Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / infiniband / core / umem_odp.c
blobe9fa22d31c233204ccd8b7decc7353b3629bad3c
1 /*
2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/interval_tree.h>
43 #include <linux/hmm.h>
44 #include <linux/pagemap.h>
46 #include <rdma/ib_umem_odp.h>
48 #include "uverbs.h"
50 static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp,
51 const struct mmu_interval_notifier_ops *ops)
53 int ret;
55 umem_odp->umem.is_odp = 1;
56 mutex_init(&umem_odp->umem_mutex);
58 if (!umem_odp->is_implicit_odp) {
59 size_t page_size = 1UL << umem_odp->page_shift;
60 unsigned long start;
61 unsigned long end;
62 size_t ndmas, npfns;
64 start = ALIGN_DOWN(umem_odp->umem.address, page_size);
65 if (check_add_overflow(umem_odp->umem.address,
66 (unsigned long)umem_odp->umem.length,
67 &end))
68 return -EOVERFLOW;
69 end = ALIGN(end, page_size);
70 if (unlikely(end < page_size))
71 return -EOVERFLOW;
73 ndmas = (end - start) >> umem_odp->page_shift;
74 if (!ndmas)
75 return -EINVAL;
77 npfns = (end - start) >> PAGE_SHIFT;
78 umem_odp->pfn_list = kvcalloc(
79 npfns, sizeof(*umem_odp->pfn_list), GFP_KERNEL);
80 if (!umem_odp->pfn_list)
81 return -ENOMEM;
83 umem_odp->dma_list = kvcalloc(
84 ndmas, sizeof(*umem_odp->dma_list), GFP_KERNEL);
85 if (!umem_odp->dma_list) {
86 ret = -ENOMEM;
87 goto out_pfn_list;
90 ret = mmu_interval_notifier_insert(&umem_odp->notifier,
91 umem_odp->umem.owning_mm,
92 start, end - start, ops);
93 if (ret)
94 goto out_dma_list;
97 return 0;
99 out_dma_list:
100 kvfree(umem_odp->dma_list);
101 out_pfn_list:
102 kvfree(umem_odp->pfn_list);
103 return ret;
107 * ib_umem_odp_alloc_implicit - Allocate a parent implicit ODP umem
109 * Implicit ODP umems do not have a VA range and do not have any page lists.
110 * They exist only to hold the per_mm reference to help the driver create
111 * children umems.
113 * @device: IB device to create UMEM
114 * @access: ib_reg_mr access flags
116 struct ib_umem_odp *ib_umem_odp_alloc_implicit(struct ib_device *device,
117 int access)
119 struct ib_umem *umem;
120 struct ib_umem_odp *umem_odp;
121 int ret;
123 if (access & IB_ACCESS_HUGETLB)
124 return ERR_PTR(-EINVAL);
126 umem_odp = kzalloc(sizeof(*umem_odp), GFP_KERNEL);
127 if (!umem_odp)
128 return ERR_PTR(-ENOMEM);
129 umem = &umem_odp->umem;
130 umem->ibdev = device;
131 umem->writable = ib_access_writable(access);
132 umem->owning_mm = current->mm;
133 umem_odp->is_implicit_odp = 1;
134 umem_odp->page_shift = PAGE_SHIFT;
136 umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
137 ret = ib_init_umem_odp(umem_odp, NULL);
138 if (ret) {
139 put_pid(umem_odp->tgid);
140 kfree(umem_odp);
141 return ERR_PTR(ret);
143 return umem_odp;
145 EXPORT_SYMBOL(ib_umem_odp_alloc_implicit);
148 * ib_umem_odp_alloc_child - Allocate a child ODP umem under an implicit
149 * parent ODP umem
151 * @root: The parent umem enclosing the child. This must be allocated using
152 * ib_alloc_implicit_odp_umem()
153 * @addr: The starting userspace VA
154 * @size: The length of the userspace VA
155 * @ops: MMU interval ops, currently only @invalidate
157 struct ib_umem_odp *
158 ib_umem_odp_alloc_child(struct ib_umem_odp *root, unsigned long addr,
159 size_t size,
160 const struct mmu_interval_notifier_ops *ops)
163 * Caller must ensure that root cannot be freed during the call to
164 * ib_alloc_odp_umem.
166 struct ib_umem_odp *odp_data;
167 struct ib_umem *umem;
168 int ret;
170 if (WARN_ON(!root->is_implicit_odp))
171 return ERR_PTR(-EINVAL);
173 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
174 if (!odp_data)
175 return ERR_PTR(-ENOMEM);
176 umem = &odp_data->umem;
177 umem->ibdev = root->umem.ibdev;
178 umem->length = size;
179 umem->address = addr;
180 umem->writable = root->umem.writable;
181 umem->owning_mm = root->umem.owning_mm;
182 odp_data->page_shift = PAGE_SHIFT;
183 odp_data->notifier.ops = ops;
186 * A mmget must be held when registering a notifier, the owming_mm only
187 * has a mm_grab at this point.
189 if (!mmget_not_zero(umem->owning_mm)) {
190 ret = -EFAULT;
191 goto out_free;
194 odp_data->tgid = get_pid(root->tgid);
195 ret = ib_init_umem_odp(odp_data, ops);
196 if (ret)
197 goto out_tgid;
198 mmput(umem->owning_mm);
199 return odp_data;
201 out_tgid:
202 put_pid(odp_data->tgid);
203 mmput(umem->owning_mm);
204 out_free:
205 kfree(odp_data);
206 return ERR_PTR(ret);
208 EXPORT_SYMBOL(ib_umem_odp_alloc_child);
211 * ib_umem_odp_get - Create a umem_odp for a userspace va
213 * @device: IB device struct to get UMEM
214 * @addr: userspace virtual address to start at
215 * @size: length of region to pin
216 * @access: IB_ACCESS_xxx flags for memory being pinned
217 * @ops: MMU interval ops, currently only @invalidate
219 * The driver should use when the access flags indicate ODP memory. It avoids
220 * pinning, instead, stores the mm for future page fault handling in
221 * conjunction with MMU notifiers.
223 struct ib_umem_odp *ib_umem_odp_get(struct ib_device *device,
224 unsigned long addr, size_t size, int access,
225 const struct mmu_interval_notifier_ops *ops)
227 struct ib_umem_odp *umem_odp;
228 int ret;
230 if (WARN_ON_ONCE(!(access & IB_ACCESS_ON_DEMAND)))
231 return ERR_PTR(-EINVAL);
233 umem_odp = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL);
234 if (!umem_odp)
235 return ERR_PTR(-ENOMEM);
237 umem_odp->umem.ibdev = device;
238 umem_odp->umem.length = size;
239 umem_odp->umem.address = addr;
240 umem_odp->umem.writable = ib_access_writable(access);
241 umem_odp->umem.owning_mm = current->mm;
242 umem_odp->notifier.ops = ops;
244 umem_odp->page_shift = PAGE_SHIFT;
245 #ifdef CONFIG_HUGETLB_PAGE
246 if (access & IB_ACCESS_HUGETLB)
247 umem_odp->page_shift = HPAGE_SHIFT;
248 #endif
250 umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
251 ret = ib_init_umem_odp(umem_odp, ops);
252 if (ret)
253 goto err_put_pid;
254 return umem_odp;
256 err_put_pid:
257 put_pid(umem_odp->tgid);
258 kfree(umem_odp);
259 return ERR_PTR(ret);
261 EXPORT_SYMBOL(ib_umem_odp_get);
263 void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
266 * Ensure that no more pages are mapped in the umem.
268 * It is the driver's responsibility to ensure, before calling us,
269 * that the hardware will not attempt to access the MR any more.
271 if (!umem_odp->is_implicit_odp) {
272 mutex_lock(&umem_odp->umem_mutex);
273 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
274 ib_umem_end(umem_odp));
275 mutex_unlock(&umem_odp->umem_mutex);
276 mmu_interval_notifier_remove(&umem_odp->notifier);
277 kvfree(umem_odp->dma_list);
278 kvfree(umem_odp->pfn_list);
280 put_pid(umem_odp->tgid);
281 kfree(umem_odp);
283 EXPORT_SYMBOL(ib_umem_odp_release);
286 * Map for DMA and insert a single page into the on-demand paging page tables.
288 * @umem: the umem to insert the page to.
289 * @dma_index: index in the umem to add the dma to.
290 * @page: the page struct to map and add.
291 * @access_mask: access permissions needed for this page.
293 * The function returns -EFAULT if the DMA mapping operation fails.
296 static int ib_umem_odp_map_dma_single_page(
297 struct ib_umem_odp *umem_odp,
298 unsigned int dma_index,
299 struct page *page,
300 u64 access_mask)
302 struct ib_device *dev = umem_odp->umem.ibdev;
303 dma_addr_t *dma_addr = &umem_odp->dma_list[dma_index];
305 if (*dma_addr) {
307 * If the page is already dma mapped it means it went through
308 * a non-invalidating trasition, like read-only to writable.
309 * Resync the flags.
311 *dma_addr = (*dma_addr & ODP_DMA_ADDR_MASK) | access_mask;
312 return 0;
315 *dma_addr = ib_dma_map_page(dev, page, 0, 1 << umem_odp->page_shift,
316 DMA_BIDIRECTIONAL);
317 if (ib_dma_mapping_error(dev, *dma_addr)) {
318 *dma_addr = 0;
319 return -EFAULT;
321 umem_odp->npages++;
322 *dma_addr |= access_mask;
323 return 0;
327 * ib_umem_odp_map_dma_and_lock - DMA map userspace memory in an ODP MR and lock it.
329 * Maps the range passed in the argument to DMA addresses.
330 * The DMA addresses of the mapped pages is updated in umem_odp->dma_list.
331 * Upon success the ODP MR will be locked to let caller complete its device
332 * page table update.
334 * Returns the number of pages mapped in success, negative error code
335 * for failure.
336 * @umem_odp: the umem to map and pin
337 * @user_virt: the address from which we need to map.
338 * @bcnt: the minimal number of bytes to pin and map. The mapping might be
339 * bigger due to alignment, and may also be smaller in case of an error
340 * pinning or mapping a page. The actual pages mapped is returned in
341 * the return value.
342 * @access_mask: bit mask of the requested access permissions for the given
343 * range.
344 * @fault: is faulting required for the given range
346 int ib_umem_odp_map_dma_and_lock(struct ib_umem_odp *umem_odp, u64 user_virt,
347 u64 bcnt, u64 access_mask, bool fault)
348 __acquires(&umem_odp->umem_mutex)
350 struct task_struct *owning_process = NULL;
351 struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
352 int pfn_index, dma_index, ret = 0, start_idx;
353 unsigned int page_shift, hmm_order, pfn_start_idx;
354 unsigned long num_pfns, current_seq;
355 struct hmm_range range = {};
356 unsigned long timeout;
358 if (access_mask == 0)
359 return -EINVAL;
361 if (user_virt < ib_umem_start(umem_odp) ||
362 user_virt + bcnt > ib_umem_end(umem_odp))
363 return -EFAULT;
365 page_shift = umem_odp->page_shift;
368 * owning_process is allowed to be NULL, this means somehow the mm is
369 * existing beyond the lifetime of the originating process.. Presumably
370 * mmget_not_zero will fail in this case.
372 owning_process = get_pid_task(umem_odp->tgid, PIDTYPE_PID);
373 if (!owning_process || !mmget_not_zero(owning_mm)) {
374 ret = -EINVAL;
375 goto out_put_task;
378 range.notifier = &umem_odp->notifier;
379 range.start = ALIGN_DOWN(user_virt, 1UL << page_shift);
380 range.end = ALIGN(user_virt + bcnt, 1UL << page_shift);
381 pfn_start_idx = (range.start - ib_umem_start(umem_odp)) >> PAGE_SHIFT;
382 num_pfns = (range.end - range.start) >> PAGE_SHIFT;
383 if (fault) {
384 range.default_flags = HMM_PFN_REQ_FAULT;
386 if (access_mask & ODP_WRITE_ALLOWED_BIT)
387 range.default_flags |= HMM_PFN_REQ_WRITE;
390 range.hmm_pfns = &(umem_odp->pfn_list[pfn_start_idx]);
391 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
393 retry:
394 current_seq = range.notifier_seq =
395 mmu_interval_read_begin(&umem_odp->notifier);
397 mmap_read_lock(owning_mm);
398 ret = hmm_range_fault(&range);
399 mmap_read_unlock(owning_mm);
400 if (unlikely(ret)) {
401 if (ret == -EBUSY && !time_after(jiffies, timeout))
402 goto retry;
403 goto out_put_mm;
406 start_idx = (range.start - ib_umem_start(umem_odp)) >> page_shift;
407 dma_index = start_idx;
409 mutex_lock(&umem_odp->umem_mutex);
410 if (mmu_interval_read_retry(&umem_odp->notifier, current_seq)) {
411 mutex_unlock(&umem_odp->umem_mutex);
412 goto retry;
415 for (pfn_index = 0; pfn_index < num_pfns;
416 pfn_index += 1 << (page_shift - PAGE_SHIFT), dma_index++) {
418 if (fault) {
420 * Since we asked for hmm_range_fault() to populate
421 * pages it shouldn't return an error entry on success.
423 WARN_ON(range.hmm_pfns[pfn_index] & HMM_PFN_ERROR);
424 WARN_ON(!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID));
425 } else {
426 if (!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID)) {
427 WARN_ON(umem_odp->dma_list[dma_index]);
428 continue;
430 access_mask = ODP_READ_ALLOWED_BIT;
431 if (range.hmm_pfns[pfn_index] & HMM_PFN_WRITE)
432 access_mask |= ODP_WRITE_ALLOWED_BIT;
435 hmm_order = hmm_pfn_to_map_order(range.hmm_pfns[pfn_index]);
436 /* If a hugepage was detected and ODP wasn't set for, the umem
437 * page_shift will be used, the opposite case is an error.
439 if (hmm_order + PAGE_SHIFT < page_shift) {
440 ret = -EINVAL;
441 ibdev_dbg(umem_odp->umem.ibdev,
442 "%s: un-expected hmm_order %u, page_shift %u\n",
443 __func__, hmm_order, page_shift);
444 break;
447 ret = ib_umem_odp_map_dma_single_page(
448 umem_odp, dma_index, hmm_pfn_to_page(range.hmm_pfns[pfn_index]),
449 access_mask);
450 if (ret < 0) {
451 ibdev_dbg(umem_odp->umem.ibdev,
452 "ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
453 break;
456 /* upon success lock should stay on hold for the callee */
457 if (!ret)
458 ret = dma_index - start_idx;
459 else
460 mutex_unlock(&umem_odp->umem_mutex);
462 out_put_mm:
463 mmput_async(owning_mm);
464 out_put_task:
465 if (owning_process)
466 put_task_struct(owning_process);
467 return ret;
469 EXPORT_SYMBOL(ib_umem_odp_map_dma_and_lock);
471 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
472 u64 bound)
474 dma_addr_t dma_addr;
475 dma_addr_t dma;
476 int idx;
477 u64 addr;
478 struct ib_device *dev = umem_odp->umem.ibdev;
480 lockdep_assert_held(&umem_odp->umem_mutex);
482 virt = max_t(u64, virt, ib_umem_start(umem_odp));
483 bound = min_t(u64, bound, ib_umem_end(umem_odp));
484 for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) {
485 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
486 dma = umem_odp->dma_list[idx];
488 /* The access flags guaranteed a valid DMA address in case was NULL */
489 if (dma) {
490 unsigned long pfn_idx = (addr - ib_umem_start(umem_odp)) >> PAGE_SHIFT;
491 struct page *page = hmm_pfn_to_page(umem_odp->pfn_list[pfn_idx]);
493 dma_addr = dma & ODP_DMA_ADDR_MASK;
494 ib_dma_unmap_page(dev, dma_addr,
495 BIT(umem_odp->page_shift),
496 DMA_BIDIRECTIONAL);
497 if (dma & ODP_WRITE_ALLOWED_BIT) {
498 struct page *head_page = compound_head(page);
500 * set_page_dirty prefers being called with
501 * the page lock. However, MMU notifiers are
502 * called sometimes with and sometimes without
503 * the lock. We rely on the umem_mutex instead
504 * to prevent other mmu notifiers from
505 * continuing and allowing the page mapping to
506 * be removed.
508 set_page_dirty(head_page);
510 umem_odp->dma_list[idx] = 0;
511 umem_odp->npages--;
515 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);