Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / iio / industrialio-buffer.c
blob8104696cd47509682123fddad5e7a616cdb7dbfc
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
4 * Copyright (c) 2008 Jonathan Cameron
6 * Handling of buffer allocation / resizing.
8 * Things to look at here.
9 * - Better memory allocation techniques?
10 * - Alternative access techniques?
12 #include <linux/atomic.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/cleanup.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/device.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/cdev.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 #include <linux/poll.h>
27 #include <linux/sched/signal.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/iio-opaque.h>
31 #include "iio_core.h"
32 #include "iio_core_trigger.h"
33 #include <linux/iio/sysfs.h>
34 #include <linux/iio/buffer.h>
35 #include <linux/iio/buffer_impl.h>
37 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
39 MODULE_IMPORT_NS(DMA_BUF);
41 struct iio_dmabuf_priv {
42 struct list_head entry;
43 struct kref ref;
45 struct iio_buffer *buffer;
46 struct iio_dma_buffer_block *block;
48 u64 context;
50 /* Spinlock used for locking the dma_fence */
51 spinlock_t lock;
53 struct dma_buf_attachment *attach;
54 struct sg_table *sgt;
55 enum dma_data_direction dir;
56 atomic_t seqno;
59 struct iio_dma_fence {
60 struct dma_fence base;
61 struct iio_dmabuf_priv *priv;
62 struct work_struct work;
65 static const char * const iio_endian_prefix[] = {
66 [IIO_BE] = "be",
67 [IIO_LE] = "le",
70 static bool iio_buffer_is_active(struct iio_buffer *buf)
72 return !list_empty(&buf->buffer_list);
75 static size_t iio_buffer_data_available(struct iio_buffer *buf)
77 return buf->access->data_available(buf);
80 static int iio_buffer_flush_hwfifo(struct iio_dev *indio_dev,
81 struct iio_buffer *buf, size_t required)
83 if (!indio_dev->info->hwfifo_flush_to_buffer)
84 return -ENODEV;
86 return indio_dev->info->hwfifo_flush_to_buffer(indio_dev, required);
89 static bool iio_buffer_ready(struct iio_dev *indio_dev, struct iio_buffer *buf,
90 size_t to_wait, int to_flush)
92 size_t avail;
93 int flushed = 0;
95 /* wakeup if the device was unregistered */
96 if (!indio_dev->info)
97 return true;
99 /* drain the buffer if it was disabled */
100 if (!iio_buffer_is_active(buf)) {
101 to_wait = min_t(size_t, to_wait, 1);
102 to_flush = 0;
105 avail = iio_buffer_data_available(buf);
107 if (avail >= to_wait) {
108 /* force a flush for non-blocking reads */
109 if (!to_wait && avail < to_flush)
110 iio_buffer_flush_hwfifo(indio_dev, buf,
111 to_flush - avail);
112 return true;
115 if (to_flush)
116 flushed = iio_buffer_flush_hwfifo(indio_dev, buf,
117 to_wait - avail);
118 if (flushed <= 0)
119 return false;
121 if (avail + flushed >= to_wait)
122 return true;
124 return false;
128 * iio_buffer_read() - chrdev read for buffer access
129 * @filp: File structure pointer for the char device
130 * @buf: Destination buffer for iio buffer read
131 * @n: First n bytes to read
132 * @f_ps: Long offset provided by the user as a seek position
134 * This function relies on all buffer implementations having an
135 * iio_buffer as their first element.
137 * Return: negative values corresponding to error codes or ret != 0
138 * for ending the reading activity
140 static ssize_t iio_buffer_read(struct file *filp, char __user *buf,
141 size_t n, loff_t *f_ps)
143 struct iio_dev_buffer_pair *ib = filp->private_data;
144 struct iio_buffer *rb = ib->buffer;
145 struct iio_dev *indio_dev = ib->indio_dev;
146 DEFINE_WAIT_FUNC(wait, woken_wake_function);
147 size_t datum_size;
148 size_t to_wait;
149 int ret = 0;
151 if (!indio_dev->info)
152 return -ENODEV;
154 if (!rb || !rb->access->read)
155 return -EINVAL;
157 if (rb->direction != IIO_BUFFER_DIRECTION_IN)
158 return -EPERM;
160 datum_size = rb->bytes_per_datum;
163 * If datum_size is 0 there will never be anything to read from the
164 * buffer, so signal end of file now.
166 if (!datum_size)
167 return 0;
169 if (filp->f_flags & O_NONBLOCK)
170 to_wait = 0;
171 else
172 to_wait = min_t(size_t, n / datum_size, rb->watermark);
174 add_wait_queue(&rb->pollq, &wait);
175 do {
176 if (!indio_dev->info) {
177 ret = -ENODEV;
178 break;
181 if (!iio_buffer_ready(indio_dev, rb, to_wait, n / datum_size)) {
182 if (signal_pending(current)) {
183 ret = -ERESTARTSYS;
184 break;
187 wait_woken(&wait, TASK_INTERRUPTIBLE,
188 MAX_SCHEDULE_TIMEOUT);
189 continue;
192 ret = rb->access->read(rb, n, buf);
193 if (ret == 0 && (filp->f_flags & O_NONBLOCK))
194 ret = -EAGAIN;
195 } while (ret == 0);
196 remove_wait_queue(&rb->pollq, &wait);
198 return ret;
201 static size_t iio_buffer_space_available(struct iio_buffer *buf)
203 if (buf->access->space_available)
204 return buf->access->space_available(buf);
206 return SIZE_MAX;
209 static ssize_t iio_buffer_write(struct file *filp, const char __user *buf,
210 size_t n, loff_t *f_ps)
212 struct iio_dev_buffer_pair *ib = filp->private_data;
213 struct iio_buffer *rb = ib->buffer;
214 struct iio_dev *indio_dev = ib->indio_dev;
215 DEFINE_WAIT_FUNC(wait, woken_wake_function);
216 int ret = 0;
217 size_t written;
219 if (!indio_dev->info)
220 return -ENODEV;
222 if (!rb || !rb->access->write)
223 return -EINVAL;
225 if (rb->direction != IIO_BUFFER_DIRECTION_OUT)
226 return -EPERM;
228 written = 0;
229 add_wait_queue(&rb->pollq, &wait);
230 do {
231 if (!indio_dev->info)
232 return -ENODEV;
234 if (!iio_buffer_space_available(rb)) {
235 if (signal_pending(current)) {
236 ret = -ERESTARTSYS;
237 break;
240 if (filp->f_flags & O_NONBLOCK) {
241 if (!written)
242 ret = -EAGAIN;
243 break;
246 wait_woken(&wait, TASK_INTERRUPTIBLE,
247 MAX_SCHEDULE_TIMEOUT);
248 continue;
251 ret = rb->access->write(rb, n - written, buf + written);
252 if (ret < 0)
253 break;
255 written += ret;
257 } while (written != n);
258 remove_wait_queue(&rb->pollq, &wait);
260 return ret < 0 ? ret : written;
264 * iio_buffer_poll() - poll the buffer to find out if it has data
265 * @filp: File structure pointer for device access
266 * @wait: Poll table structure pointer for which the driver adds
267 * a wait queue
269 * Return: (EPOLLIN | EPOLLRDNORM) if data is available for reading
270 * or 0 for other cases
272 static __poll_t iio_buffer_poll(struct file *filp,
273 struct poll_table_struct *wait)
275 struct iio_dev_buffer_pair *ib = filp->private_data;
276 struct iio_buffer *rb = ib->buffer;
277 struct iio_dev *indio_dev = ib->indio_dev;
279 if (!indio_dev->info || !rb)
280 return 0;
282 poll_wait(filp, &rb->pollq, wait);
284 switch (rb->direction) {
285 case IIO_BUFFER_DIRECTION_IN:
286 if (iio_buffer_ready(indio_dev, rb, rb->watermark, 0))
287 return EPOLLIN | EPOLLRDNORM;
288 break;
289 case IIO_BUFFER_DIRECTION_OUT:
290 if (iio_buffer_space_available(rb))
291 return EPOLLOUT | EPOLLWRNORM;
292 break;
295 return 0;
298 ssize_t iio_buffer_read_wrapper(struct file *filp, char __user *buf,
299 size_t n, loff_t *f_ps)
301 struct iio_dev_buffer_pair *ib = filp->private_data;
302 struct iio_buffer *rb = ib->buffer;
304 /* check if buffer was opened through new API */
305 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
306 return -EBUSY;
308 return iio_buffer_read(filp, buf, n, f_ps);
311 ssize_t iio_buffer_write_wrapper(struct file *filp, const char __user *buf,
312 size_t n, loff_t *f_ps)
314 struct iio_dev_buffer_pair *ib = filp->private_data;
315 struct iio_buffer *rb = ib->buffer;
317 /* check if buffer was opened through new API */
318 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
319 return -EBUSY;
321 return iio_buffer_write(filp, buf, n, f_ps);
324 __poll_t iio_buffer_poll_wrapper(struct file *filp,
325 struct poll_table_struct *wait)
327 struct iio_dev_buffer_pair *ib = filp->private_data;
328 struct iio_buffer *rb = ib->buffer;
330 /* check if buffer was opened through new API */
331 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
332 return 0;
334 return iio_buffer_poll(filp, wait);
338 * iio_buffer_wakeup_poll - Wakes up the buffer waitqueue
339 * @indio_dev: The IIO device
341 * Wakes up the event waitqueue used for poll(). Should usually
342 * be called when the device is unregistered.
344 void iio_buffer_wakeup_poll(struct iio_dev *indio_dev)
346 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
347 struct iio_buffer *buffer;
348 unsigned int i;
350 for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) {
351 buffer = iio_dev_opaque->attached_buffers[i];
352 wake_up(&buffer->pollq);
356 int iio_pop_from_buffer(struct iio_buffer *buffer, void *data)
358 if (!buffer || !buffer->access || !buffer->access->remove_from)
359 return -EINVAL;
361 return buffer->access->remove_from(buffer, data);
363 EXPORT_SYMBOL_GPL(iio_pop_from_buffer);
365 void iio_buffer_init(struct iio_buffer *buffer)
367 INIT_LIST_HEAD(&buffer->demux_list);
368 INIT_LIST_HEAD(&buffer->buffer_list);
369 INIT_LIST_HEAD(&buffer->dmabufs);
370 mutex_init(&buffer->dmabufs_mutex);
371 init_waitqueue_head(&buffer->pollq);
372 kref_init(&buffer->ref);
373 if (!buffer->watermark)
374 buffer->watermark = 1;
376 EXPORT_SYMBOL(iio_buffer_init);
378 void iio_device_detach_buffers(struct iio_dev *indio_dev)
380 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
381 struct iio_buffer *buffer;
382 unsigned int i;
384 for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) {
385 buffer = iio_dev_opaque->attached_buffers[i];
386 iio_buffer_put(buffer);
389 kfree(iio_dev_opaque->attached_buffers);
392 static ssize_t iio_show_scan_index(struct device *dev,
393 struct device_attribute *attr,
394 char *buf)
396 return sysfs_emit(buf, "%u\n", to_iio_dev_attr(attr)->c->scan_index);
399 static ssize_t iio_show_fixed_type(struct device *dev,
400 struct device_attribute *attr,
401 char *buf)
403 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
404 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
405 const struct iio_scan_type *scan_type;
406 u8 type;
408 scan_type = iio_get_current_scan_type(indio_dev, this_attr->c);
409 if (IS_ERR(scan_type))
410 return PTR_ERR(scan_type);
412 type = scan_type->endianness;
414 if (type == IIO_CPU) {
415 #ifdef __LITTLE_ENDIAN
416 type = IIO_LE;
417 #else
418 type = IIO_BE;
419 #endif
421 if (scan_type->repeat > 1)
422 return sysfs_emit(buf, "%s:%c%d/%dX%d>>%u\n",
423 iio_endian_prefix[type],
424 scan_type->sign,
425 scan_type->realbits,
426 scan_type->storagebits,
427 scan_type->repeat,
428 scan_type->shift);
429 else
430 return sysfs_emit(buf, "%s:%c%d/%d>>%u\n",
431 iio_endian_prefix[type],
432 scan_type->sign,
433 scan_type->realbits,
434 scan_type->storagebits,
435 scan_type->shift);
438 static ssize_t iio_scan_el_show(struct device *dev,
439 struct device_attribute *attr,
440 char *buf)
442 int ret;
443 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
445 /* Ensure ret is 0 or 1. */
446 ret = !!test_bit(to_iio_dev_attr(attr)->address,
447 buffer->scan_mask);
449 return sysfs_emit(buf, "%d\n", ret);
452 /* Note NULL used as error indicator as it doesn't make sense. */
453 static const unsigned long *iio_scan_mask_match(const unsigned long *av_masks,
454 unsigned int masklength,
455 const unsigned long *mask,
456 bool strict)
458 if (bitmap_empty(mask, masklength))
459 return NULL;
461 * The condition here do not handle multi-long masks correctly.
462 * It only checks the first long to be zero, and will use such mask
463 * as a terminator even if there was bits set after the first long.
465 * Correct check would require using:
466 * while (!bitmap_empty(av_masks, masklength))
467 * instead. This is potentially hazardous because the
468 * avaliable_scan_masks is a zero terminated array of longs - and
469 * using the proper bitmap_empty() check for multi-long wide masks
470 * would require the array to be terminated with multiple zero longs -
471 * which is not such an usual pattern.
473 * As writing of this no multi-long wide masks were found in-tree, so
474 * the simple while (*av_masks) check is working.
476 while (*av_masks) {
477 if (strict) {
478 if (bitmap_equal(mask, av_masks, masklength))
479 return av_masks;
480 } else {
481 if (bitmap_subset(mask, av_masks, masklength))
482 return av_masks;
484 av_masks += BITS_TO_LONGS(masklength);
486 return NULL;
489 static bool iio_validate_scan_mask(struct iio_dev *indio_dev,
490 const unsigned long *mask)
492 if (!indio_dev->setup_ops->validate_scan_mask)
493 return true;
495 return indio_dev->setup_ops->validate_scan_mask(indio_dev, mask);
499 * iio_scan_mask_set() - set particular bit in the scan mask
500 * @indio_dev: the iio device
501 * @buffer: the buffer whose scan mask we are interested in
502 * @bit: the bit to be set.
504 * Note that at this point we have no way of knowing what other
505 * buffers might request, hence this code only verifies that the
506 * individual buffers request is plausible.
508 static int iio_scan_mask_set(struct iio_dev *indio_dev,
509 struct iio_buffer *buffer, int bit)
511 unsigned int masklength = iio_get_masklength(indio_dev);
512 const unsigned long *mask;
513 unsigned long *trialmask;
515 if (!masklength) {
516 WARN(1, "Trying to set scanmask prior to registering buffer\n");
517 return -EINVAL;
520 trialmask = bitmap_alloc(masklength, GFP_KERNEL);
521 if (!trialmask)
522 return -ENOMEM;
523 bitmap_copy(trialmask, buffer->scan_mask, masklength);
524 set_bit(bit, trialmask);
526 if (!iio_validate_scan_mask(indio_dev, trialmask))
527 goto err_invalid_mask;
529 if (indio_dev->available_scan_masks) {
530 mask = iio_scan_mask_match(indio_dev->available_scan_masks,
531 masklength, trialmask, false);
532 if (!mask)
533 goto err_invalid_mask;
535 bitmap_copy(buffer->scan_mask, trialmask, masklength);
537 bitmap_free(trialmask);
539 return 0;
541 err_invalid_mask:
542 bitmap_free(trialmask);
543 return -EINVAL;
546 static int iio_scan_mask_clear(struct iio_buffer *buffer, int bit)
548 clear_bit(bit, buffer->scan_mask);
549 return 0;
552 static int iio_scan_mask_query(struct iio_dev *indio_dev,
553 struct iio_buffer *buffer, int bit)
555 if (bit > iio_get_masklength(indio_dev))
556 return -EINVAL;
558 if (!buffer->scan_mask)
559 return 0;
561 /* Ensure return value is 0 or 1. */
562 return !!test_bit(bit, buffer->scan_mask);
565 static ssize_t iio_scan_el_store(struct device *dev,
566 struct device_attribute *attr,
567 const char *buf,
568 size_t len)
570 int ret;
571 bool state;
572 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
573 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
574 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
575 struct iio_buffer *buffer = this_attr->buffer;
577 ret = kstrtobool(buf, &state);
578 if (ret < 0)
579 return ret;
581 guard(mutex)(&iio_dev_opaque->mlock);
582 if (iio_buffer_is_active(buffer))
583 return -EBUSY;
585 ret = iio_scan_mask_query(indio_dev, buffer, this_attr->address);
586 if (ret < 0)
587 return ret;
589 if (state && ret)
590 return len;
592 if (state)
593 ret = iio_scan_mask_set(indio_dev, buffer, this_attr->address);
594 else
595 ret = iio_scan_mask_clear(buffer, this_attr->address);
596 if (ret)
597 return ret;
599 return len;
602 static ssize_t iio_scan_el_ts_show(struct device *dev,
603 struct device_attribute *attr,
604 char *buf)
606 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
608 return sysfs_emit(buf, "%d\n", buffer->scan_timestamp);
611 static ssize_t iio_scan_el_ts_store(struct device *dev,
612 struct device_attribute *attr,
613 const char *buf,
614 size_t len)
616 int ret;
617 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
618 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
619 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
620 bool state;
622 ret = kstrtobool(buf, &state);
623 if (ret < 0)
624 return ret;
626 guard(mutex)(&iio_dev_opaque->mlock);
627 if (iio_buffer_is_active(buffer))
628 return -EBUSY;
630 buffer->scan_timestamp = state;
632 return len;
635 static int iio_buffer_add_channel_sysfs(struct iio_dev *indio_dev,
636 struct iio_buffer *buffer,
637 const struct iio_chan_spec *chan)
639 int ret, attrcount = 0;
641 ret = __iio_add_chan_devattr("index",
642 chan,
643 &iio_show_scan_index,
644 NULL,
646 IIO_SEPARATE,
647 &indio_dev->dev,
648 buffer,
649 &buffer->buffer_attr_list);
650 if (ret)
651 return ret;
652 attrcount++;
653 ret = __iio_add_chan_devattr("type",
654 chan,
655 &iio_show_fixed_type,
656 NULL,
658 IIO_SEPARATE,
659 &indio_dev->dev,
660 buffer,
661 &buffer->buffer_attr_list);
662 if (ret)
663 return ret;
664 attrcount++;
665 if (chan->type != IIO_TIMESTAMP)
666 ret = __iio_add_chan_devattr("en",
667 chan,
668 &iio_scan_el_show,
669 &iio_scan_el_store,
670 chan->scan_index,
671 IIO_SEPARATE,
672 &indio_dev->dev,
673 buffer,
674 &buffer->buffer_attr_list);
675 else
676 ret = __iio_add_chan_devattr("en",
677 chan,
678 &iio_scan_el_ts_show,
679 &iio_scan_el_ts_store,
680 chan->scan_index,
681 IIO_SEPARATE,
682 &indio_dev->dev,
683 buffer,
684 &buffer->buffer_attr_list);
685 if (ret)
686 return ret;
687 attrcount++;
688 ret = attrcount;
689 return ret;
692 static ssize_t length_show(struct device *dev, struct device_attribute *attr,
693 char *buf)
695 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
697 return sysfs_emit(buf, "%d\n", buffer->length);
700 static ssize_t length_store(struct device *dev, struct device_attribute *attr,
701 const char *buf, size_t len)
703 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
704 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
705 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
706 unsigned int val;
707 int ret;
709 ret = kstrtouint(buf, 10, &val);
710 if (ret)
711 return ret;
713 if (val == buffer->length)
714 return len;
716 guard(mutex)(&iio_dev_opaque->mlock);
717 if (iio_buffer_is_active(buffer))
718 return -EBUSY;
720 buffer->access->set_length(buffer, val);
722 if (buffer->length && buffer->length < buffer->watermark)
723 buffer->watermark = buffer->length;
725 return len;
728 static ssize_t enable_show(struct device *dev, struct device_attribute *attr,
729 char *buf)
731 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
733 return sysfs_emit(buf, "%d\n", iio_buffer_is_active(buffer));
736 static int iio_storage_bytes_for_si(struct iio_dev *indio_dev,
737 unsigned int scan_index)
739 const struct iio_chan_spec *ch;
740 const struct iio_scan_type *scan_type;
741 unsigned int bytes;
743 ch = iio_find_channel_from_si(indio_dev, scan_index);
744 scan_type = iio_get_current_scan_type(indio_dev, ch);
745 if (IS_ERR(scan_type))
746 return PTR_ERR(scan_type);
748 bytes = scan_type->storagebits / 8;
750 if (scan_type->repeat > 1)
751 bytes *= scan_type->repeat;
753 return bytes;
756 static int iio_storage_bytes_for_timestamp(struct iio_dev *indio_dev)
758 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
760 return iio_storage_bytes_for_si(indio_dev,
761 iio_dev_opaque->scan_index_timestamp);
764 static int iio_compute_scan_bytes(struct iio_dev *indio_dev,
765 const unsigned long *mask, bool timestamp)
767 unsigned int bytes = 0;
768 int length, i, largest = 0;
770 /* How much space will the demuxed element take? */
771 for_each_set_bit(i, mask, iio_get_masklength(indio_dev)) {
772 length = iio_storage_bytes_for_si(indio_dev, i);
773 if (length < 0)
774 return length;
776 bytes = ALIGN(bytes, length);
777 bytes += length;
778 largest = max(largest, length);
781 if (timestamp) {
782 length = iio_storage_bytes_for_timestamp(indio_dev);
783 if (length < 0)
784 return length;
786 bytes = ALIGN(bytes, length);
787 bytes += length;
788 largest = max(largest, length);
791 bytes = ALIGN(bytes, largest);
792 return bytes;
795 static void iio_buffer_activate(struct iio_dev *indio_dev,
796 struct iio_buffer *buffer)
798 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
800 iio_buffer_get(buffer);
801 list_add(&buffer->buffer_list, &iio_dev_opaque->buffer_list);
804 static void iio_buffer_deactivate(struct iio_buffer *buffer)
806 list_del_init(&buffer->buffer_list);
807 wake_up_interruptible(&buffer->pollq);
808 iio_buffer_put(buffer);
811 static void iio_buffer_deactivate_all(struct iio_dev *indio_dev)
813 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
814 struct iio_buffer *buffer, *_buffer;
816 list_for_each_entry_safe(buffer, _buffer,
817 &iio_dev_opaque->buffer_list, buffer_list)
818 iio_buffer_deactivate(buffer);
821 static int iio_buffer_enable(struct iio_buffer *buffer,
822 struct iio_dev *indio_dev)
824 if (!buffer->access->enable)
825 return 0;
826 return buffer->access->enable(buffer, indio_dev);
829 static int iio_buffer_disable(struct iio_buffer *buffer,
830 struct iio_dev *indio_dev)
832 if (!buffer->access->disable)
833 return 0;
834 return buffer->access->disable(buffer, indio_dev);
837 static void iio_buffer_update_bytes_per_datum(struct iio_dev *indio_dev,
838 struct iio_buffer *buffer)
840 unsigned int bytes;
842 if (!buffer->access->set_bytes_per_datum)
843 return;
845 bytes = iio_compute_scan_bytes(indio_dev, buffer->scan_mask,
846 buffer->scan_timestamp);
848 buffer->access->set_bytes_per_datum(buffer, bytes);
851 static int iio_buffer_request_update(struct iio_dev *indio_dev,
852 struct iio_buffer *buffer)
854 int ret;
856 iio_buffer_update_bytes_per_datum(indio_dev, buffer);
857 if (buffer->access->request_update) {
858 ret = buffer->access->request_update(buffer);
859 if (ret) {
860 dev_dbg(&indio_dev->dev,
861 "Buffer not started: buffer parameter update failed (%d)\n",
862 ret);
863 return ret;
867 return 0;
870 static void iio_free_scan_mask(struct iio_dev *indio_dev,
871 const unsigned long *mask)
873 /* If the mask is dynamically allocated free it, otherwise do nothing */
874 if (!indio_dev->available_scan_masks)
875 bitmap_free(mask);
878 struct iio_device_config {
879 unsigned int mode;
880 unsigned int watermark;
881 const unsigned long *scan_mask;
882 unsigned int scan_bytes;
883 bool scan_timestamp;
886 static int iio_verify_update(struct iio_dev *indio_dev,
887 struct iio_buffer *insert_buffer,
888 struct iio_buffer *remove_buffer,
889 struct iio_device_config *config)
891 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
892 unsigned int masklength = iio_get_masklength(indio_dev);
893 unsigned long *compound_mask;
894 const unsigned long *scan_mask;
895 bool strict_scanmask = false;
896 struct iio_buffer *buffer;
897 bool scan_timestamp;
898 unsigned int modes;
900 if (insert_buffer &&
901 bitmap_empty(insert_buffer->scan_mask, masklength)) {
902 dev_dbg(&indio_dev->dev,
903 "At least one scan element must be enabled first\n");
904 return -EINVAL;
907 memset(config, 0, sizeof(*config));
908 config->watermark = ~0;
911 * If there is just one buffer and we are removing it there is nothing
912 * to verify.
914 if (remove_buffer && !insert_buffer &&
915 list_is_singular(&iio_dev_opaque->buffer_list))
916 return 0;
918 modes = indio_dev->modes;
920 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
921 if (buffer == remove_buffer)
922 continue;
923 modes &= buffer->access->modes;
924 config->watermark = min(config->watermark, buffer->watermark);
927 if (insert_buffer) {
928 modes &= insert_buffer->access->modes;
929 config->watermark = min(config->watermark,
930 insert_buffer->watermark);
933 /* Definitely possible for devices to support both of these. */
934 if ((modes & INDIO_BUFFER_TRIGGERED) && indio_dev->trig) {
935 config->mode = INDIO_BUFFER_TRIGGERED;
936 } else if (modes & INDIO_BUFFER_HARDWARE) {
938 * Keep things simple for now and only allow a single buffer to
939 * be connected in hardware mode.
941 if (insert_buffer && !list_empty(&iio_dev_opaque->buffer_list))
942 return -EINVAL;
943 config->mode = INDIO_BUFFER_HARDWARE;
944 strict_scanmask = true;
945 } else if (modes & INDIO_BUFFER_SOFTWARE) {
946 config->mode = INDIO_BUFFER_SOFTWARE;
947 } else {
948 /* Can only occur on first buffer */
949 if (indio_dev->modes & INDIO_BUFFER_TRIGGERED)
950 dev_dbg(&indio_dev->dev, "Buffer not started: no trigger\n");
951 return -EINVAL;
954 /* What scan mask do we actually have? */
955 compound_mask = bitmap_zalloc(masklength, GFP_KERNEL);
956 if (!compound_mask)
957 return -ENOMEM;
959 scan_timestamp = false;
961 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
962 if (buffer == remove_buffer)
963 continue;
964 bitmap_or(compound_mask, compound_mask, buffer->scan_mask,
965 masklength);
966 scan_timestamp |= buffer->scan_timestamp;
969 if (insert_buffer) {
970 bitmap_or(compound_mask, compound_mask,
971 insert_buffer->scan_mask, masklength);
972 scan_timestamp |= insert_buffer->scan_timestamp;
975 if (indio_dev->available_scan_masks) {
976 scan_mask = iio_scan_mask_match(indio_dev->available_scan_masks,
977 masklength, compound_mask,
978 strict_scanmask);
979 bitmap_free(compound_mask);
980 if (!scan_mask)
981 return -EINVAL;
982 } else {
983 scan_mask = compound_mask;
986 config->scan_bytes = iio_compute_scan_bytes(indio_dev,
987 scan_mask, scan_timestamp);
988 config->scan_mask = scan_mask;
989 config->scan_timestamp = scan_timestamp;
991 return 0;
995 * struct iio_demux_table - table describing demux memcpy ops
996 * @from: index to copy from
997 * @to: index to copy to
998 * @length: how many bytes to copy
999 * @l: list head used for management
1001 struct iio_demux_table {
1002 unsigned int from;
1003 unsigned int to;
1004 unsigned int length;
1005 struct list_head l;
1008 static void iio_buffer_demux_free(struct iio_buffer *buffer)
1010 struct iio_demux_table *p, *q;
1012 list_for_each_entry_safe(p, q, &buffer->demux_list, l) {
1013 list_del(&p->l);
1014 kfree(p);
1018 static int iio_buffer_add_demux(struct iio_buffer *buffer,
1019 struct iio_demux_table **p, unsigned int in_loc,
1020 unsigned int out_loc,
1021 unsigned int length)
1023 if (*p && (*p)->from + (*p)->length == in_loc &&
1024 (*p)->to + (*p)->length == out_loc) {
1025 (*p)->length += length;
1026 } else {
1027 *p = kmalloc(sizeof(**p), GFP_KERNEL);
1028 if (!(*p))
1029 return -ENOMEM;
1030 (*p)->from = in_loc;
1031 (*p)->to = out_loc;
1032 (*p)->length = length;
1033 list_add_tail(&(*p)->l, &buffer->demux_list);
1036 return 0;
1039 static int iio_buffer_update_demux(struct iio_dev *indio_dev,
1040 struct iio_buffer *buffer)
1042 unsigned int masklength = iio_get_masklength(indio_dev);
1043 int ret, in_ind = -1, out_ind, length;
1044 unsigned int in_loc = 0, out_loc = 0;
1045 struct iio_demux_table *p = NULL;
1047 /* Clear out any old demux */
1048 iio_buffer_demux_free(buffer);
1049 kfree(buffer->demux_bounce);
1050 buffer->demux_bounce = NULL;
1052 /* First work out which scan mode we will actually have */
1053 if (bitmap_equal(indio_dev->active_scan_mask,
1054 buffer->scan_mask, masklength))
1055 return 0;
1057 /* Now we have the two masks, work from least sig and build up sizes */
1058 for_each_set_bit(out_ind, buffer->scan_mask, masklength) {
1059 in_ind = find_next_bit(indio_dev->active_scan_mask,
1060 masklength, in_ind + 1);
1061 while (in_ind != out_ind) {
1062 ret = iio_storage_bytes_for_si(indio_dev, in_ind);
1063 if (ret < 0)
1064 goto error_clear_mux_table;
1066 length = ret;
1067 /* Make sure we are aligned */
1068 in_loc = roundup(in_loc, length) + length;
1069 in_ind = find_next_bit(indio_dev->active_scan_mask,
1070 masklength, in_ind + 1);
1072 ret = iio_storage_bytes_for_si(indio_dev, in_ind);
1073 if (ret < 0)
1074 goto error_clear_mux_table;
1076 length = ret;
1077 out_loc = roundup(out_loc, length);
1078 in_loc = roundup(in_loc, length);
1079 ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length);
1080 if (ret)
1081 goto error_clear_mux_table;
1082 out_loc += length;
1083 in_loc += length;
1085 /* Relies on scan_timestamp being last */
1086 if (buffer->scan_timestamp) {
1087 ret = iio_storage_bytes_for_timestamp(indio_dev);
1088 if (ret < 0)
1089 goto error_clear_mux_table;
1091 length = ret;
1092 out_loc = roundup(out_loc, length);
1093 in_loc = roundup(in_loc, length);
1094 ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length);
1095 if (ret)
1096 goto error_clear_mux_table;
1097 out_loc += length;
1099 buffer->demux_bounce = kzalloc(out_loc, GFP_KERNEL);
1100 if (!buffer->demux_bounce) {
1101 ret = -ENOMEM;
1102 goto error_clear_mux_table;
1104 return 0;
1106 error_clear_mux_table:
1107 iio_buffer_demux_free(buffer);
1109 return ret;
1112 static int iio_update_demux(struct iio_dev *indio_dev)
1114 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1115 struct iio_buffer *buffer;
1116 int ret;
1118 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1119 ret = iio_buffer_update_demux(indio_dev, buffer);
1120 if (ret < 0)
1121 goto error_clear_mux_table;
1123 return 0;
1125 error_clear_mux_table:
1126 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list)
1127 iio_buffer_demux_free(buffer);
1129 return ret;
1132 static int iio_enable_buffers(struct iio_dev *indio_dev,
1133 struct iio_device_config *config)
1135 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1136 struct iio_buffer *buffer, *tmp = NULL;
1137 int ret;
1139 indio_dev->active_scan_mask = config->scan_mask;
1140 indio_dev->scan_timestamp = config->scan_timestamp;
1141 indio_dev->scan_bytes = config->scan_bytes;
1142 iio_dev_opaque->currentmode = config->mode;
1144 iio_update_demux(indio_dev);
1146 /* Wind up again */
1147 if (indio_dev->setup_ops->preenable) {
1148 ret = indio_dev->setup_ops->preenable(indio_dev);
1149 if (ret) {
1150 dev_dbg(&indio_dev->dev,
1151 "Buffer not started: buffer preenable failed (%d)\n", ret);
1152 goto err_undo_config;
1156 if (indio_dev->info->update_scan_mode) {
1157 ret = indio_dev->info
1158 ->update_scan_mode(indio_dev,
1159 indio_dev->active_scan_mask);
1160 if (ret < 0) {
1161 dev_dbg(&indio_dev->dev,
1162 "Buffer not started: update scan mode failed (%d)\n",
1163 ret);
1164 goto err_run_postdisable;
1168 if (indio_dev->info->hwfifo_set_watermark)
1169 indio_dev->info->hwfifo_set_watermark(indio_dev,
1170 config->watermark);
1172 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1173 ret = iio_buffer_enable(buffer, indio_dev);
1174 if (ret) {
1175 tmp = buffer;
1176 goto err_disable_buffers;
1180 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1181 ret = iio_trigger_attach_poll_func(indio_dev->trig,
1182 indio_dev->pollfunc);
1183 if (ret)
1184 goto err_disable_buffers;
1187 if (indio_dev->setup_ops->postenable) {
1188 ret = indio_dev->setup_ops->postenable(indio_dev);
1189 if (ret) {
1190 dev_dbg(&indio_dev->dev,
1191 "Buffer not started: postenable failed (%d)\n", ret);
1192 goto err_detach_pollfunc;
1196 return 0;
1198 err_detach_pollfunc:
1199 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1200 iio_trigger_detach_poll_func(indio_dev->trig,
1201 indio_dev->pollfunc);
1203 err_disable_buffers:
1204 buffer = list_prepare_entry(tmp, &iio_dev_opaque->buffer_list, buffer_list);
1205 list_for_each_entry_continue_reverse(buffer, &iio_dev_opaque->buffer_list,
1206 buffer_list)
1207 iio_buffer_disable(buffer, indio_dev);
1208 err_run_postdisable:
1209 if (indio_dev->setup_ops->postdisable)
1210 indio_dev->setup_ops->postdisable(indio_dev);
1211 err_undo_config:
1212 iio_dev_opaque->currentmode = INDIO_DIRECT_MODE;
1213 indio_dev->active_scan_mask = NULL;
1215 return ret;
1218 static int iio_disable_buffers(struct iio_dev *indio_dev)
1220 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1221 struct iio_buffer *buffer;
1222 int ret = 0;
1223 int ret2;
1225 /* Wind down existing buffers - iff there are any */
1226 if (list_empty(&iio_dev_opaque->buffer_list))
1227 return 0;
1230 * If things go wrong at some step in disable we still need to continue
1231 * to perform the other steps, otherwise we leave the device in a
1232 * inconsistent state. We return the error code for the first error we
1233 * encountered.
1236 if (indio_dev->setup_ops->predisable) {
1237 ret2 = indio_dev->setup_ops->predisable(indio_dev);
1238 if (ret2 && !ret)
1239 ret = ret2;
1242 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1243 iio_trigger_detach_poll_func(indio_dev->trig,
1244 indio_dev->pollfunc);
1247 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1248 ret2 = iio_buffer_disable(buffer, indio_dev);
1249 if (ret2 && !ret)
1250 ret = ret2;
1253 if (indio_dev->setup_ops->postdisable) {
1254 ret2 = indio_dev->setup_ops->postdisable(indio_dev);
1255 if (ret2 && !ret)
1256 ret = ret2;
1259 iio_free_scan_mask(indio_dev, indio_dev->active_scan_mask);
1260 indio_dev->active_scan_mask = NULL;
1261 iio_dev_opaque->currentmode = INDIO_DIRECT_MODE;
1263 return ret;
1266 static int __iio_update_buffers(struct iio_dev *indio_dev,
1267 struct iio_buffer *insert_buffer,
1268 struct iio_buffer *remove_buffer)
1270 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1271 struct iio_device_config new_config;
1272 int ret;
1274 ret = iio_verify_update(indio_dev, insert_buffer, remove_buffer,
1275 &new_config);
1276 if (ret)
1277 return ret;
1279 if (insert_buffer) {
1280 ret = iio_buffer_request_update(indio_dev, insert_buffer);
1281 if (ret)
1282 goto err_free_config;
1285 ret = iio_disable_buffers(indio_dev);
1286 if (ret)
1287 goto err_deactivate_all;
1289 if (remove_buffer)
1290 iio_buffer_deactivate(remove_buffer);
1291 if (insert_buffer)
1292 iio_buffer_activate(indio_dev, insert_buffer);
1294 /* If no buffers in list, we are done */
1295 if (list_empty(&iio_dev_opaque->buffer_list))
1296 return 0;
1298 ret = iio_enable_buffers(indio_dev, &new_config);
1299 if (ret)
1300 goto err_deactivate_all;
1302 return 0;
1304 err_deactivate_all:
1306 * We've already verified that the config is valid earlier. If things go
1307 * wrong in either enable or disable the most likely reason is an IO
1308 * error from the device. In this case there is no good recovery
1309 * strategy. Just make sure to disable everything and leave the device
1310 * in a sane state. With a bit of luck the device might come back to
1311 * life again later and userspace can try again.
1313 iio_buffer_deactivate_all(indio_dev);
1315 err_free_config:
1316 iio_free_scan_mask(indio_dev, new_config.scan_mask);
1317 return ret;
1320 int iio_update_buffers(struct iio_dev *indio_dev,
1321 struct iio_buffer *insert_buffer,
1322 struct iio_buffer *remove_buffer)
1324 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1326 if (insert_buffer == remove_buffer)
1327 return 0;
1329 if (insert_buffer &&
1330 insert_buffer->direction == IIO_BUFFER_DIRECTION_OUT)
1331 return -EINVAL;
1333 guard(mutex)(&iio_dev_opaque->info_exist_lock);
1334 guard(mutex)(&iio_dev_opaque->mlock);
1336 if (insert_buffer && iio_buffer_is_active(insert_buffer))
1337 insert_buffer = NULL;
1339 if (remove_buffer && !iio_buffer_is_active(remove_buffer))
1340 remove_buffer = NULL;
1342 if (!insert_buffer && !remove_buffer)
1343 return 0;
1345 if (!indio_dev->info)
1346 return -ENODEV;
1348 return __iio_update_buffers(indio_dev, insert_buffer, remove_buffer);
1350 EXPORT_SYMBOL_GPL(iio_update_buffers);
1352 void iio_disable_all_buffers(struct iio_dev *indio_dev)
1354 iio_disable_buffers(indio_dev);
1355 iio_buffer_deactivate_all(indio_dev);
1358 static ssize_t enable_store(struct device *dev, struct device_attribute *attr,
1359 const char *buf, size_t len)
1361 int ret;
1362 bool requested_state;
1363 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1364 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1365 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1366 bool inlist;
1368 ret = kstrtobool(buf, &requested_state);
1369 if (ret < 0)
1370 return ret;
1372 guard(mutex)(&iio_dev_opaque->mlock);
1374 /* Find out if it is in the list */
1375 inlist = iio_buffer_is_active(buffer);
1376 /* Already in desired state */
1377 if (inlist == requested_state)
1378 return len;
1380 if (requested_state)
1381 ret = __iio_update_buffers(indio_dev, buffer, NULL);
1382 else
1383 ret = __iio_update_buffers(indio_dev, NULL, buffer);
1384 if (ret)
1385 return ret;
1387 return len;
1390 static ssize_t watermark_show(struct device *dev, struct device_attribute *attr,
1391 char *buf)
1393 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1395 return sysfs_emit(buf, "%u\n", buffer->watermark);
1398 static ssize_t watermark_store(struct device *dev,
1399 struct device_attribute *attr,
1400 const char *buf, size_t len)
1402 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1403 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1404 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1405 unsigned int val;
1406 int ret;
1408 ret = kstrtouint(buf, 10, &val);
1409 if (ret)
1410 return ret;
1411 if (!val)
1412 return -EINVAL;
1414 guard(mutex)(&iio_dev_opaque->mlock);
1416 if (val > buffer->length)
1417 return -EINVAL;
1419 if (iio_buffer_is_active(buffer))
1420 return -EBUSY;
1422 buffer->watermark = val;
1424 return len;
1427 static ssize_t data_available_show(struct device *dev,
1428 struct device_attribute *attr, char *buf)
1430 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1432 return sysfs_emit(buf, "%zu\n", iio_buffer_data_available(buffer));
1435 static ssize_t direction_show(struct device *dev,
1436 struct device_attribute *attr,
1437 char *buf)
1439 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1441 switch (buffer->direction) {
1442 case IIO_BUFFER_DIRECTION_IN:
1443 return sysfs_emit(buf, "in\n");
1444 case IIO_BUFFER_DIRECTION_OUT:
1445 return sysfs_emit(buf, "out\n");
1446 default:
1447 return -EINVAL;
1451 static DEVICE_ATTR_RW(length);
1452 static struct device_attribute dev_attr_length_ro = __ATTR_RO(length);
1453 static DEVICE_ATTR_RW(enable);
1454 static DEVICE_ATTR_RW(watermark);
1455 static struct device_attribute dev_attr_watermark_ro = __ATTR_RO(watermark);
1456 static DEVICE_ATTR_RO(data_available);
1457 static DEVICE_ATTR_RO(direction);
1460 * When adding new attributes here, put the at the end, at least until
1461 * the code that handles the length/length_ro & watermark/watermark_ro
1462 * assignments gets cleaned up. Otherwise these can create some weird
1463 * duplicate attributes errors under some setups.
1465 static struct attribute *iio_buffer_attrs[] = {
1466 &dev_attr_length.attr,
1467 &dev_attr_enable.attr,
1468 &dev_attr_watermark.attr,
1469 &dev_attr_data_available.attr,
1470 &dev_attr_direction.attr,
1473 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1475 static struct attribute *iio_buffer_wrap_attr(struct iio_buffer *buffer,
1476 struct attribute *attr)
1478 struct device_attribute *dattr = to_dev_attr(attr);
1479 struct iio_dev_attr *iio_attr;
1481 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1482 if (!iio_attr)
1483 return NULL;
1485 iio_attr->buffer = buffer;
1486 memcpy(&iio_attr->dev_attr, dattr, sizeof(iio_attr->dev_attr));
1487 iio_attr->dev_attr.attr.name = kstrdup_const(attr->name, GFP_KERNEL);
1488 if (!iio_attr->dev_attr.attr.name) {
1489 kfree(iio_attr);
1490 return NULL;
1493 sysfs_attr_init(&iio_attr->dev_attr.attr);
1495 list_add(&iio_attr->l, &buffer->buffer_attr_list);
1497 return &iio_attr->dev_attr.attr;
1500 static int iio_buffer_register_legacy_sysfs_groups(struct iio_dev *indio_dev,
1501 struct attribute **buffer_attrs,
1502 int buffer_attrcount,
1503 int scan_el_attrcount)
1505 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1506 struct attribute_group *group;
1507 struct attribute **attrs;
1508 int ret;
1510 attrs = kcalloc(buffer_attrcount + 1, sizeof(*attrs), GFP_KERNEL);
1511 if (!attrs)
1512 return -ENOMEM;
1514 memcpy(attrs, buffer_attrs, buffer_attrcount * sizeof(*attrs));
1516 group = &iio_dev_opaque->legacy_buffer_group;
1517 group->attrs = attrs;
1518 group->name = "buffer";
1520 ret = iio_device_register_sysfs_group(indio_dev, group);
1521 if (ret)
1522 goto error_free_buffer_attrs;
1524 attrs = kcalloc(scan_el_attrcount + 1, sizeof(*attrs), GFP_KERNEL);
1525 if (!attrs) {
1526 ret = -ENOMEM;
1527 goto error_free_buffer_attrs;
1530 memcpy(attrs, &buffer_attrs[buffer_attrcount],
1531 scan_el_attrcount * sizeof(*attrs));
1533 group = &iio_dev_opaque->legacy_scan_el_group;
1534 group->attrs = attrs;
1535 group->name = "scan_elements";
1537 ret = iio_device_register_sysfs_group(indio_dev, group);
1538 if (ret)
1539 goto error_free_scan_el_attrs;
1541 return 0;
1543 error_free_scan_el_attrs:
1544 kfree(iio_dev_opaque->legacy_scan_el_group.attrs);
1545 error_free_buffer_attrs:
1546 kfree(iio_dev_opaque->legacy_buffer_group.attrs);
1548 return ret;
1551 static void iio_buffer_unregister_legacy_sysfs_groups(struct iio_dev *indio_dev)
1553 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1555 kfree(iio_dev_opaque->legacy_buffer_group.attrs);
1556 kfree(iio_dev_opaque->legacy_scan_el_group.attrs);
1559 static void iio_buffer_dmabuf_release(struct kref *ref)
1561 struct iio_dmabuf_priv *priv = container_of(ref, struct iio_dmabuf_priv, ref);
1562 struct dma_buf_attachment *attach = priv->attach;
1563 struct iio_buffer *buffer = priv->buffer;
1564 struct dma_buf *dmabuf = attach->dmabuf;
1566 dma_resv_lock(dmabuf->resv, NULL);
1567 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1568 dma_resv_unlock(dmabuf->resv);
1570 buffer->access->detach_dmabuf(buffer, priv->block);
1572 dma_buf_detach(attach->dmabuf, attach);
1573 dma_buf_put(dmabuf);
1574 kfree(priv);
1577 static void iio_buffer_dmabuf_get(struct dma_buf_attachment *attach)
1579 struct iio_dmabuf_priv *priv = attach->importer_priv;
1581 kref_get(&priv->ref);
1584 static void iio_buffer_dmabuf_put(struct dma_buf_attachment *attach)
1586 struct iio_dmabuf_priv *priv = attach->importer_priv;
1588 kref_put(&priv->ref, iio_buffer_dmabuf_release);
1591 static int iio_buffer_chrdev_release(struct inode *inode, struct file *filep)
1593 struct iio_dev_buffer_pair *ib = filep->private_data;
1594 struct iio_dev *indio_dev = ib->indio_dev;
1595 struct iio_buffer *buffer = ib->buffer;
1596 struct iio_dmabuf_priv *priv, *tmp;
1598 wake_up(&buffer->pollq);
1600 guard(mutex)(&buffer->dmabufs_mutex);
1602 /* Close all attached DMABUFs */
1603 list_for_each_entry_safe(priv, tmp, &buffer->dmabufs, entry) {
1604 list_del_init(&priv->entry);
1605 iio_buffer_dmabuf_put(priv->attach);
1608 kfree(ib);
1609 clear_bit(IIO_BUSY_BIT_POS, &buffer->flags);
1610 iio_device_put(indio_dev);
1612 return 0;
1615 static int iio_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1617 if (!nonblock)
1618 return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1620 if (!dma_resv_trylock(dmabuf->resv))
1621 return -EBUSY;
1623 return 0;
1626 static struct dma_buf_attachment *
1627 iio_buffer_find_attachment(struct iio_dev_buffer_pair *ib,
1628 struct dma_buf *dmabuf, bool nonblock)
1630 struct device *dev = ib->indio_dev->dev.parent;
1631 struct iio_buffer *buffer = ib->buffer;
1632 struct dma_buf_attachment *attach = NULL;
1633 struct iio_dmabuf_priv *priv;
1635 guard(mutex)(&buffer->dmabufs_mutex);
1637 list_for_each_entry(priv, &buffer->dmabufs, entry) {
1638 if (priv->attach->dev == dev
1639 && priv->attach->dmabuf == dmabuf) {
1640 attach = priv->attach;
1641 break;
1645 if (attach)
1646 iio_buffer_dmabuf_get(attach);
1648 return attach ?: ERR_PTR(-EPERM);
1651 static int iio_buffer_attach_dmabuf(struct iio_dev_buffer_pair *ib,
1652 int __user *user_fd, bool nonblock)
1654 struct iio_dev *indio_dev = ib->indio_dev;
1655 struct iio_buffer *buffer = ib->buffer;
1656 struct dma_buf_attachment *attach;
1657 struct iio_dmabuf_priv *priv, *each;
1658 struct dma_buf *dmabuf;
1659 int err, fd;
1661 if (!buffer->access->attach_dmabuf
1662 || !buffer->access->detach_dmabuf
1663 || !buffer->access->enqueue_dmabuf)
1664 return -EPERM;
1666 if (copy_from_user(&fd, user_fd, sizeof(fd)))
1667 return -EFAULT;
1669 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1670 if (!priv)
1671 return -ENOMEM;
1673 spin_lock_init(&priv->lock);
1674 priv->context = dma_fence_context_alloc(1);
1676 dmabuf = dma_buf_get(fd);
1677 if (IS_ERR(dmabuf)) {
1678 err = PTR_ERR(dmabuf);
1679 goto err_free_priv;
1682 attach = dma_buf_attach(dmabuf, indio_dev->dev.parent);
1683 if (IS_ERR(attach)) {
1684 err = PTR_ERR(attach);
1685 goto err_dmabuf_put;
1688 err = iio_dma_resv_lock(dmabuf, nonblock);
1689 if (err)
1690 goto err_dmabuf_detach;
1692 priv->dir = buffer->direction == IIO_BUFFER_DIRECTION_IN
1693 ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1695 priv->sgt = dma_buf_map_attachment(attach, priv->dir);
1696 if (IS_ERR(priv->sgt)) {
1697 err = PTR_ERR(priv->sgt);
1698 dev_err(&indio_dev->dev, "Unable to map attachment: %d\n", err);
1699 goto err_resv_unlock;
1702 kref_init(&priv->ref);
1703 priv->buffer = buffer;
1704 priv->attach = attach;
1705 attach->importer_priv = priv;
1707 priv->block = buffer->access->attach_dmabuf(buffer, attach);
1708 if (IS_ERR(priv->block)) {
1709 err = PTR_ERR(priv->block);
1710 goto err_dmabuf_unmap_attachment;
1713 dma_resv_unlock(dmabuf->resv);
1715 mutex_lock(&buffer->dmabufs_mutex);
1718 * Check whether we already have an attachment for this driver/DMABUF
1719 * combo. If we do, refuse to attach.
1721 list_for_each_entry(each, &buffer->dmabufs, entry) {
1722 if (each->attach->dev == indio_dev->dev.parent
1723 && each->attach->dmabuf == dmabuf) {
1725 * We unlocked the reservation object, so going through
1726 * the cleanup code would mean re-locking it first.
1727 * At this stage it is simpler to free the attachment
1728 * using iio_buffer_dma_put().
1730 mutex_unlock(&buffer->dmabufs_mutex);
1731 iio_buffer_dmabuf_put(attach);
1732 return -EBUSY;
1736 /* Otherwise, add the new attachment to our dmabufs list. */
1737 list_add(&priv->entry, &buffer->dmabufs);
1738 mutex_unlock(&buffer->dmabufs_mutex);
1740 return 0;
1742 err_dmabuf_unmap_attachment:
1743 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1744 err_resv_unlock:
1745 dma_resv_unlock(dmabuf->resv);
1746 err_dmabuf_detach:
1747 dma_buf_detach(dmabuf, attach);
1748 err_dmabuf_put:
1749 dma_buf_put(dmabuf);
1750 err_free_priv:
1751 kfree(priv);
1753 return err;
1756 static int iio_buffer_detach_dmabuf(struct iio_dev_buffer_pair *ib,
1757 int __user *user_req, bool nonblock)
1759 struct iio_buffer *buffer = ib->buffer;
1760 struct iio_dev *indio_dev = ib->indio_dev;
1761 struct iio_dmabuf_priv *priv;
1762 struct dma_buf *dmabuf;
1763 int dmabuf_fd, ret = -EPERM;
1765 if (copy_from_user(&dmabuf_fd, user_req, sizeof(dmabuf_fd)))
1766 return -EFAULT;
1768 dmabuf = dma_buf_get(dmabuf_fd);
1769 if (IS_ERR(dmabuf))
1770 return PTR_ERR(dmabuf);
1772 guard(mutex)(&buffer->dmabufs_mutex);
1774 list_for_each_entry(priv, &buffer->dmabufs, entry) {
1775 if (priv->attach->dev == indio_dev->dev.parent
1776 && priv->attach->dmabuf == dmabuf) {
1777 list_del(&priv->entry);
1779 /* Unref the reference from iio_buffer_attach_dmabuf() */
1780 iio_buffer_dmabuf_put(priv->attach);
1781 ret = 0;
1782 break;
1786 dma_buf_put(dmabuf);
1788 return ret;
1791 static const char *
1792 iio_buffer_dma_fence_get_driver_name(struct dma_fence *fence)
1794 return "iio";
1797 static void iio_buffer_dma_fence_release(struct dma_fence *fence)
1799 struct iio_dma_fence *iio_fence =
1800 container_of(fence, struct iio_dma_fence, base);
1802 kfree(iio_fence);
1805 static const struct dma_fence_ops iio_buffer_dma_fence_ops = {
1806 .get_driver_name = iio_buffer_dma_fence_get_driver_name,
1807 .get_timeline_name = iio_buffer_dma_fence_get_driver_name,
1808 .release = iio_buffer_dma_fence_release,
1811 static int iio_buffer_enqueue_dmabuf(struct iio_dev_buffer_pair *ib,
1812 struct iio_dmabuf __user *iio_dmabuf_req,
1813 bool nonblock)
1815 struct iio_buffer *buffer = ib->buffer;
1816 struct iio_dmabuf iio_dmabuf;
1817 struct dma_buf_attachment *attach;
1818 struct iio_dmabuf_priv *priv;
1819 struct iio_dma_fence *fence;
1820 struct dma_buf *dmabuf;
1821 unsigned long timeout;
1822 bool cookie, cyclic, dma_to_ram;
1823 long retl;
1824 u32 seqno;
1825 int ret;
1827 if (copy_from_user(&iio_dmabuf, iio_dmabuf_req, sizeof(iio_dmabuf)))
1828 return -EFAULT;
1830 if (iio_dmabuf.flags & ~IIO_BUFFER_DMABUF_SUPPORTED_FLAGS)
1831 return -EINVAL;
1833 cyclic = iio_dmabuf.flags & IIO_BUFFER_DMABUF_CYCLIC;
1835 /* Cyclic flag is only supported on output buffers */
1836 if (cyclic && buffer->direction != IIO_BUFFER_DIRECTION_OUT)
1837 return -EINVAL;
1839 dmabuf = dma_buf_get(iio_dmabuf.fd);
1840 if (IS_ERR(dmabuf))
1841 return PTR_ERR(dmabuf);
1843 if (!iio_dmabuf.bytes_used || iio_dmabuf.bytes_used > dmabuf->size) {
1844 ret = -EINVAL;
1845 goto err_dmabuf_put;
1848 attach = iio_buffer_find_attachment(ib, dmabuf, nonblock);
1849 if (IS_ERR(attach)) {
1850 ret = PTR_ERR(attach);
1851 goto err_dmabuf_put;
1854 priv = attach->importer_priv;
1856 fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1857 if (!fence) {
1858 ret = -ENOMEM;
1859 goto err_attachment_put;
1862 fence->priv = priv;
1864 seqno = atomic_add_return(1, &priv->seqno);
1867 * The transfers are guaranteed to be processed in the order they are
1868 * enqueued, so we can use a simple incrementing sequence number for
1869 * the dma_fence.
1871 dma_fence_init(&fence->base, &iio_buffer_dma_fence_ops,
1872 &priv->lock, priv->context, seqno);
1874 ret = iio_dma_resv_lock(dmabuf, nonblock);
1875 if (ret)
1876 goto err_fence_put;
1878 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1879 dma_to_ram = buffer->direction == IIO_BUFFER_DIRECTION_IN;
1881 /* Make sure we don't have writers */
1882 retl = dma_resv_wait_timeout(dmabuf->resv,
1883 dma_resv_usage_rw(dma_to_ram),
1884 true, timeout);
1885 if (retl == 0)
1886 retl = -EBUSY;
1887 if (retl < 0) {
1888 ret = (int)retl;
1889 goto err_resv_unlock;
1892 if (buffer->access->lock_queue)
1893 buffer->access->lock_queue(buffer);
1895 ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1896 if (ret)
1897 goto err_queue_unlock;
1899 dma_resv_add_fence(dmabuf->resv, &fence->base,
1900 dma_to_ram ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ);
1901 dma_resv_unlock(dmabuf->resv);
1903 cookie = dma_fence_begin_signalling();
1905 ret = buffer->access->enqueue_dmabuf(buffer, priv->block, &fence->base,
1906 priv->sgt, iio_dmabuf.bytes_used,
1907 cyclic);
1908 if (ret) {
1910 * DMABUF enqueue failed, but we already added the fence.
1911 * Signal the error through the fence completion mechanism.
1913 iio_buffer_signal_dmabuf_done(&fence->base, ret);
1916 if (buffer->access->unlock_queue)
1917 buffer->access->unlock_queue(buffer);
1919 dma_fence_end_signalling(cookie);
1920 dma_buf_put(dmabuf);
1922 return ret;
1924 err_queue_unlock:
1925 if (buffer->access->unlock_queue)
1926 buffer->access->unlock_queue(buffer);
1927 err_resv_unlock:
1928 dma_resv_unlock(dmabuf->resv);
1929 err_fence_put:
1930 dma_fence_put(&fence->base);
1931 err_attachment_put:
1932 iio_buffer_dmabuf_put(attach);
1933 err_dmabuf_put:
1934 dma_buf_put(dmabuf);
1936 return ret;
1939 static void iio_buffer_cleanup(struct work_struct *work)
1941 struct iio_dma_fence *fence =
1942 container_of(work, struct iio_dma_fence, work);
1943 struct iio_dmabuf_priv *priv = fence->priv;
1944 struct dma_buf_attachment *attach = priv->attach;
1946 dma_fence_put(&fence->base);
1947 iio_buffer_dmabuf_put(attach);
1950 void iio_buffer_signal_dmabuf_done(struct dma_fence *fence, int ret)
1952 struct iio_dma_fence *iio_fence =
1953 container_of(fence, struct iio_dma_fence, base);
1954 bool cookie = dma_fence_begin_signalling();
1957 * Get a reference to the fence, so that it's not freed as soon as
1958 * it's signaled.
1960 dma_fence_get(fence);
1962 fence->error = ret;
1963 dma_fence_signal(fence);
1964 dma_fence_end_signalling(cookie);
1967 * The fence will be unref'd in iio_buffer_cleanup.
1968 * It can't be done here, as the unref functions might try to lock the
1969 * resv object, which can deadlock.
1971 INIT_WORK(&iio_fence->work, iio_buffer_cleanup);
1972 schedule_work(&iio_fence->work);
1974 EXPORT_SYMBOL_GPL(iio_buffer_signal_dmabuf_done);
1976 static long iio_buffer_chrdev_ioctl(struct file *filp,
1977 unsigned int cmd, unsigned long arg)
1979 struct iio_dev_buffer_pair *ib = filp->private_data;
1980 void __user *_arg = (void __user *)arg;
1981 bool nonblock = filp->f_flags & O_NONBLOCK;
1983 switch (cmd) {
1984 case IIO_BUFFER_DMABUF_ATTACH_IOCTL:
1985 return iio_buffer_attach_dmabuf(ib, _arg, nonblock);
1986 case IIO_BUFFER_DMABUF_DETACH_IOCTL:
1987 return iio_buffer_detach_dmabuf(ib, _arg, nonblock);
1988 case IIO_BUFFER_DMABUF_ENQUEUE_IOCTL:
1989 return iio_buffer_enqueue_dmabuf(ib, _arg, nonblock);
1990 default:
1991 return -EINVAL;
1995 static const struct file_operations iio_buffer_chrdev_fileops = {
1996 .owner = THIS_MODULE,
1997 .llseek = noop_llseek,
1998 .read = iio_buffer_read,
1999 .write = iio_buffer_write,
2000 .unlocked_ioctl = iio_buffer_chrdev_ioctl,
2001 .compat_ioctl = compat_ptr_ioctl,
2002 .poll = iio_buffer_poll,
2003 .release = iio_buffer_chrdev_release,
2006 static long iio_device_buffer_getfd(struct iio_dev *indio_dev, unsigned long arg)
2008 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2009 int __user *ival = (int __user *)arg;
2010 struct iio_dev_buffer_pair *ib;
2011 struct iio_buffer *buffer;
2012 int fd, idx, ret;
2014 if (copy_from_user(&idx, ival, sizeof(idx)))
2015 return -EFAULT;
2017 if (idx >= iio_dev_opaque->attached_buffers_cnt)
2018 return -ENODEV;
2020 iio_device_get(indio_dev);
2022 buffer = iio_dev_opaque->attached_buffers[idx];
2024 if (test_and_set_bit(IIO_BUSY_BIT_POS, &buffer->flags)) {
2025 ret = -EBUSY;
2026 goto error_iio_dev_put;
2029 ib = kzalloc(sizeof(*ib), GFP_KERNEL);
2030 if (!ib) {
2031 ret = -ENOMEM;
2032 goto error_clear_busy_bit;
2035 ib->indio_dev = indio_dev;
2036 ib->buffer = buffer;
2038 fd = anon_inode_getfd("iio:buffer", &iio_buffer_chrdev_fileops,
2039 ib, O_RDWR | O_CLOEXEC);
2040 if (fd < 0) {
2041 ret = fd;
2042 goto error_free_ib;
2045 if (copy_to_user(ival, &fd, sizeof(fd))) {
2047 * "Leak" the fd, as there's not much we can do about this
2048 * anyway. 'fd' might have been closed already, as
2049 * anon_inode_getfd() called fd_install() on it, which made
2050 * it reachable by userland.
2052 * Instead of allowing a malicious user to play tricks with
2053 * us, rely on the process exit path to do any necessary
2054 * cleanup, as in releasing the file, if still needed.
2056 return -EFAULT;
2059 return 0;
2061 error_free_ib:
2062 kfree(ib);
2063 error_clear_busy_bit:
2064 clear_bit(IIO_BUSY_BIT_POS, &buffer->flags);
2065 error_iio_dev_put:
2066 iio_device_put(indio_dev);
2067 return ret;
2070 static long iio_device_buffer_ioctl(struct iio_dev *indio_dev, struct file *filp,
2071 unsigned int cmd, unsigned long arg)
2073 switch (cmd) {
2074 case IIO_BUFFER_GET_FD_IOCTL:
2075 return iio_device_buffer_getfd(indio_dev, arg);
2076 default:
2077 return IIO_IOCTL_UNHANDLED;
2081 static int iio_channel_validate_scan_type(struct device *dev, int ch,
2082 const struct iio_scan_type *scan_type)
2084 /* Verify that sample bits fit into storage */
2085 if (scan_type->storagebits < scan_type->realbits + scan_type->shift) {
2086 dev_err(dev,
2087 "Channel %d storagebits (%d) < shifted realbits (%d + %d)\n",
2088 ch, scan_type->storagebits,
2089 scan_type->realbits,
2090 scan_type->shift);
2091 return -EINVAL;
2094 return 0;
2097 static int __iio_buffer_alloc_sysfs_and_mask(struct iio_buffer *buffer,
2098 struct iio_dev *indio_dev,
2099 int index)
2101 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2102 unsigned int masklength = iio_get_masklength(indio_dev);
2103 struct iio_dev_attr *p;
2104 const struct iio_dev_attr *id_attr;
2105 struct attribute **attr;
2106 int ret, i, attrn, scan_el_attrcount, buffer_attrcount;
2107 const struct iio_chan_spec *channels;
2109 buffer_attrcount = 0;
2110 if (buffer->attrs) {
2111 while (buffer->attrs[buffer_attrcount])
2112 buffer_attrcount++;
2114 buffer_attrcount += ARRAY_SIZE(iio_buffer_attrs);
2116 scan_el_attrcount = 0;
2117 INIT_LIST_HEAD(&buffer->buffer_attr_list);
2118 channels = indio_dev->channels;
2119 if (channels) {
2120 /* new magic */
2121 for (i = 0; i < indio_dev->num_channels; i++) {
2122 const struct iio_scan_type *scan_type;
2124 if (channels[i].scan_index < 0)
2125 continue;
2127 if (channels[i].has_ext_scan_type) {
2128 int j;
2131 * get_current_scan_type is required when using
2132 * extended scan types.
2134 if (!indio_dev->info->get_current_scan_type) {
2135 ret = -EINVAL;
2136 goto error_cleanup_dynamic;
2139 for (j = 0; j < channels[i].num_ext_scan_type; j++) {
2140 scan_type = &channels[i].ext_scan_type[j];
2142 ret = iio_channel_validate_scan_type(
2143 &indio_dev->dev, i, scan_type);
2144 if (ret)
2145 goto error_cleanup_dynamic;
2147 } else {
2148 scan_type = &channels[i].scan_type;
2150 ret = iio_channel_validate_scan_type(
2151 &indio_dev->dev, i, scan_type);
2152 if (ret)
2153 goto error_cleanup_dynamic;
2156 ret = iio_buffer_add_channel_sysfs(indio_dev, buffer,
2157 &channels[i]);
2158 if (ret < 0)
2159 goto error_cleanup_dynamic;
2160 scan_el_attrcount += ret;
2161 if (channels[i].type == IIO_TIMESTAMP)
2162 iio_dev_opaque->scan_index_timestamp =
2163 channels[i].scan_index;
2165 if (masklength && !buffer->scan_mask) {
2166 buffer->scan_mask = bitmap_zalloc(masklength,
2167 GFP_KERNEL);
2168 if (!buffer->scan_mask) {
2169 ret = -ENOMEM;
2170 goto error_cleanup_dynamic;
2175 attrn = buffer_attrcount + scan_el_attrcount;
2176 attr = kcalloc(attrn + 1, sizeof(*attr), GFP_KERNEL);
2177 if (!attr) {
2178 ret = -ENOMEM;
2179 goto error_free_scan_mask;
2182 memcpy(attr, iio_buffer_attrs, sizeof(iio_buffer_attrs));
2183 if (!buffer->access->set_length)
2184 attr[0] = &dev_attr_length_ro.attr;
2186 if (buffer->access->flags & INDIO_BUFFER_FLAG_FIXED_WATERMARK)
2187 attr[2] = &dev_attr_watermark_ro.attr;
2189 if (buffer->attrs)
2190 for (i = 0, id_attr = buffer->attrs[i];
2191 (id_attr = buffer->attrs[i]); i++)
2192 attr[ARRAY_SIZE(iio_buffer_attrs) + i] =
2193 (struct attribute *)&id_attr->dev_attr.attr;
2195 buffer->buffer_group.attrs = attr;
2197 for (i = 0; i < buffer_attrcount; i++) {
2198 struct attribute *wrapped;
2200 wrapped = iio_buffer_wrap_attr(buffer, attr[i]);
2201 if (!wrapped) {
2202 ret = -ENOMEM;
2203 goto error_free_buffer_attrs;
2205 attr[i] = wrapped;
2208 attrn = 0;
2209 list_for_each_entry(p, &buffer->buffer_attr_list, l)
2210 attr[attrn++] = &p->dev_attr.attr;
2212 buffer->buffer_group.name = kasprintf(GFP_KERNEL, "buffer%d", index);
2213 if (!buffer->buffer_group.name) {
2214 ret = -ENOMEM;
2215 goto error_free_buffer_attrs;
2218 ret = iio_device_register_sysfs_group(indio_dev, &buffer->buffer_group);
2219 if (ret)
2220 goto error_free_buffer_attr_group_name;
2222 /* we only need to register the legacy groups for the first buffer */
2223 if (index > 0)
2224 return 0;
2226 ret = iio_buffer_register_legacy_sysfs_groups(indio_dev, attr,
2227 buffer_attrcount,
2228 scan_el_attrcount);
2229 if (ret)
2230 goto error_free_buffer_attr_group_name;
2232 return 0;
2234 error_free_buffer_attr_group_name:
2235 kfree(buffer->buffer_group.name);
2236 error_free_buffer_attrs:
2237 kfree(buffer->buffer_group.attrs);
2238 error_free_scan_mask:
2239 bitmap_free(buffer->scan_mask);
2240 error_cleanup_dynamic:
2241 iio_free_chan_devattr_list(&buffer->buffer_attr_list);
2243 return ret;
2246 static void __iio_buffer_free_sysfs_and_mask(struct iio_buffer *buffer,
2247 struct iio_dev *indio_dev,
2248 int index)
2250 if (index == 0)
2251 iio_buffer_unregister_legacy_sysfs_groups(indio_dev);
2252 bitmap_free(buffer->scan_mask);
2253 kfree(buffer->buffer_group.name);
2254 kfree(buffer->buffer_group.attrs);
2255 iio_free_chan_devattr_list(&buffer->buffer_attr_list);
2258 int iio_buffers_alloc_sysfs_and_mask(struct iio_dev *indio_dev)
2260 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2261 const struct iio_chan_spec *channels;
2262 struct iio_buffer *buffer;
2263 int ret, i, idx;
2264 size_t sz;
2266 channels = indio_dev->channels;
2267 if (channels) {
2268 int ml = 0;
2270 for (i = 0; i < indio_dev->num_channels; i++)
2271 ml = max(ml, channels[i].scan_index + 1);
2272 ACCESS_PRIVATE(indio_dev, masklength) = ml;
2275 if (!iio_dev_opaque->attached_buffers_cnt)
2276 return 0;
2278 for (idx = 0; idx < iio_dev_opaque->attached_buffers_cnt; idx++) {
2279 buffer = iio_dev_opaque->attached_buffers[idx];
2280 ret = __iio_buffer_alloc_sysfs_and_mask(buffer, indio_dev, idx);
2281 if (ret)
2282 goto error_unwind_sysfs_and_mask;
2285 sz = sizeof(*iio_dev_opaque->buffer_ioctl_handler);
2286 iio_dev_opaque->buffer_ioctl_handler = kzalloc(sz, GFP_KERNEL);
2287 if (!iio_dev_opaque->buffer_ioctl_handler) {
2288 ret = -ENOMEM;
2289 goto error_unwind_sysfs_and_mask;
2292 iio_dev_opaque->buffer_ioctl_handler->ioctl = iio_device_buffer_ioctl;
2293 iio_device_ioctl_handler_register(indio_dev,
2294 iio_dev_opaque->buffer_ioctl_handler);
2296 return 0;
2298 error_unwind_sysfs_and_mask:
2299 while (idx--) {
2300 buffer = iio_dev_opaque->attached_buffers[idx];
2301 __iio_buffer_free_sysfs_and_mask(buffer, indio_dev, idx);
2303 return ret;
2306 void iio_buffers_free_sysfs_and_mask(struct iio_dev *indio_dev)
2308 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2309 struct iio_buffer *buffer;
2310 int i;
2312 if (!iio_dev_opaque->attached_buffers_cnt)
2313 return;
2315 iio_device_ioctl_handler_unregister(iio_dev_opaque->buffer_ioctl_handler);
2316 kfree(iio_dev_opaque->buffer_ioctl_handler);
2318 for (i = iio_dev_opaque->attached_buffers_cnt - 1; i >= 0; i--) {
2319 buffer = iio_dev_opaque->attached_buffers[i];
2320 __iio_buffer_free_sysfs_and_mask(buffer, indio_dev, i);
2325 * iio_validate_scan_mask_onehot() - Validates that exactly one channel is selected
2326 * @indio_dev: the iio device
2327 * @mask: scan mask to be checked
2329 * Return true if exactly one bit is set in the scan mask, false otherwise. It
2330 * can be used for devices where only one channel can be active for sampling at
2331 * a time.
2333 bool iio_validate_scan_mask_onehot(struct iio_dev *indio_dev,
2334 const unsigned long *mask)
2336 return bitmap_weight(mask, iio_get_masklength(indio_dev)) == 1;
2338 EXPORT_SYMBOL_GPL(iio_validate_scan_mask_onehot);
2340 static const void *iio_demux(struct iio_buffer *buffer,
2341 const void *datain)
2343 struct iio_demux_table *t;
2345 if (list_empty(&buffer->demux_list))
2346 return datain;
2347 list_for_each_entry(t, &buffer->demux_list, l)
2348 memcpy(buffer->demux_bounce + t->to,
2349 datain + t->from, t->length);
2351 return buffer->demux_bounce;
2354 static int iio_push_to_buffer(struct iio_buffer *buffer, const void *data)
2356 const void *dataout = iio_demux(buffer, data);
2357 int ret;
2359 ret = buffer->access->store_to(buffer, dataout);
2360 if (ret)
2361 return ret;
2364 * We can't just test for watermark to decide if we wake the poll queue
2365 * because read may request less samples than the watermark.
2367 wake_up_interruptible_poll(&buffer->pollq, EPOLLIN | EPOLLRDNORM);
2368 return 0;
2372 * iio_push_to_buffers() - push to a registered buffer.
2373 * @indio_dev: iio_dev structure for device.
2374 * @data: Full scan.
2376 int iio_push_to_buffers(struct iio_dev *indio_dev, const void *data)
2378 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2379 int ret;
2380 struct iio_buffer *buf;
2382 list_for_each_entry(buf, &iio_dev_opaque->buffer_list, buffer_list) {
2383 ret = iio_push_to_buffer(buf, data);
2384 if (ret < 0)
2385 return ret;
2388 return 0;
2390 EXPORT_SYMBOL_GPL(iio_push_to_buffers);
2393 * iio_push_to_buffers_with_ts_unaligned() - push to registered buffer,
2394 * no alignment or space requirements.
2395 * @indio_dev: iio_dev structure for device.
2396 * @data: channel data excluding the timestamp.
2397 * @data_sz: size of data.
2398 * @timestamp: timestamp for the sample data.
2400 * This special variant of iio_push_to_buffers_with_timestamp() does
2401 * not require space for the timestamp, or 8 byte alignment of data.
2402 * It does however require an allocation on first call and additional
2403 * copies on all calls, so should be avoided if possible.
2405 int iio_push_to_buffers_with_ts_unaligned(struct iio_dev *indio_dev,
2406 const void *data,
2407 size_t data_sz,
2408 int64_t timestamp)
2410 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2413 * Conservative estimate - we can always safely copy the minimum
2414 * of either the data provided or the length of the destination buffer.
2415 * This relaxed limit allows the calling drivers to be lax about
2416 * tracking the size of the data they are pushing, at the cost of
2417 * unnecessary copying of padding.
2419 data_sz = min_t(size_t, indio_dev->scan_bytes, data_sz);
2420 if (iio_dev_opaque->bounce_buffer_size != indio_dev->scan_bytes) {
2421 void *bb;
2423 bb = devm_krealloc(&indio_dev->dev,
2424 iio_dev_opaque->bounce_buffer,
2425 indio_dev->scan_bytes, GFP_KERNEL);
2426 if (!bb)
2427 return -ENOMEM;
2428 iio_dev_opaque->bounce_buffer = bb;
2429 iio_dev_opaque->bounce_buffer_size = indio_dev->scan_bytes;
2431 memcpy(iio_dev_opaque->bounce_buffer, data, data_sz);
2432 return iio_push_to_buffers_with_timestamp(indio_dev,
2433 iio_dev_opaque->bounce_buffer,
2434 timestamp);
2436 EXPORT_SYMBOL_GPL(iio_push_to_buffers_with_ts_unaligned);
2439 * iio_buffer_release() - Free a buffer's resources
2440 * @ref: Pointer to the kref embedded in the iio_buffer struct
2442 * This function is called when the last reference to the buffer has been
2443 * dropped. It will typically free all resources allocated by the buffer. Do not
2444 * call this function manually, always use iio_buffer_put() when done using a
2445 * buffer.
2447 static void iio_buffer_release(struct kref *ref)
2449 struct iio_buffer *buffer = container_of(ref, struct iio_buffer, ref);
2451 mutex_destroy(&buffer->dmabufs_mutex);
2452 buffer->access->release(buffer);
2456 * iio_buffer_get() - Grab a reference to the buffer
2457 * @buffer: The buffer to grab a reference for, may be NULL
2459 * Returns the pointer to the buffer that was passed into the function.
2461 struct iio_buffer *iio_buffer_get(struct iio_buffer *buffer)
2463 if (buffer)
2464 kref_get(&buffer->ref);
2466 return buffer;
2468 EXPORT_SYMBOL_GPL(iio_buffer_get);
2471 * iio_buffer_put() - Release the reference to the buffer
2472 * @buffer: The buffer to release the reference for, may be NULL
2474 void iio_buffer_put(struct iio_buffer *buffer)
2476 if (buffer)
2477 kref_put(&buffer->ref, iio_buffer_release);
2479 EXPORT_SYMBOL_GPL(iio_buffer_put);
2482 * iio_device_attach_buffer - Attach a buffer to a IIO device
2483 * @indio_dev: The device the buffer should be attached to
2484 * @buffer: The buffer to attach to the device
2486 * Return 0 if successful, negative if error.
2488 * This function attaches a buffer to a IIO device. The buffer stays attached to
2489 * the device until the device is freed. For legacy reasons, the first attached
2490 * buffer will also be assigned to 'indio_dev->buffer'.
2491 * The array allocated here, will be free'd via the iio_device_detach_buffers()
2492 * call which is handled by the iio_device_free().
2494 int iio_device_attach_buffer(struct iio_dev *indio_dev,
2495 struct iio_buffer *buffer)
2497 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2498 struct iio_buffer **new, **old = iio_dev_opaque->attached_buffers;
2499 unsigned int cnt = iio_dev_opaque->attached_buffers_cnt;
2501 cnt++;
2503 new = krealloc(old, sizeof(*new) * cnt, GFP_KERNEL);
2504 if (!new)
2505 return -ENOMEM;
2506 iio_dev_opaque->attached_buffers = new;
2508 buffer = iio_buffer_get(buffer);
2510 /* first buffer is legacy; attach it to the IIO device directly */
2511 if (!indio_dev->buffer)
2512 indio_dev->buffer = buffer;
2514 iio_dev_opaque->attached_buffers[cnt - 1] = buffer;
2515 iio_dev_opaque->attached_buffers_cnt = cnt;
2517 return 0;
2519 EXPORT_SYMBOL_GPL(iio_device_attach_buffer);