550 * available trace data. We use software double buffering at the moment.
1552 * TODO: Add support for reusing the perf ring buffer.
1554 static unsigned long
1555 tmc_update_etr_buffer(struct coresight_device
*csdev
,
1556 struct perf_output_handle
*handle
,
1560 unsigned long flags
, offset
, size
= 0;
1561 struct tmc_drvdata
*drvdata
= dev_get_drvdata(csdev
->dev
.parent
);
1562 struct etr_perf_buffer
*etr_perf
= config
;
1563 struct etr_buf
*etr_buf
= etr_perf
->etr_buf
;
1565 spin_lock_irqsave(&drvdata
->spinlock
, flags
);
1567 /* Don't do anything if another tracer is using this sink */
1568 if (csdev
->refcnt
!= 1) {
1569 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1573 if (WARN_ON(drvdata
->perf_buf
!= etr_buf
)) {
1575 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1579 CS_UNLOCK(drvdata
->base
);
1581 tmc_flush_and_stop(drvdata
);
1582 tmc_sync_etr_buf(drvdata
);
1584 CS_LOCK(drvdata
->base
);
1585 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1587 lost
= etr_buf
->full
;
1588 offset
= etr_buf
->offset
;
1589 size
= etr_buf
->len
;
1592 * The ETR buffer may be bigger than the space available in the
1593 * perf ring buffer (handle->size). If so advance the offset so that we
1594 * get the latest trace data. In snapshot mode none of that matters
1595 * since we are expected to clobber stale data in favour of the latest
1598 if (!etr_perf
->snapshot
&& size
> handle
->size
) {
1599 u32 mask
= tmc_get_memwidth_mask(drvdata
);
1602 * Make sure the new size is aligned in accordance with the
1603 * requirement explained in function tmc_get_memwidth_mask().
1605 size
= handle
->size
& mask
;
1606 offset
= etr_buf
->offset
+ etr_buf
->len
- size
;
1608 if (offset
>= etr_buf
->size
)
1609 offset
-= etr_buf
->size
;
1613 /* Insert barrier packets at the beginning, if there was an overflow */
1615 tmc_etr_buf_insert_barrier_packet(etr_buf
, offset
);
1616 tmc_etr_sync_perf_buffer(etr_perf
, handle
->head
, offset
, size
);
1619 * In snapshot mode we simply increment the head by the number of byte
1620 * that were written. User space will figure out how many bytes to get
1621 * from the AUX buffer based on the position of the head.
1623 if (etr_perf
->snapshot
)
1624 handle
->head
+= size
;
1627 * Ensure that the AUX trace data is visible before the aux_head
1628 * is updated via perf_aux_output_end(), as expected by the
1635 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1636 * captured buffer is expected to be truncated and 2) a full buffer
1637 * prevents the event from being re-enabled by the perf core,
1638 * resulting in stale data being send to user space.
1640 if (!etr_perf
->snapshot
&& lost
)
1641 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
);
1645 static int tmc_enable_etr_sink_perf(struct coresight_device
*csdev
, void *data
)
1649 unsigned long flags
;
1650 struct tmc_drvdata
*drvdata
= dev_get_drvdata(csdev
->dev
.parent
);
1651 struct perf_output_handle
*handle
= data
;
1652 struct etr_perf_buffer
*etr_perf
= etm_perf_sink_config(handle
);
1654 spin_lock_irqsave(&drvdata
->spinlock
, flags
);
1655 /* Don't use this sink if it is already claimed by sysFS */
1656 if (coresight_get_mode(csdev
) == CS_MODE_SYSFS
) {
1661 if (WARN_ON(!etr_perf
|| !etr_perf
->etr_buf
)) {
1666 /* Get a handle on the pid of the session owner */
1667 pid
= etr_perf
->pid
;
1669 /* Do not proceed if this device is associated with another session */
1670 if (drvdata
->pid
!= -1 && drvdata
->pid
!= pid
) {
1676 * No HW configuration is needed if the sink is already in
1677 * use for this session.
1679 if (drvdata
->pid
== pid
) {
1684 rc
= tmc_etr_enable_hw(drvdata
, etr_perf
->etr_buf
);
1686 /* Associate with monitored process. */
1688 coresight_set_mode(csdev
, CS_MODE_PERF
);
1689 drvdata
->perf_buf
= etr_perf
->etr_buf
;
1694 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1698 static int tmc_enable_etr_sink(struct coresight_device
*csdev
,
1699 enum cs_mode mode
, void *data
)
1703 return tmc_enable_etr_sink_sysfs(csdev
);
1705 return tmc_enable_etr_sink_perf(csdev
, data
);
1711 static int tmc_disable_etr_sink(struct coresight_device
*csdev
)
1713 unsigned long flags
;
1714 struct tmc_drvdata
*drvdata
= dev_get_drvdata(csdev
->dev
.parent
);
1716 spin_lock_irqsave(&drvdata
->spinlock
, flags
);
1718 if (drvdata
->reading
) {
1719 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1724 if (csdev
->refcnt
) {
1725 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1729 /* Complain if we (somehow) got out of sync */
1730 WARN_ON_ONCE(coresight_get_mode(csdev
) == CS_MODE_DISABLED
);
1731 tmc_etr_disable_hw(drvdata
);
1732 /* Dissociate from monitored process. */
1734 coresight_set_mode(csdev
, CS_MODE_DISABLED
);
1735 /* Reset perf specific data */
1736 drvdata
->perf_buf
= NULL
;
1738 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1740 dev_dbg(&csdev
->dev
, "TMC-ETR disabled\n");
1744 static const struct coresight_ops_sink tmc_etr_sink_ops
= {
1745 .enable
= tmc_enable_etr_sink
,
1746 .disable
= tmc_disable_etr_sink
,
1747 .alloc_buffer
= tmc_alloc_etr_buffer
,
1748 .update_buffer
= tmc_update_etr_buffer
,
1749 .free_buffer
= tmc_free_etr_buffer
,
1752 const struct coresight_ops tmc_etr_cs_ops
= {
1753 .sink_ops
= &tmc_etr_sink_ops
,
1756 int tmc_read_prepare_etr(struct tmc_drvdata
*drvdata
)
1759 unsigned long flags
;
1761 /* config types are set a boot time and never change */
1762 if (WARN_ON_ONCE(drvdata
->config_type
!= TMC_CONFIG_TYPE_ETR
))
1765 spin_lock_irqsave(&drvdata
->spinlock
, flags
);
1766 if (drvdata
->reading
) {
1772 * We can safely allow reads even if the ETR is operating in PERF mode,
1773 * since the sysfs session is captured in mode specific data.
1774 * If drvdata::sysfs_data is NULL the trace data has been read already.
1776 if (!drvdata
->sysfs_buf
) {
1781 /* Disable the TMC if we are trying to read from a running session. */
1782 if (coresight_get_mode(drvdata
->csdev
) == CS_MODE_SYSFS
)
1783 __tmc_etr_disable_hw(drvdata
);
1785 drvdata
->reading
= true;
1787 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1792 int tmc_read_unprepare_etr(struct tmc_drvdata
*drvdata
)
1794 unsigned long flags
;
1795 struct etr_buf
*sysfs_buf
= NULL
;
1797 /* config types are set a boot time and never change */
1798 if (WARN_ON_ONCE(drvdata
->config_type
!= TMC_CONFIG_TYPE_ETR
))
1801 spin_lock_irqsave(&drvdata
->spinlock
, flags
);
1803 /* RE-enable the TMC if need be */
1804 if (coresight_get_mode(drvdata
->csdev
) == CS_MODE_SYSFS
) {
1806 * The trace run will continue with the same allocated trace
1807 * buffer. Since the tracer is still enabled drvdata::buf can't
1810 __tmc_etr_enable_hw(drvdata
);
1813 * The ETR is not tracing and the buffer was just read.
1814 * As such prepare to free the trace buffer.
1816 sysfs_buf
= drvdata
->sysfs_buf
;
1817 drvdata
->sysfs_buf
= NULL
;
1820 drvdata
->reading
= false;
1821 spin_unlock_irqrestore(&drvdata
->spinlock
, flags
);
1823 /* Free allocated memory out side of the spinlock */
1825 tmc_etr_free_sysfs_buf(sysfs_buf
);
1830 static const char *const buf_modes_str
[] = {
1831 [ETR_MODE_FLAT
] = "flat",
1832 [ETR_MODE_ETR_SG
] = "tmc-sg",
1833 [ETR_MODE_CATU
] = "catu",
1834 [ETR_MODE_AUTO
] = "auto",
1837 static ssize_t
buf_modes_available_show(struct device
*dev
,
1838 struct device_attribute
*attr
, char *buf
)
1840 struct etr_buf_hw buf_hw
;
1843 get_etr_buf_hw(dev
, &buf_hw
);
1844 size
+= sysfs_emit(buf
, "%s ", buf_modes_str
[ETR_MODE_AUTO
]);
1845 size
+= sysfs_emit_at(buf
, size
, "%s ", buf_modes_str
[ETR_MODE_FLAT
]);
1846 if (buf_hw
.has_etr_sg
)
1847 size
+= sysfs_emit_at(buf
, size
, "%s ", buf_modes_str
[ETR_MODE_ETR_SG
]);
1849 if (buf_hw
.has_catu
)
1850 size
+= sysfs_emit_at(buf
, size
, "%s ", buf_modes_str
[ETR_MODE_CATU
]);
1852 size
+= sysfs_emit_at(buf
, size
, "\n");
1855 static DEVICE_ATTR_RO(buf_modes_available
);
1857 static ssize_t
buf_mode_preferred_show(struct device
*dev
,
1858 struct device_attribute
*attr
, char *buf
)
1860 struct tmc_drvdata
*drvdata
= dev_get_drvdata(dev
->parent
);
1862 return sysfs_emit(buf
, "%s\n", buf_modes_str
[drvdata
->etr_mode
]);
1865 static ssize_t
buf_mode_preferred_store(struct device
*dev
,
1866 struct device_attribute
*attr
,
1867 const char *buf
, size_t size
)
1869 struct tmc_drvdata
*drvdata
= dev_get_drvdata(dev
->parent
);
1870 struct etr_buf_hw buf_hw
;
1872 get_etr_buf_hw(dev
, &buf_hw
);
1873 if (sysfs_streq(buf
, buf_modes_str
[ETR_MODE_FLAT
]))
1874 drvdata
->etr_mode
= ETR_MODE_FLAT
;
1875 else if (sysfs_streq(buf
, buf_modes_str
[ETR_MODE_ETR_SG
]) && buf_hw
.has_etr_sg
)
1876 drvdata
->etr_mode
= ETR_MODE_ETR_SG
;
1877 else if (sysfs_streq(buf
, buf_modes_str
[ETR_MODE_CATU
]) && buf_hw
.has_catu
)
1878 drvdata
->etr_mode
= ETR_MODE_CATU
;
1879 else if (sysfs_streq(buf
, buf_modes_str
[ETR_MODE_AUTO
]))
1880 drvdata
->etr_mode
= ETR_MODE_AUTO
;
1885 static DEVICE_ATTR_RW(buf_mode_preferred
);
1887 static struct attribute
*coresight_etr_attrs
[] = {
1888 &dev_attr_buf_modes_available
.attr
,
1889 &dev_attr_buf_mode_preferred
.attr
,
1893 const struct attribute_group coresight_etr_group
= {
1894 .attrs
= coresight_etr_attrs
,