1 // SPDX-License-Identifier: GPL-2.0-only
3 * Bosch BMC150 three-axis magnetic field sensor driver
5 * Copyright (c) 2015, Intel Corporation.
7 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
9 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/events.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
29 #include "bmc150_magn.h"
31 #define BMC150_MAGN_DRV_NAME "bmc150_magn"
32 #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event"
34 #define BMC150_MAGN_REG_CHIP_ID 0x40
35 #define BMC150_MAGN_CHIP_ID_VAL 0x32
37 #define BMC150_MAGN_REG_X_L 0x42
38 #define BMC150_MAGN_REG_X_M 0x43
39 #define BMC150_MAGN_REG_Y_L 0x44
40 #define BMC150_MAGN_REG_Y_M 0x45
41 #define BMC150_MAGN_SHIFT_XY_L 3
42 #define BMC150_MAGN_REG_Z_L 0x46
43 #define BMC150_MAGN_REG_Z_M 0x47
44 #define BMC150_MAGN_SHIFT_Z_L 1
45 #define BMC150_MAGN_REG_RHALL_L 0x48
46 #define BMC150_MAGN_REG_RHALL_M 0x49
47 #define BMC150_MAGN_SHIFT_RHALL_L 2
49 #define BMC150_MAGN_REG_INT_STATUS 0x4A
51 #define BMC150_MAGN_REG_POWER 0x4B
52 #define BMC150_MAGN_MASK_POWER_CTL BIT(0)
54 #define BMC150_MAGN_REG_OPMODE_ODR 0x4C
55 #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1)
56 #define BMC150_MAGN_SHIFT_OPMODE 1
57 #define BMC150_MAGN_MODE_NORMAL 0x00
58 #define BMC150_MAGN_MODE_FORCED 0x01
59 #define BMC150_MAGN_MODE_SLEEP 0x03
60 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3)
61 #define BMC150_MAGN_SHIFT_ODR 3
63 #define BMC150_MAGN_REG_INT 0x4D
65 #define BMC150_MAGN_REG_INT_DRDY 0x4E
66 #define BMC150_MAGN_MASK_DRDY_EN BIT(7)
67 #define BMC150_MAGN_SHIFT_DRDY_EN 7
68 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6)
69 #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5)
70 #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4)
71 #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3)
72 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2)
73 #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1)
74 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0)
76 #define BMC150_MAGN_REG_LOW_THRESH 0x4F
77 #define BMC150_MAGN_REG_HIGH_THRESH 0x50
78 #define BMC150_MAGN_REG_REP_XY 0x51
79 #define BMC150_MAGN_REG_REP_Z 0x52
80 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0)
82 #define BMC150_MAGN_REG_TRIM_START 0x5D
83 #define BMC150_MAGN_REG_TRIM_END 0x71
85 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096
86 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384
88 /* Time from SUSPEND to SLEEP */
89 #define BMC150_MAGN_START_UP_TIME_MS 3
91 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000
93 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
94 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
95 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
96 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
98 enum bmc150_magn_axis
{
103 AXIS_XYZ_MAX
= RHALL
,
107 enum bmc150_magn_power_modes
{
108 BMC150_MAGN_POWER_MODE_SUSPEND
,
109 BMC150_MAGN_POWER_MODE_SLEEP
,
110 BMC150_MAGN_POWER_MODE_NORMAL
,
113 struct bmc150_magn_trim_regs
{
130 struct bmc150_magn_data
{
133 * 1. Protect this structure.
134 * 2. Serialize sequences that power on/off the device and access HW.
137 struct regmap
*regmap
;
138 struct regulator_bulk_data regulators
[2];
139 struct iio_mount_matrix orientation
;
140 /* Ensure timestamp is naturally aligned */
143 s64 timestamp
__aligned(8);
145 struct iio_trigger
*dready_trig
;
146 bool dready_trigger_on
;
151 static const struct {
154 } bmc150_magn_samp_freq_table
[] = { {2, 0x01},
163 enum bmc150_magn_presets
{
166 ENHANCED_REGULAR_PRESET
,
170 static const struct bmc150_magn_preset
{
174 } bmc150_magn_presets_table
[] = {
175 [LOW_POWER_PRESET
] = {3, 3, 10},
176 [REGULAR_PRESET
] = {9, 15, 10},
177 [ENHANCED_REGULAR_PRESET
] = {15, 27, 10},
178 [HIGH_ACCURACY_PRESET
] = {47, 83, 20},
181 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
183 static bool bmc150_magn_is_writeable_reg(struct device
*dev
, unsigned int reg
)
186 case BMC150_MAGN_REG_POWER
:
187 case BMC150_MAGN_REG_OPMODE_ODR
:
188 case BMC150_MAGN_REG_INT
:
189 case BMC150_MAGN_REG_INT_DRDY
:
190 case BMC150_MAGN_REG_LOW_THRESH
:
191 case BMC150_MAGN_REG_HIGH_THRESH
:
192 case BMC150_MAGN_REG_REP_XY
:
193 case BMC150_MAGN_REG_REP_Z
:
200 static bool bmc150_magn_is_volatile_reg(struct device
*dev
, unsigned int reg
)
203 case BMC150_MAGN_REG_X_L
:
204 case BMC150_MAGN_REG_X_M
:
205 case BMC150_MAGN_REG_Y_L
:
206 case BMC150_MAGN_REG_Y_M
:
207 case BMC150_MAGN_REG_Z_L
:
208 case BMC150_MAGN_REG_Z_M
:
209 case BMC150_MAGN_REG_RHALL_L
:
210 case BMC150_MAGN_REG_RHALL_M
:
211 case BMC150_MAGN_REG_INT_STATUS
:
218 const struct regmap_config bmc150_magn_regmap_config
= {
222 .max_register
= BMC150_MAGN_REG_TRIM_END
,
223 .cache_type
= REGCACHE_RBTREE
,
225 .writeable_reg
= bmc150_magn_is_writeable_reg
,
226 .volatile_reg
= bmc150_magn_is_volatile_reg
,
228 EXPORT_SYMBOL_NS(bmc150_magn_regmap_config
, IIO_BMC150_MAGN
);
230 static int bmc150_magn_set_power_mode(struct bmc150_magn_data
*data
,
231 enum bmc150_magn_power_modes mode
,
237 case BMC150_MAGN_POWER_MODE_SUSPEND
:
238 ret
= regmap_update_bits(data
->regmap
, BMC150_MAGN_REG_POWER
,
239 BMC150_MAGN_MASK_POWER_CTL
, !state
);
242 usleep_range(BMC150_MAGN_START_UP_TIME_MS
* 1000, 20000);
244 case BMC150_MAGN_POWER_MODE_SLEEP
:
245 return regmap_update_bits(data
->regmap
,
246 BMC150_MAGN_REG_OPMODE_ODR
,
247 BMC150_MAGN_MASK_OPMODE
,
248 BMC150_MAGN_MODE_SLEEP
<<
249 BMC150_MAGN_SHIFT_OPMODE
);
250 case BMC150_MAGN_POWER_MODE_NORMAL
:
251 return regmap_update_bits(data
->regmap
,
252 BMC150_MAGN_REG_OPMODE_ODR
,
253 BMC150_MAGN_MASK_OPMODE
,
254 BMC150_MAGN_MODE_NORMAL
<<
255 BMC150_MAGN_SHIFT_OPMODE
);
261 static int bmc150_magn_set_power_state(struct bmc150_magn_data
*data
, bool on
)
267 ret
= pm_runtime_resume_and_get(data
->dev
);
269 pm_runtime_mark_last_busy(data
->dev
);
270 ret
= pm_runtime_put_autosuspend(data
->dev
);
275 "failed to change power state to %d\n", on
);
283 static int bmc150_magn_get_odr(struct bmc150_magn_data
*data
, int *val
)
288 ret
= regmap_read(data
->regmap
, BMC150_MAGN_REG_OPMODE_ODR
, ®_val
);
291 odr_val
= (reg_val
& BMC150_MAGN_MASK_ODR
) >> BMC150_MAGN_SHIFT_ODR
;
293 for (i
= 0; i
< ARRAY_SIZE(bmc150_magn_samp_freq_table
); i
++)
294 if (bmc150_magn_samp_freq_table
[i
].reg_val
== odr_val
) {
295 *val
= bmc150_magn_samp_freq_table
[i
].freq
;
302 static int bmc150_magn_set_odr(struct bmc150_magn_data
*data
, int val
)
307 for (i
= 0; i
< ARRAY_SIZE(bmc150_magn_samp_freq_table
); i
++) {
308 if (bmc150_magn_samp_freq_table
[i
].freq
== val
) {
309 ret
= regmap_update_bits(data
->regmap
,
310 BMC150_MAGN_REG_OPMODE_ODR
,
311 BMC150_MAGN_MASK_ODR
,
312 bmc150_magn_samp_freq_table
[i
].
314 BMC150_MAGN_SHIFT_ODR
);
324 static int bmc150_magn_set_max_odr(struct bmc150_magn_data
*data
, int rep_xy
,
327 int ret
, reg_val
, max_odr
;
330 ret
= regmap_read(data
->regmap
, BMC150_MAGN_REG_REP_XY
,
334 rep_xy
= BMC150_MAGN_REGVAL_TO_REPXY(reg_val
);
337 ret
= regmap_read(data
->regmap
, BMC150_MAGN_REG_REP_Z
,
341 rep_z
= BMC150_MAGN_REGVAL_TO_REPZ(reg_val
);
344 ret
= bmc150_magn_get_odr(data
, &odr
);
348 /* the maximum selectable read-out frequency from datasheet */
349 max_odr
= 1000000 / (145 * rep_xy
+ 500 * rep_z
+ 980);
352 "Can't set oversampling with sampling freq %d\n",
356 data
->max_odr
= max_odr
;
361 static s32
bmc150_magn_compensate_x(struct bmc150_magn_trim_regs
*tregs
, s16 x
,
365 u16 xyz1
= le16_to_cpu(tregs
->xyz1
);
367 if (x
== BMC150_MAGN_XY_OVERFLOW_VAL
)
373 val
= ((s16
)(((u16
)((((s32
)xyz1
) << 14) / rhall
)) - ((u16
)0x4000)));
374 val
= ((s16
)((((s32
)x
) * ((((((((s32
)tregs
->xy2
) * ((((s32
)val
) *
375 ((s32
)val
)) >> 7)) + (((s32
)val
) *
376 ((s32
)(((s16
)tregs
->xy1
) << 7)))) >> 9) + ((s32
)0x100000)) *
377 ((s32
)(((s16
)tregs
->x2
) + ((s16
)0xA0)))) >> 12)) >> 13)) +
378 (((s16
)tregs
->x1
) << 3);
383 static s32
bmc150_magn_compensate_y(struct bmc150_magn_trim_regs
*tregs
, s16 y
,
387 u16 xyz1
= le16_to_cpu(tregs
->xyz1
);
389 if (y
== BMC150_MAGN_XY_OVERFLOW_VAL
)
395 val
= ((s16
)(((u16
)((((s32
)xyz1
) << 14) / rhall
)) - ((u16
)0x4000)));
396 val
= ((s16
)((((s32
)y
) * ((((((((s32
)tregs
->xy2
) * ((((s32
)val
) *
397 ((s32
)val
)) >> 7)) + (((s32
)val
) *
398 ((s32
)(((s16
)tregs
->xy1
) << 7)))) >> 9) + ((s32
)0x100000)) *
399 ((s32
)(((s16
)tregs
->y2
) + ((s16
)0xA0)))) >> 12)) >> 13)) +
400 (((s16
)tregs
->y1
) << 3);
405 static s32
bmc150_magn_compensate_z(struct bmc150_magn_trim_regs
*tregs
, s16 z
,
409 u16 xyz1
= le16_to_cpu(tregs
->xyz1
);
410 u16 z1
= le16_to_cpu(tregs
->z1
);
411 s16 z2
= le16_to_cpu(tregs
->z2
);
412 s16 z3
= le16_to_cpu(tregs
->z3
);
413 s16 z4
= le16_to_cpu(tregs
->z4
);
415 if (z
== BMC150_MAGN_Z_OVERFLOW_VAL
)
418 val
= (((((s32
)(z
- z4
)) << 15) - ((((s32
)z3
) * ((s32
)(((s16
)rhall
) -
419 ((s16
)xyz1
)))) >> 2)) / (z2
+ ((s16
)(((((s32
)z1
) *
420 ((((s16
)rhall
) << 1))) + (1 << 15)) >> 16))));
425 static int bmc150_magn_read_xyz(struct bmc150_magn_data
*data
, s32
*buffer
)
428 __le16 values
[AXIS_XYZR_MAX
];
429 s16 raw_x
, raw_y
, raw_z
;
431 struct bmc150_magn_trim_regs tregs
;
433 ret
= regmap_bulk_read(data
->regmap
, BMC150_MAGN_REG_X_L
,
434 values
, sizeof(values
));
438 raw_x
= (s16
)le16_to_cpu(values
[AXIS_X
]) >> BMC150_MAGN_SHIFT_XY_L
;
439 raw_y
= (s16
)le16_to_cpu(values
[AXIS_Y
]) >> BMC150_MAGN_SHIFT_XY_L
;
440 raw_z
= (s16
)le16_to_cpu(values
[AXIS_Z
]) >> BMC150_MAGN_SHIFT_Z_L
;
441 rhall
= le16_to_cpu(values
[RHALL
]) >> BMC150_MAGN_SHIFT_RHALL_L
;
443 ret
= regmap_bulk_read(data
->regmap
, BMC150_MAGN_REG_TRIM_START
,
444 &tregs
, sizeof(tregs
));
448 buffer
[AXIS_X
] = bmc150_magn_compensate_x(&tregs
, raw_x
, rhall
);
449 buffer
[AXIS_Y
] = bmc150_magn_compensate_y(&tregs
, raw_y
, rhall
);
450 buffer
[AXIS_Z
] = bmc150_magn_compensate_z(&tregs
, raw_z
, rhall
);
455 static int bmc150_magn_read_raw(struct iio_dev
*indio_dev
,
456 struct iio_chan_spec
const *chan
,
457 int *val
, int *val2
, long mask
)
459 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
461 s32 values
[AXIS_XYZ_MAX
];
464 case IIO_CHAN_INFO_RAW
:
465 if (iio_buffer_enabled(indio_dev
))
467 mutex_lock(&data
->mutex
);
469 ret
= bmc150_magn_set_power_state(data
, true);
471 mutex_unlock(&data
->mutex
);
475 ret
= bmc150_magn_read_xyz(data
, values
);
477 bmc150_magn_set_power_state(data
, false);
478 mutex_unlock(&data
->mutex
);
481 *val
= values
[chan
->scan_index
];
483 ret
= bmc150_magn_set_power_state(data
, false);
485 mutex_unlock(&data
->mutex
);
489 mutex_unlock(&data
->mutex
);
491 case IIO_CHAN_INFO_SCALE
:
493 * The API/driver performs an off-chip temperature
494 * compensation and outputs x/y/z magnetic field data in
495 * 16 LSB/uT to the upper application layer.
499 return IIO_VAL_INT_PLUS_MICRO
;
500 case IIO_CHAN_INFO_SAMP_FREQ
:
501 ret
= bmc150_magn_get_odr(data
, val
);
505 case IIO_CHAN_INFO_OVERSAMPLING_RATIO
:
506 switch (chan
->channel2
) {
509 ret
= regmap_read(data
->regmap
, BMC150_MAGN_REG_REP_XY
,
513 *val
= BMC150_MAGN_REGVAL_TO_REPXY(tmp
);
516 ret
= regmap_read(data
->regmap
, BMC150_MAGN_REG_REP_Z
,
520 *val
= BMC150_MAGN_REGVAL_TO_REPZ(tmp
);
530 static int bmc150_magn_write_raw(struct iio_dev
*indio_dev
,
531 struct iio_chan_spec
const *chan
,
532 int val
, int val2
, long mask
)
534 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
538 case IIO_CHAN_INFO_SAMP_FREQ
:
539 if (val
> data
->max_odr
)
541 mutex_lock(&data
->mutex
);
542 ret
= bmc150_magn_set_odr(data
, val
);
543 mutex_unlock(&data
->mutex
);
545 case IIO_CHAN_INFO_OVERSAMPLING_RATIO
:
546 switch (chan
->channel2
) {
549 if (val
< 1 || val
> 511)
551 mutex_lock(&data
->mutex
);
552 ret
= bmc150_magn_set_max_odr(data
, val
, 0, 0);
554 mutex_unlock(&data
->mutex
);
557 ret
= regmap_update_bits(data
->regmap
,
558 BMC150_MAGN_REG_REP_XY
,
559 BMC150_MAGN_REG_REP_DATAMASK
,
560 BMC150_MAGN_REPXY_TO_REGVAL
562 mutex_unlock(&data
->mutex
);
565 if (val
< 1 || val
> 256)
567 mutex_lock(&data
->mutex
);
568 ret
= bmc150_magn_set_max_odr(data
, 0, val
, 0);
570 mutex_unlock(&data
->mutex
);
573 ret
= regmap_update_bits(data
->regmap
,
574 BMC150_MAGN_REG_REP_Z
,
575 BMC150_MAGN_REG_REP_DATAMASK
,
576 BMC150_MAGN_REPZ_TO_REGVAL
578 mutex_unlock(&data
->mutex
);
588 static ssize_t
bmc150_magn_show_samp_freq_avail(struct device
*dev
,
589 struct device_attribute
*attr
,
592 struct iio_dev
*indio_dev
= dev_to_iio_dev(dev
);
593 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
597 for (i
= 0; i
< ARRAY_SIZE(bmc150_magn_samp_freq_table
); i
++) {
598 if (bmc150_magn_samp_freq_table
[i
].freq
> data
->max_odr
)
600 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
, "%d ",
601 bmc150_magn_samp_freq_table
[i
].freq
);
603 /* replace last space with a newline */
609 static const struct iio_mount_matrix
*
610 bmc150_magn_get_mount_matrix(const struct iio_dev
*indio_dev
,
611 const struct iio_chan_spec
*chan
)
613 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
615 return &data
->orientation
;
618 static const struct iio_chan_spec_ext_info bmc150_magn_ext_info
[] = {
619 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR
, bmc150_magn_get_mount_matrix
),
623 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail
);
625 static struct attribute
*bmc150_magn_attributes
[] = {
626 &iio_dev_attr_sampling_frequency_available
.dev_attr
.attr
,
630 static const struct attribute_group bmc150_magn_attrs_group
= {
631 .attrs
= bmc150_magn_attributes
,
634 #define BMC150_MAGN_CHANNEL(_axis) { \
637 .channel2 = IIO_MOD_##_axis, \
638 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
639 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
640 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
641 BIT(IIO_CHAN_INFO_SCALE), \
642 .scan_index = AXIS_##_axis, \
647 .endianness = IIO_LE \
649 .ext_info = bmc150_magn_ext_info, \
652 static const struct iio_chan_spec bmc150_magn_channels
[] = {
653 BMC150_MAGN_CHANNEL(X
),
654 BMC150_MAGN_CHANNEL(Y
),
655 BMC150_MAGN_CHANNEL(Z
),
656 IIO_CHAN_SOFT_TIMESTAMP(3),
659 static const struct iio_info bmc150_magn_info
= {
660 .attrs
= &bmc150_magn_attrs_group
,
661 .read_raw
= bmc150_magn_read_raw
,
662 .write_raw
= bmc150_magn_write_raw
,
665 static const unsigned long bmc150_magn_scan_masks
[] = {
666 BIT(AXIS_X
) | BIT(AXIS_Y
) | BIT(AXIS_Z
),
669 static irqreturn_t
bmc150_magn_trigger_handler(int irq
, void *p
)
671 struct iio_poll_func
*pf
= p
;
672 struct iio_dev
*indio_dev
= pf
->indio_dev
;
673 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
676 mutex_lock(&data
->mutex
);
677 ret
= bmc150_magn_read_xyz(data
, data
->scan
.chans
);
681 iio_push_to_buffers_with_timestamp(indio_dev
, &data
->scan
,
685 mutex_unlock(&data
->mutex
);
686 iio_trigger_notify_done(indio_dev
->trig
);
691 static int bmc150_magn_init(struct bmc150_magn_data
*data
)
694 struct bmc150_magn_preset preset
;
696 ret
= regulator_bulk_enable(ARRAY_SIZE(data
->regulators
),
699 dev_err(data
->dev
, "Failed to enable regulators: %d\n", ret
);
703 * 3ms power-on time according to datasheet, let's better
704 * be safe than sorry and set this delay to 5ms.
708 ret
= bmc150_magn_set_power_mode(data
, BMC150_MAGN_POWER_MODE_SUSPEND
,
712 "Failed to bring up device from suspend mode\n");
713 goto err_regulator_disable
;
716 ret
= regmap_read(data
->regmap
, BMC150_MAGN_REG_CHIP_ID
, &chip_id
);
718 dev_err(data
->dev
, "Failed reading chip id\n");
721 if (chip_id
!= BMC150_MAGN_CHIP_ID_VAL
) {
722 dev_err(data
->dev
, "Invalid chip id 0x%x\n", chip_id
);
726 dev_dbg(data
->dev
, "Chip id %x\n", chip_id
);
728 preset
= bmc150_magn_presets_table
[BMC150_MAGN_DEFAULT_PRESET
];
729 ret
= bmc150_magn_set_odr(data
, preset
.odr
);
731 dev_err(data
->dev
, "Failed to set ODR to %d\n",
736 ret
= regmap_write(data
->regmap
, BMC150_MAGN_REG_REP_XY
,
737 BMC150_MAGN_REPXY_TO_REGVAL(preset
.rep_xy
));
739 dev_err(data
->dev
, "Failed to set REP XY to %d\n",
744 ret
= regmap_write(data
->regmap
, BMC150_MAGN_REG_REP_Z
,
745 BMC150_MAGN_REPZ_TO_REGVAL(preset
.rep_z
));
747 dev_err(data
->dev
, "Failed to set REP Z to %d\n",
752 ret
= bmc150_magn_set_max_odr(data
, preset
.rep_xy
, preset
.rep_z
,
757 ret
= bmc150_magn_set_power_mode(data
, BMC150_MAGN_POWER_MODE_NORMAL
,
760 dev_err(data
->dev
, "Failed to power on device\n");
767 bmc150_magn_set_power_mode(data
, BMC150_MAGN_POWER_MODE_SUSPEND
, true);
768 err_regulator_disable
:
769 regulator_bulk_disable(ARRAY_SIZE(data
->regulators
), data
->regulators
);
773 static int bmc150_magn_reset_intr(struct bmc150_magn_data
*data
)
778 * Data Ready (DRDY) is always cleared after
779 * readout of data registers ends.
781 return regmap_read(data
->regmap
, BMC150_MAGN_REG_X_L
, &tmp
);
784 static void bmc150_magn_trig_reen(struct iio_trigger
*trig
)
786 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
787 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
790 if (!data
->dready_trigger_on
)
793 mutex_lock(&data
->mutex
);
794 ret
= bmc150_magn_reset_intr(data
);
795 mutex_unlock(&data
->mutex
);
797 dev_err(data
->dev
, "Failed to reset interrupt\n");
800 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger
*trig
,
803 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
804 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
807 mutex_lock(&data
->mutex
);
808 if (state
== data
->dready_trigger_on
)
811 ret
= regmap_update_bits(data
->regmap
, BMC150_MAGN_REG_INT_DRDY
,
812 BMC150_MAGN_MASK_DRDY_EN
,
813 state
<< BMC150_MAGN_SHIFT_DRDY_EN
);
817 data
->dready_trigger_on
= state
;
820 ret
= bmc150_magn_reset_intr(data
);
824 mutex_unlock(&data
->mutex
);
829 mutex_unlock(&data
->mutex
);
833 static const struct iio_trigger_ops bmc150_magn_trigger_ops
= {
834 .set_trigger_state
= bmc150_magn_data_rdy_trigger_set_state
,
835 .reenable
= bmc150_magn_trig_reen
,
838 static int bmc150_magn_buffer_preenable(struct iio_dev
*indio_dev
)
840 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
842 return bmc150_magn_set_power_state(data
, true);
845 static int bmc150_magn_buffer_postdisable(struct iio_dev
*indio_dev
)
847 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
849 return bmc150_magn_set_power_state(data
, false);
852 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops
= {
853 .preenable
= bmc150_magn_buffer_preenable
,
854 .postdisable
= bmc150_magn_buffer_postdisable
,
857 int bmc150_magn_probe(struct device
*dev
, struct regmap
*regmap
,
858 int irq
, const char *name
)
860 struct bmc150_magn_data
*data
;
861 struct iio_dev
*indio_dev
;
864 indio_dev
= devm_iio_device_alloc(dev
, sizeof(*data
));
868 data
= iio_priv(indio_dev
);
869 dev_set_drvdata(dev
, indio_dev
);
870 data
->regmap
= regmap
;
874 data
->regulators
[0].supply
= "vdd";
875 data
->regulators
[1].supply
= "vddio";
876 ret
= devm_regulator_bulk_get(dev
, ARRAY_SIZE(data
->regulators
),
879 return dev_err_probe(dev
, ret
, "failed to get regulators\n");
881 ret
= iio_read_mount_matrix(dev
, &data
->orientation
);
885 mutex_init(&data
->mutex
);
887 ret
= bmc150_magn_init(data
);
891 indio_dev
->channels
= bmc150_magn_channels
;
892 indio_dev
->num_channels
= ARRAY_SIZE(bmc150_magn_channels
);
893 indio_dev
->available_scan_masks
= bmc150_magn_scan_masks
;
894 indio_dev
->name
= name
;
895 indio_dev
->modes
= INDIO_DIRECT_MODE
;
896 indio_dev
->info
= &bmc150_magn_info
;
899 data
->dready_trig
= devm_iio_trigger_alloc(dev
,
902 iio_device_id(indio_dev
));
903 if (!data
->dready_trig
) {
905 dev_err(dev
, "iio trigger alloc failed\n");
909 data
->dready_trig
->ops
= &bmc150_magn_trigger_ops
;
910 iio_trigger_set_drvdata(data
->dready_trig
, indio_dev
);
911 ret
= iio_trigger_register(data
->dready_trig
);
913 dev_err(dev
, "iio trigger register failed\n");
917 ret
= request_threaded_irq(irq
,
918 iio_trigger_generic_data_rdy_poll
,
920 IRQF_TRIGGER_RISING
| IRQF_ONESHOT
,
921 BMC150_MAGN_IRQ_NAME
,
924 dev_err(dev
, "request irq %d failed\n", irq
);
925 goto err_trigger_unregister
;
929 ret
= iio_triggered_buffer_setup(indio_dev
,
930 iio_pollfunc_store_time
,
931 bmc150_magn_trigger_handler
,
932 &bmc150_magn_buffer_setup_ops
);
934 dev_err(dev
, "iio triggered buffer setup failed\n");
938 ret
= pm_runtime_set_active(dev
);
940 goto err_buffer_cleanup
;
942 pm_runtime_enable(dev
);
943 pm_runtime_set_autosuspend_delay(dev
,
944 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS
);
945 pm_runtime_use_autosuspend(dev
);
947 ret
= iio_device_register(indio_dev
);
949 dev_err(dev
, "unable to register iio device\n");
953 dev_dbg(dev
, "Registered device %s\n", name
);
957 pm_runtime_dont_use_autosuspend(dev
);
958 pm_runtime_disable(dev
);
960 iio_triggered_buffer_cleanup(indio_dev
);
963 free_irq(irq
, data
->dready_trig
);
964 err_trigger_unregister
:
965 if (data
->dready_trig
)
966 iio_trigger_unregister(data
->dready_trig
);
968 bmc150_magn_set_power_mode(data
, BMC150_MAGN_POWER_MODE_SUSPEND
, true);
971 EXPORT_SYMBOL_NS(bmc150_magn_probe
, IIO_BMC150_MAGN
);
973 void bmc150_magn_remove(struct device
*dev
)
975 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
976 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
978 iio_device_unregister(indio_dev
);
980 pm_runtime_disable(dev
);
981 pm_runtime_set_suspended(dev
);
983 iio_triggered_buffer_cleanup(indio_dev
);
986 free_irq(data
->irq
, data
->dready_trig
);
988 if (data
->dready_trig
)
989 iio_trigger_unregister(data
->dready_trig
);
991 mutex_lock(&data
->mutex
);
992 bmc150_magn_set_power_mode(data
, BMC150_MAGN_POWER_MODE_SUSPEND
, true);
993 mutex_unlock(&data
->mutex
);
995 regulator_bulk_disable(ARRAY_SIZE(data
->regulators
), data
->regulators
);
997 EXPORT_SYMBOL_NS(bmc150_magn_remove
, IIO_BMC150_MAGN
);
1000 static int bmc150_magn_runtime_suspend(struct device
*dev
)
1002 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1003 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
1006 mutex_lock(&data
->mutex
);
1007 ret
= bmc150_magn_set_power_mode(data
, BMC150_MAGN_POWER_MODE_SLEEP
,
1009 mutex_unlock(&data
->mutex
);
1011 dev_err(dev
, "powering off device failed\n");
1018 * Should be called with data->mutex held.
1020 static int bmc150_magn_runtime_resume(struct device
*dev
)
1022 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1023 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
1025 return bmc150_magn_set_power_mode(data
, BMC150_MAGN_POWER_MODE_NORMAL
,
1030 #ifdef CONFIG_PM_SLEEP
1031 static int bmc150_magn_suspend(struct device
*dev
)
1033 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1034 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
1037 mutex_lock(&data
->mutex
);
1038 ret
= bmc150_magn_set_power_mode(data
, BMC150_MAGN_POWER_MODE_SLEEP
,
1040 mutex_unlock(&data
->mutex
);
1045 static int bmc150_magn_resume(struct device
*dev
)
1047 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1048 struct bmc150_magn_data
*data
= iio_priv(indio_dev
);
1051 mutex_lock(&data
->mutex
);
1052 ret
= bmc150_magn_set_power_mode(data
, BMC150_MAGN_POWER_MODE_NORMAL
,
1054 mutex_unlock(&data
->mutex
);
1060 const struct dev_pm_ops bmc150_magn_pm_ops
= {
1061 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend
, bmc150_magn_resume
)
1062 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend
,
1063 bmc150_magn_runtime_resume
, NULL
)
1065 EXPORT_SYMBOL_NS(bmc150_magn_pm_ops
, IIO_BMC150_MAGN
);
1067 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1068 MODULE_LICENSE("GPL v2");
1069 MODULE_DESCRIPTION("BMC150 magnetometer core driver");