Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / iio / magnetometer / bmc150_magn.c
blob7de18c4a0ccb30595c64d2a6d79ba4b2d1f640cb
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Bosch BMC150 three-axis magnetic field sensor driver
5 * Copyright (c) 2015, Intel Corporation.
7 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
9 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/events.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
29 #include "bmc150_magn.h"
31 #define BMC150_MAGN_DRV_NAME "bmc150_magn"
32 #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event"
34 #define BMC150_MAGN_REG_CHIP_ID 0x40
35 #define BMC150_MAGN_CHIP_ID_VAL 0x32
37 #define BMC150_MAGN_REG_X_L 0x42
38 #define BMC150_MAGN_REG_X_M 0x43
39 #define BMC150_MAGN_REG_Y_L 0x44
40 #define BMC150_MAGN_REG_Y_M 0x45
41 #define BMC150_MAGN_SHIFT_XY_L 3
42 #define BMC150_MAGN_REG_Z_L 0x46
43 #define BMC150_MAGN_REG_Z_M 0x47
44 #define BMC150_MAGN_SHIFT_Z_L 1
45 #define BMC150_MAGN_REG_RHALL_L 0x48
46 #define BMC150_MAGN_REG_RHALL_M 0x49
47 #define BMC150_MAGN_SHIFT_RHALL_L 2
49 #define BMC150_MAGN_REG_INT_STATUS 0x4A
51 #define BMC150_MAGN_REG_POWER 0x4B
52 #define BMC150_MAGN_MASK_POWER_CTL BIT(0)
54 #define BMC150_MAGN_REG_OPMODE_ODR 0x4C
55 #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1)
56 #define BMC150_MAGN_SHIFT_OPMODE 1
57 #define BMC150_MAGN_MODE_NORMAL 0x00
58 #define BMC150_MAGN_MODE_FORCED 0x01
59 #define BMC150_MAGN_MODE_SLEEP 0x03
60 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3)
61 #define BMC150_MAGN_SHIFT_ODR 3
63 #define BMC150_MAGN_REG_INT 0x4D
65 #define BMC150_MAGN_REG_INT_DRDY 0x4E
66 #define BMC150_MAGN_MASK_DRDY_EN BIT(7)
67 #define BMC150_MAGN_SHIFT_DRDY_EN 7
68 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6)
69 #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5)
70 #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4)
71 #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3)
72 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2)
73 #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1)
74 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0)
76 #define BMC150_MAGN_REG_LOW_THRESH 0x4F
77 #define BMC150_MAGN_REG_HIGH_THRESH 0x50
78 #define BMC150_MAGN_REG_REP_XY 0x51
79 #define BMC150_MAGN_REG_REP_Z 0x52
80 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0)
82 #define BMC150_MAGN_REG_TRIM_START 0x5D
83 #define BMC150_MAGN_REG_TRIM_END 0x71
85 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096
86 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384
88 /* Time from SUSPEND to SLEEP */
89 #define BMC150_MAGN_START_UP_TIME_MS 3
91 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000
93 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
94 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
95 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
96 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
98 enum bmc150_magn_axis {
99 AXIS_X,
100 AXIS_Y,
101 AXIS_Z,
102 RHALL,
103 AXIS_XYZ_MAX = RHALL,
104 AXIS_XYZR_MAX,
107 enum bmc150_magn_power_modes {
108 BMC150_MAGN_POWER_MODE_SUSPEND,
109 BMC150_MAGN_POWER_MODE_SLEEP,
110 BMC150_MAGN_POWER_MODE_NORMAL,
113 struct bmc150_magn_trim_regs {
114 s8 x1;
115 s8 y1;
116 __le16 reserved1;
117 u8 reserved2;
118 __le16 z4;
119 s8 x2;
120 s8 y2;
121 __le16 reserved3;
122 __le16 z2;
123 __le16 z1;
124 __le16 xyz1;
125 __le16 z3;
126 s8 xy2;
127 u8 xy1;
128 } __packed;
130 struct bmc150_magn_data {
131 struct device *dev;
133 * 1. Protect this structure.
134 * 2. Serialize sequences that power on/off the device and access HW.
136 struct mutex mutex;
137 struct regmap *regmap;
138 struct regulator_bulk_data regulators[2];
139 struct iio_mount_matrix orientation;
140 /* Ensure timestamp is naturally aligned */
141 struct {
142 s32 chans[3];
143 s64 timestamp __aligned(8);
144 } scan;
145 struct iio_trigger *dready_trig;
146 bool dready_trigger_on;
147 int max_odr;
148 int irq;
151 static const struct {
152 int freq;
153 u8 reg_val;
154 } bmc150_magn_samp_freq_table[] = { {2, 0x01},
155 {6, 0x02},
156 {8, 0x03},
157 {10, 0x00},
158 {15, 0x04},
159 {20, 0x05},
160 {25, 0x06},
161 {30, 0x07} };
163 enum bmc150_magn_presets {
164 LOW_POWER_PRESET,
165 REGULAR_PRESET,
166 ENHANCED_REGULAR_PRESET,
167 HIGH_ACCURACY_PRESET
170 static const struct bmc150_magn_preset {
171 u8 rep_xy;
172 u8 rep_z;
173 u8 odr;
174 } bmc150_magn_presets_table[] = {
175 [LOW_POWER_PRESET] = {3, 3, 10},
176 [REGULAR_PRESET] = {9, 15, 10},
177 [ENHANCED_REGULAR_PRESET] = {15, 27, 10},
178 [HIGH_ACCURACY_PRESET] = {47, 83, 20},
181 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
183 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
185 switch (reg) {
186 case BMC150_MAGN_REG_POWER:
187 case BMC150_MAGN_REG_OPMODE_ODR:
188 case BMC150_MAGN_REG_INT:
189 case BMC150_MAGN_REG_INT_DRDY:
190 case BMC150_MAGN_REG_LOW_THRESH:
191 case BMC150_MAGN_REG_HIGH_THRESH:
192 case BMC150_MAGN_REG_REP_XY:
193 case BMC150_MAGN_REG_REP_Z:
194 return true;
195 default:
196 return false;
200 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
202 switch (reg) {
203 case BMC150_MAGN_REG_X_L:
204 case BMC150_MAGN_REG_X_M:
205 case BMC150_MAGN_REG_Y_L:
206 case BMC150_MAGN_REG_Y_M:
207 case BMC150_MAGN_REG_Z_L:
208 case BMC150_MAGN_REG_Z_M:
209 case BMC150_MAGN_REG_RHALL_L:
210 case BMC150_MAGN_REG_RHALL_M:
211 case BMC150_MAGN_REG_INT_STATUS:
212 return true;
213 default:
214 return false;
218 const struct regmap_config bmc150_magn_regmap_config = {
219 .reg_bits = 8,
220 .val_bits = 8,
222 .max_register = BMC150_MAGN_REG_TRIM_END,
223 .cache_type = REGCACHE_RBTREE,
225 .writeable_reg = bmc150_magn_is_writeable_reg,
226 .volatile_reg = bmc150_magn_is_volatile_reg,
228 EXPORT_SYMBOL_NS(bmc150_magn_regmap_config, IIO_BMC150_MAGN);
230 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
231 enum bmc150_magn_power_modes mode,
232 bool state)
234 int ret;
236 switch (mode) {
237 case BMC150_MAGN_POWER_MODE_SUSPEND:
238 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
239 BMC150_MAGN_MASK_POWER_CTL, !state);
240 if (ret < 0)
241 return ret;
242 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
243 return 0;
244 case BMC150_MAGN_POWER_MODE_SLEEP:
245 return regmap_update_bits(data->regmap,
246 BMC150_MAGN_REG_OPMODE_ODR,
247 BMC150_MAGN_MASK_OPMODE,
248 BMC150_MAGN_MODE_SLEEP <<
249 BMC150_MAGN_SHIFT_OPMODE);
250 case BMC150_MAGN_POWER_MODE_NORMAL:
251 return regmap_update_bits(data->regmap,
252 BMC150_MAGN_REG_OPMODE_ODR,
253 BMC150_MAGN_MASK_OPMODE,
254 BMC150_MAGN_MODE_NORMAL <<
255 BMC150_MAGN_SHIFT_OPMODE);
258 return -EINVAL;
261 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
263 #ifdef CONFIG_PM
264 int ret;
266 if (on) {
267 ret = pm_runtime_resume_and_get(data->dev);
268 } else {
269 pm_runtime_mark_last_busy(data->dev);
270 ret = pm_runtime_put_autosuspend(data->dev);
273 if (ret < 0) {
274 dev_err(data->dev,
275 "failed to change power state to %d\n", on);
276 return ret;
278 #endif
280 return 0;
283 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
285 int ret, reg_val;
286 u8 i, odr_val;
288 ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
289 if (ret < 0)
290 return ret;
291 odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
293 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
294 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
295 *val = bmc150_magn_samp_freq_table[i].freq;
296 return 0;
299 return -EINVAL;
302 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
304 int ret;
305 u8 i;
307 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
308 if (bmc150_magn_samp_freq_table[i].freq == val) {
309 ret = regmap_update_bits(data->regmap,
310 BMC150_MAGN_REG_OPMODE_ODR,
311 BMC150_MAGN_MASK_ODR,
312 bmc150_magn_samp_freq_table[i].
313 reg_val <<
314 BMC150_MAGN_SHIFT_ODR);
315 if (ret < 0)
316 return ret;
317 return 0;
321 return -EINVAL;
324 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
325 int rep_z, int odr)
327 int ret, reg_val, max_odr;
329 if (rep_xy <= 0) {
330 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
331 &reg_val);
332 if (ret < 0)
333 return ret;
334 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
336 if (rep_z <= 0) {
337 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
338 &reg_val);
339 if (ret < 0)
340 return ret;
341 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
343 if (odr <= 0) {
344 ret = bmc150_magn_get_odr(data, &odr);
345 if (ret < 0)
346 return ret;
348 /* the maximum selectable read-out frequency from datasheet */
349 max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
350 if (odr > max_odr) {
351 dev_err(data->dev,
352 "Can't set oversampling with sampling freq %d\n",
353 odr);
354 return -EINVAL;
356 data->max_odr = max_odr;
358 return 0;
361 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
362 u16 rhall)
364 s16 val;
365 u16 xyz1 = le16_to_cpu(tregs->xyz1);
367 if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
368 return S32_MIN;
370 if (!rhall)
371 rhall = xyz1;
373 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
374 val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
375 ((s32)val)) >> 7)) + (((s32)val) *
376 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
377 ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
378 (((s16)tregs->x1) << 3);
380 return (s32)val;
383 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
384 u16 rhall)
386 s16 val;
387 u16 xyz1 = le16_to_cpu(tregs->xyz1);
389 if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
390 return S32_MIN;
392 if (!rhall)
393 rhall = xyz1;
395 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
396 val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
397 ((s32)val)) >> 7)) + (((s32)val) *
398 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
399 ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
400 (((s16)tregs->y1) << 3);
402 return (s32)val;
405 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
406 u16 rhall)
408 s32 val;
409 u16 xyz1 = le16_to_cpu(tregs->xyz1);
410 u16 z1 = le16_to_cpu(tregs->z1);
411 s16 z2 = le16_to_cpu(tregs->z2);
412 s16 z3 = le16_to_cpu(tregs->z3);
413 s16 z4 = le16_to_cpu(tregs->z4);
415 if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
416 return S32_MIN;
418 val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
419 ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
420 ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
422 return val;
425 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
427 int ret;
428 __le16 values[AXIS_XYZR_MAX];
429 s16 raw_x, raw_y, raw_z;
430 u16 rhall;
431 struct bmc150_magn_trim_regs tregs;
433 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
434 values, sizeof(values));
435 if (ret < 0)
436 return ret;
438 raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
439 raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
440 raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
441 rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
443 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
444 &tregs, sizeof(tregs));
445 if (ret < 0)
446 return ret;
448 buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
449 buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
450 buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
452 return 0;
455 static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
456 struct iio_chan_spec const *chan,
457 int *val, int *val2, long mask)
459 struct bmc150_magn_data *data = iio_priv(indio_dev);
460 int ret, tmp;
461 s32 values[AXIS_XYZ_MAX];
463 switch (mask) {
464 case IIO_CHAN_INFO_RAW:
465 if (iio_buffer_enabled(indio_dev))
466 return -EBUSY;
467 mutex_lock(&data->mutex);
469 ret = bmc150_magn_set_power_state(data, true);
470 if (ret < 0) {
471 mutex_unlock(&data->mutex);
472 return ret;
475 ret = bmc150_magn_read_xyz(data, values);
476 if (ret < 0) {
477 bmc150_magn_set_power_state(data, false);
478 mutex_unlock(&data->mutex);
479 return ret;
481 *val = values[chan->scan_index];
483 ret = bmc150_magn_set_power_state(data, false);
484 if (ret < 0) {
485 mutex_unlock(&data->mutex);
486 return ret;
489 mutex_unlock(&data->mutex);
490 return IIO_VAL_INT;
491 case IIO_CHAN_INFO_SCALE:
493 * The API/driver performs an off-chip temperature
494 * compensation and outputs x/y/z magnetic field data in
495 * 16 LSB/uT to the upper application layer.
497 *val = 0;
498 *val2 = 625;
499 return IIO_VAL_INT_PLUS_MICRO;
500 case IIO_CHAN_INFO_SAMP_FREQ:
501 ret = bmc150_magn_get_odr(data, val);
502 if (ret < 0)
503 return ret;
504 return IIO_VAL_INT;
505 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
506 switch (chan->channel2) {
507 case IIO_MOD_X:
508 case IIO_MOD_Y:
509 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
510 &tmp);
511 if (ret < 0)
512 return ret;
513 *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
514 return IIO_VAL_INT;
515 case IIO_MOD_Z:
516 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
517 &tmp);
518 if (ret < 0)
519 return ret;
520 *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
521 return IIO_VAL_INT;
522 default:
523 return -EINVAL;
525 default:
526 return -EINVAL;
530 static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
531 struct iio_chan_spec const *chan,
532 int val, int val2, long mask)
534 struct bmc150_magn_data *data = iio_priv(indio_dev);
535 int ret;
537 switch (mask) {
538 case IIO_CHAN_INFO_SAMP_FREQ:
539 if (val > data->max_odr)
540 return -EINVAL;
541 mutex_lock(&data->mutex);
542 ret = bmc150_magn_set_odr(data, val);
543 mutex_unlock(&data->mutex);
544 return ret;
545 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
546 switch (chan->channel2) {
547 case IIO_MOD_X:
548 case IIO_MOD_Y:
549 if (val < 1 || val > 511)
550 return -EINVAL;
551 mutex_lock(&data->mutex);
552 ret = bmc150_magn_set_max_odr(data, val, 0, 0);
553 if (ret < 0) {
554 mutex_unlock(&data->mutex);
555 return ret;
557 ret = regmap_update_bits(data->regmap,
558 BMC150_MAGN_REG_REP_XY,
559 BMC150_MAGN_REG_REP_DATAMASK,
560 BMC150_MAGN_REPXY_TO_REGVAL
561 (val));
562 mutex_unlock(&data->mutex);
563 return ret;
564 case IIO_MOD_Z:
565 if (val < 1 || val > 256)
566 return -EINVAL;
567 mutex_lock(&data->mutex);
568 ret = bmc150_magn_set_max_odr(data, 0, val, 0);
569 if (ret < 0) {
570 mutex_unlock(&data->mutex);
571 return ret;
573 ret = regmap_update_bits(data->regmap,
574 BMC150_MAGN_REG_REP_Z,
575 BMC150_MAGN_REG_REP_DATAMASK,
576 BMC150_MAGN_REPZ_TO_REGVAL
577 (val));
578 mutex_unlock(&data->mutex);
579 return ret;
580 default:
581 return -EINVAL;
583 default:
584 return -EINVAL;
588 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
589 struct device_attribute *attr,
590 char *buf)
592 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
593 struct bmc150_magn_data *data = iio_priv(indio_dev);
594 size_t len = 0;
595 u8 i;
597 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
598 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
599 break;
600 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
601 bmc150_magn_samp_freq_table[i].freq);
603 /* replace last space with a newline */
604 buf[len - 1] = '\n';
606 return len;
609 static const struct iio_mount_matrix *
610 bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev,
611 const struct iio_chan_spec *chan)
613 struct bmc150_magn_data *data = iio_priv(indio_dev);
615 return &data->orientation;
618 static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = {
619 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix),
623 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
625 static struct attribute *bmc150_magn_attributes[] = {
626 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
627 NULL,
630 static const struct attribute_group bmc150_magn_attrs_group = {
631 .attrs = bmc150_magn_attributes,
634 #define BMC150_MAGN_CHANNEL(_axis) { \
635 .type = IIO_MAGN, \
636 .modified = 1, \
637 .channel2 = IIO_MOD_##_axis, \
638 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
639 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
640 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
641 BIT(IIO_CHAN_INFO_SCALE), \
642 .scan_index = AXIS_##_axis, \
643 .scan_type = { \
644 .sign = 's', \
645 .realbits = 32, \
646 .storagebits = 32, \
647 .endianness = IIO_LE \
648 }, \
649 .ext_info = bmc150_magn_ext_info, \
652 static const struct iio_chan_spec bmc150_magn_channels[] = {
653 BMC150_MAGN_CHANNEL(X),
654 BMC150_MAGN_CHANNEL(Y),
655 BMC150_MAGN_CHANNEL(Z),
656 IIO_CHAN_SOFT_TIMESTAMP(3),
659 static const struct iio_info bmc150_magn_info = {
660 .attrs = &bmc150_magn_attrs_group,
661 .read_raw = bmc150_magn_read_raw,
662 .write_raw = bmc150_magn_write_raw,
665 static const unsigned long bmc150_magn_scan_masks[] = {
666 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
669 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
671 struct iio_poll_func *pf = p;
672 struct iio_dev *indio_dev = pf->indio_dev;
673 struct bmc150_magn_data *data = iio_priv(indio_dev);
674 int ret;
676 mutex_lock(&data->mutex);
677 ret = bmc150_magn_read_xyz(data, data->scan.chans);
678 if (ret < 0)
679 goto err;
681 iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
682 pf->timestamp);
684 err:
685 mutex_unlock(&data->mutex);
686 iio_trigger_notify_done(indio_dev->trig);
688 return IRQ_HANDLED;
691 static int bmc150_magn_init(struct bmc150_magn_data *data)
693 int ret, chip_id;
694 struct bmc150_magn_preset preset;
696 ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
697 data->regulators);
698 if (ret < 0) {
699 dev_err(data->dev, "Failed to enable regulators: %d\n", ret);
700 return ret;
703 * 3ms power-on time according to datasheet, let's better
704 * be safe than sorry and set this delay to 5ms.
706 msleep(5);
708 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
709 false);
710 if (ret < 0) {
711 dev_err(data->dev,
712 "Failed to bring up device from suspend mode\n");
713 goto err_regulator_disable;
716 ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
717 if (ret < 0) {
718 dev_err(data->dev, "Failed reading chip id\n");
719 goto err_poweroff;
721 if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
722 dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
723 ret = -ENODEV;
724 goto err_poweroff;
726 dev_dbg(data->dev, "Chip id %x\n", chip_id);
728 preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
729 ret = bmc150_magn_set_odr(data, preset.odr);
730 if (ret < 0) {
731 dev_err(data->dev, "Failed to set ODR to %d\n",
732 preset.odr);
733 goto err_poweroff;
736 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
737 BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
738 if (ret < 0) {
739 dev_err(data->dev, "Failed to set REP XY to %d\n",
740 preset.rep_xy);
741 goto err_poweroff;
744 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
745 BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
746 if (ret < 0) {
747 dev_err(data->dev, "Failed to set REP Z to %d\n",
748 preset.rep_z);
749 goto err_poweroff;
752 ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
753 preset.odr);
754 if (ret < 0)
755 goto err_poweroff;
757 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
758 true);
759 if (ret < 0) {
760 dev_err(data->dev, "Failed to power on device\n");
761 goto err_poweroff;
764 return 0;
766 err_poweroff:
767 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
768 err_regulator_disable:
769 regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
770 return ret;
773 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
775 int tmp;
778 * Data Ready (DRDY) is always cleared after
779 * readout of data registers ends.
781 return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
784 static void bmc150_magn_trig_reen(struct iio_trigger *trig)
786 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
787 struct bmc150_magn_data *data = iio_priv(indio_dev);
788 int ret;
790 if (!data->dready_trigger_on)
791 return;
793 mutex_lock(&data->mutex);
794 ret = bmc150_magn_reset_intr(data);
795 mutex_unlock(&data->mutex);
796 if (ret)
797 dev_err(data->dev, "Failed to reset interrupt\n");
800 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
801 bool state)
803 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
804 struct bmc150_magn_data *data = iio_priv(indio_dev);
805 int ret = 0;
807 mutex_lock(&data->mutex);
808 if (state == data->dready_trigger_on)
809 goto err_unlock;
811 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
812 BMC150_MAGN_MASK_DRDY_EN,
813 state << BMC150_MAGN_SHIFT_DRDY_EN);
814 if (ret < 0)
815 goto err_unlock;
817 data->dready_trigger_on = state;
819 if (state) {
820 ret = bmc150_magn_reset_intr(data);
821 if (ret < 0)
822 goto err_unlock;
824 mutex_unlock(&data->mutex);
826 return 0;
828 err_unlock:
829 mutex_unlock(&data->mutex);
830 return ret;
833 static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
834 .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
835 .reenable = bmc150_magn_trig_reen,
838 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
840 struct bmc150_magn_data *data = iio_priv(indio_dev);
842 return bmc150_magn_set_power_state(data, true);
845 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
847 struct bmc150_magn_data *data = iio_priv(indio_dev);
849 return bmc150_magn_set_power_state(data, false);
852 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
853 .preenable = bmc150_magn_buffer_preenable,
854 .postdisable = bmc150_magn_buffer_postdisable,
857 int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
858 int irq, const char *name)
860 struct bmc150_magn_data *data;
861 struct iio_dev *indio_dev;
862 int ret;
864 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
865 if (!indio_dev)
866 return -ENOMEM;
868 data = iio_priv(indio_dev);
869 dev_set_drvdata(dev, indio_dev);
870 data->regmap = regmap;
871 data->irq = irq;
872 data->dev = dev;
874 data->regulators[0].supply = "vdd";
875 data->regulators[1].supply = "vddio";
876 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->regulators),
877 data->regulators);
878 if (ret)
879 return dev_err_probe(dev, ret, "failed to get regulators\n");
881 ret = iio_read_mount_matrix(dev, &data->orientation);
882 if (ret)
883 return ret;
885 mutex_init(&data->mutex);
887 ret = bmc150_magn_init(data);
888 if (ret < 0)
889 return ret;
891 indio_dev->channels = bmc150_magn_channels;
892 indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
893 indio_dev->available_scan_masks = bmc150_magn_scan_masks;
894 indio_dev->name = name;
895 indio_dev->modes = INDIO_DIRECT_MODE;
896 indio_dev->info = &bmc150_magn_info;
898 if (irq > 0) {
899 data->dready_trig = devm_iio_trigger_alloc(dev,
900 "%s-dev%d",
901 indio_dev->name,
902 iio_device_id(indio_dev));
903 if (!data->dready_trig) {
904 ret = -ENOMEM;
905 dev_err(dev, "iio trigger alloc failed\n");
906 goto err_poweroff;
909 data->dready_trig->ops = &bmc150_magn_trigger_ops;
910 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
911 ret = iio_trigger_register(data->dready_trig);
912 if (ret) {
913 dev_err(dev, "iio trigger register failed\n");
914 goto err_poweroff;
917 ret = request_threaded_irq(irq,
918 iio_trigger_generic_data_rdy_poll,
919 NULL,
920 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
921 BMC150_MAGN_IRQ_NAME,
922 data->dready_trig);
923 if (ret < 0) {
924 dev_err(dev, "request irq %d failed\n", irq);
925 goto err_trigger_unregister;
929 ret = iio_triggered_buffer_setup(indio_dev,
930 iio_pollfunc_store_time,
931 bmc150_magn_trigger_handler,
932 &bmc150_magn_buffer_setup_ops);
933 if (ret < 0) {
934 dev_err(dev, "iio triggered buffer setup failed\n");
935 goto err_free_irq;
938 ret = pm_runtime_set_active(dev);
939 if (ret)
940 goto err_buffer_cleanup;
942 pm_runtime_enable(dev);
943 pm_runtime_set_autosuspend_delay(dev,
944 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
945 pm_runtime_use_autosuspend(dev);
947 ret = iio_device_register(indio_dev);
948 if (ret < 0) {
949 dev_err(dev, "unable to register iio device\n");
950 goto err_pm_cleanup;
953 dev_dbg(dev, "Registered device %s\n", name);
954 return 0;
956 err_pm_cleanup:
957 pm_runtime_dont_use_autosuspend(dev);
958 pm_runtime_disable(dev);
959 err_buffer_cleanup:
960 iio_triggered_buffer_cleanup(indio_dev);
961 err_free_irq:
962 if (irq > 0)
963 free_irq(irq, data->dready_trig);
964 err_trigger_unregister:
965 if (data->dready_trig)
966 iio_trigger_unregister(data->dready_trig);
967 err_poweroff:
968 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
969 return ret;
971 EXPORT_SYMBOL_NS(bmc150_magn_probe, IIO_BMC150_MAGN);
973 void bmc150_magn_remove(struct device *dev)
975 struct iio_dev *indio_dev = dev_get_drvdata(dev);
976 struct bmc150_magn_data *data = iio_priv(indio_dev);
978 iio_device_unregister(indio_dev);
980 pm_runtime_disable(dev);
981 pm_runtime_set_suspended(dev);
983 iio_triggered_buffer_cleanup(indio_dev);
985 if (data->irq > 0)
986 free_irq(data->irq, data->dready_trig);
988 if (data->dready_trig)
989 iio_trigger_unregister(data->dready_trig);
991 mutex_lock(&data->mutex);
992 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
993 mutex_unlock(&data->mutex);
995 regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
997 EXPORT_SYMBOL_NS(bmc150_magn_remove, IIO_BMC150_MAGN);
999 #ifdef CONFIG_PM
1000 static int bmc150_magn_runtime_suspend(struct device *dev)
1002 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1003 struct bmc150_magn_data *data = iio_priv(indio_dev);
1004 int ret;
1006 mutex_lock(&data->mutex);
1007 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1008 true);
1009 mutex_unlock(&data->mutex);
1010 if (ret < 0) {
1011 dev_err(dev, "powering off device failed\n");
1012 return ret;
1014 return 0;
1018 * Should be called with data->mutex held.
1020 static int bmc150_magn_runtime_resume(struct device *dev)
1022 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1023 struct bmc150_magn_data *data = iio_priv(indio_dev);
1025 return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1026 true);
1028 #endif
1030 #ifdef CONFIG_PM_SLEEP
1031 static int bmc150_magn_suspend(struct device *dev)
1033 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1034 struct bmc150_magn_data *data = iio_priv(indio_dev);
1035 int ret;
1037 mutex_lock(&data->mutex);
1038 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1039 true);
1040 mutex_unlock(&data->mutex);
1042 return ret;
1045 static int bmc150_magn_resume(struct device *dev)
1047 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1048 struct bmc150_magn_data *data = iio_priv(indio_dev);
1049 int ret;
1051 mutex_lock(&data->mutex);
1052 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1053 true);
1054 mutex_unlock(&data->mutex);
1056 return ret;
1058 #endif
1060 const struct dev_pm_ops bmc150_magn_pm_ops = {
1061 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1062 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1063 bmc150_magn_runtime_resume, NULL)
1065 EXPORT_SYMBOL_NS(bmc150_magn_pm_ops, IIO_BMC150_MAGN);
1067 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1068 MODULE_LICENSE("GPL v2");
1069 MODULE_DESCRIPTION("BMC150 magnetometer core driver");