Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / infiniband / hw / cxgb4 / cm.c
blob8d753e6e0c71903c1742ef3f7628688bf915c2cc
1 /*
2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
50 #include <rdma/ib_addr.h>
52 #include <libcxgb_cm.h>
53 #include "iw_cxgb4.h"
54 #include "clip_tbl.h"
56 static char *states[] = {
57 "idle",
58 "listen",
59 "connecting",
60 "mpa_wait_req",
61 "mpa_req_sent",
62 "mpa_req_rcvd",
63 "mpa_rep_sent",
64 "fpdu_mode",
65 "aborting",
66 "closing",
67 "moribund",
68 "dead",
69 NULL,
72 static int nocong;
73 module_param(nocong, int, 0644);
74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
76 static int enable_ecn;
77 module_param(enable_ecn, int, 0644);
78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
80 static int dack_mode;
81 module_param(dack_mode, int, 0644);
82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=0)");
84 uint c4iw_max_read_depth = 32;
85 module_param(c4iw_max_read_depth, int, 0644);
86 MODULE_PARM_DESC(c4iw_max_read_depth,
87 "Per-connection max ORD/IRD (default=32)");
89 static int enable_tcp_timestamps;
90 module_param(enable_tcp_timestamps, int, 0644);
91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
93 static int enable_tcp_sack;
94 module_param(enable_tcp_sack, int, 0644);
95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
97 static int enable_tcp_window_scaling = 1;
98 module_param(enable_tcp_window_scaling, int, 0644);
99 MODULE_PARM_DESC(enable_tcp_window_scaling,
100 "Enable tcp window scaling (default=1)");
102 static int peer2peer = 1;
103 module_param(peer2peer, int, 0644);
104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
107 module_param(p2p_type, int, 0644);
108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
109 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
111 static int ep_timeout_secs = 60;
112 module_param(ep_timeout_secs, int, 0644);
113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
114 "in seconds (default=60)");
116 static int mpa_rev = 2;
117 module_param(mpa_rev, int, 0644);
118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
119 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
120 " compliant (default=2)");
122 static int markers_enabled;
123 module_param(markers_enabled, int, 0644);
124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
126 static int crc_enabled = 1;
127 module_param(crc_enabled, int, 0644);
128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
130 static int rcv_win = 256 * 1024;
131 module_param(rcv_win, int, 0644);
132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
134 static int snd_win = 128 * 1024;
135 module_param(snd_win, int, 0644);
136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
138 static struct workqueue_struct *workq;
140 static struct sk_buff_head rxq;
142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
143 static void ep_timeout(struct timer_list *t);
144 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
147 static LIST_HEAD(timeout_list);
148 static DEFINE_SPINLOCK(timeout_lock);
150 static void deref_cm_id(struct c4iw_ep_common *epc)
152 epc->cm_id->rem_ref(epc->cm_id);
153 epc->cm_id = NULL;
154 set_bit(CM_ID_DEREFED, &epc->history);
157 static void ref_cm_id(struct c4iw_ep_common *epc)
159 set_bit(CM_ID_REFED, &epc->history);
160 epc->cm_id->add_ref(epc->cm_id);
163 static void deref_qp(struct c4iw_ep *ep)
165 c4iw_qp_rem_ref(&ep->com.qp->ibqp);
166 clear_bit(QP_REFERENCED, &ep->com.flags);
167 set_bit(QP_DEREFED, &ep->com.history);
170 static void ref_qp(struct c4iw_ep *ep)
172 set_bit(QP_REFERENCED, &ep->com.flags);
173 set_bit(QP_REFED, &ep->com.history);
174 c4iw_qp_add_ref(&ep->com.qp->ibqp);
177 static void start_ep_timer(struct c4iw_ep *ep)
179 pr_debug("ep %p\n", ep);
180 if (timer_pending(&ep->timer)) {
181 pr_err("%s timer already started! ep %p\n",
182 __func__, ep);
183 return;
185 clear_bit(TIMEOUT, &ep->com.flags);
186 c4iw_get_ep(&ep->com);
187 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
188 add_timer(&ep->timer);
191 static int stop_ep_timer(struct c4iw_ep *ep)
193 pr_debug("ep %p stopping\n", ep);
194 del_timer_sync(&ep->timer);
195 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
196 c4iw_put_ep(&ep->com);
197 return 0;
199 return 1;
202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
203 struct l2t_entry *l2e)
205 int error = 0;
207 if (c4iw_fatal_error(rdev)) {
208 kfree_skb(skb);
209 pr_err("%s - device in error state - dropping\n", __func__);
210 return -EIO;
212 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
213 if (error < 0)
214 kfree_skb(skb);
215 else if (error == NET_XMIT_DROP)
216 return -ENOMEM;
217 return error < 0 ? error : 0;
220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
222 int error = 0;
224 if (c4iw_fatal_error(rdev)) {
225 kfree_skb(skb);
226 pr_err("%s - device in error state - dropping\n", __func__);
227 return -EIO;
229 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
230 if (error < 0)
231 kfree_skb(skb);
232 return error < 0 ? error : 0;
235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
237 u32 len = roundup(sizeof(struct cpl_tid_release), 16);
239 skb = get_skb(skb, len, GFP_KERNEL);
240 if (!skb)
241 return;
243 cxgb_mk_tid_release(skb, len, hwtid, 0);
244 c4iw_ofld_send(rdev, skb);
245 return;
248 static void set_emss(struct c4iw_ep *ep, u16 opt)
250 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
251 ((AF_INET == ep->com.remote_addr.ss_family) ?
252 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
253 sizeof(struct tcphdr);
254 ep->mss = ep->emss;
255 if (TCPOPT_TSTAMP_G(opt))
256 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
257 if (ep->emss < 128)
258 ep->emss = 128;
259 if (ep->emss & 7)
260 pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n",
261 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
262 pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss,
263 ep->emss);
266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
268 enum c4iw_ep_state state;
270 mutex_lock(&epc->mutex);
271 state = epc->state;
272 mutex_unlock(&epc->mutex);
273 return state;
276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
278 epc->state = new;
281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
283 mutex_lock(&epc->mutex);
284 pr_debug("%s -> %s\n", states[epc->state], states[new]);
285 __state_set(epc, new);
286 mutex_unlock(&epc->mutex);
287 return;
290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
292 struct sk_buff *skb;
293 unsigned int i;
294 size_t len;
296 len = roundup(sizeof(union cpl_wr_size), 16);
297 for (i = 0; i < size; i++) {
298 skb = alloc_skb(len, GFP_KERNEL);
299 if (!skb)
300 goto fail;
301 skb_queue_tail(ep_skb_list, skb);
303 return 0;
304 fail:
305 skb_queue_purge(ep_skb_list);
306 return -ENOMEM;
309 static void *alloc_ep(int size, gfp_t gfp)
311 struct c4iw_ep_common *epc;
313 epc = kzalloc(size, gfp);
314 if (epc) {
315 epc->wr_waitp = c4iw_alloc_wr_wait(gfp);
316 if (!epc->wr_waitp) {
317 kfree(epc);
318 epc = NULL;
319 goto out;
321 kref_init(&epc->kref);
322 mutex_init(&epc->mutex);
323 c4iw_init_wr_wait(epc->wr_waitp);
325 pr_debug("alloc ep %p\n", epc);
326 out:
327 return epc;
330 static void remove_ep_tid(struct c4iw_ep *ep)
332 unsigned long flags;
334 xa_lock_irqsave(&ep->com.dev->hwtids, flags);
335 __xa_erase(&ep->com.dev->hwtids, ep->hwtid);
336 if (xa_empty(&ep->com.dev->hwtids))
337 wake_up(&ep->com.dev->wait);
338 xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
341 static int insert_ep_tid(struct c4iw_ep *ep)
343 unsigned long flags;
344 int err;
346 xa_lock_irqsave(&ep->com.dev->hwtids, flags);
347 err = __xa_insert(&ep->com.dev->hwtids, ep->hwtid, ep, GFP_KERNEL);
348 xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
350 return err;
354 * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
356 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
358 struct c4iw_ep *ep;
359 unsigned long flags;
361 xa_lock_irqsave(&dev->hwtids, flags);
362 ep = xa_load(&dev->hwtids, tid);
363 if (ep)
364 c4iw_get_ep(&ep->com);
365 xa_unlock_irqrestore(&dev->hwtids, flags);
366 return ep;
370 * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
372 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
373 unsigned int stid)
375 struct c4iw_listen_ep *ep;
376 unsigned long flags;
378 xa_lock_irqsave(&dev->stids, flags);
379 ep = xa_load(&dev->stids, stid);
380 if (ep)
381 c4iw_get_ep(&ep->com);
382 xa_unlock_irqrestore(&dev->stids, flags);
383 return ep;
386 void _c4iw_free_ep(struct kref *kref)
388 struct c4iw_ep *ep;
390 ep = container_of(kref, struct c4iw_ep, com.kref);
391 pr_debug("ep %p state %s\n", ep, states[ep->com.state]);
392 if (test_bit(QP_REFERENCED, &ep->com.flags))
393 deref_qp(ep);
394 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
395 if (ep->com.remote_addr.ss_family == AF_INET6) {
396 struct sockaddr_in6 *sin6 =
397 (struct sockaddr_in6 *)
398 &ep->com.local_addr;
400 cxgb4_clip_release(
401 ep->com.dev->rdev.lldi.ports[0],
402 (const u32 *)&sin6->sin6_addr.s6_addr,
405 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
406 ep->com.local_addr.ss_family);
407 dst_release(ep->dst);
408 cxgb4_l2t_release(ep->l2t);
409 kfree_skb(ep->mpa_skb);
411 if (!skb_queue_empty(&ep->com.ep_skb_list))
412 skb_queue_purge(&ep->com.ep_skb_list);
413 c4iw_put_wr_wait(ep->com.wr_waitp);
414 kfree(ep);
417 static void release_ep_resources(struct c4iw_ep *ep)
419 set_bit(RELEASE_RESOURCES, &ep->com.flags);
422 * If we have a hwtid, then remove it from the idr table
423 * so lookups will no longer find this endpoint. Otherwise
424 * we have a race where one thread finds the ep ptr just
425 * before the other thread is freeing the ep memory.
427 if (ep->hwtid != -1)
428 remove_ep_tid(ep);
429 c4iw_put_ep(&ep->com);
432 static int status2errno(int status)
434 switch (status) {
435 case CPL_ERR_NONE:
436 return 0;
437 case CPL_ERR_CONN_RESET:
438 return -ECONNRESET;
439 case CPL_ERR_ARP_MISS:
440 return -EHOSTUNREACH;
441 case CPL_ERR_CONN_TIMEDOUT:
442 return -ETIMEDOUT;
443 case CPL_ERR_TCAM_FULL:
444 return -ENOMEM;
445 case CPL_ERR_CONN_EXIST:
446 return -EADDRINUSE;
447 default:
448 return -EIO;
453 * Try and reuse skbs already allocated...
455 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
457 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
458 skb_trim(skb, 0);
459 skb_get(skb);
460 skb_reset_transport_header(skb);
461 } else {
462 skb = alloc_skb(len, gfp);
463 if (!skb)
464 return NULL;
466 t4_set_arp_err_handler(skb, NULL, NULL);
467 return skb;
470 static struct net_device *get_real_dev(struct net_device *egress_dev)
472 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
475 static void arp_failure_discard(void *handle, struct sk_buff *skb)
477 pr_err("ARP failure\n");
478 kfree_skb(skb);
481 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
483 pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
486 enum {
487 NUM_FAKE_CPLS = 2,
488 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
489 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
492 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
494 struct c4iw_ep *ep;
496 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
497 release_ep_resources(ep);
498 return 0;
501 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
503 struct c4iw_ep *ep;
505 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
506 c4iw_put_ep(&ep->parent_ep->com);
507 release_ep_resources(ep);
508 return 0;
512 * Fake up a special CPL opcode and call sched() so process_work() will call
513 * _put_ep_safe() in a safe context to free the ep resources. This is needed
514 * because ARP error handlers are called in an ATOMIC context, and
515 * _c4iw_free_ep() needs to block.
517 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
518 int cpl)
520 struct cpl_act_establish *rpl = cplhdr(skb);
522 /* Set our special ARP_FAILURE opcode */
523 rpl->ot.opcode = cpl;
526 * Save ep in the skb->cb area, after where sched() will save the dev
527 * ptr.
529 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
530 sched(ep->com.dev, skb);
533 /* Handle an ARP failure for an accept */
534 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
536 struct c4iw_ep *ep = handle;
538 pr_err("ARP failure during accept - tid %u - dropping connection\n",
539 ep->hwtid);
541 __state_set(&ep->com, DEAD);
542 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
546 * Handle an ARP failure for an active open.
548 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
550 struct c4iw_ep *ep = handle;
552 pr_err("ARP failure during connect\n");
553 connect_reply_upcall(ep, -EHOSTUNREACH);
554 __state_set(&ep->com, DEAD);
555 if (ep->com.remote_addr.ss_family == AF_INET6) {
556 struct sockaddr_in6 *sin6 =
557 (struct sockaddr_in6 *)&ep->com.local_addr;
558 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
559 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
561 xa_erase_irq(&ep->com.dev->atids, ep->atid);
562 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
563 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
567 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
568 * and send it along.
570 static void abort_arp_failure(void *handle, struct sk_buff *skb)
572 int ret;
573 struct c4iw_ep *ep = handle;
574 struct c4iw_rdev *rdev = &ep->com.dev->rdev;
575 struct cpl_abort_req *req = cplhdr(skb);
577 pr_debug("rdev %p\n", rdev);
578 req->cmd = CPL_ABORT_NO_RST;
579 skb_get(skb);
580 ret = c4iw_ofld_send(rdev, skb);
581 if (ret) {
582 __state_set(&ep->com, DEAD);
583 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
584 } else
585 kfree_skb(skb);
588 static int send_flowc(struct c4iw_ep *ep)
590 struct fw_flowc_wr *flowc;
591 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
592 u16 vlan = ep->l2t->vlan;
593 int nparams;
594 int flowclen, flowclen16;
596 if (WARN_ON(!skb))
597 return -ENOMEM;
599 if (vlan == CPL_L2T_VLAN_NONE)
600 nparams = 9;
601 else
602 nparams = 10;
604 flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]);
605 flowclen16 = DIV_ROUND_UP(flowclen, 16);
606 flowclen = flowclen16 * 16;
608 flowc = __skb_put(skb, flowclen);
609 memset(flowc, 0, flowclen);
611 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
612 FW_FLOWC_WR_NPARAMS_V(nparams));
613 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) |
614 FW_WR_FLOWID_V(ep->hwtid));
616 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
617 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
618 (ep->com.dev->rdev.lldi.pf));
619 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
620 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
621 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
622 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
623 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
624 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
625 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
626 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
627 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
628 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
629 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
630 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
631 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
632 flowc->mnemval[7].val = cpu_to_be32(ep->emss);
633 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE;
634 flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale);
635 if (nparams == 10) {
636 u16 pri;
637 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
638 flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
639 flowc->mnemval[9].val = cpu_to_be32(pri);
642 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
643 return c4iw_ofld_send(&ep->com.dev->rdev, skb);
646 static int send_halfclose(struct c4iw_ep *ep)
648 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
649 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16);
651 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
652 if (WARN_ON(!skb))
653 return -ENOMEM;
655 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx,
656 NULL, arp_failure_discard);
658 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
661 static void read_tcb(struct c4iw_ep *ep)
663 struct sk_buff *skb;
664 struct cpl_get_tcb *req;
665 int wrlen = roundup(sizeof(*req), 16);
667 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
668 if (WARN_ON(!skb))
669 return;
671 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
672 req = (struct cpl_get_tcb *) skb_put(skb, wrlen);
673 memset(req, 0, wrlen);
674 INIT_TP_WR(req, ep->hwtid);
675 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB, ep->hwtid));
676 req->reply_ctrl = htons(REPLY_CHAN_V(0) | QUEUENO_V(ep->rss_qid));
679 * keep a ref on the ep so the tcb is not unlocked before this
680 * cpl completes. The ref is released in read_tcb_rpl().
682 c4iw_get_ep(&ep->com);
683 if (WARN_ON(c4iw_ofld_send(&ep->com.dev->rdev, skb)))
684 c4iw_put_ep(&ep->com);
687 static int send_abort_req(struct c4iw_ep *ep)
689 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16);
690 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
692 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
693 if (WARN_ON(!req_skb))
694 return -ENOMEM;
696 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx,
697 ep, abort_arp_failure);
699 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
702 static int send_abort(struct c4iw_ep *ep)
704 if (!ep->com.qp || !ep->com.qp->srq) {
705 send_abort_req(ep);
706 return 0;
708 set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags);
709 read_tcb(ep);
710 return 0;
713 static int send_connect(struct c4iw_ep *ep)
715 struct cpl_act_open_req *req = NULL;
716 struct cpl_t5_act_open_req *t5req = NULL;
717 struct cpl_t6_act_open_req *t6req = NULL;
718 struct cpl_act_open_req6 *req6 = NULL;
719 struct cpl_t5_act_open_req6 *t5req6 = NULL;
720 struct cpl_t6_act_open_req6 *t6req6 = NULL;
721 struct sk_buff *skb;
722 u64 opt0;
723 u32 opt2;
724 unsigned int mtu_idx;
725 u32 wscale;
726 int win, sizev4, sizev6, wrlen;
727 struct sockaddr_in *la = (struct sockaddr_in *)
728 &ep->com.local_addr;
729 struct sockaddr_in *ra = (struct sockaddr_in *)
730 &ep->com.remote_addr;
731 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
732 &ep->com.local_addr;
733 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
734 &ep->com.remote_addr;
735 int ret;
736 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
737 u32 isn = (get_random_u32() & ~7UL) - 1;
738 struct net_device *netdev;
739 u64 params;
741 netdev = ep->com.dev->rdev.lldi.ports[0];
743 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
744 case CHELSIO_T4:
745 sizev4 = sizeof(struct cpl_act_open_req);
746 sizev6 = sizeof(struct cpl_act_open_req6);
747 break;
748 case CHELSIO_T5:
749 sizev4 = sizeof(struct cpl_t5_act_open_req);
750 sizev6 = sizeof(struct cpl_t5_act_open_req6);
751 break;
752 case CHELSIO_T6:
753 sizev4 = sizeof(struct cpl_t6_act_open_req);
754 sizev6 = sizeof(struct cpl_t6_act_open_req6);
755 break;
756 default:
757 pr_err("T%d Chip is not supported\n",
758 CHELSIO_CHIP_VERSION(adapter_type));
759 return -EINVAL;
762 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
763 roundup(sizev4, 16) :
764 roundup(sizev6, 16);
766 pr_debug("ep %p atid %u\n", ep, ep->atid);
768 skb = get_skb(NULL, wrlen, GFP_KERNEL);
769 if (!skb) {
770 pr_err("%s - failed to alloc skb\n", __func__);
771 return -ENOMEM;
773 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
775 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
776 enable_tcp_timestamps,
777 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
778 wscale = cxgb_compute_wscale(rcv_win);
781 * Specify the largest window that will fit in opt0. The
782 * remainder will be specified in the rx_data_ack.
784 win = ep->rcv_win >> 10;
785 if (win > RCV_BUFSIZ_M)
786 win = RCV_BUFSIZ_M;
788 opt0 = (nocong ? NO_CONG_F : 0) |
789 KEEP_ALIVE_F |
790 DELACK_F |
791 WND_SCALE_V(wscale) |
792 MSS_IDX_V(mtu_idx) |
793 L2T_IDX_V(ep->l2t->idx) |
794 TX_CHAN_V(ep->tx_chan) |
795 SMAC_SEL_V(ep->smac_idx) |
796 DSCP_V(ep->tos >> 2) |
797 ULP_MODE_V(ULP_MODE_TCPDDP) |
798 RCV_BUFSIZ_V(win);
799 opt2 = RX_CHANNEL_V(0) |
800 CCTRL_ECN_V(enable_ecn) |
801 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
802 if (enable_tcp_timestamps)
803 opt2 |= TSTAMPS_EN_F;
804 if (enable_tcp_sack)
805 opt2 |= SACK_EN_F;
806 if (wscale && enable_tcp_window_scaling)
807 opt2 |= WND_SCALE_EN_F;
808 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
809 if (peer2peer)
810 isn += 4;
812 opt2 |= T5_OPT_2_VALID_F;
813 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
814 opt2 |= T5_ISS_F;
817 params = cxgb4_select_ntuple(netdev, ep->l2t);
819 if (ep->com.remote_addr.ss_family == AF_INET6)
820 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
821 (const u32 *)&la6->sin6_addr.s6_addr, 1);
823 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
825 if (ep->com.remote_addr.ss_family == AF_INET) {
826 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
827 case CHELSIO_T4:
828 req = skb_put(skb, wrlen);
829 INIT_TP_WR(req, 0);
830 break;
831 case CHELSIO_T5:
832 t5req = skb_put(skb, wrlen);
833 INIT_TP_WR(t5req, 0);
834 req = (struct cpl_act_open_req *)t5req;
835 break;
836 case CHELSIO_T6:
837 t6req = skb_put(skb, wrlen);
838 INIT_TP_WR(t6req, 0);
839 req = (struct cpl_act_open_req *)t6req;
840 t5req = (struct cpl_t5_act_open_req *)t6req;
841 break;
842 default:
843 pr_err("T%d Chip is not supported\n",
844 CHELSIO_CHIP_VERSION(adapter_type));
845 ret = -EINVAL;
846 goto clip_release;
849 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
850 ((ep->rss_qid<<14) | ep->atid)));
851 req->local_port = la->sin_port;
852 req->peer_port = ra->sin_port;
853 req->local_ip = la->sin_addr.s_addr;
854 req->peer_ip = ra->sin_addr.s_addr;
855 req->opt0 = cpu_to_be64(opt0);
857 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
858 req->params = cpu_to_be32(params);
859 req->opt2 = cpu_to_be32(opt2);
860 } else {
861 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
862 t5req->params =
863 cpu_to_be64(FILTER_TUPLE_V(params));
864 t5req->rsvd = cpu_to_be32(isn);
865 pr_debug("snd_isn %u\n", t5req->rsvd);
866 t5req->opt2 = cpu_to_be32(opt2);
867 } else {
868 t6req->params =
869 cpu_to_be64(FILTER_TUPLE_V(params));
870 t6req->rsvd = cpu_to_be32(isn);
871 pr_debug("snd_isn %u\n", t6req->rsvd);
872 t6req->opt2 = cpu_to_be32(opt2);
875 } else {
876 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
877 case CHELSIO_T4:
878 req6 = skb_put(skb, wrlen);
879 INIT_TP_WR(req6, 0);
880 break;
881 case CHELSIO_T5:
882 t5req6 = skb_put(skb, wrlen);
883 INIT_TP_WR(t5req6, 0);
884 req6 = (struct cpl_act_open_req6 *)t5req6;
885 break;
886 case CHELSIO_T6:
887 t6req6 = skb_put(skb, wrlen);
888 INIT_TP_WR(t6req6, 0);
889 req6 = (struct cpl_act_open_req6 *)t6req6;
890 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
891 break;
892 default:
893 pr_err("T%d Chip is not supported\n",
894 CHELSIO_CHIP_VERSION(adapter_type));
895 ret = -EINVAL;
896 goto clip_release;
899 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
900 ((ep->rss_qid<<14)|ep->atid)));
901 req6->local_port = la6->sin6_port;
902 req6->peer_port = ra6->sin6_port;
903 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
904 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
905 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
906 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
907 req6->opt0 = cpu_to_be64(opt0);
909 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
910 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev,
911 ep->l2t));
912 req6->opt2 = cpu_to_be32(opt2);
913 } else {
914 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
915 t5req6->params =
916 cpu_to_be64(FILTER_TUPLE_V(params));
917 t5req6->rsvd = cpu_to_be32(isn);
918 pr_debug("snd_isn %u\n", t5req6->rsvd);
919 t5req6->opt2 = cpu_to_be32(opt2);
920 } else {
921 t6req6->params =
922 cpu_to_be64(FILTER_TUPLE_V(params));
923 t6req6->rsvd = cpu_to_be32(isn);
924 pr_debug("snd_isn %u\n", t6req6->rsvd);
925 t6req6->opt2 = cpu_to_be32(opt2);
931 set_bit(ACT_OPEN_REQ, &ep->com.history);
932 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
933 clip_release:
934 if (ret && ep->com.remote_addr.ss_family == AF_INET6)
935 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
936 (const u32 *)&la6->sin6_addr.s6_addr, 1);
937 return ret;
940 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
941 u8 mpa_rev_to_use)
943 int mpalen, wrlen, ret;
944 struct fw_ofld_tx_data_wr *req;
945 struct mpa_message *mpa;
946 struct mpa_v2_conn_params mpa_v2_params;
948 pr_debug("ep %p tid %u pd_len %d\n",
949 ep, ep->hwtid, ep->plen);
951 mpalen = sizeof(*mpa) + ep->plen;
952 if (mpa_rev_to_use == 2)
953 mpalen += sizeof(struct mpa_v2_conn_params);
954 wrlen = roundup(mpalen + sizeof(*req), 16);
955 skb = get_skb(skb, wrlen, GFP_KERNEL);
956 if (!skb) {
957 connect_reply_upcall(ep, -ENOMEM);
958 return -ENOMEM;
960 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
962 req = skb_put_zero(skb, wrlen);
963 req->op_to_immdlen = cpu_to_be32(
964 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
965 FW_WR_COMPL_F |
966 FW_WR_IMMDLEN_V(mpalen));
967 req->flowid_len16 = cpu_to_be32(
968 FW_WR_FLOWID_V(ep->hwtid) |
969 FW_WR_LEN16_V(wrlen >> 4));
970 req->plen = cpu_to_be32(mpalen);
971 req->tunnel_to_proxy = cpu_to_be32(
972 FW_OFLD_TX_DATA_WR_FLUSH_F |
973 FW_OFLD_TX_DATA_WR_SHOVE_F);
975 mpa = (struct mpa_message *)(req + 1);
976 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
978 mpa->flags = 0;
979 if (crc_enabled)
980 mpa->flags |= MPA_CRC;
981 if (markers_enabled) {
982 mpa->flags |= MPA_MARKERS;
983 ep->mpa_attr.recv_marker_enabled = 1;
984 } else {
985 ep->mpa_attr.recv_marker_enabled = 0;
987 if (mpa_rev_to_use == 2)
988 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
990 mpa->private_data_size = htons(ep->plen);
991 mpa->revision = mpa_rev_to_use;
992 if (mpa_rev_to_use == 1) {
993 ep->tried_with_mpa_v1 = 1;
994 ep->retry_with_mpa_v1 = 0;
997 if (mpa_rev_to_use == 2) {
998 mpa->private_data_size =
999 htons(ntohs(mpa->private_data_size) +
1000 sizeof(struct mpa_v2_conn_params));
1001 pr_debug("initiator ird %u ord %u\n", ep->ird,
1002 ep->ord);
1003 mpa_v2_params.ird = htons((u16)ep->ird);
1004 mpa_v2_params.ord = htons((u16)ep->ord);
1006 if (peer2peer) {
1007 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1008 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1009 mpa_v2_params.ord |=
1010 htons(MPA_V2_RDMA_WRITE_RTR);
1011 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1012 mpa_v2_params.ord |=
1013 htons(MPA_V2_RDMA_READ_RTR);
1015 memcpy(mpa->private_data, &mpa_v2_params,
1016 sizeof(struct mpa_v2_conn_params));
1018 if (ep->plen)
1019 memcpy(mpa->private_data +
1020 sizeof(struct mpa_v2_conn_params),
1021 ep->mpa_pkt + sizeof(*mpa), ep->plen);
1022 } else
1023 if (ep->plen)
1024 memcpy(mpa->private_data,
1025 ep->mpa_pkt + sizeof(*mpa), ep->plen);
1028 * Reference the mpa skb. This ensures the data area
1029 * will remain in memory until the hw acks the tx.
1030 * Function fw4_ack() will deref it.
1032 skb_get(skb);
1033 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1034 ep->mpa_skb = skb;
1035 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1036 if (ret)
1037 return ret;
1038 start_ep_timer(ep);
1039 __state_set(&ep->com, MPA_REQ_SENT);
1040 ep->mpa_attr.initiator = 1;
1041 ep->snd_seq += mpalen;
1042 return ret;
1045 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1047 int mpalen, wrlen;
1048 struct fw_ofld_tx_data_wr *req;
1049 struct mpa_message *mpa;
1050 struct sk_buff *skb;
1051 struct mpa_v2_conn_params mpa_v2_params;
1053 pr_debug("ep %p tid %u pd_len %d\n",
1054 ep, ep->hwtid, ep->plen);
1056 mpalen = sizeof(*mpa) + plen;
1057 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1058 mpalen += sizeof(struct mpa_v2_conn_params);
1059 wrlen = roundup(mpalen + sizeof(*req), 16);
1061 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1062 if (!skb) {
1063 pr_err("%s - cannot alloc skb!\n", __func__);
1064 return -ENOMEM;
1066 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1068 req = skb_put_zero(skb, wrlen);
1069 req->op_to_immdlen = cpu_to_be32(
1070 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1071 FW_WR_COMPL_F |
1072 FW_WR_IMMDLEN_V(mpalen));
1073 req->flowid_len16 = cpu_to_be32(
1074 FW_WR_FLOWID_V(ep->hwtid) |
1075 FW_WR_LEN16_V(wrlen >> 4));
1076 req->plen = cpu_to_be32(mpalen);
1077 req->tunnel_to_proxy = cpu_to_be32(
1078 FW_OFLD_TX_DATA_WR_FLUSH_F |
1079 FW_OFLD_TX_DATA_WR_SHOVE_F);
1081 mpa = (struct mpa_message *)(req + 1);
1082 memset(mpa, 0, sizeof(*mpa));
1083 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1084 mpa->flags = MPA_REJECT;
1085 mpa->revision = ep->mpa_attr.version;
1086 mpa->private_data_size = htons(plen);
1088 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1089 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1090 mpa->private_data_size =
1091 htons(ntohs(mpa->private_data_size) +
1092 sizeof(struct mpa_v2_conn_params));
1093 mpa_v2_params.ird = htons(((u16)ep->ird) |
1094 (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1095 0));
1096 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1097 (p2p_type ==
1098 FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1099 MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1100 FW_RI_INIT_P2PTYPE_READ_REQ ?
1101 MPA_V2_RDMA_READ_RTR : 0) : 0));
1102 memcpy(mpa->private_data, &mpa_v2_params,
1103 sizeof(struct mpa_v2_conn_params));
1105 if (ep->plen)
1106 memcpy(mpa->private_data +
1107 sizeof(struct mpa_v2_conn_params), pdata, plen);
1108 } else
1109 if (plen)
1110 memcpy(mpa->private_data, pdata, plen);
1113 * Reference the mpa skb again. This ensures the data area
1114 * will remain in memory until the hw acks the tx.
1115 * Function fw4_ack() will deref it.
1117 skb_get(skb);
1118 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1119 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1120 ep->mpa_skb = skb;
1121 ep->snd_seq += mpalen;
1122 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1125 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1127 int mpalen, wrlen;
1128 struct fw_ofld_tx_data_wr *req;
1129 struct mpa_message *mpa;
1130 struct sk_buff *skb;
1131 struct mpa_v2_conn_params mpa_v2_params;
1133 pr_debug("ep %p tid %u pd_len %d\n",
1134 ep, ep->hwtid, ep->plen);
1136 mpalen = sizeof(*mpa) + plen;
1137 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1138 mpalen += sizeof(struct mpa_v2_conn_params);
1139 wrlen = roundup(mpalen + sizeof(*req), 16);
1141 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1142 if (!skb) {
1143 pr_err("%s - cannot alloc skb!\n", __func__);
1144 return -ENOMEM;
1146 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1148 req = skb_put_zero(skb, wrlen);
1149 req->op_to_immdlen = cpu_to_be32(
1150 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1151 FW_WR_COMPL_F |
1152 FW_WR_IMMDLEN_V(mpalen));
1153 req->flowid_len16 = cpu_to_be32(
1154 FW_WR_FLOWID_V(ep->hwtid) |
1155 FW_WR_LEN16_V(wrlen >> 4));
1156 req->plen = cpu_to_be32(mpalen);
1157 req->tunnel_to_proxy = cpu_to_be32(
1158 FW_OFLD_TX_DATA_WR_FLUSH_F |
1159 FW_OFLD_TX_DATA_WR_SHOVE_F);
1161 mpa = (struct mpa_message *)(req + 1);
1162 memset(mpa, 0, sizeof(*mpa));
1163 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1164 mpa->flags = 0;
1165 if (ep->mpa_attr.crc_enabled)
1166 mpa->flags |= MPA_CRC;
1167 if (ep->mpa_attr.recv_marker_enabled)
1168 mpa->flags |= MPA_MARKERS;
1169 mpa->revision = ep->mpa_attr.version;
1170 mpa->private_data_size = htons(plen);
1172 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1173 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1174 mpa->private_data_size =
1175 htons(ntohs(mpa->private_data_size) +
1176 sizeof(struct mpa_v2_conn_params));
1177 mpa_v2_params.ird = htons((u16)ep->ird);
1178 mpa_v2_params.ord = htons((u16)ep->ord);
1179 if (peer2peer && (ep->mpa_attr.p2p_type !=
1180 FW_RI_INIT_P2PTYPE_DISABLED)) {
1181 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1183 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1184 mpa_v2_params.ord |=
1185 htons(MPA_V2_RDMA_WRITE_RTR);
1186 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1187 mpa_v2_params.ord |=
1188 htons(MPA_V2_RDMA_READ_RTR);
1191 memcpy(mpa->private_data, &mpa_v2_params,
1192 sizeof(struct mpa_v2_conn_params));
1194 if (ep->plen)
1195 memcpy(mpa->private_data +
1196 sizeof(struct mpa_v2_conn_params), pdata, plen);
1197 } else
1198 if (plen)
1199 memcpy(mpa->private_data, pdata, plen);
1202 * Reference the mpa skb. This ensures the data area
1203 * will remain in memory until the hw acks the tx.
1204 * Function fw4_ack() will deref it.
1206 skb_get(skb);
1207 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1208 ep->mpa_skb = skb;
1209 __state_set(&ep->com, MPA_REP_SENT);
1210 ep->snd_seq += mpalen;
1211 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1214 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1216 struct c4iw_ep *ep;
1217 struct cpl_act_establish *req = cplhdr(skb);
1218 unsigned short tcp_opt = ntohs(req->tcp_opt);
1219 unsigned int tid = GET_TID(req);
1220 unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1221 struct tid_info *t = dev->rdev.lldi.tids;
1222 int ret;
1224 ep = lookup_atid(t, atid);
1225 if (!ep)
1226 return -EINVAL;
1228 pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid,
1229 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1231 mutex_lock(&ep->com.mutex);
1232 dst_confirm(ep->dst);
1234 /* setup the hwtid for this connection */
1235 ep->hwtid = tid;
1236 cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family);
1237 insert_ep_tid(ep);
1239 ep->snd_seq = be32_to_cpu(req->snd_isn);
1240 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1241 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
1243 set_emss(ep, tcp_opt);
1245 /* dealloc the atid */
1246 xa_erase_irq(&ep->com.dev->atids, atid);
1247 cxgb4_free_atid(t, atid);
1248 set_bit(ACT_ESTAB, &ep->com.history);
1250 /* start MPA negotiation */
1251 ret = send_flowc(ep);
1252 if (ret)
1253 goto err;
1254 if (ep->retry_with_mpa_v1)
1255 ret = send_mpa_req(ep, skb, 1);
1256 else
1257 ret = send_mpa_req(ep, skb, mpa_rev);
1258 if (ret)
1259 goto err;
1260 mutex_unlock(&ep->com.mutex);
1261 return 0;
1262 err:
1263 mutex_unlock(&ep->com.mutex);
1264 connect_reply_upcall(ep, -ENOMEM);
1265 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1266 return 0;
1269 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1271 struct iw_cm_event event;
1273 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1274 memset(&event, 0, sizeof(event));
1275 event.event = IW_CM_EVENT_CLOSE;
1276 event.status = status;
1277 if (ep->com.cm_id) {
1278 pr_debug("close complete delivered ep %p cm_id %p tid %u\n",
1279 ep, ep->com.cm_id, ep->hwtid);
1280 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1281 deref_cm_id(&ep->com);
1282 set_bit(CLOSE_UPCALL, &ep->com.history);
1286 static void peer_close_upcall(struct c4iw_ep *ep)
1288 struct iw_cm_event event;
1290 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1291 memset(&event, 0, sizeof(event));
1292 event.event = IW_CM_EVENT_DISCONNECT;
1293 if (ep->com.cm_id) {
1294 pr_debug("peer close delivered ep %p cm_id %p tid %u\n",
1295 ep, ep->com.cm_id, ep->hwtid);
1296 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1297 set_bit(DISCONN_UPCALL, &ep->com.history);
1301 static void peer_abort_upcall(struct c4iw_ep *ep)
1303 struct iw_cm_event event;
1305 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1306 memset(&event, 0, sizeof(event));
1307 event.event = IW_CM_EVENT_CLOSE;
1308 event.status = -ECONNRESET;
1309 if (ep->com.cm_id) {
1310 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep,
1311 ep->com.cm_id, ep->hwtid);
1312 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1313 deref_cm_id(&ep->com);
1314 set_bit(ABORT_UPCALL, &ep->com.history);
1318 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1320 struct iw_cm_event event;
1322 pr_debug("ep %p tid %u status %d\n",
1323 ep, ep->hwtid, status);
1324 memset(&event, 0, sizeof(event));
1325 event.event = IW_CM_EVENT_CONNECT_REPLY;
1326 event.status = status;
1327 memcpy(&event.local_addr, &ep->com.local_addr,
1328 sizeof(ep->com.local_addr));
1329 memcpy(&event.remote_addr, &ep->com.remote_addr,
1330 sizeof(ep->com.remote_addr));
1332 if ((status == 0) || (status == -ECONNREFUSED)) {
1333 if (!ep->tried_with_mpa_v1) {
1334 /* this means MPA_v2 is used */
1335 event.ord = ep->ird;
1336 event.ird = ep->ord;
1337 event.private_data_len = ep->plen -
1338 sizeof(struct mpa_v2_conn_params);
1339 event.private_data = ep->mpa_pkt +
1340 sizeof(struct mpa_message) +
1341 sizeof(struct mpa_v2_conn_params);
1342 } else {
1343 /* this means MPA_v1 is used */
1344 event.ord = cur_max_read_depth(ep->com.dev);
1345 event.ird = cur_max_read_depth(ep->com.dev);
1346 event.private_data_len = ep->plen;
1347 event.private_data = ep->mpa_pkt +
1348 sizeof(struct mpa_message);
1352 pr_debug("ep %p tid %u status %d\n", ep,
1353 ep->hwtid, status);
1354 set_bit(CONN_RPL_UPCALL, &ep->com.history);
1355 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1357 if (status < 0)
1358 deref_cm_id(&ep->com);
1361 static int connect_request_upcall(struct c4iw_ep *ep)
1363 struct iw_cm_event event;
1364 int ret;
1366 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1367 memset(&event, 0, sizeof(event));
1368 event.event = IW_CM_EVENT_CONNECT_REQUEST;
1369 memcpy(&event.local_addr, &ep->com.local_addr,
1370 sizeof(ep->com.local_addr));
1371 memcpy(&event.remote_addr, &ep->com.remote_addr,
1372 sizeof(ep->com.remote_addr));
1373 event.provider_data = ep;
1374 if (!ep->tried_with_mpa_v1) {
1375 /* this means MPA_v2 is used */
1376 event.ord = ep->ord;
1377 event.ird = ep->ird;
1378 event.private_data_len = ep->plen -
1379 sizeof(struct mpa_v2_conn_params);
1380 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1381 sizeof(struct mpa_v2_conn_params);
1382 } else {
1383 /* this means MPA_v1 is used. Send max supported */
1384 event.ord = cur_max_read_depth(ep->com.dev);
1385 event.ird = cur_max_read_depth(ep->com.dev);
1386 event.private_data_len = ep->plen;
1387 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1389 c4iw_get_ep(&ep->com);
1390 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1391 &event);
1392 if (ret)
1393 c4iw_put_ep(&ep->com);
1394 set_bit(CONNREQ_UPCALL, &ep->com.history);
1395 c4iw_put_ep(&ep->parent_ep->com);
1396 return ret;
1399 static void established_upcall(struct c4iw_ep *ep)
1401 struct iw_cm_event event;
1403 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1404 memset(&event, 0, sizeof(event));
1405 event.event = IW_CM_EVENT_ESTABLISHED;
1406 event.ird = ep->ord;
1407 event.ord = ep->ird;
1408 if (ep->com.cm_id) {
1409 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1410 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1411 set_bit(ESTAB_UPCALL, &ep->com.history);
1415 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1417 struct sk_buff *skb;
1418 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16);
1419 u32 credit_dack;
1421 pr_debug("ep %p tid %u credits %u\n",
1422 ep, ep->hwtid, credits);
1423 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1424 if (!skb) {
1425 pr_err("update_rx_credits - cannot alloc skb!\n");
1426 return 0;
1430 * If we couldn't specify the entire rcv window at connection setup
1431 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1432 * then add the overage in to the credits returned.
1434 if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1435 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1437 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F |
1438 RX_DACK_MODE_V(dack_mode);
1440 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx,
1441 credit_dack);
1443 c4iw_ofld_send(&ep->com.dev->rdev, skb);
1444 return credits;
1447 #define RELAXED_IRD_NEGOTIATION 1
1450 * process_mpa_reply - process streaming mode MPA reply
1452 * Returns:
1454 * 0 upon success indicating a connect request was delivered to the ULP
1455 * or the mpa request is incomplete but valid so far.
1457 * 1 if a failure requires the caller to close the connection.
1459 * 2 if a failure requires the caller to abort the connection.
1461 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1463 struct mpa_message *mpa;
1464 struct mpa_v2_conn_params *mpa_v2_params;
1465 u16 plen;
1466 u16 resp_ird, resp_ord;
1467 u8 rtr_mismatch = 0, insuff_ird = 0;
1468 struct c4iw_qp_attributes attrs;
1469 enum c4iw_qp_attr_mask mask;
1470 int err;
1471 int disconnect = 0;
1473 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1476 * If we get more than the supported amount of private data
1477 * then we must fail this connection.
1479 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1480 err = -EINVAL;
1481 goto err_stop_timer;
1485 * copy the new data into our accumulation buffer.
1487 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1488 skb->len);
1489 ep->mpa_pkt_len += skb->len;
1492 * if we don't even have the mpa message, then bail.
1494 if (ep->mpa_pkt_len < sizeof(*mpa))
1495 return 0;
1496 mpa = (struct mpa_message *) ep->mpa_pkt;
1498 /* Validate MPA header. */
1499 if (mpa->revision > mpa_rev) {
1500 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1501 __func__, mpa_rev, mpa->revision);
1502 err = -EPROTO;
1503 goto err_stop_timer;
1505 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1506 err = -EPROTO;
1507 goto err_stop_timer;
1510 plen = ntohs(mpa->private_data_size);
1513 * Fail if there's too much private data.
1515 if (plen > MPA_MAX_PRIVATE_DATA) {
1516 err = -EPROTO;
1517 goto err_stop_timer;
1521 * If plen does not account for pkt size
1523 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1524 err = -EPROTO;
1525 goto err_stop_timer;
1528 ep->plen = (u8) plen;
1531 * If we don't have all the pdata yet, then bail.
1532 * We'll continue process when more data arrives.
1534 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1535 return 0;
1537 if (mpa->flags & MPA_REJECT) {
1538 err = -ECONNREFUSED;
1539 goto err_stop_timer;
1543 * Stop mpa timer. If it expired, then
1544 * we ignore the MPA reply. process_timeout()
1545 * will abort the connection.
1547 if (stop_ep_timer(ep))
1548 return 0;
1551 * If we get here we have accumulated the entire mpa
1552 * start reply message including private data. And
1553 * the MPA header is valid.
1555 __state_set(&ep->com, FPDU_MODE);
1556 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1557 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1558 ep->mpa_attr.version = mpa->revision;
1559 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1561 if (mpa->revision == 2) {
1562 ep->mpa_attr.enhanced_rdma_conn =
1563 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1564 if (ep->mpa_attr.enhanced_rdma_conn) {
1565 mpa_v2_params = (struct mpa_v2_conn_params *)
1566 (ep->mpa_pkt + sizeof(*mpa));
1567 resp_ird = ntohs(mpa_v2_params->ird) &
1568 MPA_V2_IRD_ORD_MASK;
1569 resp_ord = ntohs(mpa_v2_params->ord) &
1570 MPA_V2_IRD_ORD_MASK;
1571 pr_debug("responder ird %u ord %u ep ird %u ord %u\n",
1572 resp_ird, resp_ord, ep->ird, ep->ord);
1575 * This is a double-check. Ideally, below checks are
1576 * not required since ird/ord stuff has been taken
1577 * care of in c4iw_accept_cr
1579 if (ep->ird < resp_ord) {
1580 if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1581 ep->com.dev->rdev.lldi.max_ordird_qp)
1582 ep->ird = resp_ord;
1583 else
1584 insuff_ird = 1;
1585 } else if (ep->ird > resp_ord) {
1586 ep->ird = resp_ord;
1588 if (ep->ord > resp_ird) {
1589 if (RELAXED_IRD_NEGOTIATION)
1590 ep->ord = resp_ird;
1591 else
1592 insuff_ird = 1;
1594 if (insuff_ird) {
1595 err = -ENOMEM;
1596 ep->ird = resp_ord;
1597 ep->ord = resp_ird;
1600 if (ntohs(mpa_v2_params->ird) &
1601 MPA_V2_PEER2PEER_MODEL) {
1602 if (ntohs(mpa_v2_params->ord) &
1603 MPA_V2_RDMA_WRITE_RTR)
1604 ep->mpa_attr.p2p_type =
1605 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1606 else if (ntohs(mpa_v2_params->ord) &
1607 MPA_V2_RDMA_READ_RTR)
1608 ep->mpa_attr.p2p_type =
1609 FW_RI_INIT_P2PTYPE_READ_REQ;
1612 } else if (mpa->revision == 1)
1613 if (peer2peer)
1614 ep->mpa_attr.p2p_type = p2p_type;
1616 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n",
1617 ep->mpa_attr.crc_enabled,
1618 ep->mpa_attr.recv_marker_enabled,
1619 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1620 ep->mpa_attr.p2p_type, p2p_type);
1623 * If responder's RTR does not match with that of initiator, assign
1624 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1625 * generated when moving QP to RTS state.
1626 * A TERM message will be sent after QP has moved to RTS state
1628 if ((ep->mpa_attr.version == 2) && peer2peer &&
1629 (ep->mpa_attr.p2p_type != p2p_type)) {
1630 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1631 rtr_mismatch = 1;
1634 attrs.mpa_attr = ep->mpa_attr;
1635 attrs.max_ird = ep->ird;
1636 attrs.max_ord = ep->ord;
1637 attrs.llp_stream_handle = ep;
1638 attrs.next_state = C4IW_QP_STATE_RTS;
1640 mask = C4IW_QP_ATTR_NEXT_STATE |
1641 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1642 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1644 /* bind QP and TID with INIT_WR */
1645 err = c4iw_modify_qp(ep->com.qp->rhp,
1646 ep->com.qp, mask, &attrs, 1);
1647 if (err)
1648 goto err;
1651 * If responder's RTR requirement did not match with what initiator
1652 * supports, generate TERM message
1654 if (rtr_mismatch) {
1655 pr_err("%s: RTR mismatch, sending TERM\n", __func__);
1656 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1657 attrs.ecode = MPA_NOMATCH_RTR;
1658 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1659 attrs.send_term = 1;
1660 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1661 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1662 err = -ENOMEM;
1663 disconnect = 1;
1664 goto out;
1668 * Generate TERM if initiator IRD is not sufficient for responder
1669 * provided ORD. Currently, we do the same behaviour even when
1670 * responder provided IRD is also not sufficient as regards to
1671 * initiator ORD.
1673 if (insuff_ird) {
1674 pr_err("%s: Insufficient IRD, sending TERM\n", __func__);
1675 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1676 attrs.ecode = MPA_INSUFF_IRD;
1677 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1678 attrs.send_term = 1;
1679 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1680 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1681 err = -ENOMEM;
1682 disconnect = 1;
1683 goto out;
1685 goto out;
1686 err_stop_timer:
1687 stop_ep_timer(ep);
1688 err:
1689 disconnect = 2;
1690 out:
1691 connect_reply_upcall(ep, err);
1692 return disconnect;
1696 * process_mpa_request - process streaming mode MPA request
1698 * Returns:
1700 * 0 upon success indicating a connect request was delivered to the ULP
1701 * or the mpa request is incomplete but valid so far.
1703 * 1 if a failure requires the caller to close the connection.
1705 * 2 if a failure requires the caller to abort the connection.
1707 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1709 struct mpa_message *mpa;
1710 struct mpa_v2_conn_params *mpa_v2_params;
1711 u16 plen;
1713 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1716 * If we get more than the supported amount of private data
1717 * then we must fail this connection.
1719 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1720 goto err_stop_timer;
1722 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1725 * Copy the new data into our accumulation buffer.
1727 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1728 skb->len);
1729 ep->mpa_pkt_len += skb->len;
1732 * If we don't even have the mpa message, then bail.
1733 * We'll continue process when more data arrives.
1735 if (ep->mpa_pkt_len < sizeof(*mpa))
1736 return 0;
1738 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1739 mpa = (struct mpa_message *) ep->mpa_pkt;
1742 * Validate MPA Header.
1744 if (mpa->revision > mpa_rev) {
1745 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1746 __func__, mpa_rev, mpa->revision);
1747 goto err_stop_timer;
1750 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1751 goto err_stop_timer;
1753 plen = ntohs(mpa->private_data_size);
1756 * Fail if there's too much private data.
1758 if (plen > MPA_MAX_PRIVATE_DATA)
1759 goto err_stop_timer;
1762 * If plen does not account for pkt size
1764 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1765 goto err_stop_timer;
1766 ep->plen = (u8) plen;
1769 * If we don't have all the pdata yet, then bail.
1771 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1772 return 0;
1775 * If we get here we have accumulated the entire mpa
1776 * start reply message including private data.
1778 ep->mpa_attr.initiator = 0;
1779 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1780 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1781 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1782 ep->mpa_attr.version = mpa->revision;
1783 if (mpa->revision == 1)
1784 ep->tried_with_mpa_v1 = 1;
1785 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1787 if (mpa->revision == 2) {
1788 ep->mpa_attr.enhanced_rdma_conn =
1789 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1790 if (ep->mpa_attr.enhanced_rdma_conn) {
1791 mpa_v2_params = (struct mpa_v2_conn_params *)
1792 (ep->mpa_pkt + sizeof(*mpa));
1793 ep->ird = ntohs(mpa_v2_params->ird) &
1794 MPA_V2_IRD_ORD_MASK;
1795 ep->ird = min_t(u32, ep->ird,
1796 cur_max_read_depth(ep->com.dev));
1797 ep->ord = ntohs(mpa_v2_params->ord) &
1798 MPA_V2_IRD_ORD_MASK;
1799 ep->ord = min_t(u32, ep->ord,
1800 cur_max_read_depth(ep->com.dev));
1801 pr_debug("initiator ird %u ord %u\n",
1802 ep->ird, ep->ord);
1803 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1804 if (peer2peer) {
1805 if (ntohs(mpa_v2_params->ord) &
1806 MPA_V2_RDMA_WRITE_RTR)
1807 ep->mpa_attr.p2p_type =
1808 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1809 else if (ntohs(mpa_v2_params->ord) &
1810 MPA_V2_RDMA_READ_RTR)
1811 ep->mpa_attr.p2p_type =
1812 FW_RI_INIT_P2PTYPE_READ_REQ;
1815 } else if (mpa->revision == 1)
1816 if (peer2peer)
1817 ep->mpa_attr.p2p_type = p2p_type;
1819 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n",
1820 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1821 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1822 ep->mpa_attr.p2p_type);
1824 __state_set(&ep->com, MPA_REQ_RCVD);
1826 /* drive upcall */
1827 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1828 if (ep->parent_ep->com.state != DEAD) {
1829 if (connect_request_upcall(ep))
1830 goto err_unlock_parent;
1831 } else {
1832 goto err_unlock_parent;
1834 mutex_unlock(&ep->parent_ep->com.mutex);
1835 return 0;
1837 err_unlock_parent:
1838 mutex_unlock(&ep->parent_ep->com.mutex);
1839 goto err_out;
1840 err_stop_timer:
1841 (void)stop_ep_timer(ep);
1842 err_out:
1843 return 2;
1846 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1848 struct c4iw_ep *ep;
1849 struct cpl_rx_data *hdr = cplhdr(skb);
1850 unsigned int dlen = ntohs(hdr->len);
1851 unsigned int tid = GET_TID(hdr);
1852 __u8 status = hdr->status;
1853 int disconnect = 0;
1855 ep = get_ep_from_tid(dev, tid);
1856 if (!ep)
1857 return 0;
1858 pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen);
1859 skb_pull(skb, sizeof(*hdr));
1860 skb_trim(skb, dlen);
1861 mutex_lock(&ep->com.mutex);
1863 switch (ep->com.state) {
1864 case MPA_REQ_SENT:
1865 update_rx_credits(ep, dlen);
1866 ep->rcv_seq += dlen;
1867 disconnect = process_mpa_reply(ep, skb);
1868 break;
1869 case MPA_REQ_WAIT:
1870 update_rx_credits(ep, dlen);
1871 ep->rcv_seq += dlen;
1872 disconnect = process_mpa_request(ep, skb);
1873 break;
1874 case FPDU_MODE: {
1875 struct c4iw_qp_attributes attrs;
1877 update_rx_credits(ep, dlen);
1878 if (status)
1879 pr_err("%s Unexpected streaming data." \
1880 " qpid %u ep %p state %d tid %u status %d\n",
1881 __func__, ep->com.qp->wq.sq.qid, ep,
1882 ep->com.state, ep->hwtid, status);
1883 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1884 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1885 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1886 disconnect = 1;
1887 break;
1889 default:
1890 break;
1892 mutex_unlock(&ep->com.mutex);
1893 if (disconnect)
1894 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1895 c4iw_put_ep(&ep->com);
1896 return 0;
1899 static void complete_cached_srq_buffers(struct c4iw_ep *ep, u32 srqidx)
1901 enum chip_type adapter_type;
1903 adapter_type = ep->com.dev->rdev.lldi.adapter_type;
1906 * If this TCB had a srq buffer cached, then we must complete
1907 * it. For user mode, that means saving the srqidx in the
1908 * user/kernel status page for this qp. For kernel mode, just
1909 * synthesize the CQE now.
1911 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) {
1912 if (ep->com.qp->ibqp.uobject)
1913 t4_set_wq_in_error(&ep->com.qp->wq, srqidx);
1914 else
1915 c4iw_flush_srqidx(ep->com.qp, srqidx);
1919 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1921 u32 srqidx;
1922 struct c4iw_ep *ep;
1923 struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb);
1924 int release = 0;
1925 unsigned int tid = GET_TID(rpl);
1927 ep = get_ep_from_tid(dev, tid);
1928 if (!ep) {
1929 pr_warn("Abort rpl to freed endpoint\n");
1930 return 0;
1933 if (ep->com.qp && ep->com.qp->srq) {
1934 srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl->srqidx_status));
1935 complete_cached_srq_buffers(ep, srqidx ? srqidx : ep->srqe_idx);
1938 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1939 mutex_lock(&ep->com.mutex);
1940 switch (ep->com.state) {
1941 case ABORTING:
1942 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
1943 __state_set(&ep->com, DEAD);
1944 release = 1;
1945 break;
1946 default:
1947 pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state);
1948 break;
1950 mutex_unlock(&ep->com.mutex);
1952 if (release) {
1953 close_complete_upcall(ep, -ECONNRESET);
1954 release_ep_resources(ep);
1956 c4iw_put_ep(&ep->com);
1957 return 0;
1960 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1962 struct sk_buff *skb;
1963 struct fw_ofld_connection_wr *req;
1964 unsigned int mtu_idx;
1965 u32 wscale;
1966 struct sockaddr_in *sin;
1967 int win;
1969 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1970 if (!skb)
1971 return -ENOMEM;
1973 req = __skb_put_zero(skb, sizeof(*req));
1974 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1975 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1976 req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1977 ep->com.dev->rdev.lldi.ports[0],
1978 ep->l2t));
1979 sin = (struct sockaddr_in *)&ep->com.local_addr;
1980 req->le.lport = sin->sin_port;
1981 req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1982 sin = (struct sockaddr_in *)&ep->com.remote_addr;
1983 req->le.pport = sin->sin_port;
1984 req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1985 req->tcb.t_state_to_astid =
1986 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1987 FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1988 req->tcb.cplrxdataack_cplpassacceptrpl =
1989 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1990 req->tcb.tx_max = (__force __be32) jiffies;
1991 req->tcb.rcv_adv = htons(1);
1992 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1993 enable_tcp_timestamps,
1994 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
1995 wscale = cxgb_compute_wscale(rcv_win);
1998 * Specify the largest window that will fit in opt0. The
1999 * remainder will be specified in the rx_data_ack.
2001 win = ep->rcv_win >> 10;
2002 if (win > RCV_BUFSIZ_M)
2003 win = RCV_BUFSIZ_M;
2005 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
2006 (nocong ? NO_CONG_F : 0) |
2007 KEEP_ALIVE_F |
2008 DELACK_F |
2009 WND_SCALE_V(wscale) |
2010 MSS_IDX_V(mtu_idx) |
2011 L2T_IDX_V(ep->l2t->idx) |
2012 TX_CHAN_V(ep->tx_chan) |
2013 SMAC_SEL_V(ep->smac_idx) |
2014 DSCP_V(ep->tos >> 2) |
2015 ULP_MODE_V(ULP_MODE_TCPDDP) |
2016 RCV_BUFSIZ_V(win));
2017 req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2018 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2019 RX_CHANNEL_V(0) |
2020 CCTRL_ECN_V(enable_ecn) |
2021 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2022 if (enable_tcp_timestamps)
2023 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2024 if (enable_tcp_sack)
2025 req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2026 if (wscale && enable_tcp_window_scaling)
2027 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2028 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2029 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2030 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2031 set_bit(ACT_OFLD_CONN, &ep->com.history);
2032 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2036 * Some of the error codes above implicitly indicate that there is no TID
2037 * allocated with the result of an ACT_OPEN. We use this predicate to make
2038 * that explicit.
2040 static inline int act_open_has_tid(int status)
2042 return (status != CPL_ERR_TCAM_PARITY &&
2043 status != CPL_ERR_TCAM_MISS &&
2044 status != CPL_ERR_TCAM_FULL &&
2045 status != CPL_ERR_CONN_EXIST_SYNRECV &&
2046 status != CPL_ERR_CONN_EXIST);
2049 static char *neg_adv_str(unsigned int status)
2051 switch (status) {
2052 case CPL_ERR_RTX_NEG_ADVICE:
2053 return "Retransmit timeout";
2054 case CPL_ERR_PERSIST_NEG_ADVICE:
2055 return "Persist timeout";
2056 case CPL_ERR_KEEPALV_NEG_ADVICE:
2057 return "Keepalive timeout";
2058 default:
2059 return "Unknown";
2063 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2065 ep->snd_win = snd_win;
2066 ep->rcv_win = rcv_win;
2067 pr_debug("snd_win %d rcv_win %d\n",
2068 ep->snd_win, ep->rcv_win);
2071 #define ACT_OPEN_RETRY_COUNT 2
2073 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2074 struct dst_entry *dst, struct c4iw_dev *cdev,
2075 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2077 struct neighbour *n;
2078 int err, step;
2079 struct net_device *pdev;
2081 n = dst_neigh_lookup(dst, peer_ip);
2082 if (!n)
2083 return -ENODEV;
2085 rcu_read_lock();
2086 err = -ENOMEM;
2087 if (n->dev->flags & IFF_LOOPBACK) {
2088 if (iptype == 4)
2089 pdev = __ip_dev_find(&init_net, *(__be32 *)peer_ip, false);
2090 else if (IS_ENABLED(CONFIG_IPV6))
2091 for_each_netdev(&init_net, pdev) {
2092 if (ipv6_chk_addr(&init_net,
2093 (struct in6_addr *)peer_ip,
2094 pdev, 1))
2095 break;
2097 else
2098 pdev = NULL;
2100 if (!pdev) {
2101 err = -ENODEV;
2102 goto out;
2104 if (is_vlan_dev(pdev))
2105 pdev = vlan_dev_real_dev(pdev);
2106 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2107 n, pdev, rt_tos2priority(tos));
2108 if (!ep->l2t)
2109 goto out;
2110 ep->mtu = pdev->mtu;
2111 ep->tx_chan = cxgb4_port_chan(pdev);
2112 ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2113 step = cdev->rdev.lldi.ntxq /
2114 cdev->rdev.lldi.nchan;
2115 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2116 step = cdev->rdev.lldi.nrxq /
2117 cdev->rdev.lldi.nchan;
2118 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2119 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2120 cxgb4_port_idx(pdev) * step];
2121 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2122 } else {
2123 pdev = get_real_dev(n->dev);
2124 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2125 n, pdev, rt_tos2priority(tos));
2126 if (!ep->l2t)
2127 goto out;
2128 ep->mtu = dst_mtu(dst);
2129 ep->tx_chan = cxgb4_port_chan(pdev);
2130 ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2131 step = cdev->rdev.lldi.ntxq /
2132 cdev->rdev.lldi.nchan;
2133 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2134 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2135 step = cdev->rdev.lldi.nrxq /
2136 cdev->rdev.lldi.nchan;
2137 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2138 cxgb4_port_idx(pdev) * step];
2139 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2141 if (clear_mpa_v1) {
2142 ep->retry_with_mpa_v1 = 0;
2143 ep->tried_with_mpa_v1 = 0;
2146 err = 0;
2147 out:
2148 rcu_read_unlock();
2150 neigh_release(n);
2152 return err;
2155 static int c4iw_reconnect(struct c4iw_ep *ep)
2157 int err = 0;
2158 int size = 0;
2159 struct sockaddr_in *laddr = (struct sockaddr_in *)
2160 &ep->com.cm_id->m_local_addr;
2161 struct sockaddr_in *raddr = (struct sockaddr_in *)
2162 &ep->com.cm_id->m_remote_addr;
2163 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2164 &ep->com.cm_id->m_local_addr;
2165 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2166 &ep->com.cm_id->m_remote_addr;
2167 int iptype;
2168 __u8 *ra;
2170 pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id);
2171 c4iw_init_wr_wait(ep->com.wr_waitp);
2173 /* When MPA revision is different on nodes, the node with MPA_rev=2
2174 * tries to reconnect with MPA_rev 1 for the same EP through
2175 * c4iw_reconnect(), where the same EP is assigned with new tid for
2176 * further connection establishment. As we are using the same EP pointer
2177 * for reconnect, few skbs are used during the previous c4iw_connect(),
2178 * which leaves the EP with inadequate skbs for further
2179 * c4iw_reconnect(), Further causing a crash due to an empty
2180 * skb_list() during peer_abort(). Allocate skbs which is already used.
2182 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2183 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2184 err = -ENOMEM;
2185 goto fail1;
2189 * Allocate an active TID to initiate a TCP connection.
2191 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2192 if (ep->atid == -1) {
2193 pr_err("%s - cannot alloc atid\n", __func__);
2194 err = -ENOMEM;
2195 goto fail2;
2197 err = xa_insert_irq(&ep->com.dev->atids, ep->atid, ep, GFP_KERNEL);
2198 if (err)
2199 goto fail2a;
2201 /* find a route */
2202 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2203 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev,
2204 laddr->sin_addr.s_addr,
2205 raddr->sin_addr.s_addr,
2206 laddr->sin_port,
2207 raddr->sin_port, ep->com.cm_id->tos);
2208 iptype = 4;
2209 ra = (__u8 *)&raddr->sin_addr;
2210 } else {
2211 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi,
2212 get_real_dev,
2213 laddr6->sin6_addr.s6_addr,
2214 raddr6->sin6_addr.s6_addr,
2215 laddr6->sin6_port,
2216 raddr6->sin6_port,
2217 ep->com.cm_id->tos,
2218 raddr6->sin6_scope_id);
2219 iptype = 6;
2220 ra = (__u8 *)&raddr6->sin6_addr;
2222 if (!ep->dst) {
2223 pr_err("%s - cannot find route\n", __func__);
2224 err = -EHOSTUNREACH;
2225 goto fail3;
2227 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2228 ep->com.dev->rdev.lldi.adapter_type,
2229 ep->com.cm_id->tos);
2230 if (err) {
2231 pr_err("%s - cannot alloc l2e\n", __func__);
2232 goto fail4;
2235 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2236 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2237 ep->l2t->idx);
2239 state_set(&ep->com, CONNECTING);
2240 ep->tos = ep->com.cm_id->tos;
2242 /* send connect request to rnic */
2243 err = send_connect(ep);
2244 if (!err)
2245 goto out;
2247 cxgb4_l2t_release(ep->l2t);
2248 fail4:
2249 dst_release(ep->dst);
2250 fail3:
2251 xa_erase_irq(&ep->com.dev->atids, ep->atid);
2252 fail2a:
2253 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2254 fail2:
2256 * remember to send notification to upper layer.
2257 * We are in here so the upper layer is not aware that this is
2258 * re-connect attempt and so, upper layer is still waiting for
2259 * response of 1st connect request.
2261 connect_reply_upcall(ep, -ECONNRESET);
2262 fail1:
2263 c4iw_put_ep(&ep->com);
2264 out:
2265 return err;
2268 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2270 struct c4iw_ep *ep;
2271 struct cpl_act_open_rpl *rpl = cplhdr(skb);
2272 unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2273 ntohl(rpl->atid_status)));
2274 struct tid_info *t = dev->rdev.lldi.tids;
2275 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2276 struct sockaddr_in *la;
2277 struct sockaddr_in *ra;
2278 struct sockaddr_in6 *la6;
2279 struct sockaddr_in6 *ra6;
2280 int ret = 0;
2282 ep = lookup_atid(t, atid);
2283 if (!ep)
2284 return -EINVAL;
2286 la = (struct sockaddr_in *)&ep->com.local_addr;
2287 ra = (struct sockaddr_in *)&ep->com.remote_addr;
2288 la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2289 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2291 pr_debug("ep %p atid %u status %u errno %d\n", ep, atid,
2292 status, status2errno(status));
2294 if (cxgb_is_neg_adv(status)) {
2295 pr_debug("Connection problems for atid %u status %u (%s)\n",
2296 atid, status, neg_adv_str(status));
2297 ep->stats.connect_neg_adv++;
2298 mutex_lock(&dev->rdev.stats.lock);
2299 dev->rdev.stats.neg_adv++;
2300 mutex_unlock(&dev->rdev.stats.lock);
2301 return 0;
2304 set_bit(ACT_OPEN_RPL, &ep->com.history);
2307 * Log interesting failures.
2309 switch (status) {
2310 case CPL_ERR_CONN_RESET:
2311 case CPL_ERR_CONN_TIMEDOUT:
2312 break;
2313 case CPL_ERR_TCAM_FULL:
2314 mutex_lock(&dev->rdev.stats.lock);
2315 dev->rdev.stats.tcam_full++;
2316 mutex_unlock(&dev->rdev.stats.lock);
2317 if (ep->com.local_addr.ss_family == AF_INET &&
2318 dev->rdev.lldi.enable_fw_ofld_conn) {
2319 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2320 ntohl(rpl->atid_status))));
2321 if (ret)
2322 goto fail;
2323 return 0;
2325 break;
2326 case CPL_ERR_CONN_EXIST:
2327 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2328 set_bit(ACT_RETRY_INUSE, &ep->com.history);
2329 if (ep->com.remote_addr.ss_family == AF_INET6) {
2330 struct sockaddr_in6 *sin6 =
2331 (struct sockaddr_in6 *)
2332 &ep->com.local_addr;
2333 cxgb4_clip_release(
2334 ep->com.dev->rdev.lldi.ports[0],
2335 (const u32 *)
2336 &sin6->sin6_addr.s6_addr, 1);
2338 xa_erase_irq(&ep->com.dev->atids, atid);
2339 cxgb4_free_atid(t, atid);
2340 dst_release(ep->dst);
2341 cxgb4_l2t_release(ep->l2t);
2342 c4iw_reconnect(ep);
2343 return 0;
2345 break;
2346 default:
2347 if (ep->com.local_addr.ss_family == AF_INET) {
2348 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2349 atid, status, status2errno(status),
2350 &la->sin_addr.s_addr, ntohs(la->sin_port),
2351 &ra->sin_addr.s_addr, ntohs(ra->sin_port));
2352 } else {
2353 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2354 atid, status, status2errno(status),
2355 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2356 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2358 break;
2361 fail:
2362 connect_reply_upcall(ep, status2errno(status));
2363 state_set(&ep->com, DEAD);
2365 if (ep->com.remote_addr.ss_family == AF_INET6) {
2366 struct sockaddr_in6 *sin6 =
2367 (struct sockaddr_in6 *)&ep->com.local_addr;
2368 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2369 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2371 if (status && act_open_has_tid(status))
2372 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl),
2373 ep->com.local_addr.ss_family);
2375 xa_erase_irq(&ep->com.dev->atids, atid);
2376 cxgb4_free_atid(t, atid);
2377 dst_release(ep->dst);
2378 cxgb4_l2t_release(ep->l2t);
2379 c4iw_put_ep(&ep->com);
2381 return 0;
2384 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2386 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2387 unsigned int stid = GET_TID(rpl);
2388 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2390 if (!ep) {
2391 pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2392 goto out;
2394 pr_debug("ep %p status %d error %d\n", ep,
2395 rpl->status, status2errno(rpl->status));
2396 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2397 c4iw_put_ep(&ep->com);
2398 out:
2399 return 0;
2402 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2404 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2405 unsigned int stid = GET_TID(rpl);
2406 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2408 if (!ep) {
2409 pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2410 goto out;
2412 pr_debug("ep %p\n", ep);
2413 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2414 c4iw_put_ep(&ep->com);
2415 out:
2416 return 0;
2419 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2420 struct cpl_pass_accept_req *req)
2422 struct cpl_pass_accept_rpl *rpl;
2423 unsigned int mtu_idx;
2424 u64 opt0;
2425 u32 opt2;
2426 u32 wscale;
2427 struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2428 int win;
2429 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2431 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2432 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2433 enable_tcp_timestamps && req->tcpopt.tstamp,
2434 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
2435 wscale = cxgb_compute_wscale(rcv_win);
2438 * Specify the largest window that will fit in opt0. The
2439 * remainder will be specified in the rx_data_ack.
2441 win = ep->rcv_win >> 10;
2442 if (win > RCV_BUFSIZ_M)
2443 win = RCV_BUFSIZ_M;
2444 opt0 = (nocong ? NO_CONG_F : 0) |
2445 KEEP_ALIVE_F |
2446 DELACK_F |
2447 WND_SCALE_V(wscale) |
2448 MSS_IDX_V(mtu_idx) |
2449 L2T_IDX_V(ep->l2t->idx) |
2450 TX_CHAN_V(ep->tx_chan) |
2451 SMAC_SEL_V(ep->smac_idx) |
2452 DSCP_V(ep->tos >> 2) |
2453 ULP_MODE_V(ULP_MODE_TCPDDP) |
2454 RCV_BUFSIZ_V(win);
2455 opt2 = RX_CHANNEL_V(0) |
2456 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2458 if (enable_tcp_timestamps && req->tcpopt.tstamp)
2459 opt2 |= TSTAMPS_EN_F;
2460 if (enable_tcp_sack && req->tcpopt.sack)
2461 opt2 |= SACK_EN_F;
2462 if (wscale && enable_tcp_window_scaling)
2463 opt2 |= WND_SCALE_EN_F;
2464 if (enable_ecn) {
2465 const struct tcphdr *tcph;
2466 u32 hlen = ntohl(req->hdr_len);
2468 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2469 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2470 IP_HDR_LEN_G(hlen);
2471 else
2472 tcph = (const void *)(req + 1) +
2473 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2474 if (tcph->ece && tcph->cwr)
2475 opt2 |= CCTRL_ECN_V(1);
2478 if (!is_t4(adapter_type)) {
2479 u32 isn = (get_random_u32() & ~7UL) - 1;
2481 skb = get_skb(skb, roundup(sizeof(*rpl5), 16), GFP_KERNEL);
2482 rpl5 = __skb_put_zero(skb, roundup(sizeof(*rpl5), 16));
2483 rpl = (void *)rpl5;
2484 INIT_TP_WR_CPL(rpl5, CPL_PASS_ACCEPT_RPL, ep->hwtid);
2485 opt2 |= T5_OPT_2_VALID_F;
2486 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2487 opt2 |= T5_ISS_F;
2488 if (peer2peer)
2489 isn += 4;
2490 rpl5->iss = cpu_to_be32(isn);
2491 pr_debug("iss %u\n", be32_to_cpu(rpl5->iss));
2492 } else {
2493 skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
2494 rpl = __skb_put_zero(skb, sizeof(*rpl));
2495 INIT_TP_WR_CPL(rpl, CPL_PASS_ACCEPT_RPL, ep->hwtid);
2498 rpl->opt0 = cpu_to_be64(opt0);
2499 rpl->opt2 = cpu_to_be32(opt2);
2500 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2501 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2503 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2506 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2508 pr_debug("c4iw_dev %p tid %u\n", dev, hwtid);
2509 skb_trim(skb, sizeof(struct cpl_tid_release));
2510 release_tid(&dev->rdev, hwtid, skb);
2511 return;
2514 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2516 struct c4iw_ep *child_ep = NULL, *parent_ep;
2517 struct cpl_pass_accept_req *req = cplhdr(skb);
2518 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2519 struct tid_info *t = dev->rdev.lldi.tids;
2520 unsigned int hwtid = GET_TID(req);
2521 struct dst_entry *dst;
2522 __u8 local_ip[16], peer_ip[16];
2523 __be16 local_port, peer_port;
2524 struct sockaddr_in6 *sin6;
2525 int err;
2526 u16 peer_mss = ntohs(req->tcpopt.mss);
2527 int iptype;
2528 unsigned short hdrs;
2529 u8 tos;
2531 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2532 if (!parent_ep) {
2533 pr_err("%s connect request on invalid stid %d\n",
2534 __func__, stid);
2535 goto reject;
2538 if (state_read(&parent_ep->com) != LISTEN) {
2539 pr_err("%s - listening ep not in LISTEN\n", __func__);
2540 goto reject;
2543 if (parent_ep->com.cm_id->tos_set)
2544 tos = parent_ep->com.cm_id->tos;
2545 else
2546 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2548 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type,
2549 &iptype, local_ip, peer_ip, &local_port, &peer_port);
2551 /* Find output route */
2552 if (iptype == 4) {
2553 pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2554 , parent_ep, hwtid,
2555 local_ip, peer_ip, ntohs(local_port),
2556 ntohs(peer_port), peer_mss);
2557 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
2558 *(__be32 *)local_ip, *(__be32 *)peer_ip,
2559 local_port, peer_port, tos);
2560 } else {
2561 pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2562 , parent_ep, hwtid,
2563 local_ip, peer_ip, ntohs(local_port),
2564 ntohs(peer_port), peer_mss);
2565 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
2566 local_ip, peer_ip, local_port, peer_port,
2567 tos,
2568 ((struct sockaddr_in6 *)
2569 &parent_ep->com.local_addr)->sin6_scope_id);
2571 if (!dst) {
2572 pr_err("%s - failed to find dst entry!\n", __func__);
2573 goto reject;
2576 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2577 if (!child_ep) {
2578 pr_err("%s - failed to allocate ep entry!\n", __func__);
2579 dst_release(dst);
2580 goto reject;
2583 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2584 parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2585 if (err) {
2586 pr_err("%s - failed to allocate l2t entry!\n", __func__);
2587 dst_release(dst);
2588 kfree(child_ep);
2589 goto reject;
2592 hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) +
2593 sizeof(struct tcphdr) +
2594 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2595 if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2596 child_ep->mtu = peer_mss + hdrs;
2598 skb_queue_head_init(&child_ep->com.ep_skb_list);
2599 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2600 goto fail;
2602 state_set(&child_ep->com, CONNECTING);
2603 child_ep->com.dev = dev;
2604 child_ep->com.cm_id = NULL;
2606 if (iptype == 4) {
2607 struct sockaddr_in *sin = (struct sockaddr_in *)
2608 &child_ep->com.local_addr;
2610 sin->sin_family = AF_INET;
2611 sin->sin_port = local_port;
2612 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2614 sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2615 sin->sin_family = AF_INET;
2616 sin->sin_port = ((struct sockaddr_in *)
2617 &parent_ep->com.local_addr)->sin_port;
2618 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2620 sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2621 sin->sin_family = AF_INET;
2622 sin->sin_port = peer_port;
2623 sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2624 } else {
2625 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2626 sin6->sin6_family = PF_INET6;
2627 sin6->sin6_port = local_port;
2628 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2630 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2631 sin6->sin6_family = PF_INET6;
2632 sin6->sin6_port = ((struct sockaddr_in6 *)
2633 &parent_ep->com.local_addr)->sin6_port;
2634 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2636 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2637 sin6->sin6_family = PF_INET6;
2638 sin6->sin6_port = peer_port;
2639 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2642 c4iw_get_ep(&parent_ep->com);
2643 child_ep->parent_ep = parent_ep;
2644 child_ep->tos = tos;
2645 child_ep->dst = dst;
2646 child_ep->hwtid = hwtid;
2648 pr_debug("tx_chan %u smac_idx %u rss_qid %u\n",
2649 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2651 timer_setup(&child_ep->timer, ep_timeout, 0);
2652 cxgb4_insert_tid(t, child_ep, hwtid,
2653 child_ep->com.local_addr.ss_family);
2654 insert_ep_tid(child_ep);
2655 if (accept_cr(child_ep, skb, req)) {
2656 c4iw_put_ep(&parent_ep->com);
2657 release_ep_resources(child_ep);
2658 } else {
2659 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2661 if (iptype == 6) {
2662 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2663 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2664 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2666 goto out;
2667 fail:
2668 c4iw_put_ep(&child_ep->com);
2669 reject:
2670 reject_cr(dev, hwtid, skb);
2671 out:
2672 if (parent_ep)
2673 c4iw_put_ep(&parent_ep->com);
2674 return 0;
2677 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2679 struct c4iw_ep *ep;
2680 struct cpl_pass_establish *req = cplhdr(skb);
2681 unsigned int tid = GET_TID(req);
2682 int ret;
2683 u16 tcp_opt = ntohs(req->tcp_opt);
2685 ep = get_ep_from_tid(dev, tid);
2686 if (!ep)
2687 return 0;
2689 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2690 ep->snd_seq = be32_to_cpu(req->snd_isn);
2691 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2692 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
2694 pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt);
2696 set_emss(ep, tcp_opt);
2698 dst_confirm(ep->dst);
2699 mutex_lock(&ep->com.mutex);
2700 ep->com.state = MPA_REQ_WAIT;
2701 start_ep_timer(ep);
2702 set_bit(PASS_ESTAB, &ep->com.history);
2703 ret = send_flowc(ep);
2704 mutex_unlock(&ep->com.mutex);
2705 if (ret)
2706 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2707 c4iw_put_ep(&ep->com);
2709 return 0;
2712 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2714 struct cpl_peer_close *hdr = cplhdr(skb);
2715 struct c4iw_ep *ep;
2716 struct c4iw_qp_attributes attrs;
2717 int disconnect = 1;
2718 int release = 0;
2719 unsigned int tid = GET_TID(hdr);
2720 int ret;
2722 ep = get_ep_from_tid(dev, tid);
2723 if (!ep)
2724 return 0;
2726 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2727 dst_confirm(ep->dst);
2729 set_bit(PEER_CLOSE, &ep->com.history);
2730 mutex_lock(&ep->com.mutex);
2731 switch (ep->com.state) {
2732 case MPA_REQ_WAIT:
2733 __state_set(&ep->com, CLOSING);
2734 break;
2735 case MPA_REQ_SENT:
2736 __state_set(&ep->com, CLOSING);
2737 connect_reply_upcall(ep, -ECONNRESET);
2738 break;
2739 case MPA_REQ_RCVD:
2742 * We're gonna mark this puppy DEAD, but keep
2743 * the reference on it until the ULP accepts or
2744 * rejects the CR. Also wake up anyone waiting
2745 * in rdma connection migration (see c4iw_accept_cr()).
2747 __state_set(&ep->com, CLOSING);
2748 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2749 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2750 break;
2751 case MPA_REP_SENT:
2752 __state_set(&ep->com, CLOSING);
2753 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2754 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2755 break;
2756 case FPDU_MODE:
2757 start_ep_timer(ep);
2758 __state_set(&ep->com, CLOSING);
2759 attrs.next_state = C4IW_QP_STATE_CLOSING;
2760 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2761 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2762 if (ret != -ECONNRESET) {
2763 peer_close_upcall(ep);
2764 disconnect = 1;
2766 break;
2767 case ABORTING:
2768 disconnect = 0;
2769 break;
2770 case CLOSING:
2771 __state_set(&ep->com, MORIBUND);
2772 disconnect = 0;
2773 break;
2774 case MORIBUND:
2775 (void)stop_ep_timer(ep);
2776 if (ep->com.cm_id && ep->com.qp) {
2777 attrs.next_state = C4IW_QP_STATE_IDLE;
2778 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2779 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2781 close_complete_upcall(ep, 0);
2782 __state_set(&ep->com, DEAD);
2783 release = 1;
2784 disconnect = 0;
2785 break;
2786 case DEAD:
2787 disconnect = 0;
2788 break;
2789 default:
2790 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2792 mutex_unlock(&ep->com.mutex);
2793 if (disconnect)
2794 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2795 if (release)
2796 release_ep_resources(ep);
2797 c4iw_put_ep(&ep->com);
2798 return 0;
2801 static void finish_peer_abort(struct c4iw_dev *dev, struct c4iw_ep *ep)
2803 complete_cached_srq_buffers(ep, ep->srqe_idx);
2804 if (ep->com.cm_id && ep->com.qp) {
2805 struct c4iw_qp_attributes attrs;
2807 attrs.next_state = C4IW_QP_STATE_ERROR;
2808 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2809 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2811 peer_abort_upcall(ep);
2812 release_ep_resources(ep);
2813 c4iw_put_ep(&ep->com);
2816 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2818 struct cpl_abort_req_rss6 *req = cplhdr(skb);
2819 struct c4iw_ep *ep;
2820 struct sk_buff *rpl_skb;
2821 struct c4iw_qp_attributes attrs;
2822 int ret;
2823 int release = 0;
2824 unsigned int tid = GET_TID(req);
2825 u8 status;
2826 u32 srqidx;
2828 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16);
2830 ep = get_ep_from_tid(dev, tid);
2831 if (!ep)
2832 return 0;
2834 status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status));
2836 if (cxgb_is_neg_adv(status)) {
2837 pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
2838 ep->hwtid, status, neg_adv_str(status));
2839 ep->stats.abort_neg_adv++;
2840 mutex_lock(&dev->rdev.stats.lock);
2841 dev->rdev.stats.neg_adv++;
2842 mutex_unlock(&dev->rdev.stats.lock);
2843 goto deref_ep;
2846 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid,
2847 ep->com.state);
2848 set_bit(PEER_ABORT, &ep->com.history);
2851 * Wake up any threads in rdma_init() or rdma_fini().
2852 * However, this is not needed if com state is just
2853 * MPA_REQ_SENT
2855 if (ep->com.state != MPA_REQ_SENT)
2856 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2858 mutex_lock(&ep->com.mutex);
2859 switch (ep->com.state) {
2860 case CONNECTING:
2861 c4iw_put_ep(&ep->parent_ep->com);
2862 break;
2863 case MPA_REQ_WAIT:
2864 (void)stop_ep_timer(ep);
2865 break;
2866 case MPA_REQ_SENT:
2867 (void)stop_ep_timer(ep);
2868 if (status != CPL_ERR_CONN_RESET || mpa_rev == 1 ||
2869 (mpa_rev == 2 && ep->tried_with_mpa_v1))
2870 connect_reply_upcall(ep, -ECONNRESET);
2871 else {
2873 * we just don't send notification upwards because we
2874 * want to retry with mpa_v1 without upper layers even
2875 * knowing it.
2877 * do some housekeeping so as to re-initiate the
2878 * connection
2880 pr_info("%s: mpa_rev=%d. Retrying with mpav1\n",
2881 __func__, mpa_rev);
2882 ep->retry_with_mpa_v1 = 1;
2884 break;
2885 case MPA_REP_SENT:
2886 break;
2887 case MPA_REQ_RCVD:
2888 break;
2889 case MORIBUND:
2890 case CLOSING:
2891 stop_ep_timer(ep);
2892 fallthrough;
2893 case FPDU_MODE:
2894 if (ep->com.qp && ep->com.qp->srq) {
2895 srqidx = ABORT_RSS_SRQIDX_G(
2896 be32_to_cpu(req->srqidx_status));
2897 if (srqidx) {
2898 complete_cached_srq_buffers(ep, srqidx);
2899 } else {
2900 /* Hold ep ref until finish_peer_abort() */
2901 c4iw_get_ep(&ep->com);
2902 __state_set(&ep->com, ABORTING);
2903 set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags);
2904 read_tcb(ep);
2905 break;
2910 if (ep->com.cm_id && ep->com.qp) {
2911 attrs.next_state = C4IW_QP_STATE_ERROR;
2912 ret = c4iw_modify_qp(ep->com.qp->rhp,
2913 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2914 &attrs, 1);
2915 if (ret)
2916 pr_err("%s - qp <- error failed!\n", __func__);
2918 peer_abort_upcall(ep);
2919 break;
2920 case ABORTING:
2921 break;
2922 case DEAD:
2923 pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2924 mutex_unlock(&ep->com.mutex);
2925 goto deref_ep;
2926 default:
2927 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2928 break;
2930 dst_confirm(ep->dst);
2931 if (ep->com.state != ABORTING) {
2932 __state_set(&ep->com, DEAD);
2933 /* we don't release if we want to retry with mpa_v1 */
2934 if (!ep->retry_with_mpa_v1)
2935 release = 1;
2937 mutex_unlock(&ep->com.mutex);
2939 rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2940 if (WARN_ON(!rpl_skb)) {
2941 release = 1;
2942 goto out;
2945 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx);
2947 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2948 out:
2949 if (release)
2950 release_ep_resources(ep);
2951 else if (ep->retry_with_mpa_v1) {
2952 if (ep->com.remote_addr.ss_family == AF_INET6) {
2953 struct sockaddr_in6 *sin6 =
2954 (struct sockaddr_in6 *)
2955 &ep->com.local_addr;
2956 cxgb4_clip_release(
2957 ep->com.dev->rdev.lldi.ports[0],
2958 (const u32 *)&sin6->sin6_addr.s6_addr,
2961 xa_erase_irq(&ep->com.dev->hwtids, ep->hwtid);
2962 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
2963 ep->com.local_addr.ss_family);
2964 dst_release(ep->dst);
2965 cxgb4_l2t_release(ep->l2t);
2966 c4iw_reconnect(ep);
2969 deref_ep:
2970 c4iw_put_ep(&ep->com);
2971 /* Dereferencing ep, referenced in peer_abort_intr() */
2972 c4iw_put_ep(&ep->com);
2973 return 0;
2976 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2978 struct c4iw_ep *ep;
2979 struct c4iw_qp_attributes attrs;
2980 struct cpl_close_con_rpl *rpl = cplhdr(skb);
2981 int release = 0;
2982 unsigned int tid = GET_TID(rpl);
2984 ep = get_ep_from_tid(dev, tid);
2985 if (!ep)
2986 return 0;
2988 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2990 /* The cm_id may be null if we failed to connect */
2991 mutex_lock(&ep->com.mutex);
2992 set_bit(CLOSE_CON_RPL, &ep->com.history);
2993 switch (ep->com.state) {
2994 case CLOSING:
2995 __state_set(&ep->com, MORIBUND);
2996 break;
2997 case MORIBUND:
2998 (void)stop_ep_timer(ep);
2999 if ((ep->com.cm_id) && (ep->com.qp)) {
3000 attrs.next_state = C4IW_QP_STATE_IDLE;
3001 c4iw_modify_qp(ep->com.qp->rhp,
3002 ep->com.qp,
3003 C4IW_QP_ATTR_NEXT_STATE,
3004 &attrs, 1);
3006 close_complete_upcall(ep, 0);
3007 __state_set(&ep->com, DEAD);
3008 release = 1;
3009 break;
3010 case ABORTING:
3011 case DEAD:
3012 break;
3013 default:
3014 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3015 break;
3017 mutex_unlock(&ep->com.mutex);
3018 if (release)
3019 release_ep_resources(ep);
3020 c4iw_put_ep(&ep->com);
3021 return 0;
3024 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3026 struct cpl_rdma_terminate *rpl = cplhdr(skb);
3027 unsigned int tid = GET_TID(rpl);
3028 struct c4iw_ep *ep;
3029 struct c4iw_qp_attributes attrs;
3031 ep = get_ep_from_tid(dev, tid);
3033 if (ep) {
3034 if (ep->com.qp) {
3035 pr_warn("TERM received tid %u qpid %u\n", tid,
3036 ep->com.qp->wq.sq.qid);
3037 attrs.next_state = C4IW_QP_STATE_TERMINATE;
3038 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3039 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3042 /* As per draft-hilland-iwarp-verbs-v1.0, sec 6.2.3,
3043 * when entering the TERM state the RNIC MUST initiate a CLOSE.
3045 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3046 c4iw_put_ep(&ep->com);
3047 } else
3048 pr_warn("TERM received tid %u no ep/qp\n", tid);
3050 return 0;
3054 * Upcall from the adapter indicating data has been transmitted.
3055 * For us its just the single MPA request or reply. We can now free
3056 * the skb holding the mpa message.
3058 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3060 struct c4iw_ep *ep;
3061 struct cpl_fw4_ack *hdr = cplhdr(skb);
3062 u8 credits = hdr->credits;
3063 unsigned int tid = GET_TID(hdr);
3066 ep = get_ep_from_tid(dev, tid);
3067 if (!ep)
3068 return 0;
3069 pr_debug("ep %p tid %u credits %u\n",
3070 ep, ep->hwtid, credits);
3071 if (credits == 0) {
3072 pr_debug("0 credit ack ep %p tid %u state %u\n",
3073 ep, ep->hwtid, state_read(&ep->com));
3074 goto out;
3077 dst_confirm(ep->dst);
3078 if (ep->mpa_skb) {
3079 pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n",
3080 ep, ep->hwtid, state_read(&ep->com),
3081 ep->mpa_attr.initiator ? 1 : 0);
3082 mutex_lock(&ep->com.mutex);
3083 kfree_skb(ep->mpa_skb);
3084 ep->mpa_skb = NULL;
3085 if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3086 stop_ep_timer(ep);
3087 mutex_unlock(&ep->com.mutex);
3089 out:
3090 c4iw_put_ep(&ep->com);
3091 return 0;
3094 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3096 int abort;
3097 struct c4iw_ep *ep = to_ep(cm_id);
3099 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3101 mutex_lock(&ep->com.mutex);
3102 if (ep->com.state != MPA_REQ_RCVD) {
3103 mutex_unlock(&ep->com.mutex);
3104 c4iw_put_ep(&ep->com);
3105 return -ECONNRESET;
3107 set_bit(ULP_REJECT, &ep->com.history);
3108 if (mpa_rev == 0)
3109 abort = 1;
3110 else
3111 abort = send_mpa_reject(ep, pdata, pdata_len);
3112 mutex_unlock(&ep->com.mutex);
3114 stop_ep_timer(ep);
3115 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3116 c4iw_put_ep(&ep->com);
3117 return 0;
3120 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3122 int err;
3123 struct c4iw_qp_attributes attrs;
3124 enum c4iw_qp_attr_mask mask;
3125 struct c4iw_ep *ep = to_ep(cm_id);
3126 struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3127 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3128 int abort = 0;
3130 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3132 mutex_lock(&ep->com.mutex);
3133 if (ep->com.state != MPA_REQ_RCVD) {
3134 err = -ECONNRESET;
3135 goto err_out;
3138 if (!qp) {
3139 err = -EINVAL;
3140 goto err_out;
3143 set_bit(ULP_ACCEPT, &ep->com.history);
3144 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3145 (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3146 err = -EINVAL;
3147 goto err_abort;
3150 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3151 if (conn_param->ord > ep->ird) {
3152 if (RELAXED_IRD_NEGOTIATION) {
3153 conn_param->ord = ep->ird;
3154 } else {
3155 ep->ird = conn_param->ird;
3156 ep->ord = conn_param->ord;
3157 send_mpa_reject(ep, conn_param->private_data,
3158 conn_param->private_data_len);
3159 err = -ENOMEM;
3160 goto err_abort;
3163 if (conn_param->ird < ep->ord) {
3164 if (RELAXED_IRD_NEGOTIATION &&
3165 ep->ord <= h->rdev.lldi.max_ordird_qp) {
3166 conn_param->ird = ep->ord;
3167 } else {
3168 err = -ENOMEM;
3169 goto err_abort;
3173 ep->ird = conn_param->ird;
3174 ep->ord = conn_param->ord;
3176 if (ep->mpa_attr.version == 1) {
3177 if (peer2peer && ep->ird == 0)
3178 ep->ird = 1;
3179 } else {
3180 if (peer2peer &&
3181 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3182 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3183 ep->ird = 1;
3186 pr_debug("ird %d ord %d\n", ep->ird, ep->ord);
3188 ep->com.cm_id = cm_id;
3189 ref_cm_id(&ep->com);
3190 ep->com.qp = qp;
3191 ref_qp(ep);
3193 /* bind QP to EP and move to RTS */
3194 attrs.mpa_attr = ep->mpa_attr;
3195 attrs.max_ird = ep->ird;
3196 attrs.max_ord = ep->ord;
3197 attrs.llp_stream_handle = ep;
3198 attrs.next_state = C4IW_QP_STATE_RTS;
3200 /* bind QP and TID with INIT_WR */
3201 mask = C4IW_QP_ATTR_NEXT_STATE |
3202 C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3203 C4IW_QP_ATTR_MPA_ATTR |
3204 C4IW_QP_ATTR_MAX_IRD |
3205 C4IW_QP_ATTR_MAX_ORD;
3207 err = c4iw_modify_qp(ep->com.qp->rhp,
3208 ep->com.qp, mask, &attrs, 1);
3209 if (err)
3210 goto err_deref_cm_id;
3212 set_bit(STOP_MPA_TIMER, &ep->com.flags);
3213 err = send_mpa_reply(ep, conn_param->private_data,
3214 conn_param->private_data_len);
3215 if (err)
3216 goto err_deref_cm_id;
3218 __state_set(&ep->com, FPDU_MODE);
3219 established_upcall(ep);
3220 mutex_unlock(&ep->com.mutex);
3221 c4iw_put_ep(&ep->com);
3222 return 0;
3223 err_deref_cm_id:
3224 deref_cm_id(&ep->com);
3225 err_abort:
3226 abort = 1;
3227 err_out:
3228 mutex_unlock(&ep->com.mutex);
3229 if (abort)
3230 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3231 c4iw_put_ep(&ep->com);
3232 return err;
3235 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3237 struct in_device *ind;
3238 int found = 0;
3239 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3240 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3241 const struct in_ifaddr *ifa;
3243 ind = in_dev_get(dev->rdev.lldi.ports[0]);
3244 if (!ind)
3245 return -EADDRNOTAVAIL;
3246 rcu_read_lock();
3247 in_dev_for_each_ifa_rcu(ifa, ind) {
3248 if (ifa->ifa_flags & IFA_F_SECONDARY)
3249 continue;
3250 laddr->sin_addr.s_addr = ifa->ifa_address;
3251 raddr->sin_addr.s_addr = ifa->ifa_address;
3252 found = 1;
3253 break;
3255 rcu_read_unlock();
3257 in_dev_put(ind);
3258 return found ? 0 : -EADDRNOTAVAIL;
3261 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3262 unsigned char banned_flags)
3264 struct inet6_dev *idev;
3265 int err = -EADDRNOTAVAIL;
3267 rcu_read_lock();
3268 idev = __in6_dev_get(dev);
3269 if (idev != NULL) {
3270 struct inet6_ifaddr *ifp;
3272 read_lock_bh(&idev->lock);
3273 list_for_each_entry(ifp, &idev->addr_list, if_list) {
3274 if (ifp->scope == IFA_LINK &&
3275 !(ifp->flags & banned_flags)) {
3276 memcpy(addr, &ifp->addr, 16);
3277 err = 0;
3278 break;
3281 read_unlock_bh(&idev->lock);
3283 rcu_read_unlock();
3284 return err;
3287 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3289 struct in6_addr addr;
3290 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3291 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3293 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3294 memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3295 memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3296 return 0;
3298 return -EADDRNOTAVAIL;
3301 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3303 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3304 struct c4iw_ep *ep;
3305 int err = 0;
3306 struct sockaddr_in *laddr;
3307 struct sockaddr_in *raddr;
3308 struct sockaddr_in6 *laddr6;
3309 struct sockaddr_in6 *raddr6;
3310 __u8 *ra;
3311 int iptype;
3313 if ((conn_param->ord > cur_max_read_depth(dev)) ||
3314 (conn_param->ird > cur_max_read_depth(dev))) {
3315 err = -EINVAL;
3316 goto out;
3318 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3319 if (!ep) {
3320 pr_err("%s - cannot alloc ep\n", __func__);
3321 err = -ENOMEM;
3322 goto out;
3325 skb_queue_head_init(&ep->com.ep_skb_list);
3326 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3327 err = -ENOMEM;
3328 goto fail1;
3331 timer_setup(&ep->timer, ep_timeout, 0);
3332 ep->plen = conn_param->private_data_len;
3333 if (ep->plen)
3334 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3335 conn_param->private_data, ep->plen);
3336 ep->ird = conn_param->ird;
3337 ep->ord = conn_param->ord;
3339 if (peer2peer && ep->ord == 0)
3340 ep->ord = 1;
3342 ep->com.cm_id = cm_id;
3343 ref_cm_id(&ep->com);
3344 cm_id->provider_data = ep;
3345 ep->com.dev = dev;
3346 ep->com.qp = get_qhp(dev, conn_param->qpn);
3347 if (!ep->com.qp) {
3348 pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3349 err = -EINVAL;
3350 goto fail2;
3352 ref_qp(ep);
3353 pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn,
3354 ep->com.qp, cm_id);
3357 * Allocate an active TID to initiate a TCP connection.
3359 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3360 if (ep->atid == -1) {
3361 pr_err("%s - cannot alloc atid\n", __func__);
3362 err = -ENOMEM;
3363 goto fail2;
3365 err = xa_insert_irq(&dev->atids, ep->atid, ep, GFP_KERNEL);
3366 if (err)
3367 goto fail5;
3369 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3370 sizeof(ep->com.local_addr));
3371 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3372 sizeof(ep->com.remote_addr));
3374 laddr = (struct sockaddr_in *)&ep->com.local_addr;
3375 raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3376 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3377 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3379 if (cm_id->m_remote_addr.ss_family == AF_INET) {
3380 iptype = 4;
3381 ra = (__u8 *)&raddr->sin_addr;
3384 * Handle loopback requests to INADDR_ANY.
3386 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3387 err = pick_local_ipaddrs(dev, cm_id);
3388 if (err)
3389 goto fail3;
3392 /* find a route */
3393 pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3394 &laddr->sin_addr, ntohs(laddr->sin_port),
3395 ra, ntohs(raddr->sin_port));
3396 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3397 laddr->sin_addr.s_addr,
3398 raddr->sin_addr.s_addr,
3399 laddr->sin_port,
3400 raddr->sin_port, cm_id->tos);
3401 } else {
3402 iptype = 6;
3403 ra = (__u8 *)&raddr6->sin6_addr;
3406 * Handle loopback requests to INADDR_ANY.
3408 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3409 err = pick_local_ip6addrs(dev, cm_id);
3410 if (err)
3411 goto fail3;
3414 /* find a route */
3415 pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3416 laddr6->sin6_addr.s6_addr,
3417 ntohs(laddr6->sin6_port),
3418 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3419 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
3420 laddr6->sin6_addr.s6_addr,
3421 raddr6->sin6_addr.s6_addr,
3422 laddr6->sin6_port,
3423 raddr6->sin6_port, cm_id->tos,
3424 raddr6->sin6_scope_id);
3426 if (!ep->dst) {
3427 pr_err("%s - cannot find route\n", __func__);
3428 err = -EHOSTUNREACH;
3429 goto fail3;
3432 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3433 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3434 if (err) {
3435 pr_err("%s - cannot alloc l2e\n", __func__);
3436 goto fail4;
3439 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3440 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3441 ep->l2t->idx);
3443 state_set(&ep->com, CONNECTING);
3444 ep->tos = cm_id->tos;
3446 /* send connect request to rnic */
3447 err = send_connect(ep);
3448 if (!err)
3449 goto out;
3451 cxgb4_l2t_release(ep->l2t);
3452 fail4:
3453 dst_release(ep->dst);
3454 fail3:
3455 xa_erase_irq(&ep->com.dev->atids, ep->atid);
3456 fail5:
3457 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3458 fail2:
3459 skb_queue_purge(&ep->com.ep_skb_list);
3460 deref_cm_id(&ep->com);
3461 fail1:
3462 c4iw_put_ep(&ep->com);
3463 out:
3464 return err;
3467 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3469 int err;
3470 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3471 &ep->com.local_addr;
3473 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3474 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3475 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3476 if (err)
3477 return err;
3479 c4iw_init_wr_wait(ep->com.wr_waitp);
3480 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3481 ep->stid, &sin6->sin6_addr,
3482 sin6->sin6_port,
3483 ep->com.dev->rdev.lldi.rxq_ids[0]);
3484 if (!err)
3485 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3486 ep->com.wr_waitp,
3487 0, 0, __func__);
3488 else if (err > 0)
3489 err = net_xmit_errno(err);
3490 if (err) {
3491 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3492 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3493 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3494 err, ep->stid,
3495 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3497 return err;
3500 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3502 int err;
3503 struct sockaddr_in *sin = (struct sockaddr_in *)
3504 &ep->com.local_addr;
3506 if (dev->rdev.lldi.enable_fw_ofld_conn) {
3507 do {
3508 err = cxgb4_create_server_filter(
3509 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3510 sin->sin_addr.s_addr, sin->sin_port, 0,
3511 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3512 if (err == -EBUSY) {
3513 if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3514 err = -EIO;
3515 break;
3517 set_current_state(TASK_UNINTERRUPTIBLE);
3518 schedule_timeout(usecs_to_jiffies(100));
3520 } while (err == -EBUSY);
3521 } else {
3522 c4iw_init_wr_wait(ep->com.wr_waitp);
3523 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3524 ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3525 0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3526 if (!err)
3527 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3528 ep->com.wr_waitp,
3529 0, 0, __func__);
3530 else if (err > 0)
3531 err = net_xmit_errno(err);
3533 if (err)
3534 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3535 , err, ep->stid,
3536 &sin->sin_addr, ntohs(sin->sin_port));
3537 return err;
3540 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3542 int err = 0;
3543 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3544 struct c4iw_listen_ep *ep;
3546 might_sleep();
3548 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3549 if (!ep) {
3550 pr_err("%s - cannot alloc ep\n", __func__);
3551 err = -ENOMEM;
3552 goto fail1;
3554 skb_queue_head_init(&ep->com.ep_skb_list);
3555 pr_debug("ep %p\n", ep);
3556 ep->com.cm_id = cm_id;
3557 ref_cm_id(&ep->com);
3558 ep->com.dev = dev;
3559 ep->backlog = backlog;
3560 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3561 sizeof(ep->com.local_addr));
3564 * Allocate a server TID.
3566 if (dev->rdev.lldi.enable_fw_ofld_conn &&
3567 ep->com.local_addr.ss_family == AF_INET)
3568 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3569 cm_id->m_local_addr.ss_family, ep);
3570 else
3571 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3572 cm_id->m_local_addr.ss_family, ep);
3574 if (ep->stid == -1) {
3575 pr_err("%s - cannot alloc stid\n", __func__);
3576 err = -ENOMEM;
3577 goto fail2;
3579 err = xa_insert_irq(&dev->stids, ep->stid, ep, GFP_KERNEL);
3580 if (err)
3581 goto fail3;
3583 state_set(&ep->com, LISTEN);
3584 if (ep->com.local_addr.ss_family == AF_INET)
3585 err = create_server4(dev, ep);
3586 else
3587 err = create_server6(dev, ep);
3588 if (!err) {
3589 cm_id->provider_data = ep;
3590 goto out;
3592 xa_erase_irq(&ep->com.dev->stids, ep->stid);
3593 fail3:
3594 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3595 ep->com.local_addr.ss_family);
3596 fail2:
3597 deref_cm_id(&ep->com);
3598 c4iw_put_ep(&ep->com);
3599 fail1:
3600 out:
3601 return err;
3604 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3606 int err;
3607 struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3609 pr_debug("ep %p\n", ep);
3611 might_sleep();
3612 state_set(&ep->com, DEAD);
3613 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3614 ep->com.local_addr.ss_family == AF_INET) {
3615 err = cxgb4_remove_server_filter(
3616 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3617 ep->com.dev->rdev.lldi.rxq_ids[0], false);
3618 } else {
3619 struct sockaddr_in6 *sin6;
3620 c4iw_init_wr_wait(ep->com.wr_waitp);
3621 err = cxgb4_remove_server(
3622 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3623 ep->com.dev->rdev.lldi.rxq_ids[0],
3624 ep->com.local_addr.ss_family == AF_INET6);
3625 if (err)
3626 goto done;
3627 err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp,
3628 0, 0, __func__);
3629 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3630 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3631 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3633 xa_erase_irq(&ep->com.dev->stids, ep->stid);
3634 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3635 ep->com.local_addr.ss_family);
3636 done:
3637 deref_cm_id(&ep->com);
3638 c4iw_put_ep(&ep->com);
3639 return err;
3642 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3644 int ret = 0;
3645 int close = 0;
3646 int fatal = 0;
3647 struct c4iw_rdev *rdev;
3649 mutex_lock(&ep->com.mutex);
3651 pr_debug("ep %p state %s, abrupt %d\n", ep,
3652 states[ep->com.state], abrupt);
3655 * Ref the ep here in case we have fatal errors causing the
3656 * ep to be released and freed.
3658 c4iw_get_ep(&ep->com);
3660 rdev = &ep->com.dev->rdev;
3661 if (c4iw_fatal_error(rdev)) {
3662 fatal = 1;
3663 close_complete_upcall(ep, -EIO);
3664 ep->com.state = DEAD;
3666 switch (ep->com.state) {
3667 case MPA_REQ_WAIT:
3668 case MPA_REQ_SENT:
3669 case MPA_REQ_RCVD:
3670 case MPA_REP_SENT:
3671 case FPDU_MODE:
3672 case CONNECTING:
3673 close = 1;
3674 if (abrupt)
3675 ep->com.state = ABORTING;
3676 else {
3677 ep->com.state = CLOSING;
3680 * if we close before we see the fw4_ack() then we fix
3681 * up the timer state since we're reusing it.
3683 if (ep->mpa_skb &&
3684 test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3685 clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3686 stop_ep_timer(ep);
3688 start_ep_timer(ep);
3690 set_bit(CLOSE_SENT, &ep->com.flags);
3691 break;
3692 case CLOSING:
3693 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3694 close = 1;
3695 if (abrupt) {
3696 (void)stop_ep_timer(ep);
3697 ep->com.state = ABORTING;
3698 } else
3699 ep->com.state = MORIBUND;
3701 break;
3702 case MORIBUND:
3703 case ABORTING:
3704 case DEAD:
3705 pr_debug("ignoring disconnect ep %p state %u\n",
3706 ep, ep->com.state);
3707 break;
3708 default:
3709 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3710 break;
3713 if (close) {
3714 if (abrupt) {
3715 set_bit(EP_DISC_ABORT, &ep->com.history);
3716 ret = send_abort(ep);
3717 } else {
3718 set_bit(EP_DISC_CLOSE, &ep->com.history);
3719 ret = send_halfclose(ep);
3721 if (ret) {
3722 set_bit(EP_DISC_FAIL, &ep->com.history);
3723 if (!abrupt) {
3724 stop_ep_timer(ep);
3725 close_complete_upcall(ep, -EIO);
3727 if (ep->com.qp) {
3728 struct c4iw_qp_attributes attrs;
3730 attrs.next_state = C4IW_QP_STATE_ERROR;
3731 ret = c4iw_modify_qp(ep->com.qp->rhp,
3732 ep->com.qp,
3733 C4IW_QP_ATTR_NEXT_STATE,
3734 &attrs, 1);
3735 if (ret)
3736 pr_err("%s - qp <- error failed!\n",
3737 __func__);
3739 fatal = 1;
3742 mutex_unlock(&ep->com.mutex);
3743 c4iw_put_ep(&ep->com);
3744 if (fatal)
3745 release_ep_resources(ep);
3746 return ret;
3749 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3750 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3752 struct c4iw_ep *ep;
3753 int atid = be32_to_cpu(req->tid);
3755 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3756 (__force u32) req->tid);
3757 if (!ep)
3758 return;
3760 switch (req->retval) {
3761 case FW_ENOMEM:
3762 set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3763 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3764 send_fw_act_open_req(ep, atid);
3765 return;
3767 fallthrough;
3768 case FW_EADDRINUSE:
3769 set_bit(ACT_RETRY_INUSE, &ep->com.history);
3770 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3771 send_fw_act_open_req(ep, atid);
3772 return;
3774 break;
3775 default:
3776 pr_info("%s unexpected ofld conn wr retval %d\n",
3777 __func__, req->retval);
3778 break;
3780 pr_err("active ofld_connect_wr failure %d atid %d\n",
3781 req->retval, atid);
3782 mutex_lock(&dev->rdev.stats.lock);
3783 dev->rdev.stats.act_ofld_conn_fails++;
3784 mutex_unlock(&dev->rdev.stats.lock);
3785 connect_reply_upcall(ep, status2errno(req->retval));
3786 state_set(&ep->com, DEAD);
3787 if (ep->com.remote_addr.ss_family == AF_INET6) {
3788 struct sockaddr_in6 *sin6 =
3789 (struct sockaddr_in6 *)&ep->com.local_addr;
3790 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3791 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3793 xa_erase_irq(&dev->atids, atid);
3794 cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3795 dst_release(ep->dst);
3796 cxgb4_l2t_release(ep->l2t);
3797 c4iw_put_ep(&ep->com);
3800 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3801 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3803 struct sk_buff *rpl_skb;
3804 struct cpl_pass_accept_req *cpl;
3805 int ret;
3807 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3808 if (req->retval) {
3809 pr_err("%s passive open failure %d\n", __func__, req->retval);
3810 mutex_lock(&dev->rdev.stats.lock);
3811 dev->rdev.stats.pas_ofld_conn_fails++;
3812 mutex_unlock(&dev->rdev.stats.lock);
3813 kfree_skb(rpl_skb);
3814 } else {
3815 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3816 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3817 (__force u32) htonl(
3818 (__force u32) req->tid)));
3819 ret = pass_accept_req(dev, rpl_skb);
3820 if (!ret)
3821 kfree_skb(rpl_skb);
3823 return;
3826 static inline u64 t4_tcb_get_field64(__be64 *tcb, u16 word)
3828 u64 tlo = be64_to_cpu(tcb[((31 - word) / 2)]);
3829 u64 thi = be64_to_cpu(tcb[((31 - word) / 2) - 1]);
3830 u64 t;
3831 u32 shift = 32;
3833 t = (thi << shift) | (tlo >> shift);
3835 return t;
3838 static inline u32 t4_tcb_get_field32(__be64 *tcb, u16 word, u32 mask, u32 shift)
3840 u32 v;
3841 u64 t = be64_to_cpu(tcb[(31 - word) / 2]);
3843 if (word & 0x1)
3844 shift += 32;
3845 v = (t >> shift) & mask;
3846 return v;
3849 static int read_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
3851 struct cpl_get_tcb_rpl *rpl = cplhdr(skb);
3852 __be64 *tcb = (__be64 *)(rpl + 1);
3853 unsigned int tid = GET_TID(rpl);
3854 struct c4iw_ep *ep;
3855 u64 t_flags_64;
3856 u32 rx_pdu_out;
3858 ep = get_ep_from_tid(dev, tid);
3859 if (!ep)
3860 return 0;
3861 /* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to
3862 * determine if there's a rx PDU feedback event pending.
3864 * If that bit is set, it means we'll need to re-read the TCB's
3865 * rq_start value. The final value is the one present in a TCB
3866 * with the TF_RX_PDU_OUT bit cleared.
3869 t_flags_64 = t4_tcb_get_field64(tcb, TCB_T_FLAGS_W);
3870 rx_pdu_out = (t_flags_64 & TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S;
3872 c4iw_put_ep(&ep->com); /* from get_ep_from_tid() */
3873 c4iw_put_ep(&ep->com); /* from read_tcb() */
3875 /* If TF_RX_PDU_OUT bit is set, re-read the TCB */
3876 if (rx_pdu_out) {
3877 if (++ep->rx_pdu_out_cnt >= 2) {
3878 WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n");
3879 goto cleanup;
3881 read_tcb(ep);
3882 return 0;
3885 ep->srqe_idx = t4_tcb_get_field32(tcb, TCB_RQ_START_W, TCB_RQ_START_M,
3886 TCB_RQ_START_S);
3887 cleanup:
3888 pr_debug("ep %p tid %u %016x\n", ep, ep->hwtid, ep->srqe_idx);
3890 if (test_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags))
3891 finish_peer_abort(dev, ep);
3892 else if (test_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags))
3893 send_abort_req(ep);
3894 else
3895 WARN_ONCE(1, "unexpected state!");
3897 return 0;
3900 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3902 struct cpl_fw6_msg *rpl = cplhdr(skb);
3903 struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3905 switch (rpl->type) {
3906 case FW6_TYPE_CQE:
3907 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3908 break;
3909 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3910 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3911 switch (req->t_state) {
3912 case TCP_SYN_SENT:
3913 active_ofld_conn_reply(dev, skb, req);
3914 break;
3915 case TCP_SYN_RECV:
3916 passive_ofld_conn_reply(dev, skb, req);
3917 break;
3918 default:
3919 pr_err("%s unexpected ofld conn wr state %d\n",
3920 __func__, req->t_state);
3921 break;
3923 break;
3925 return 0;
3928 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3930 __be32 l2info;
3931 __be16 hdr_len, vlantag, len;
3932 u16 eth_hdr_len;
3933 int tcp_hdr_len, ip_hdr_len;
3934 u8 intf;
3935 struct cpl_rx_pkt *cpl = cplhdr(skb);
3936 struct cpl_pass_accept_req *req;
3937 struct tcp_options_received tmp_opt;
3938 struct c4iw_dev *dev;
3939 enum chip_type type;
3941 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3942 /* Store values from cpl_rx_pkt in temporary location. */
3943 vlantag = cpl->vlan;
3944 len = cpl->len;
3945 l2info = cpl->l2info;
3946 hdr_len = cpl->hdr_len;
3947 intf = cpl->iff;
3949 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3952 * We need to parse the TCP options from SYN packet.
3953 * to generate cpl_pass_accept_req.
3955 memset(&tmp_opt, 0, sizeof(tmp_opt));
3956 tcp_clear_options(&tmp_opt);
3957 tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL);
3959 req = __skb_push(skb, sizeof(*req));
3960 memset(req, 0, sizeof(*req));
3961 req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3962 SYN_MAC_IDX_V(RX_MACIDX_G(
3963 be32_to_cpu(l2info))) |
3964 SYN_XACT_MATCH_F);
3965 type = dev->rdev.lldi.adapter_type;
3966 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3967 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3968 req->hdr_len =
3969 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3970 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3971 eth_hdr_len = is_t4(type) ?
3972 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3973 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3974 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3975 IP_HDR_LEN_V(ip_hdr_len) |
3976 ETH_HDR_LEN_V(eth_hdr_len));
3977 } else { /* T6 and later */
3978 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3979 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3980 T6_IP_HDR_LEN_V(ip_hdr_len) |
3981 T6_ETH_HDR_LEN_V(eth_hdr_len));
3983 req->vlan = vlantag;
3984 req->len = len;
3985 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3986 PASS_OPEN_TOS_V(tos));
3987 req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3988 if (tmp_opt.wscale_ok)
3989 req->tcpopt.wsf = tmp_opt.snd_wscale;
3990 req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3991 if (tmp_opt.sack_ok)
3992 req->tcpopt.sack = 1;
3993 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3994 return;
3997 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3998 __be32 laddr, __be16 lport,
3999 __be32 raddr, __be16 rport,
4000 u32 rcv_isn, u32 filter, u16 window,
4001 u32 rss_qid, u8 port_id)
4003 struct sk_buff *req_skb;
4004 struct fw_ofld_connection_wr *req;
4005 struct cpl_pass_accept_req *cpl = cplhdr(skb);
4006 int ret;
4008 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
4009 if (!req_skb)
4010 return;
4011 req = __skb_put_zero(req_skb, sizeof(*req));
4012 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
4013 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
4014 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
4015 req->le.filter = (__force __be32) filter;
4016 req->le.lport = lport;
4017 req->le.pport = rport;
4018 req->le.u.ipv4.lip = laddr;
4019 req->le.u.ipv4.pip = raddr;
4020 req->tcb.rcv_nxt = htonl(rcv_isn + 1);
4021 req->tcb.rcv_adv = htons(window);
4022 req->tcb.t_state_to_astid =
4023 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
4024 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
4025 FW_OFLD_CONNECTION_WR_ASTID_V(
4026 PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
4029 * We store the qid in opt2 which will be used by the firmware
4030 * to send us the wr response.
4032 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
4035 * We initialize the MSS index in TCB to 0xF.
4036 * So that when driver sends cpl_pass_accept_rpl
4037 * TCB picks up the correct value. If this was 0
4038 * TP will ignore any value > 0 for MSS index.
4040 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
4041 req->cookie = (uintptr_t)skb;
4043 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
4044 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
4045 if (ret < 0) {
4046 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
4047 ret);
4048 kfree_skb(skb);
4049 kfree_skb(req_skb);
4054 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
4055 * messages when a filter is being used instead of server to
4056 * redirect a syn packet. When packets hit filter they are redirected
4057 * to the offload queue and driver tries to establish the connection
4058 * using firmware work request.
4060 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
4062 int stid;
4063 unsigned int filter;
4064 struct ethhdr *eh = NULL;
4065 struct vlan_ethhdr *vlan_eh = NULL;
4066 struct iphdr *iph;
4067 struct tcphdr *tcph;
4068 struct rss_header *rss = (void *)skb->data;
4069 struct cpl_rx_pkt *cpl = (void *)skb->data;
4070 struct cpl_pass_accept_req *req = (void *)(rss + 1);
4071 struct l2t_entry *e;
4072 struct dst_entry *dst;
4073 struct c4iw_ep *lep = NULL;
4074 u16 window;
4075 struct port_info *pi;
4076 struct net_device *pdev;
4077 u16 rss_qid, eth_hdr_len;
4078 int step;
4079 struct neighbour *neigh;
4081 /* Drop all non-SYN packets */
4082 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
4083 goto reject;
4086 * Drop all packets which did not hit the filter.
4087 * Unlikely to happen.
4089 if (!(rss->filter_hit && rss->filter_tid))
4090 goto reject;
4093 * Calculate the server tid from filter hit index from cpl_rx_pkt.
4095 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
4097 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
4098 if (!lep) {
4099 pr_warn("%s connect request on invalid stid %d\n",
4100 __func__, stid);
4101 goto reject;
4104 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4105 case CHELSIO_T4:
4106 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4107 break;
4108 case CHELSIO_T5:
4109 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4110 break;
4111 case CHELSIO_T6:
4112 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4113 break;
4114 default:
4115 pr_err("T%d Chip is not supported\n",
4116 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4117 goto reject;
4120 if (eth_hdr_len == ETH_HLEN) {
4121 eh = (struct ethhdr *)(req + 1);
4122 iph = (struct iphdr *)(eh + 1);
4123 } else {
4124 vlan_eh = (struct vlan_ethhdr *)(req + 1);
4125 iph = (struct iphdr *)(vlan_eh + 1);
4126 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
4129 if (iph->version != 0x4)
4130 goto reject;
4132 tcph = (struct tcphdr *)(iph + 1);
4133 skb_set_network_header(skb, (void *)iph - (void *)rss);
4134 skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4135 skb_get(skb);
4137 pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n",
4138 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4139 ntohs(tcph->source), iph->tos);
4141 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
4142 iph->daddr, iph->saddr, tcph->dest,
4143 tcph->source, iph->tos);
4144 if (!dst) {
4145 pr_err("%s - failed to find dst entry!\n", __func__);
4146 goto reject;
4148 neigh = dst_neigh_lookup_skb(dst, skb);
4150 if (!neigh) {
4151 pr_err("%s - failed to allocate neigh!\n", __func__);
4152 goto free_dst;
4155 if (neigh->dev->flags & IFF_LOOPBACK) {
4156 pdev = ip_dev_find(&init_net, iph->daddr);
4157 if (!pdev) {
4158 pr_err("%s - failed to find device!\n", __func__);
4159 goto free_dst;
4161 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4162 pdev, 0);
4163 pi = (struct port_info *)netdev_priv(pdev);
4164 dev_put(pdev);
4165 } else {
4166 pdev = get_real_dev(neigh->dev);
4167 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4168 pdev, 0);
4169 pi = (struct port_info *)netdev_priv(pdev);
4171 neigh_release(neigh);
4172 if (!e) {
4173 pr_err("%s - failed to allocate l2t entry!\n",
4174 __func__);
4175 goto free_dst;
4178 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4179 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4180 window = (__force u16) htons((__force u16)tcph->window);
4182 /* Calcuate filter portion for LE region. */
4183 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4184 dev->rdev.lldi.ports[0],
4185 e));
4188 * Synthesize the cpl_pass_accept_req. We have everything except the
4189 * TID. Once firmware sends a reply with TID we update the TID field
4190 * in cpl and pass it through the regular cpl_pass_accept_req path.
4192 build_cpl_pass_accept_req(skb, stid, iph->tos);
4193 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4194 tcph->source, ntohl(tcph->seq), filter, window,
4195 rss_qid, pi->port_id);
4196 cxgb4_l2t_release(e);
4197 free_dst:
4198 dst_release(dst);
4199 reject:
4200 if (lep)
4201 c4iw_put_ep(&lep->com);
4202 return 0;
4206 * These are the real handlers that are called from a
4207 * work queue.
4209 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4210 [CPL_ACT_ESTABLISH] = act_establish,
4211 [CPL_ACT_OPEN_RPL] = act_open_rpl,
4212 [CPL_RX_DATA] = rx_data,
4213 [CPL_ABORT_RPL_RSS] = abort_rpl,
4214 [CPL_ABORT_RPL] = abort_rpl,
4215 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
4216 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4217 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4218 [CPL_PASS_ESTABLISH] = pass_establish,
4219 [CPL_PEER_CLOSE] = peer_close,
4220 [CPL_ABORT_REQ_RSS] = peer_abort,
4221 [CPL_CLOSE_CON_RPL] = close_con_rpl,
4222 [CPL_RDMA_TERMINATE] = terminate,
4223 [CPL_FW4_ACK] = fw4_ack,
4224 [CPL_GET_TCB_RPL] = read_tcb_rpl,
4225 [CPL_FW6_MSG] = deferred_fw6_msg,
4226 [CPL_RX_PKT] = rx_pkt,
4227 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4228 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4231 static void process_timeout(struct c4iw_ep *ep)
4233 struct c4iw_qp_attributes attrs;
4234 int abort = 1;
4236 mutex_lock(&ep->com.mutex);
4237 pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state);
4238 set_bit(TIMEDOUT, &ep->com.history);
4239 switch (ep->com.state) {
4240 case MPA_REQ_SENT:
4241 connect_reply_upcall(ep, -ETIMEDOUT);
4242 break;
4243 case MPA_REQ_WAIT:
4244 case MPA_REQ_RCVD:
4245 case MPA_REP_SENT:
4246 case FPDU_MODE:
4247 break;
4248 case CLOSING:
4249 case MORIBUND:
4250 if (ep->com.cm_id && ep->com.qp) {
4251 attrs.next_state = C4IW_QP_STATE_ERROR;
4252 c4iw_modify_qp(ep->com.qp->rhp,
4253 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4254 &attrs, 1);
4256 close_complete_upcall(ep, -ETIMEDOUT);
4257 break;
4258 case ABORTING:
4259 case DEAD:
4262 * These states are expected if the ep timed out at the same
4263 * time as another thread was calling stop_ep_timer().
4264 * So we silently do nothing for these states.
4266 abort = 0;
4267 break;
4268 default:
4269 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4270 __func__, ep, ep->hwtid, ep->com.state);
4271 abort = 0;
4273 mutex_unlock(&ep->com.mutex);
4274 if (abort)
4275 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4276 c4iw_put_ep(&ep->com);
4279 static void process_timedout_eps(void)
4281 struct c4iw_ep *ep;
4283 spin_lock_irq(&timeout_lock);
4284 while (!list_empty(&timeout_list)) {
4285 struct list_head *tmp;
4287 tmp = timeout_list.next;
4288 list_del(tmp);
4289 tmp->next = NULL;
4290 tmp->prev = NULL;
4291 spin_unlock_irq(&timeout_lock);
4292 ep = list_entry(tmp, struct c4iw_ep, entry);
4293 process_timeout(ep);
4294 spin_lock_irq(&timeout_lock);
4296 spin_unlock_irq(&timeout_lock);
4299 static void process_work(struct work_struct *work)
4301 struct sk_buff *skb = NULL;
4302 struct c4iw_dev *dev;
4303 struct cpl_act_establish *rpl;
4304 unsigned int opcode;
4305 int ret;
4307 process_timedout_eps();
4308 while ((skb = skb_dequeue(&rxq))) {
4309 rpl = cplhdr(skb);
4310 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4311 opcode = rpl->ot.opcode;
4313 if (opcode >= ARRAY_SIZE(work_handlers) ||
4314 !work_handlers[opcode]) {
4315 pr_err("No handler for opcode 0x%x.\n", opcode);
4316 kfree_skb(skb);
4317 } else {
4318 ret = work_handlers[opcode](dev, skb);
4319 if (!ret)
4320 kfree_skb(skb);
4322 process_timedout_eps();
4326 static DECLARE_WORK(skb_work, process_work);
4328 static void ep_timeout(struct timer_list *t)
4330 struct c4iw_ep *ep = from_timer(ep, t, timer);
4331 int kickit = 0;
4333 spin_lock(&timeout_lock);
4334 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4336 * Only insert if it is not already on the list.
4338 if (!ep->entry.next) {
4339 list_add_tail(&ep->entry, &timeout_list);
4340 kickit = 1;
4343 spin_unlock(&timeout_lock);
4344 if (kickit)
4345 queue_work(workq, &skb_work);
4349 * All the CM events are handled on a work queue to have a safe context.
4351 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4355 * Save dev in the skb->cb area.
4357 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4360 * Queue the skb and schedule the worker thread.
4362 skb_queue_tail(&rxq, skb);
4363 queue_work(workq, &skb_work);
4364 return 0;
4367 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4369 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4371 if (rpl->status != CPL_ERR_NONE) {
4372 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n",
4373 rpl->status, GET_TID(rpl));
4375 kfree_skb(skb);
4376 return 0;
4379 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4381 struct cpl_fw6_msg *rpl = cplhdr(skb);
4382 struct c4iw_wr_wait *wr_waitp;
4383 int ret;
4385 pr_debug("type %u\n", rpl->type);
4387 switch (rpl->type) {
4388 case FW6_TYPE_WR_RPL:
4389 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4390 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4391 pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret);
4392 if (wr_waitp)
4393 c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0);
4394 kfree_skb(skb);
4395 break;
4396 case FW6_TYPE_CQE:
4397 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4398 sched(dev, skb);
4399 break;
4400 default:
4401 pr_err("%s unexpected fw6 msg type %u\n",
4402 __func__, rpl->type);
4403 kfree_skb(skb);
4404 break;
4406 return 0;
4409 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4411 struct cpl_abort_req_rss *req = cplhdr(skb);
4412 struct c4iw_ep *ep;
4413 unsigned int tid = GET_TID(req);
4415 ep = get_ep_from_tid(dev, tid);
4416 /* This EP will be dereferenced in peer_abort() */
4417 if (!ep) {
4418 pr_warn("Abort on non-existent endpoint, tid %d\n", tid);
4419 kfree_skb(skb);
4420 return 0;
4422 if (cxgb_is_neg_adv(req->status)) {
4423 pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
4424 ep->hwtid, req->status,
4425 neg_adv_str(req->status));
4426 goto out;
4428 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state);
4430 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
4431 out:
4432 sched(dev, skb);
4433 return 0;
4437 * Most upcalls from the T4 Core go to sched() to
4438 * schedule the processing on a work queue.
4440 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4441 [CPL_ACT_ESTABLISH] = sched,
4442 [CPL_ACT_OPEN_RPL] = sched,
4443 [CPL_RX_DATA] = sched,
4444 [CPL_ABORT_RPL_RSS] = sched,
4445 [CPL_ABORT_RPL] = sched,
4446 [CPL_PASS_OPEN_RPL] = sched,
4447 [CPL_CLOSE_LISTSRV_RPL] = sched,
4448 [CPL_PASS_ACCEPT_REQ] = sched,
4449 [CPL_PASS_ESTABLISH] = sched,
4450 [CPL_PEER_CLOSE] = sched,
4451 [CPL_CLOSE_CON_RPL] = sched,
4452 [CPL_ABORT_REQ_RSS] = peer_abort_intr,
4453 [CPL_RDMA_TERMINATE] = sched,
4454 [CPL_FW4_ACK] = sched,
4455 [CPL_SET_TCB_RPL] = set_tcb_rpl,
4456 [CPL_GET_TCB_RPL] = sched,
4457 [CPL_FW6_MSG] = fw6_msg,
4458 [CPL_RX_PKT] = sched
4461 int __init c4iw_cm_init(void)
4463 skb_queue_head_init(&rxq);
4465 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM);
4466 if (!workq)
4467 return -ENOMEM;
4469 return 0;
4472 void c4iw_cm_term(void)
4474 WARN_ON(!list_empty(&timeout_list));
4475 destroy_workqueue(workq);