Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / i2c / busses / i2c-img-scb.c
blob02f75cf310aaa7219a41f1650c1e1a0f6ba4ca62
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
5 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
7 * There are three ways that this I2C controller can be driven:
9 * - Raw control of the SDA and SCK signals.
11 * This corresponds to MODE_RAW, which takes control of the signals
12 * directly for a certain number of clock cycles (the INT_TIMING
13 * interrupt can be used for timing).
15 * - Atomic commands. A low level I2C symbol (such as generate
16 * start/stop/ack/nack bit, generate byte, receive byte, and receive
17 * ACK) is given to the hardware, with detection of completion by bits
18 * in the LINESTAT register.
20 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
21 * state machine in the interrupt handler to compose/react to I2C
22 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
23 * which emits a simple fixed sequence of atomic mode commands.
25 * Due to software control, the use of atomic commands usually results
26 * in suboptimal use of the bus, with gaps between the I2C symbols while
27 * the driver decides what to do next.
29 * - Automatic mode. A bus address, and whether to read/write is
30 * specified, and the hardware takes care of the I2C state machine,
31 * using a FIFO to send/receive bytes of data to an I2C slave. The
32 * driver just has to keep the FIFO drained or filled in response to the
33 * appropriate FIFO interrupts.
35 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
36 * with control of repeated start bits between I2C messages.
38 * Use of automatic mode and the FIFO can make much more efficient use
39 * of the bus compared to individual atomic commands, with potentially
40 * no wasted time between I2C symbols or I2C messages.
42 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
43 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
44 * the bus), MODE_ATOMIC must be used since automatic mode is normally
45 * started by the writing of data into the FIFO.
47 * The other modes are used in specific circumstances where MODE_ATOMIC and
48 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
49 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
50 * it is in a sane state.
52 * Notice that the driver implements a timer-based timeout mechanism.
53 * The reason for this mechanism is to reduce the number of interrupts
54 * received in automatic mode.
56 * The driver would get a slave event and transaction done interrupts for
57 * each atomic mode command that gets completed. However, these events are
58 * not needed in automatic mode, becase those atomic mode commands are
59 * managed automatically by the hardware.
61 * In practice, normal I2C transactions will be complete well before you
62 * get the timer interrupt, as the timer is re-scheduled during FIFO
63 * maintenance and disabled after the transaction is complete.
65 * In this way normal automatic mode operation isn't impacted by
66 * unnecessary interrupts, but the exceptional abort condition can still be
67 * detected (with a slight delay).
70 #include <linux/bitops.h>
71 #include <linux/clk.h>
72 #include <linux/completion.h>
73 #include <linux/err.h>
74 #include <linux/i2c.h>
75 #include <linux/init.h>
76 #include <linux/interrupt.h>
77 #include <linux/io.h>
78 #include <linux/kernel.h>
79 #include <linux/module.h>
80 #include <linux/of_platform.h>
81 #include <linux/platform_device.h>
82 #include <linux/pm_runtime.h>
83 #include <linux/slab.h>
84 #include <linux/timer.h>
86 /* Register offsets */
88 #define SCB_STATUS_REG 0x00
89 #define SCB_OVERRIDE_REG 0x04
90 #define SCB_READ_ADDR_REG 0x08
91 #define SCB_READ_COUNT_REG 0x0c
92 #define SCB_WRITE_ADDR_REG 0x10
93 #define SCB_READ_DATA_REG 0x14
94 #define SCB_WRITE_DATA_REG 0x18
95 #define SCB_FIFO_STATUS_REG 0x1c
96 #define SCB_CONTROL_SOFT_RESET 0x1f
97 #define SCB_CLK_SET_REG 0x3c
98 #define SCB_INT_STATUS_REG 0x40
99 #define SCB_INT_CLEAR_REG 0x44
100 #define SCB_INT_MASK_REG 0x48
101 #define SCB_CONTROL_REG 0x4c
102 #define SCB_TIME_TPL_REG 0x50
103 #define SCB_TIME_TPH_REG 0x54
104 #define SCB_TIME_TP2S_REG 0x58
105 #define SCB_TIME_TBI_REG 0x60
106 #define SCB_TIME_TSL_REG 0x64
107 #define SCB_TIME_TDL_REG 0x68
108 #define SCB_TIME_TSDL_REG 0x6c
109 #define SCB_TIME_TSDH_REG 0x70
110 #define SCB_READ_XADDR_REG 0x74
111 #define SCB_WRITE_XADDR_REG 0x78
112 #define SCB_WRITE_COUNT_REG 0x7c
113 #define SCB_CORE_REV_REG 0x80
114 #define SCB_TIME_TCKH_REG 0x84
115 #define SCB_TIME_TCKL_REG 0x88
116 #define SCB_FIFO_FLUSH_REG 0x8c
117 #define SCB_READ_FIFO_REG 0x94
118 #define SCB_CLEAR_REG 0x98
120 /* SCB_CONTROL_REG bits */
122 #define SCB_CONTROL_CLK_ENABLE 0x1e0
123 #define SCB_CONTROL_TRANSACTION_HALT 0x200
125 #define FIFO_READ_FULL BIT(0)
126 #define FIFO_READ_EMPTY BIT(1)
127 #define FIFO_WRITE_FULL BIT(2)
128 #define FIFO_WRITE_EMPTY BIT(3)
130 /* SCB_CLK_SET_REG bits */
131 #define SCB_FILT_DISABLE BIT(31)
132 #define SCB_FILT_BYPASS BIT(30)
133 #define SCB_FILT_INC_MASK 0x7f
134 #define SCB_FILT_INC_SHIFT 16
135 #define SCB_INC_MASK 0x7f
136 #define SCB_INC_SHIFT 8
138 /* SCB_INT_*_REG bits */
140 #define INT_BUS_INACTIVE BIT(0)
141 #define INT_UNEXPECTED_START BIT(1)
142 #define INT_SCLK_LOW_TIMEOUT BIT(2)
143 #define INT_SDAT_LOW_TIMEOUT BIT(3)
144 #define INT_WRITE_ACK_ERR BIT(4)
145 #define INT_ADDR_ACK_ERR BIT(5)
146 #define INT_FIFO_FULL BIT(9)
147 #define INT_FIFO_FILLING BIT(10)
148 #define INT_FIFO_EMPTY BIT(11)
149 #define INT_FIFO_EMPTYING BIT(12)
150 #define INT_TRANSACTION_DONE BIT(15)
151 #define INT_SLAVE_EVENT BIT(16)
152 #define INT_MASTER_HALTED BIT(17)
153 #define INT_TIMING BIT(18)
154 #define INT_STOP_DETECTED BIT(19)
156 #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
158 /* Level interrupts need clearing after handling instead of before */
159 #define INT_LEVEL 0x01e00
161 /* Don't allow any interrupts while the clock may be off */
162 #define INT_ENABLE_MASK_INACTIVE 0x00000
164 /* Interrupt masks for the different driver modes */
166 #define INT_ENABLE_MASK_RAW INT_TIMING
168 #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
169 INT_SLAVE_EVENT | \
170 INT_ADDR_ACK_ERR | \
171 INT_WRITE_ACK_ERR)
173 #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
174 INT_ADDR_ACK_ERR | \
175 INT_WRITE_ACK_ERR | \
176 INT_FIFO_FULL | \
177 INT_FIFO_FILLING | \
178 INT_FIFO_EMPTY | \
179 INT_MASTER_HALTED | \
180 INT_STOP_DETECTED)
182 #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
183 INT_ADDR_ACK_ERR | \
184 INT_WRITE_ACK_ERR)
186 /* SCB_STATUS_REG fields */
188 #define LINESTAT_SCLK_LINE_STATUS BIT(0)
189 #define LINESTAT_SCLK_EN BIT(1)
190 #define LINESTAT_SDAT_LINE_STATUS BIT(2)
191 #define LINESTAT_SDAT_EN BIT(3)
192 #define LINESTAT_DET_START_STATUS BIT(4)
193 #define LINESTAT_DET_STOP_STATUS BIT(5)
194 #define LINESTAT_DET_ACK_STATUS BIT(6)
195 #define LINESTAT_DET_NACK_STATUS BIT(7)
196 #define LINESTAT_BUS_IDLE BIT(8)
197 #define LINESTAT_T_DONE_STATUS BIT(9)
198 #define LINESTAT_SCLK_OUT_STATUS BIT(10)
199 #define LINESTAT_SDAT_OUT_STATUS BIT(11)
200 #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
201 #define LINESTAT_START_BIT_DET BIT(13)
202 #define LINESTAT_STOP_BIT_DET BIT(14)
203 #define LINESTAT_ACK_DET BIT(15)
204 #define LINESTAT_NACK_DET BIT(16)
205 #define LINESTAT_INPUT_HELD_V BIT(17)
206 #define LINESTAT_ABORT_DET BIT(18)
207 #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208 #define LINESTAT_INPUT_DATA 0xff000000
209 #define LINESTAT_INPUT_DATA_SHIFT 24
211 #define LINESTAT_CLEAR_SHIFT 13
212 #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
214 /* SCB_OVERRIDE_REG fields */
216 #define OVERRIDE_SCLK_OVR BIT(0)
217 #define OVERRIDE_SCLKEN_OVR BIT(1)
218 #define OVERRIDE_SDAT_OVR BIT(2)
219 #define OVERRIDE_SDATEN_OVR BIT(3)
220 #define OVERRIDE_MASTER BIT(9)
221 #define OVERRIDE_LINE_OVR_EN BIT(10)
222 #define OVERRIDE_DIRECT BIT(11)
223 #define OVERRIDE_CMD_SHIFT 4
224 #define OVERRIDE_CMD_MASK 0x1f
225 #define OVERRIDE_DATA_SHIFT 24
227 #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
228 OVERRIDE_SCLKEN_OVR)
229 #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
230 OVERRIDE_SCLKEN_OVR | \
231 OVERRIDE_SCLK_OVR)
232 #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
233 OVERRIDE_SDATEN_OVR)
234 #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
235 OVERRIDE_SDATEN_OVR | \
236 OVERRIDE_SDAT_OVR)
238 /* OVERRIDE_CMD values */
240 #define CMD_PAUSE 0x00
241 #define CMD_GEN_DATA 0x01
242 #define CMD_GEN_START 0x02
243 #define CMD_GEN_STOP 0x03
244 #define CMD_GEN_ACK 0x04
245 #define CMD_GEN_NACK 0x05
246 #define CMD_RET_DATA 0x08
247 #define CMD_RET_ACK 0x09
249 /* Fixed timing values */
251 #define TIMEOUT_TBI 0x0
252 #define TIMEOUT_TSL 0xffff
253 #define TIMEOUT_TDL 0x0
255 /* Transaction timeout */
257 #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
260 * Worst incs are 1 (inaccurate) and 16*256 (irregular).
261 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262 * in the middle of the valid range (0-127).
264 #define SCB_OPT_INC 64
266 /* Setup the clock enable filtering for 25 ns */
267 #define SCB_FILT_GLITCH 25
270 * Bits to return from interrupt handler functions for different modes.
271 * This delays completion until we've finished with the registers, so that the
272 * function waiting for completion can safely disable the clock to save power.
274 #define ISR_COMPLETE_M BIT(31)
275 #define ISR_FATAL_M BIT(30)
276 #define ISR_WAITSTOP BIT(29)
277 #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
278 #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279 #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
281 #define IMG_I2C_PM_TIMEOUT 1000 /* ms */
283 enum img_i2c_mode {
284 MODE_INACTIVE,
285 MODE_RAW,
286 MODE_ATOMIC,
287 MODE_AUTOMATIC,
288 MODE_SEQUENCE,
289 MODE_FATAL,
290 MODE_WAITSTOP,
291 MODE_SUSPEND,
294 /* Timing parameters for i2c modes (in ns) */
295 struct img_i2c_timings {
296 const char *name;
297 unsigned int max_bitrate;
298 unsigned int tckh, tckl, tsdh, tsdl;
299 unsigned int tp2s, tpl, tph;
302 /* The timings array must be ordered from slower to faster */
303 static struct img_i2c_timings timings[] = {
304 /* Standard mode */
306 .name = "standard",
307 .max_bitrate = I2C_MAX_STANDARD_MODE_FREQ,
308 .tckh = 4000,
309 .tckl = 4700,
310 .tsdh = 4700,
311 .tsdl = 8700,
312 .tp2s = 4700,
313 .tpl = 4700,
314 .tph = 4000,
316 /* Fast mode */
318 .name = "fast",
319 .max_bitrate = I2C_MAX_FAST_MODE_FREQ,
320 .tckh = 600,
321 .tckl = 1300,
322 .tsdh = 600,
323 .tsdl = 1200,
324 .tp2s = 1300,
325 .tpl = 600,
326 .tph = 600,
330 /* Reset dance */
331 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
332 CMD_GEN_DATA, 0xff,
333 CMD_RET_ACK,
334 CMD_GEN_START,
335 CMD_GEN_STOP,
336 0 };
337 /* Just issue a stop (after an abort condition) */
338 static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP,
339 0 };
341 /* We're interested in different interrupts depending on the mode */
342 static unsigned int img_i2c_int_enable_by_mode[] = {
343 [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE,
344 [MODE_RAW] = INT_ENABLE_MASK_RAW,
345 [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC,
346 [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
347 [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC,
348 [MODE_FATAL] = 0,
349 [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP,
350 [MODE_SUSPEND] = 0,
353 /* Atomic command names */
354 static const char * const img_i2c_atomic_cmd_names[] = {
355 [CMD_PAUSE] = "PAUSE",
356 [CMD_GEN_DATA] = "GEN_DATA",
357 [CMD_GEN_START] = "GEN_START",
358 [CMD_GEN_STOP] = "GEN_STOP",
359 [CMD_GEN_ACK] = "GEN_ACK",
360 [CMD_GEN_NACK] = "GEN_NACK",
361 [CMD_RET_DATA] = "RET_DATA",
362 [CMD_RET_ACK] = "RET_ACK",
365 struct img_i2c {
366 struct i2c_adapter adap;
368 void __iomem *base;
371 * The scb core clock is used to get the input frequency, and to disable
372 * it after every set of transactions to save some power.
374 struct clk *scb_clk, *sys_clk;
375 unsigned int bitrate;
376 bool need_wr_rd_fence;
378 /* state */
379 struct completion msg_complete;
380 spinlock_t lock; /* lock before doing anything with the state */
381 struct i2c_msg msg;
383 /* After the last transaction, wait for a stop bit */
384 bool last_msg;
385 int msg_status;
387 enum img_i2c_mode mode;
388 u32 int_enable; /* depends on mode */
389 u32 line_status; /* line status over command */
392 * To avoid slave event interrupts in automatic mode, use a timer to
393 * poll the abort condition if we don't get an interrupt for too long.
395 struct timer_list check_timer;
396 bool t_halt;
398 /* atomic mode state */
399 bool at_t_done;
400 bool at_slave_event;
401 int at_cur_cmd;
402 u8 at_cur_data;
404 /* Sequence: either reset or stop. See img_i2c_sequence. */
405 u8 *seq;
407 /* raw mode */
408 unsigned int raw_timeout;
411 static int img_i2c_runtime_suspend(struct device *dev);
412 static int img_i2c_runtime_resume(struct device *dev);
414 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
416 writel(value, i2c->base + offset);
419 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
421 return readl(i2c->base + offset);
425 * The code to read from the master read fifo, and write to the master
426 * write fifo, checks a bit in an SCB register before every byte to
427 * ensure that the fifo is not full (write fifo) or empty (read fifo).
428 * Due to clock domain crossing inside the SCB block the updated value
429 * of this bit is only visible after 2 cycles.
431 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
432 * revision register), and it's called after reading from or writing to the
433 * fifos to ensure that subsequent reads of the fifo status bits do not read
434 * stale values.
436 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
438 if (i2c->need_wr_rd_fence) {
439 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
440 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
444 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
446 i2c->mode = mode;
447 i2c->int_enable = img_i2c_int_enable_by_mode[mode];
448 i2c->line_status = 0;
451 static void img_i2c_raw_op(struct img_i2c *i2c)
453 i2c->raw_timeout = 0;
454 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
455 OVERRIDE_SCLKEN_OVR |
456 OVERRIDE_SDATEN_OVR |
457 OVERRIDE_MASTER |
458 OVERRIDE_LINE_OVR_EN |
459 OVERRIDE_DIRECT |
460 ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
461 (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
464 static const char *img_i2c_atomic_op_name(unsigned int cmd)
466 if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
467 return "UNKNOWN";
468 return img_i2c_atomic_cmd_names[cmd];
471 /* Send a single atomic mode command to the hardware */
472 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
474 i2c->at_cur_cmd = cmd;
475 i2c->at_cur_data = data;
477 /* work around lack of data setup time when generating data */
478 if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
479 u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
481 if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
482 /* hold the data line down for a moment */
483 img_i2c_switch_mode(i2c, MODE_RAW);
484 img_i2c_raw_op(i2c);
485 return;
489 dev_dbg(i2c->adap.dev.parent,
490 "atomic cmd=%s (%d) data=%#x\n",
491 img_i2c_atomic_op_name(cmd), cmd, data);
492 i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
493 i2c->at_slave_event = false;
494 i2c->line_status = 0;
496 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
497 ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
498 OVERRIDE_MASTER |
499 OVERRIDE_DIRECT |
500 (data << OVERRIDE_DATA_SHIFT));
503 /* Start a transaction in atomic mode */
504 static void img_i2c_atomic_start(struct img_i2c *i2c)
506 img_i2c_switch_mode(i2c, MODE_ATOMIC);
507 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
508 img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
511 static void img_i2c_soft_reset(struct img_i2c *i2c)
513 i2c->t_halt = false;
514 img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
515 img_i2c_writel(i2c, SCB_CONTROL_REG,
516 SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
520 * Enable or release transaction halt for control of repeated starts.
521 * In version 3.3 of the IP when transaction halt is set, an interrupt
522 * will be generated after each byte of a transfer instead of after
523 * every transfer but before the stop bit.
524 * Due to this behaviour we have to be careful that every time we
525 * release the transaction halt we have to re-enable it straight away
526 * so that we only process a single byte, not doing so will result in
527 * all remaining bytes been processed and a stop bit being issued,
528 * which will prevent us having a repeated start.
530 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
532 u32 val;
534 if (i2c->t_halt == t_halt)
535 return;
536 i2c->t_halt = t_halt;
537 val = img_i2c_readl(i2c, SCB_CONTROL_REG);
538 if (t_halt)
539 val |= SCB_CONTROL_TRANSACTION_HALT;
540 else
541 val &= ~SCB_CONTROL_TRANSACTION_HALT;
542 img_i2c_writel(i2c, SCB_CONTROL_REG, val);
545 /* Drain data from the FIFO into the buffer (automatic mode) */
546 static void img_i2c_read_fifo(struct img_i2c *i2c)
548 while (i2c->msg.len) {
549 u32 fifo_status;
550 u8 data;
552 img_i2c_wr_rd_fence(i2c);
553 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
554 if (fifo_status & FIFO_READ_EMPTY)
555 break;
557 data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
558 *i2c->msg.buf = data;
560 img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
561 i2c->msg.len--;
562 i2c->msg.buf++;
566 /* Fill the FIFO with data from the buffer (automatic mode) */
567 static void img_i2c_write_fifo(struct img_i2c *i2c)
569 while (i2c->msg.len) {
570 u32 fifo_status;
572 img_i2c_wr_rd_fence(i2c);
573 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
574 if (fifo_status & FIFO_WRITE_FULL)
575 break;
577 img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
578 i2c->msg.len--;
579 i2c->msg.buf++;
582 /* Disable fifo emptying interrupt if nothing more to write */
583 if (!i2c->msg.len)
584 i2c->int_enable &= ~INT_FIFO_EMPTYING;
587 /* Start a read transaction in automatic mode */
588 static void img_i2c_read(struct img_i2c *i2c)
590 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
591 if (!i2c->last_msg)
592 i2c->int_enable |= INT_SLAVE_EVENT;
594 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
595 img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
596 img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
598 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
601 /* Start a write transaction in automatic mode */
602 static void img_i2c_write(struct img_i2c *i2c)
604 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
605 if (!i2c->last_msg)
606 i2c->int_enable |= INT_SLAVE_EVENT;
608 img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
609 img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
611 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
612 img_i2c_write_fifo(i2c);
614 /* img_i2c_write_fifo() may modify int_enable */
615 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
619 * Indicate that the transaction is complete. This is called from the
620 * ISR to wake up the waiting thread, after which the ISR must not
621 * access any more SCB registers.
623 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
625 img_i2c_switch_mode(i2c, MODE_INACTIVE);
626 if (status) {
627 i2c->msg_status = status;
628 img_i2c_transaction_halt(i2c, false);
630 complete(&i2c->msg_complete);
633 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
634 u32 int_status, u32 line_status)
636 /* Stay in raw mode for this, so we don't just loop infinitely */
637 img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
638 img_i2c_switch_mode(i2c, MODE_ATOMIC);
639 return 0;
642 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
643 u32 line_status)
645 if (int_status & INT_TIMING) {
646 if (i2c->raw_timeout == 0)
647 return img_i2c_raw_atomic_delay_handler(i2c,
648 int_status, line_status);
649 --i2c->raw_timeout;
651 return 0;
654 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
656 static const unsigned int continue_bits[] = {
657 [CMD_GEN_START] = LINESTAT_START_BIT_DET,
658 [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V,
659 [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
660 [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V,
661 [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET,
663 int next_cmd = -1;
664 u8 next_data = 0x00;
666 if (int_status & INT_SLAVE_EVENT)
667 i2c->at_slave_event = true;
668 if (int_status & INT_TRANSACTION_DONE)
669 i2c->at_t_done = true;
671 if (!i2c->at_slave_event || !i2c->at_t_done)
672 return 0;
674 /* wait if no continue bits are set */
675 if (i2c->at_cur_cmd >= 0 &&
676 i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
677 unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
679 if (cont_bits) {
680 cont_bits |= LINESTAT_ABORT_DET;
681 if (!(i2c->line_status & cont_bits))
682 return 0;
686 /* follow the sequence of commands in i2c->seq */
687 next_cmd = *i2c->seq;
688 /* stop on a nil */
689 if (!next_cmd) {
690 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
691 return ISR_COMPLETE(0);
693 /* when generating data, the next byte is the data */
694 if (next_cmd == CMD_GEN_DATA) {
695 ++i2c->seq;
696 next_data = *i2c->seq;
698 ++i2c->seq;
699 img_i2c_atomic_op(i2c, next_cmd, next_data);
701 return 0;
704 static void img_i2c_reset_start(struct img_i2c *i2c)
706 /* Initiate the magic dance */
707 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
708 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
709 i2c->seq = img_i2c_reset_seq;
710 i2c->at_slave_event = true;
711 i2c->at_t_done = true;
712 i2c->at_cur_cmd = -1;
714 /* img_i2c_reset_seq isn't empty so the following won't fail */
715 img_i2c_sequence(i2c, 0);
718 static void img_i2c_stop_start(struct img_i2c *i2c)
720 /* Initiate a stop bit sequence */
721 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
722 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
723 i2c->seq = img_i2c_stop_seq;
724 i2c->at_slave_event = true;
725 i2c->at_t_done = true;
726 i2c->at_cur_cmd = -1;
728 /* img_i2c_stop_seq isn't empty so the following won't fail */
729 img_i2c_sequence(i2c, 0);
732 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
733 u32 int_status,
734 u32 line_status)
736 int next_cmd = -1;
737 u8 next_data = 0x00;
739 if (int_status & INT_SLAVE_EVENT)
740 i2c->at_slave_event = true;
741 if (int_status & INT_TRANSACTION_DONE)
742 i2c->at_t_done = true;
744 if (!i2c->at_slave_event || !i2c->at_t_done)
745 goto next_atomic_cmd;
746 if (i2c->line_status & LINESTAT_ABORT_DET) {
747 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
748 next_cmd = CMD_GEN_STOP;
749 i2c->msg_status = -EIO;
750 goto next_atomic_cmd;
753 /* i2c->at_cur_cmd may have completed */
754 switch (i2c->at_cur_cmd) {
755 case CMD_GEN_START:
756 next_cmd = CMD_GEN_DATA;
757 next_data = i2c_8bit_addr_from_msg(&i2c->msg);
758 break;
759 case CMD_GEN_DATA:
760 if (i2c->line_status & LINESTAT_INPUT_HELD_V)
761 next_cmd = CMD_RET_ACK;
762 break;
763 case CMD_RET_ACK:
764 if (i2c->line_status & LINESTAT_ACK_DET ||
765 (i2c->line_status & LINESTAT_NACK_DET &&
766 i2c->msg.flags & I2C_M_IGNORE_NAK)) {
767 if (i2c->msg.len == 0) {
768 next_cmd = CMD_GEN_STOP;
769 } else if (i2c->msg.flags & I2C_M_RD) {
770 next_cmd = CMD_RET_DATA;
771 } else {
772 next_cmd = CMD_GEN_DATA;
773 next_data = *i2c->msg.buf;
774 --i2c->msg.len;
775 ++i2c->msg.buf;
777 } else if (i2c->line_status & LINESTAT_NACK_DET) {
778 i2c->msg_status = -EIO;
779 next_cmd = CMD_GEN_STOP;
781 break;
782 case CMD_RET_DATA:
783 if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
784 *i2c->msg.buf = (i2c->line_status &
785 LINESTAT_INPUT_DATA)
786 >> LINESTAT_INPUT_DATA_SHIFT;
787 --i2c->msg.len;
788 ++i2c->msg.buf;
789 if (i2c->msg.len)
790 next_cmd = CMD_GEN_ACK;
791 else
792 next_cmd = CMD_GEN_NACK;
794 break;
795 case CMD_GEN_ACK:
796 if (i2c->line_status & LINESTAT_ACK_DET) {
797 next_cmd = CMD_RET_DATA;
798 } else {
799 i2c->msg_status = -EIO;
800 next_cmd = CMD_GEN_STOP;
802 break;
803 case CMD_GEN_NACK:
804 next_cmd = CMD_GEN_STOP;
805 break;
806 case CMD_GEN_STOP:
807 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
808 return ISR_COMPLETE(0);
809 default:
810 dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
811 i2c->at_cur_cmd);
812 i2c->msg_status = -EIO;
813 next_cmd = CMD_GEN_STOP;
814 break;
817 next_atomic_cmd:
818 if (next_cmd != -1) {
819 /* don't actually stop unless we're the last transaction */
820 if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
821 !i2c->last_msg)
822 return ISR_COMPLETE(0);
823 img_i2c_atomic_op(i2c, next_cmd, next_data);
825 return 0;
829 * Timer function to check if something has gone wrong in automatic mode (so we
830 * don't have to handle so many interrupts just to catch an exception).
832 static void img_i2c_check_timer(struct timer_list *t)
834 struct img_i2c *i2c = from_timer(i2c, t, check_timer);
835 unsigned long flags;
836 unsigned int line_status;
838 spin_lock_irqsave(&i2c->lock, flags);
839 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
841 /* check for an abort condition */
842 if (line_status & LINESTAT_ABORT_DET) {
843 dev_dbg(i2c->adap.dev.parent,
844 "abort condition detected by check timer\n");
845 /* enable slave event interrupt mask to trigger irq */
846 img_i2c_writel(i2c, SCB_INT_MASK_REG,
847 i2c->int_enable | INT_SLAVE_EVENT);
850 spin_unlock_irqrestore(&i2c->lock, flags);
853 static unsigned int img_i2c_auto(struct img_i2c *i2c,
854 unsigned int int_status,
855 unsigned int line_status)
857 if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
858 return ISR_COMPLETE(EIO);
860 if (line_status & LINESTAT_ABORT_DET) {
861 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
862 /* empty the read fifo */
863 if ((i2c->msg.flags & I2C_M_RD) &&
864 (int_status & INT_FIFO_FULL_FILLING))
865 img_i2c_read_fifo(i2c);
866 /* use atomic mode and try to force a stop bit */
867 i2c->msg_status = -EIO;
868 img_i2c_stop_start(i2c);
869 return 0;
872 /* Enable transaction halt on start bit */
873 if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
874 img_i2c_transaction_halt(i2c, !i2c->last_msg);
875 /* we're no longer interested in the slave event */
876 i2c->int_enable &= ~INT_SLAVE_EVENT;
879 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
881 if (int_status & INT_STOP_DETECTED) {
882 /* Drain remaining data in FIFO and complete transaction */
883 if (i2c->msg.flags & I2C_M_RD)
884 img_i2c_read_fifo(i2c);
885 return ISR_COMPLETE(0);
888 if (i2c->msg.flags & I2C_M_RD) {
889 if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
890 img_i2c_read_fifo(i2c);
891 if (i2c->msg.len == 0)
892 return ISR_WAITSTOP;
894 } else {
895 if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
896 if ((int_status & INT_FIFO_EMPTY) &&
897 i2c->msg.len == 0)
898 return ISR_WAITSTOP;
899 img_i2c_write_fifo(i2c);
902 if (int_status & INT_MASTER_HALTED) {
904 * Release and then enable transaction halt, to
905 * allow only a single byte to proceed.
907 img_i2c_transaction_halt(i2c, false);
908 img_i2c_transaction_halt(i2c, !i2c->last_msg);
911 return 0;
914 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
916 struct img_i2c *i2c = dev_id;
917 u32 int_status, line_status;
918 /* We handle transaction completion AFTER accessing registers */
919 unsigned int hret;
921 /* Read interrupt status register. */
922 int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
923 /* Clear detected interrupts. */
924 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
927 * Read line status and clear it until it actually is clear. We have
928 * to be careful not to lose any line status bits that get latched.
930 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
931 if (line_status & LINESTAT_LATCHED) {
932 img_i2c_writel(i2c, SCB_CLEAR_REG,
933 (line_status & LINESTAT_LATCHED)
934 >> LINESTAT_CLEAR_SHIFT);
935 img_i2c_wr_rd_fence(i2c);
938 spin_lock(&i2c->lock);
940 /* Keep track of line status bits received */
941 i2c->line_status &= ~LINESTAT_INPUT_DATA;
942 i2c->line_status |= line_status;
945 * Certain interrupts indicate that sclk low timeout is not
946 * a problem. If any of these are set, just continue.
948 if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
949 !(int_status & (INT_SLAVE_EVENT |
950 INT_FIFO_EMPTY |
951 INT_FIFO_FULL))) {
952 dev_crit(i2c->adap.dev.parent,
953 "fatal: clock low timeout occurred %s addr 0x%02x\n",
954 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
955 i2c->msg.addr);
956 hret = ISR_FATAL(EIO);
957 goto out;
960 if (i2c->mode == MODE_ATOMIC)
961 hret = img_i2c_atomic(i2c, int_status, line_status);
962 else if (i2c->mode == MODE_AUTOMATIC)
963 hret = img_i2c_auto(i2c, int_status, line_status);
964 else if (i2c->mode == MODE_SEQUENCE)
965 hret = img_i2c_sequence(i2c, int_status);
966 else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
967 (line_status & LINESTAT_STOP_BIT_DET))
968 hret = ISR_COMPLETE(0);
969 else if (i2c->mode == MODE_RAW)
970 hret = img_i2c_raw(i2c, int_status, line_status);
971 else
972 hret = 0;
974 /* Clear detected level interrupts. */
975 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
977 out:
978 if (hret & ISR_WAITSTOP) {
980 * Only wait for stop on last message.
981 * Also we may already have detected the stop bit.
983 if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
984 hret = ISR_COMPLETE(0);
985 else
986 img_i2c_switch_mode(i2c, MODE_WAITSTOP);
989 /* now we've finished using regs, handle transaction completion */
990 if (hret & ISR_COMPLETE_M) {
991 int status = -(hret & ISR_STATUS_M);
993 img_i2c_complete_transaction(i2c, status);
994 if (hret & ISR_FATAL_M)
995 img_i2c_switch_mode(i2c, MODE_FATAL);
998 /* Enable interrupts (int_enable may be altered by changing mode) */
999 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1001 spin_unlock(&i2c->lock);
1003 return IRQ_HANDLED;
1006 /* Force a bus reset sequence and wait for it to complete */
1007 static int img_i2c_reset_bus(struct img_i2c *i2c)
1009 unsigned long flags;
1010 unsigned long time_left;
1012 spin_lock_irqsave(&i2c->lock, flags);
1013 reinit_completion(&i2c->msg_complete);
1014 img_i2c_reset_start(i2c);
1015 spin_unlock_irqrestore(&i2c->lock, flags);
1017 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1018 IMG_I2C_TIMEOUT);
1019 if (time_left == 0)
1020 return -ETIMEDOUT;
1021 return 0;
1024 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1025 int num)
1027 struct img_i2c *i2c = i2c_get_adapdata(adap);
1028 bool atomic = false;
1029 int i, ret;
1030 unsigned long time_left;
1032 if (i2c->mode == MODE_SUSPEND) {
1033 WARN(1, "refusing to service transaction in suspended state\n");
1034 return -EIO;
1037 if (i2c->mode == MODE_FATAL)
1038 return -EIO;
1040 for (i = 0; i < num; i++) {
1042 * 0 byte reads are not possible because the slave could try
1043 * and pull the data line low, preventing a stop bit.
1045 if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1046 return -EIO;
1048 * 0 byte writes are possible and used for probing, but we
1049 * cannot do them in automatic mode, so use atomic mode
1050 * instead.
1052 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1053 * in atomic mode.
1055 if (!msgs[i].len ||
1056 (msgs[i].flags & I2C_M_IGNORE_NAK))
1057 atomic = true;
1060 ret = pm_runtime_resume_and_get(adap->dev.parent);
1061 if (ret < 0)
1062 return ret;
1064 for (i = 0; i < num; i++) {
1065 struct i2c_msg *msg = &msgs[i];
1066 unsigned long flags;
1068 spin_lock_irqsave(&i2c->lock, flags);
1071 * Make a copy of the message struct. We mustn't modify the
1072 * original or we'll confuse drivers and i2c-dev.
1074 i2c->msg = *msg;
1075 i2c->msg_status = 0;
1078 * After the last message we must have waited for a stop bit.
1079 * Not waiting can cause problems when the clock is disabled
1080 * before the stop bit is sent, and the linux I2C interface
1081 * requires separate transfers not to joined with repeated
1082 * start.
1084 i2c->last_msg = (i == num - 1);
1085 reinit_completion(&i2c->msg_complete);
1088 * Clear line status and all interrupts before starting a
1089 * transfer, as we may have unserviced interrupts from
1090 * previous transfers that might be handled in the context
1091 * of the new transfer.
1093 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1094 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1096 if (atomic) {
1097 img_i2c_atomic_start(i2c);
1098 } else {
1100 * Enable transaction halt if not the last message in
1101 * the queue so that we can control repeated starts.
1103 img_i2c_transaction_halt(i2c, !i2c->last_msg);
1105 if (msg->flags & I2C_M_RD)
1106 img_i2c_read(i2c);
1107 else
1108 img_i2c_write(i2c);
1111 * Release and then enable transaction halt, to
1112 * allow only a single byte to proceed.
1113 * This doesn't have an effect on the initial transfer
1114 * but will allow the following transfers to start
1115 * processing if the previous transfer was marked as
1116 * complete while the i2c block was halted.
1118 img_i2c_transaction_halt(i2c, false);
1119 img_i2c_transaction_halt(i2c, !i2c->last_msg);
1121 spin_unlock_irqrestore(&i2c->lock, flags);
1123 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1124 IMG_I2C_TIMEOUT);
1125 del_timer_sync(&i2c->check_timer);
1127 if (time_left == 0)
1128 i2c->msg_status = -ETIMEDOUT;
1130 if (i2c->msg_status)
1131 break;
1134 pm_runtime_mark_last_busy(adap->dev.parent);
1135 pm_runtime_put_autosuspend(adap->dev.parent);
1137 return i2c->msg_status ? i2c->msg_status : num;
1140 static u32 img_i2c_func(struct i2c_adapter *adap)
1142 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1145 static const struct i2c_algorithm img_i2c_algo = {
1146 .master_xfer = img_i2c_xfer,
1147 .functionality = img_i2c_func,
1150 static int img_i2c_init(struct img_i2c *i2c)
1152 unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1153 unsigned int i, data, prescale, inc, int_bitrate, filt;
1154 struct img_i2c_timings timing;
1155 u32 rev;
1156 int ret;
1158 ret = pm_runtime_resume_and_get(i2c->adap.dev.parent);
1159 if (ret < 0)
1160 return ret;
1162 rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1163 if ((rev & 0x00ffffff) < 0x00020200) {
1164 dev_info(i2c->adap.dev.parent,
1165 "Unknown hardware revision (%d.%d.%d.%d)\n",
1166 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1167 (rev >> 8) & 0xff, rev & 0xff);
1168 pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1169 pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1170 return -EINVAL;
1173 /* Fencing enabled by default. */
1174 i2c->need_wr_rd_fence = true;
1176 /* Determine what mode we're in from the bitrate */
1177 timing = timings[0];
1178 for (i = 0; i < ARRAY_SIZE(timings); i++) {
1179 if (i2c->bitrate <= timings[i].max_bitrate) {
1180 timing = timings[i];
1181 break;
1184 if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1185 dev_warn(i2c->adap.dev.parent,
1186 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1187 i2c->bitrate,
1188 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1189 timing = timings[ARRAY_SIZE(timings) - 1];
1190 i2c->bitrate = timing.max_bitrate;
1193 bitrate_khz = i2c->bitrate / 1000;
1194 clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1196 /* Find the prescale that would give us that inc (approx delay = 0) */
1197 prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1198 prescale = clamp_t(unsigned int, prescale, 1, 8);
1199 clk_khz /= prescale;
1201 /* Setup the clock increment value */
1202 inc = (256 * 16 * bitrate_khz) / clk_khz;
1205 * The clock generation logic allows to filter glitches on the bus.
1206 * This filter is able to remove bus glitches shorter than 50ns.
1207 * If the clock enable rate is greater than 20 MHz, no filtering
1208 * is required, so we need to disable it.
1209 * If it's between the 20-40 MHz range, there's no need to divide
1210 * the clock to get a filter.
1212 if (clk_khz < 20000) {
1213 filt = SCB_FILT_DISABLE;
1214 } else if (clk_khz < 40000) {
1215 filt = SCB_FILT_BYPASS;
1216 } else {
1217 /* Calculate filter clock */
1218 filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1220 /* Scale up if needed */
1221 if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1222 inc++;
1224 if (filt > SCB_FILT_INC_MASK)
1225 filt = SCB_FILT_INC_MASK;
1227 filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1229 data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1230 img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1232 /* Obtain the clock period of the fx16 clock in ns */
1233 clk_period = (256 * 1000000) / (clk_khz * inc);
1235 /* Calculate the bitrate in terms of internal clock pulses */
1236 int_bitrate = 1000000 / (bitrate_khz * clk_period);
1237 if ((1000000 % (bitrate_khz * clk_period)) >=
1238 ((bitrate_khz * clk_period) / 2))
1239 int_bitrate++;
1242 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1243 * values from there if they don't meet minimum timing requirements
1245 tckh = int_bitrate / 2;
1246 tckl = int_bitrate - tckh;
1248 /* Adjust TCKH and TCKL values */
1249 data = DIV_ROUND_UP(timing.tckl, clk_period);
1251 if (tckl < data) {
1252 tckl = data;
1253 tckh = int_bitrate - tckl;
1256 if (tckh > 0)
1257 --tckh;
1259 if (tckl > 0)
1260 --tckl;
1262 img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1263 img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1265 /* Setup TSDH value */
1266 tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1268 if (tsdh > 1)
1269 data = tsdh - 1;
1270 else
1271 data = 0x01;
1272 img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1274 /* This value is used later */
1275 tsdh = data;
1277 /* Setup TPL value */
1278 data = timing.tpl / clk_period;
1279 if (data > 0)
1280 --data;
1281 img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1283 /* Setup TPH value */
1284 data = timing.tph / clk_period;
1285 if (data > 0)
1286 --data;
1287 img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1289 /* Setup TSDL value to TPL + TSDH + 2 */
1290 img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1292 /* Setup TP2S value */
1293 data = timing.tp2s / clk_period;
1294 if (data > 0)
1295 --data;
1296 img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1298 img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1299 img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1300 img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1302 /* Take module out of soft reset and enable clocks */
1303 img_i2c_soft_reset(i2c);
1305 /* Disable all interrupts */
1306 img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1308 /* Clear all interrupts */
1309 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1311 /* Clear the scb_line_status events */
1312 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1314 /* Enable interrupts */
1315 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1317 /* Perform a synchronous sequence to reset the bus */
1318 ret = img_i2c_reset_bus(i2c);
1320 pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1321 pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1323 return ret;
1326 static int img_i2c_probe(struct platform_device *pdev)
1328 struct device_node *node = pdev->dev.of_node;
1329 struct img_i2c *i2c;
1330 int irq, ret;
1331 u32 val;
1333 i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1334 if (!i2c)
1335 return -ENOMEM;
1337 i2c->base = devm_platform_ioremap_resource(pdev, 0);
1338 if (IS_ERR(i2c->base))
1339 return PTR_ERR(i2c->base);
1341 irq = platform_get_irq(pdev, 0);
1342 if (irq < 0)
1343 return irq;
1345 i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1346 if (IS_ERR(i2c->sys_clk)) {
1347 dev_err(&pdev->dev, "can't get system clock\n");
1348 return PTR_ERR(i2c->sys_clk);
1351 i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1352 if (IS_ERR(i2c->scb_clk)) {
1353 dev_err(&pdev->dev, "can't get core clock\n");
1354 return PTR_ERR(i2c->scb_clk);
1357 ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1358 pdev->name, i2c);
1359 if (ret) {
1360 dev_err(&pdev->dev, "can't request irq %d\n", irq);
1361 return ret;
1364 /* Set up the exception check timer */
1365 timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
1367 i2c->bitrate = timings[0].max_bitrate;
1368 if (!of_property_read_u32(node, "clock-frequency", &val))
1369 i2c->bitrate = val;
1371 i2c_set_adapdata(&i2c->adap, i2c);
1372 i2c->adap.dev.parent = &pdev->dev;
1373 i2c->adap.dev.of_node = node;
1374 i2c->adap.owner = THIS_MODULE;
1375 i2c->adap.algo = &img_i2c_algo;
1376 i2c->adap.retries = 5;
1377 i2c->adap.nr = pdev->id;
1378 snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1380 img_i2c_switch_mode(i2c, MODE_INACTIVE);
1381 spin_lock_init(&i2c->lock);
1382 init_completion(&i2c->msg_complete);
1384 platform_set_drvdata(pdev, i2c);
1386 pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
1387 pm_runtime_use_autosuspend(&pdev->dev);
1388 pm_runtime_enable(&pdev->dev);
1389 if (!pm_runtime_enabled(&pdev->dev)) {
1390 ret = img_i2c_runtime_resume(&pdev->dev);
1391 if (ret)
1392 return ret;
1395 ret = img_i2c_init(i2c);
1396 if (ret)
1397 goto rpm_disable;
1399 ret = i2c_add_numbered_adapter(&i2c->adap);
1400 if (ret < 0)
1401 goto rpm_disable;
1403 return 0;
1405 rpm_disable:
1406 if (!pm_runtime_enabled(&pdev->dev))
1407 img_i2c_runtime_suspend(&pdev->dev);
1408 pm_runtime_disable(&pdev->dev);
1409 pm_runtime_dont_use_autosuspend(&pdev->dev);
1410 return ret;
1413 static void img_i2c_remove(struct platform_device *dev)
1415 struct img_i2c *i2c = platform_get_drvdata(dev);
1417 i2c_del_adapter(&i2c->adap);
1418 pm_runtime_disable(&dev->dev);
1419 if (!pm_runtime_status_suspended(&dev->dev))
1420 img_i2c_runtime_suspend(&dev->dev);
1423 static int img_i2c_runtime_suspend(struct device *dev)
1425 struct img_i2c *i2c = dev_get_drvdata(dev);
1427 clk_disable_unprepare(i2c->scb_clk);
1428 clk_disable_unprepare(i2c->sys_clk);
1430 return 0;
1433 static int img_i2c_runtime_resume(struct device *dev)
1435 struct img_i2c *i2c = dev_get_drvdata(dev);
1436 int ret;
1438 ret = clk_prepare_enable(i2c->sys_clk);
1439 if (ret) {
1440 dev_err(dev, "Unable to enable sys clock\n");
1441 return ret;
1444 ret = clk_prepare_enable(i2c->scb_clk);
1445 if (ret) {
1446 dev_err(dev, "Unable to enable scb clock\n");
1447 clk_disable_unprepare(i2c->sys_clk);
1448 return ret;
1451 return 0;
1454 static int img_i2c_suspend(struct device *dev)
1456 struct img_i2c *i2c = dev_get_drvdata(dev);
1457 int ret;
1459 ret = pm_runtime_force_suspend(dev);
1460 if (ret)
1461 return ret;
1463 img_i2c_switch_mode(i2c, MODE_SUSPEND);
1465 return 0;
1468 static int img_i2c_resume(struct device *dev)
1470 struct img_i2c *i2c = dev_get_drvdata(dev);
1471 int ret;
1473 ret = pm_runtime_force_resume(dev);
1474 if (ret)
1475 return ret;
1477 img_i2c_init(i2c);
1479 return 0;
1482 static const struct dev_pm_ops img_i2c_pm = {
1483 RUNTIME_PM_OPS(img_i2c_runtime_suspend, img_i2c_runtime_resume, NULL)
1484 SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
1487 static const struct of_device_id img_scb_i2c_match[] = {
1488 { .compatible = "img,scb-i2c" },
1491 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1493 static struct platform_driver img_scb_i2c_driver = {
1494 .driver = {
1495 .name = "img-i2c-scb",
1496 .of_match_table = img_scb_i2c_match,
1497 .pm = pm_ptr(&img_i2c_pm),
1499 .probe = img_i2c_probe,
1500 .remove = img_i2c_remove,
1502 module_platform_driver(img_scb_i2c_driver);
1504 MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1505 MODULE_DESCRIPTION("IMG host I2C driver");
1506 MODULE_LICENSE("GPL v2");